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Tangency properties of sets with finite
geometric curvature energies
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Sebastian Scholtes (Aachen)

Abstract. We investigate tangential regularity properties of sets of fractal dimension,
whose inverse thickness or integral Menger curvature energies are bounded. For the most
prominent of these energies, the integral Menger curvature

Mα
p (X) :=

�

X

�

X

�

X

κp(x, y, z) dHαX(x) dHαX(y) dHαX(z),

where κ(x, y, z) is the inverse circumradius of the triangle defined by x, y and z, we find
that Mα

p (X) < ∞ for p ≥ 3α implies the existence of a weak approximate α-tangent at
every point of the set, if some mild density properties hold. This includes the scale invariant
case p = 3 for M1

p, for which, to the best of our knowledge, no regularity properties
have been established before. Furthermore we prove that for α = 1 these exponents are
sharp, i.e., if p lies below the threshold value of scale invariance, then there exists a set
containing points with no weak approximate 1-tangent, but such that the energy is still
finite. Moreover we demonstrate that weak approximate tangents are the most we can
expect. For the other curvature energies analogous results are shown.

1. Introduction. In [13] J.-C. Léger proved a remarkable theorem (1)
which states that one-dimensional Borel sets inRn with finite integral Menger
curvatureM1

2 are 1-rectifiable. Here, the integral Menger (2) curvature of a
set X ⊂ Rn is the triple integral over the squared inverse circumradius (3),

Mα
p (X) :=

�

X

�

X

�

X

[r(x, y, z)]−p dHαX(x) dHαX(y) dHαX(z),
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(1) Léger refers to an unpublished work of G. David that inspired his work.
(2) Named after Karl Menger, because in [20] Menger introduced the limit of the

inverse circumradius, when the three points in the argument converge to a single point,
as a pointwise curvature.

(3) For other applications of the circumradius see [23].
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for p = 2 and α = 1, where HαX is the Hausdorff measure on X. The circum-
radius r(x, y, z) is the radius of the unique circle on which the vertices of the
non-degenerate triangle {x, y, z} lie; in the case of a degenerate triangle it is
set to be infinite. These results forM1

2 were later extended to metric spaces
in [10], and in [17] to sets of fractional dimension, where C1-α-rectifiability
of measurable sets with positive and finite Hα measure was shown ifMα

2α is
finite and α ∈ (0, 1/2] under the additional assumption that these sets are
α-Ahlfors regular (4). As a consequence Léger’s theorem also ensures that an
H1 measurable set E ⊂ Rn withM1

2(E) <∞ has approximate 1-tangents at
H1 a.e. point. By an approximate α-tangent at a point x we mean a direction
s ∈ Sn−1 such that

lim
r↓0

Hα([X \ Cs,ε(x)] ∩Br(x))

(2r)α
= 0 for all ε > 0,

where Cs,ε(x) is the double cone with opening angle ε in direction s about
x (cf. [19, p. 203]; for different tangential regularity properties cf. also [18]).
One might think of it as a kind of geometric or measure-theoretic counter-
part to differentiability. Roughly speaking it means that the set is locally
well approximated by the approximate tangent. For example a regular, dif-
ferentiable curve has approximate 1-tangents at all points and these tangents
coincide with the usual tangent, but the arc length parametrisation of the
set S := {(x, 0) | x ∈ [0, 1]} ∪ {(x, x2) | x ∈ [0, 1]} has no tangent at (0, 0),
despite the set having an approximate 1-tangent at this point (see Remark
4.5).

Now one could ask if the conditionM1
2(X) <∞ also guarantees that the

set has approximate 1-tangents at all points, or, if this is not the case, what
influence, if any, the exponent p of the energy M1

p has on these matters.
This question and related topics are the subject of this paper.

Complementary to this research, where highly irregular sets are permit-
ted, was the investigation of rectifiable curves, which have a classic tangent
H1 a.e. to begin with, of finite M1

p energy. It turns out (see [27]) that for
p > 3 this guarantees that the curve is simple and that the arc length
parametrisation is of class C1,1−3/p, which can be interpreted as a geomet-
ric Morrey–Sobolev imbedding. In [1] it was shown that the space of curves
with finiteM1

p for p > 3 is that of Sobolev–Slobodetskĭı embeddings of class
W 2−2/p,p. The same program has also been conducted for a different kind of
energy, the so-called tangent point energy in [33, 2].

We would like to point out the important role of integral Menger curva-
ture for p = 2 in the solution of the Painlevé problem, i.e. to find geometric

(4) It was also shown that these results are sharp, i.e. wrong for s ∈ (1/2, 1), but
that there is no hope of maintaining these results for s ∈ (0, 1) if one drops the α-Ahlfors
regularity.
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characterisations of removable sets for bounded analytic functions; see [21, 5]
for a detailed presentation and references.

Besides integral Menger curvature there are other interesting curvature
energies that have been investigated in the same vein. In [8] Gonzalez and
Maddocks proposed their notion of thickness

∆[X] := inf
x,y,z∈X
x 6=y 6=z 6=x

r(x, y, z)

of a knot X, which is the infimum of the circumradius r(x, y, z) over all
triangles {x, y, z} on the curve, and also suggested investigating different
integral curvature energies

Uαp (X) :=
�

X

[
inf
y,z∈X

x 6=y 6=z 6=x

r(x, y, z)
]−p

dHαX(x),

Iαp (X) :=
�

X

�

X

[
inf
z∈X

x 6=y 6=z 6=x

r(x, y, z)
]−p

dHαX(x) dHαX(y),

and Mα
p , where the inverse circumradius is integrated to the power p and

the infimisations are successively replaced by integrations. That arc length
parametrisations of curves with finite inverse thickness are actually of class
C1,1, and the existence of ideal knots, which are minimizers of the inverse
thickness in a knot class under the restriction of fixed length, were shown in
[9, 4, 7]; for further research in this direction see also [24, 25]. In the series
of works [30, 26, 27] the integral curvature energies U1

p , I1p and M1
p have

been investigated for closed rectifiable curves, to find that the arc length
parametrisations of curves with finite energy for p ∈ [1,∞), p ∈ (2,∞) and
p ∈ (3,∞), respectively, are simple and actually belong to the class C1,βF (p),
where βU (p) = 1− 1/p, βI(p) = 1− 2/p and βM(p) = 1− 3/p. In [1] it was
shown that the space of curves with finite I1p for p > 2 and M1

p for p > 3

is that of Sobolev–Slobodetskĭı embeddings of class W 2−1/p,p and W 2−2/p,p,
respectively. Similar energies for surfaces and higher-dimensional sets have
been examined in [28, 29, 31, 14, 15, 11, 12, 32, 3].

As mentioned at the very beginning, the purpose of this paper is to
investigate which pointwise tangential properties can be expected of sets in
Euclidean space with finite energy. To be more precise we will investigate if
a set X possesses an approximate α-tangent or at least a weak approximate
α-tangent at every point x. A weak approximate α-tangent is a mapping
s : (0, ρ)→ Sn−1 such that

lim
r↓0

Hα([X \ Cs(r),ε(x)] ∩Br(x))

(2r)α
= 0 for all ε > 0.

For the T-shaped set E := ([−1, 1] × {0}) ∪ ({0} × [0, 1]) it is shown that
M1

2(E) <∞ does not suffice to infer that the set has weak approximate 1-
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tangents at all points with positive lower density (see Lemma 6.1). So it seems
that these properties might depend on the exponent p and the parameter α
of the integral curvature energies Uαp , Iαp and Mα

p . Thus our aim is to find
conditions on p and α that ensure the existence of α-tangents at all points
with positive lower density. We shall solve this question completely, to be
honest with one minor additional technical requirement in the case ofMα

p ,
namely Θ∗α(Hα, X, x) < ∞ (for the notation, see Definition 3.1), which,
despite our best efforts, we have not been able to remove. We have gathered
the findings from different sections of the present paper in Theorem 1.1
below. Note that compared to [17] we do not require the set to be measurable
and α-Ahlfors regular and have more detailed information on which points
do possess tangents, but we pay for that by a more restrictive requirement on
the parameter p. We also remark that in [16, 1.5 Corollary, p. 13] it is shown
that for α > 1 and an Hα measurable set X ⊂ Rn with 0 < Hα(X) < ∞
we always have Mα

2α(X) = ∞, which somewhat restricts the extent of the
next theorem for α > 1. On the other hand, however, there are a lot more
sets allowed in the theorem that still could have finiteMα

2α.

Theorem 1.1 (Main result). Let X ⊂ Rn, x ∈ Rn, α ∈ (0,∞).

• Let 1/∆[X] < ∞ and H1(X) < ∞. Then X has an approximate 1-
tangent at x.

• Let p ∈ [α,∞) and Uαp (X) < ∞. Then X has an approximate α-
tangent at x.

• Let p ∈ [2α,∞), Iαp (X) < ∞ and Θα∗ (Hα, X, x) > 0. Then X has a
weak approximate α-tangent at x.

• Let p ∈ [3α,∞),Mα
p (X) <∞ and

0 < Θα∗ (Hα, X, x) ≤ Θ∗α(Hα, X, x) <∞.

Then X has a weak approximate α-tangent at x.

To the best of our knowledge these are the first results regarding regu-
larity that incorporate the critical cases p = 2 for I1p and p = 3 for M1

p.
Moreover, we show that the exponents are sharp for α = 1, that is, there
is a set, namely the T-shaped set E above, that contains a point without
weak approximate 1-tangent and has finite energy if p is below the respective
threshold value.

Proposition 1.2 (Exponents are sharp for α = 1). For E := ([−1, 1]×
{0}) ∪ ({0} × [0, 1]) we have

• U1
p (E) <∞ for p ∈ (0, 1),

• I1p (E) <∞ for p ∈ (0, 2),
• M1

p(E) <∞ for p ∈ (0, 3).
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Furthermore we demonstrate that there is a set F that has a point with-
out an approximate 1-tangent and finite I1p andM1

p for all p ∈ (0,∞). Hence
there is no hope of obtaining the analog to the main result for U1

p for these
two energies.

Proposition 1.3 (Weak approximate 1-tangents are optimal for α = 1).
There is a set F ⊂ Rn and x ∈ Rn such that F has no approximate 1-tangent
at x and

• I1p (F ) <∞ for p ∈ (0,∞),
• M1

p(F ) <∞ for p ∈ (0,∞).

Finally we mention that, using the techniques of this paper, we can show
that theM1

p energy of all simple polygons is finite if and only if p ∈ (0, 3);
see [22]. Similar statements hold for U1

p and I1p for p below the scale invariant
threshold value.

The paper is organised as follows: Section 2 introduces integral curva-
ture energies for arbitrary metric spaces, as this is not more complicated
than doing so for arbitrary sets in Rn and even provides a simpler notation.
Then, in Section 3, we give lower bounds for the Hausdorff measure of an-
nuli under certain conditions on the Hausdorff density. We also introduce a
new and slightly wider notion of Hausdorff density for set-valued mappings.
In Section 4 we give some examples and simple properties of the different
notions of tangents. Finally we prove the main Theorem 1.1 in Section 5.
Then Section 6 shows Proposition 1.2 by estimating the energies Uαp , Iαp and
Mα

p of the set E. Section 7 contains the proof of Proposition 1.3. To improve
readability we have deferred several technical issues to the appendix.

2. Curvature energies and notation. In a metric space (X, d) we
denote by Br(x) the open ball of radius r about x ∈ X and by Br(x) :=
{y ∈ X | d(x, y) ≤ r} the closed ball of radius r about x ∈ X. For a set
X with outer measure V we write C(V) for the V measurable sets of X, i.e.
those sets E which are measurable in the sense of Carathéodory:

V(M) = V(M ∩ E) + V(M \ E) for all M ⊂ X.
Let (X, τ) be a topological space (in this paper the topology is always induced
by a metric). Then B(X) denotes the Borel sets of (X, τ). For two measurable
spaces (X,A) and (Y,B) we say that a function f : (X,A)→ (Y,B) is A-B
measurable if f−1(B) ∈ A for all B ∈ B. By Hα we denote the α-dimensional
Hausdorff measure on a metric space (X, d) and by Ln the n-dimensional
Lebesgue measure on Rn. The extended real numbers are indicated by R.
Furthermore we write Pot(X) for the power set of a set X. For the notation
in case ofX ⊂ Rn, where it might not be clear ifHα is the Hausdorff measure
on Rn or X, see the comment after Lemma 2.8.
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The thickness of a set was introduced by O. Gonzalez and J. Maddocks
in [8], where they also suggested investigating the integral curvature energies
U1
p , I1p andM1

p, which will be defined subsequently.

Definition 2.1 (Circumradius, intermediate and global radius of curva-
ture, thickness). Let (X, d) be a metric space. We define the circumradius
of three distinct points x, y, z ∈ X as the circumradius of the triangle de-
fined by the (unique up to Euclidean motions) isometric embedding of these
points in the Euclidean plane, i.e.

r : {(x, y, z) ∈ X3 | d(x, y), d(y, z), d(z, x) > 0} =: D → R,

(x, y, z) 7→ abc√
(a+ b+ c)(a+ b− c)(a− b+ c)(−a+ b+ c)

,

where a := d(x, y), b := d(y, z), c := d(z, x) and α/0 =∞ for any α > 0. We
also write X0 := X3 \D. Now we define the mappings ρ : X2 \diag(X)→ R
and ρG : X → R by

ρ(x, y) := inf
w∈X
y 6=w 6=x

r(x, y, w) and ρG(x) := inf
v,w∈X

x 6=v 6=w 6=x

r(x, v, w),

which are often called intermediate and global radius of curvature, respec-
tively. Here diag(X) := {(x, x) | x ∈ X} denotes the diagonal of X. The
thickness is then defined to be

∆[X] := inf
u,v,w∈X
u6=v 6=w 6=u

r(u, v, w).

Remark 2.2 (Different formulas for the circumradius). We note that
in Rn there are various formulas for the circumradius, for example one has
the following representations for x, y, z ∈ Rn mutually distinct [21, (14) and
(15), p. 29]

r(x, y, z) =
‖x− y‖

2|sin(](x, z, y))|
=
‖x− z‖ ‖y − z‖
2 dist(z, Lx,y)

,

where Lx,y := x+ R(x− y) is the straight line connecting x and y.

Lemma 2.3 (Reciprocal radii of curvature are l.s.c. and measurable). Let
(X, d) be a metric space. Then the functions

κG : X → R, x 7→ 1/ρG(x),

κi : X
2 → R, (x, y) 7→

{
1/ρ(x, y), (x, y) ∈ X2 \ diag(X),
0, else,

κ : X3 → R, (x, y, z) 7→
{
1/r(x, y, z), (x, y, z) ∈ X3 \X0,
0, else,
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with the convention 1/0 = ∞ and 1/∞ = 0, are lower semicontinuous and
B(X)-B(R), B(X2)-B(R) and B(X3)-B(R) measurable, respectively.

Proof. It is easy to see that r is continuous onX3\X0 and hence ρ and ρG
are upper semicontinuous on X2 \ diag(X) and X, respectively. This holds,
because infima of upper semicontinuous functions are upper semicontinuous.
Now it is clear that the reciprocals of these functions are lower semicontinu-
ous and, considering that the excluded sets diag(X) and X0 are closed, and
the functions are non-negative on the whole space and 0 on these sets, we
see that they are lower semicontinuous on the entire space. Therefore we
directly obtain Borel measurability.

Definition 2.4 (A menagerie of integral curvature energies). Let (X, d)
be a metric space and α, p ∈ (0,∞). We are now able to define the following
two-parameter families of integral curvature energies:

Uαp (X) :=
�

X

κpG(x) dH
α(x),

Iαp (X) :=
�

X

�

X

κpi (x, y) dH
α(x) dHα(y),

Mα
p (X) :=

�

X

�

X

�

X

κp(x, y, z) dHα(x) dHα(y) dHα(z).

The last of these energies,Mα
p , is often called the α-dimensional (integral)

p-Menger curvature.

Remark 2.5 (Subtle differences in possible definitions of energies). We
remark that in the Euclidean case the measure in the integrals is the Haus-
dorff measure on the set X (with respect to the subspace metric, i.e. the
restriction of the metric of Rn to the set X), in contrast to the Hausdorff
measure on Rn. As we shall see shortly, this enables us to include non-
measurable sets, in contrast to the other approach, where the energy might
not exist on non-measurable sets, which can easily be seen by the example of
a Vitali type set on the unit circle. We suspect that the gain of permitted sets
when comparing [10] for Rn to [13], where only Borel sets were permitted,
might be related to this matter.

Lemma 2.6 (Integral curvature energies are well-defined). Let (X, d) be
a metric space. Then for all α, p ∈ (0,∞) the curvature energies Uαp (X),
Iαp (X) andMα

p (X) are well defined.

Proof. Repeatedly use Lemma 2.3 and Fatou’s Lemma.

Lemma 2.7 (Inequalities between integral curvature energies). Let (X, d)
be a metric space with Hα(X) <∞ and α, p ∈ (0,∞). Then



172 S. Scholtes

Mα
p (X) ≤ Hα(X)Iαp (X) ≤ Hα(X)2Uαp (X) ≤ H

α(X)3

∆[X]p
.

For 0 < p < q <∞ we have

Uαp (X) ≤ Hα(X)(1−p/q)Uαq (X)p/q,

Iαp (X) ≤ Hα(X)2(1−p/q)Iαq (X)p/q,

Mα
p (X) ≤ Hα(X)3(1−p/q)Mα

q (X)p/q.

Proof. The first part is a direct consequence of the definition of the inte-
grands and the second part is easily proved by successively using the Hölder
inequality for a = q/p > 1 and b = q/(q − p) from the inner to the outer
integral.

Later on we often use the contrapositive of the following lemma to show
that a set has infinite curvature energy.

Lemma 2.8 (F(Br) → 0 if F(X) < ∞). Let (X, d) be a metric space
with Hα(X) <∞, α, p ∈ (0,∞), F ∈ {Uαp , Iαp ,Mα

p }. If F(X) <∞ then for
all x ∈ X,

lim
r↓0
F(Br(x)) = 0.

Proof. Let x0 ∈ X and assume that there is a decreasing sequence
(rn)n∈N with rn > 0 and limn→∞ rn = 0 such that F(Brn(x0)) ≥ c > 0
for all n ∈ N. We first note that as Br(x0) ∈ C(Hα) and measures are con-
tinuous on decreasing sets Ej if E1 has finite measure [6, Theorem 1.1, (b),
p. 2], we have

lim
n→∞

Hα(Brn(x0)) = Hα
(

lim
n→∞

Brn(x0)
)
= Hα({x0}) = 0.

Let

f ∈
{
x 7→ κpG(x), y 7→

�

X

κpi (x, y) dH
α(x),

z 7→
�

X

�

X

κp(x, y, z) dHα(x) dHα(y)
}

be the integrand corresponding to F . It can be easily seen that f is mea-
surable by showing that it is lower semicontinuous, using Lemma 2.3 and
Fatou’s Lemma. Furthermore,�

Brn (x0)

f dHα ≥ F(Brn(x0)) ≥ c > 0.

To conclude the proof we remark that, in order for F(X) =
	
X f dH

α to
be finite, we must have

	
Brn (x0)

f dHα → 0, by the Monotone Convergence
Theorem. Thus we obtain the desired contradiction.
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When dealing with subsets of Rn, which is always the case from now
on except for Definition 3.1 and Lemma 3.2, we denote the α-dimensional
Hausdorff measure on Rn by Hα, and the α-dimensional Hausdorff measure
on X ⊂ Rn, induced by the subspace metric, by HαX . Additionally Br(x) and
Br(x) denote the open and closed balls in Rn. Note that for A ⊂ X ⊂ Rn
we have Hα(A) = HαX(A), but for example X is trivially HαX measurable,
while X might not be Hα measurable.

Definition 2.9 (Double cone in direction s with opening angle ε). Let
x ∈ Rn, s ∈ Sn−1 and ε > 0. By Cs,ε(x) we denote the open double cone
centred at x in direction s, i.e.

Cs,ε(x) := {y ∈ Rn \ {x} | min{](y, x, x− s),](y, x, x+ s)} < ε}.

Just after the first version of this paper had been written up, Martin
Meurer (who also did a higher dimensional version of this) and the author
proved the following lemma, which permits including sets with infinite mea-
sure in our subsequent theorems.

Lemma 2.10 (Finite energy implies finite measure on all balls). Let α ∈
[1,∞), p ∈ (0,∞), F ∈ {Uαp , Iαp ,Mα

p } and X ⊂ Rn be a set with F(X) <∞.
Then for all x ∈ Rn and R > 0 we have Hα(X ∩BR(x)) <∞.

Proof. Assume this is not the case.

Step 1. We show that there is an x0 ∈ BR(x) with

(2.1) Hα(X ∩Br(x0)) =∞ for all r > 0.

According to our assumption there exist x ∈ Rn and R > 0 such that
Hα(X ∩ BR(x)) = ∞. By a covering argument, for any n ∈ N there is an
xn ∈ BR(x) such that Hα(X ∩B1/n(xn)) =∞. As BR(x) is compact, there
is a subsequence such that xnk → x0 ∈ BR(x). Then Hα(X ∩ Br(x0)) =∞
for all r > 0, because

sup
y∈B1/nk

(xnk )
d(x0, y) ≤ d(x0, xnk) + 1/nk → 0.

Step 2. For ρ > 0 we can find r = r(ρ) and A := Bρ(x0) \ Br(x0)
such that Hα(X ∩ A) ≥ 3ρ, because Bρ(x0) \ Br(x0) ∈ C(HαX) and by the
continuity of measures on increasing sets [6, Theorem 1.1(a), p. 2] we have

∞ = Hα(X ∩Bρ(x0)) = HαX(Bρ(x0)) = HαX(Bρ(x0) \ {x0})

= HαX
( ⋃
n∈N

Bρ(x0) \B1/n(x0)
)
= lim

n→∞
HαX(Bρ(x0) \B1/n(x0)).

Then there exists a direction s ∈ Sn−1 and an ε > 0 such that

Hα(X ∩A ∩ Cs,ε(x0)) > 0 and Hα([X ∩A] \ Cs,2ε(x0)) > 0,(2.2)
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because, by a covering and compactness argument similar to that of Step 1,
there is a direction s such that Hα(X ∩ A ∩ Cs,ε(x0)) > 0 for all ε > 0.
If we assume that Hα([X ∩ A] \ Cs,2ε(x0)) = 0 for all ε > 0, we obtain a
contradiction for Nn := [X ∩A] \ Cs,1/n(x0), because

Hα([X ∩A] \ L) = Hα
( ⋃
n∈N

Nn

)
≤
∑
n∈N
Hα(Nn) = 0,(2.3)

which follows from

3ρ ≤ Hα(X ∩A) = Hα([X ∩A] \ L) +Hα(X ∩A ∩ L)
= Hα(X ∩A ∩ L) ≤ 2ρ,

where L = x0 + [−ρ, ρ]s. For the last inequality we needed α ∈ [1,∞).

Step 3. Denote by C := X ∩A ∩Cs,ε(x0) and C ′ := [X ∩A] \Cs,2ε(x0)
the sets from (2.2). By Lemma A.1 (see Appendix) we have dist(Lx,y, x0) ≥
sin(ε)r/2 for x ∈ C and y ∈ C ′, so that for all z ∈ Bsin(ε)r/4(x0) we have

dist(Lx,y, z) ≥ dist(Lx,y, x0)− d(z, x0) ≥ sin(ε)r/4,

and hence

Mα
p (X) ≥

�

C

�

C′

�

X∩Bsin(ε)r/4(x0)

[sin(ε)r/4]p

r2p
dHαX(z) dHαX(y) dHαX(x)

≥ Hα(C)Hα(C ′)Hα(X ∩Bsin(ε)r/4(x0))
[sin(ε)r/4]p

r2p
(2.1)
= ∞.

For the other energies the argument is similar.

Corollary 2.11 (Finite energy implies that HαX is a Radon measure).
Let α ∈ [1,∞), p ∈ (0,∞), F ∈ {Uαp , Iαp ,Mα

p } and X ⊂ Rn be a set with
F(X) <∞. Then HαX is a Radon measure.

Proof. This is a direct consequence of Lemma 2.10.

For α ∈ (0, 1) it can happen that Hα(X) = ∞, but F(X) < ∞, even
F(X) = 0 is possible, as can be seen by the example of the bounded set
X = [0, 1]×{0}. Therefore we have to find an appropriate version of Lemma
2.10 that takes this into account, but still enables us later on to draw the
same conclusions regarding the tangency properties we want to investigate.

Lemma 2.12 (Consequences of finite energy for α ∈ (0, 1)). Let α ∈
(0, 1), p ∈ (0,∞), F ∈ {Uαp , Iαp ,Mα

p } and X ⊂ Rn be a set with F(X) <∞.
For all x0 ∈ X, either

• there is r > 0 such that Hα(X ∩Br(x0)) <∞, or
• there is a direction s ∈ Sn−1 such that Hα(X \ [x0 + Rs]) = 0.
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Proof. We can argue as in the proof of Lemma 2.10, because now (the
negation of) the additional second item together with (2.3) yields the con-
tradiction needed to prove the second part of (2.2).

3. Hausdorff density and lower estimates of annuli. In this section
we recall the definition of Hausdorff density, introduce a slightly wider notion
for set-valued mappings and prove some properties of these densities. More
importantly, we estimate the Hausdorff measure of annuli from below under
the assumption that the densities fulfill certain conditions.

Definition 3.1 (Hausdorff density for set-valued mappings). Let (X, d)
be a metric space, x ∈ X, α ∈ (0,∞) and A : (0, ρ)→ Pot(X). Then

Θα∗ (Hα, A(r), x) := lim inf
r↓0

Hα(A(r) ∩Br(x))

(2r)α
,

Θ∗α(Hα, A(r), x) := lim sup
r↓0

Hα(A(r) ∩Br(x))

(2r)α

are called the lower and upper α-dimensional Hausdorff density of A at x.
If the upper and lower densities coincide we call their common value the
Hausdorff density and denote it by Θα(Hα, A(r), x). If A(r) ≡ A is constant
we will usually identify the mapping with the constant and neglect the ar-
gument. Note that Θα(Hα, A(r), x) does not depend on r, but we use this
notation to emphasize that set-valued mappings are allowed.

Lemma 3.2 (Simultaneous estimate of annuli). Let (X, d) be a metric
space, α ∈ (0,∞), A,B : (0, ρ)→ Pot(X), x ∈ X with

Θα∗ (Hα, A(r), x) > 0, Θ∗α(Hα, B(r), x) > 0 and Θ∗α(Hα, X, x) <∞.
Then there exists a q0 ∈ (0, 1), a sequence (rn)n∈N with rn > 0 and
limn→∞ rn = 0 and a constant c > 0 such that

crαn ≤ min{Hα(A(rn)∩Brn(x) \Bq0rn(x)),Hα(B(rn)∩Brn(x) \Bq0rn(x))}.
Proof. Step 1. By the hypotheses Θ∗α(Hα, B(r), x) =: δ0 > 0 and

Θ∗α(Hα, X, x) =: θ/4α <∞, there are rn > 0 with rn → 0 such that

δ0r
α
n ≤ Hα(B(rn) ∩Brn(x))

and

Hα(B(rn) ∩Bqrn(x)) ≤ Hα(Bqrn(x)) ≤ θqαrαn for all q ∈ (0, 1),

as the upper density is positive. Together this means that

Hα(B(rn) ∩ [Brn(x) \Bqrn(x)])
≥ Hα(B(rn) ∩Brn(x))−Hα(B(rn) ∩Bqrn(x)) ≥ (δ0 − θqα)rαn ≥ δ0rαn/2

if we choose qα ≤ δ0/(2θ) < 1.
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Step 2. As 0 < δ1 := Θα∗ (Hα, A(r), x) we know that for n large enough,

δ1r
α
n ≤ Hα(A(rn) ∩Brn(x)).

Now we can use the argument from Step 1 to obtain

Hα(A(rn) ∩ [Brn(x) \Bqrn(x)]) ≥ (δ1 − θqα)rαn ≥ δ1rαn/2

if we choose qα ≤ δ1/(2θ) < 1.

Step 3. Combining the results from the previous steps we obtain the
proposition for q0 = [min{δ1, δ2}/(2θ)]1/α ∈ (0, 1) and c = min{δ1, δ2}/2.

Note that in case X ⊂ Rn we do not require x ∈ X in Lemma 3.2. We re-
mind the reader that the angle ](s, 0, s′) is a metric, denoted by dSn−1(s, s′),
on the sphere Sn−1, so that (Sn−1, dSn−1) is a complete metric space.

Lemma 3.3 (Uniform estimate of cones if Θα∗ (Hα, X, x) > 0). Suppose
X ⊂ Rn, x ∈ Rn and Θα∗ (Hα, X, x) > 0. Then there is a ρ > 0 and a
mapping s : (0, ρ)→ Sn−1 such that for all ε > 0 there is c(ε) > 0 with

Hα(X ∩Br(x) ∩ Cs(r),ε(x)) ≥ c(ε)rα for all r ∈ (0, ρ).

Proof. Step 1. Fix x ∈ Rn. Let 0 < ϕ < ψ, s ∈ Sn−1 and define

M(s, ϕ, ψ) := min
{
|I|
∣∣∣ Cs,ψ(x)⊂⋃

i∈I
Csi,ϕ(x), si ∈ Sn−1, dSn−1(s, si) < ψ

}
,

where |I| is the number of elements in I. As x+ Sn−1 is compact in Rn we
can select from {Cs′,ϕ(x) | s′ ∈ Sn−1, dSn−1(s, s′) < ψ} a finite subcover of
Cs,ψ(x), and consequently M(s, ϕ, ψ) is finite. It is clear that M(s, ϕ, ψ) =
M(s̃, ϕ, ψ) for all s, s̃ ∈ Sn−1, since we can transform s to s̃ by a rotation.
Therefore we write M(ϕ,ψ) :=M(s, ϕ, ψ).

Step 2. We define s0(r) := e1 = (1, 0, . . . , 0) and ε0 := 2π2−0 = 2π. As
the lower density is positive, there are ρ > 0 and c > 0 such that

Hα(X ∩Br(X)) = Hα(X ∩Br(X) ∩ Cs0(r),ε0(x)) ≥ cr
α for all r ∈ (0, ρ).

Now we set εk+1 = 2π2−(k+1) and find, with the help of Step 1, a direction
sk+1(r) ∈ Sn−1 with dSn−1(sk(r), sk+1(r)) < εk such that

Hα(X ∩Br(X) ∩ Csk+1(r),εk+1
(x)) ≥

Hα(X ∩Br(X) ∩ Csk(r),εk(x))
M(εk+1, εk)

≥ · · · ≥ c∏k
i=0M(εi+1, εi)

rα for all r ∈ (0, ρ).

Since the sphere is a complete metric space, we know that for all r ∈ (0, ρ)
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there are s(r) ∈ Sn−1 such that sk(r)→ s(r) with

dSn−1(sk(r), s(r)) ≤
∞∑
i=k

εi =

∞∑
i=k

2π2−i

= 2π

[
1

1− 1/2
− 1− 1/2−k

1− 1/2

]
= 2π2−(k−1) = εk−1.

Step 3. Let ε > 0. Then, as εk → 0, there is a k such that ε > εk−1+εk.
Because dSn−1(s, s′) + ϕ ≤ ψ implies Cs′,ϕ(x) ⊂ Cs,ψ(x) and we already
know dSn−1(sk(r), s(r)) ≤ εk−1 by Step 2, we have Csk(r),εk(x) ⊂ Cs(r),ε(x)
and hence

Hα(X ∩Br(x) ∩ Cs(r),ε(x)) ≥ Hα(X ∩Br(x) ∩ Csk(r),εk(x))

≥ c∏k−1
i=0 M(εi+1, εi)

rα = c(ε)rα for all r ∈ (0, ρ).

4. Approximate tangents, counterexamples. We now fix our nota-
tion regarding the tangency properties we wish to investigate. Also we give
some remarks and examples in this context. In this section we finally leave
the setting of metric spaces and are only concerned with subsets of Rn.

Definition 4.1 (Weakly α-linearly approximable). Let α ∈ (0,∞). We
say that a set X ⊂ Rn is weakly α-linearly approximable at a point x ∈ Rn
if there is a ρ > 0 and a mapping s : (0, ρ)→ Sn−1 such that for every ε > 0
and every δ > 0, there is a ρ(ε, δ) ∈ (0, ρ) with

Hα([X ∩Br(x)] \ Cs(r),ε(x)) ≤ δrα for all r ∈ (0, ρ(ε, δ)).

Definition 4.2 (Weak and strong approximate α-tangents). Let X ⊂
Rn be a set and x ∈ Rn, α ∈ (0,∞). We say that X has a (strong) approxi-
mate α-tangent at x if there is a direction s ∈ Sn−1 such that

Θα(Hα, X \ Cs,ε(x), x) = 0 for all ε > 0,

and we say that X has a weak approximate α-tangent at x if there is a ρ > 0
and a mapping s : (0, ρ)→ Sn−1 such that

Θα(Hα, X \ Cs(r),ε(x), x) = 0 for all ε > 0.

We will also sometimes call the direction s and the mapping s : (0, ρ)→ Sn−1
a (strong) approximate α-tangent and weak approximate α-tangent, respec-
tively.

Lemma 4.3 (Weak α-linear approximability and weak approximate α-
tangents). Let X ⊂ Rn be a set and x ∈ Rn, α ∈ (0,∞). Then the following
are equivalent:

• X is weakly α-linearly approximable at x,
• X has a weak approximate α-tangent at x.
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Proof. One direction is an immediate consequence of the definitions, and
the other can easily be seen by taking a closer look at what it means to have
zero density.

Remark 4.4 (Differences to standard terminology). We should warn
the reader that our definitions of 1-linear approximability and approximate
1-tangents differ from the standard use in the literature [19, 15.7 & 15.10
Definition, p. 206 and 15.17 Definition, p. 212] in that we do not impose
additional density requirements, like Θ∗1(H1, X, x) > 0 in the case of ap-
proximate 1-tangents. This is simply due to the fact that in the following
sections we obtain simpler formulations of our results, because some distinc-
tion of cases can be omitted, as we cannot expect a set with finite curvature
energy to have positive upper density at any point.

Remark 4.5 (Difference between approximate 1-tangents and tangents).
What it means for a set to have an approximate 1-tangent at a point is, in
some respects, quite different to having an actual tangent at this point. To
illustrate this, consider

S := {(x, 0) | x ∈ [0, 1]} ∪ {(x, x2) | x ∈ [0, 1]}.

As x 7→ x2 is convex there is r(ε) such that S∩Br(ε)(0) ⊂ Ce1,ε(0) and hence
S has an approximate 1-tangent at (0, 0), but an arc length parametrisation
γ of S does not possess a derivative, and hence a tangent, at γ−1((0, 0)).

Example 4.6 (A set with weak approximate but no approximate 1-tan-
gents). Set an := 2−n

nn3 , An := [an/2, an] and

F :=
[ ⋃
n∈N

A2n × {0}
]
∪
[ ⋃
n∈N
{0} ×A2n−1

]
.

For ε > 0 we have
H1(F ∩ Ce1,ε(0) ∩Ba2n(0)) ≥ H1([a2n/2, a2n]) = a2n/2,

H1(F ∩ Ce2,ε(0) ∩Ba2n+1(0)) ≥ H1([a2n+1/2, a2n+1]) = a2n+1/2.
(4.1)

Now (4.1) tells us that no approximate 1-tangent exists, because for every
s ∈ Sn−1 there are εs > 0 and is ∈ {1, 2} such that Ceis ,εs(0) ∩ Cs,εs(0) = ∅
and hence by (4.1) there are rn = rn(s) > 0 with rn → 0 and

Θ∗1(H1, F \ Cs,εs(0), 0) ≥ lim
n→∞

H1([F ∩ Ceis ,εs(0)] ∩Brn(0))

2rn
≥ 1

4
.

On the other hand,

H1([F ∩Br(0)] \ Ce1,ε(0)) ≤ H1([0, a2n+1]) = 2−(2n+1)2n+1(2n+1)3

≤ 2−2n2−(2n)
2n(2n)3−1 = 2−2n

a2n
2
≤ 2−2nr
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for all r ∈ [a2n/2, a2n−1/2] and

H1([F ∩Br(0)] \ Ce2,ε(0)) ≤ H1([0, a2(n+1)]) = 2−(2[n+1])2[n+1](2[n+1])3

≤ 2−(2n+1)2−(2n+1)2n+1(2n+1)3−1 = 2−(2n+1)a2n+1

2
≤ 2−(2n+1)r

for all r ∈ (a2n+1/2, a2n/2). We have thus verified the definition of F having
a weak approximate 1-tangent for

s : (0, 1/2)→ S1, r 7→
{
e1, r ∈

⋃
n∈N[a2n/2, a2n−1/2],

e2, r ∈
⋃
n∈N(a2n+1/2, a2n/2).

Lemma 4.7 (Density estimates for sets with no weak approximate tan-
gent). Let X ⊂ Rn, x ∈ Rn, α ∈ (0,∞) and Θα∗ (Hα, X, x) > 0. If X
has no weak approximate α-tangent at x, then there is ρ > 0, a mapping
s : (0, ρ)→ Sn−1, and ε0 > 0 such that

Θα∗ (Hα, X ∩ Cs(r),ε0/2(x), x) > 0, Θ∗α(Hα, X \ Cs(r),ε0(x), x) > 0.(4.2)

Proof. By Lemma 3.3 we find a mapping s such that the left inequality
of (4.2) holds for every ε0 > 0. Now Lemma 4.3 and Definition 4.1 give an
ε0 > 0 such that the right inequality of (4.2) holds for this s.

The next lemma, used in the omitted proof of the first two items of
Theorem 1.1, is the counterpart to Lemma 4.7.

Lemma 4.8 (Density estimates for sets with no approximate tangent).
Let X ⊂ Rn, x ∈ Rn, α ∈ (0,∞) and Θ∗α(Hα, X, x) > 0. If X has no
approximate α-tangent at x, then there are s ∈ Sn−1 and ε0 > 0 such that

Θ∗α(Hα, X ∩ Cs,ε0/2(x), x) > 0 and Θ∗α(Hα, X \ Cs,ε0(x), x) > 0.

Proof. Assuming that there exists no approximate α-tangent at x ∈ X
we know that for all directions s ∈ Sn−1 there is an εs > 0 such that
Θ∗α(Hα, X \ Cs,εs(x), x) > 0. As Sn−1 is compact and {Cs,εs/2(x)}s∈Sn−1 is
an open cover of x + Sn−1 there exists a finite subcover {Csi,εsi/2(x)}

N
i=1.

Clearly this subcover also covers the whole Rn \ {x}. Since Θ∗α(Hα, X, x) =
Θ∗α(Hα, X \ {x}, x) > 0, there must be j ∈ {1, . . . , N} with Θ∗α(Hα, X ∩
Csj ,εj/2(x), x) > 0.

5. Finite integral curvature energy implies (weak) approximate
tangents for p above the threshold value. In this section we prove
our main result, Theorem 1.1. As the proofs for the different energies are
very similar, we will only present the one for the most difficult energyMα

p .
That is, we show that for p ∈ [3α,∞) a set with Mα

p finite has a weak
approximate α-tangent at all points where the lower density is positive and
the upper density is finite.
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Lemma 5.1 (Necessary conditions for finite Menger curvature). Let X ⊂
Rn, z0 ∈ Rn, α ∈ (0,∞), Hα(X) <∞, Θα∗ (Hα, X, z0) > 0. Let ε > 0, c > 0,
q0 ∈ (0, 1) and let two sequences of sets An, Bn ⊂ X as well as a sequence
(rn)n∈N with rn > 0 and rn → 0 be given, with the following properties:

• for all n ∈ N and all x ∈ An \ {z0} and y ∈ Bn \ {z0} we have
π − ε ≥ ](x, z0, y) ≥ ε,

• for all n ∈ N we have

min{Hα(An ∩ [Brn(z0) \Bq0rn(z0)]),Hα(Bn ∩ [Brn(z0) \Bq0rn(z0)])} ≥ crαn .
ThenMα

p (X) =∞ for all p ≥ 3α.

Proof. Let p ≥ 3α and suppose for contradiction thatMα
p (X) <∞. We

set

Ãn := An ∩ [Brn(z0) \Bq0rn(z0)] and B̃n := Bn ∩ [Brn(z0) \Bq0rn(z0)].

From Lemma A.1 we know that for all x ∈ Ãn \ {z0} and y ∈ B̃n \ {z0} we
have dist(Lx,y, z0) ≥ sin(ε)q0rn/2 and therefore for all z ∈ Bsin(ε)q0rn/4(z0),

dist(Lx,y, z) ≥ dist(Lx,y, z0)− d(z0, z) ≥
sin(ε)

4
q0rn.

There exists a constant c1 > 0 such that

Hα(X ∩Bsin(ε)q0rn/4(z0)) ≥ c1(sin(ε)q0rn/4)
α

for all n ∈ N. Then

Mα
p (X ∩B2rn(z0))

≥
�

X∩Bsin(ε)q0rn/4
(z0)

�

Ãn

�

B̃n

(
2 dist(Lx,y, z)

‖x− z‖ ‖y − z‖

)p
dHαX(x) dHαX(y) dHαX(z)

≥
�

X∩Bsin(ε)q0rn/4
(z0)

�

Ãn

�

B̃n

(
2 sin(ε)

4 q0rn

4r2n

)p
dHαX(x) dHαX(y) dHαX(z)

≥
(
sin(ε)q0

8

)p
Hα(X ∩Bsin(ε)q0rn/4(z0))H

α(Ãn)Hα(B̃n)
(

1

rn

)p
≥
(
sin(ε)q0

8

)p
c1

(
sin(ε)q0rn

4

)α
c2r2αn

(
1

rn

)p
≥
(
sin(ε)q0

8

)p+α
2αc1c

2r3α−pn ≥ c′ > 0

for all n ∈ N. Hence Lemma 2.8 tells us that Mα
p (X) = ∞ (note that

for this we needed Hα(B2rn(x) ∩ X) < ∞). This is absurd as we assumed
Mα

p (X) <∞.
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Proposition 5.2 (Finite Mα
p , p ≥ 3α, implies weak approximate tan-

gents). Let X ⊂ Rn be a set, and let α ∈ (0,∞) and x ∈ Rn with

0 < Θα∗ (Hα, X, x) ≤ Θ∗α(Hα, X, x) <∞.

If p ∈ [3α,∞) and Mα
p (X) <∞ then X has a weak approximate α-tangent

at x.

Proof. Assume that this is not the case. By Lemmas 2.10 and 2.12 we
can assume that Hα(X ∩ Br(x)) < ∞ for all small radii. Then by Lemma
4.7 there is a mapping s : (0, ρ)→ Sn−1 with ρ > 0 and ε0 > 0 such that

Θα∗ (Hα, X ∩ Cs(r),ε0/2(x), x) > 0, Θ∗α(Hα, X \ Cs(r),ε0(x), x) > 0.

This means that the hypotheses of Lemma 3.2 hold for

A(r) := X ∩ Cs(r),ε0/2(x) and B(r) := X \ Cs(r),ε0(x),

so that there exists a q0 ∈ (0, 1), a sequence (rn)n∈N with rn > 0 and
limn→∞ rn = 0 and a constant c > 0 such that

min{Hα(A(rn)∩Brn(x) \Bq0rn(x)),Hα(B(rn)∩Brn(x) \Bq0rn(x))} ≥ crαn .

Hence the hypotheses of Lemma 5.1 are fulfilled for ε := ε0/2 (note that
Hα(X ∩Br(x)) <∞ for small radii), and we have proven the proposition.

6. Finite integral curvature energy does not imply (weak) ap-
proximate tangents for α = 1 and p below threshold value. In this
section we prove Proposition 1.2 by estimating the energies U1

p , I1p andM1
p

of the T-shaped set E, defined by

E := ([−1, 1]× {0}) ∪ ({0} × [0, 1]) ⊂ R2,(6.1)

for p below the scale invariant threshold value. Clearly E does not have a
weak approximate 1-tangent at (0, 0). Further we set E1 := [−1, 0] × {0},
E2 := {0} × [0, 1] and E3 := [0, 1]× {0}.

Proposition 6.1 (The set E has finite U1
p for p ∈ (0, 1)). For p ∈ (0, 1)

we have

U1
p (E) ≤ 6

1− p
.

Proof. For all x ∈ E \ {0} and y, z ∈ B‖x‖(x) ∩ E, y 6= z, we have
κ(x, y, z) = 0, so that to have κ(x, y, z) > 0 we need ‖x − y‖ ≥ ‖x‖ or
‖x− z‖ ≥ ‖x‖, which both result in r(x, y, z) ≥ ‖x‖/2 and consequently

sup
y,z∈E\{x}

y 6=z

κ(x, y, z) ≤ 2

‖x‖
,
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so that for p ∈ (0, 1),

U1
p (E) =

�

E\{0}

(
sup

y,z∈E\{x}
y 6=z

κ(x, y, z)

︸ ︷︷ ︸
≤2/‖x‖

)p
dH1

E(x)

≤ 3
�

E2

2

‖x‖p
dH1

E(x) = 6

1�

0

1

sp
dL1(s) = 6

1− p
<∞.

Proposition 6.2 (The set E has finite I1p for p ∈ (1, 2)). Let E be the
set from (6.1). For p ∈ (1, 2) we have

I1p (E) ≤ 9 · 23p/2+1(21−p − 1)

(1− p)(2− p)
and consequently I1p (E) <∞ for p ∈ (0, 2).

Proof. Let x, y ∈ E \ {0}, x 6= y. We are interested in the maximal value
of κ(x, y, z) for z ∈ E \ {x, y}. As κ is invariant under isometries we can
restrict ourselves to the cases x, y ∈ E1; x ∈ E1, y ∈ E3; and x ∈ E1,
y ∈ E2. In each of these cases we want to estimate κ(x, y, z) independently
of z. We denote the non-zero components of x, y, z by ξ, η, ζ respectively.

Case 1. If x, y ∈ E1, xy 6= 0 we can clearly assume z ∈ E2 \ {0} and
hence

κ(x, y, z) =
2ζ√

ξ2 + ζ2
√
η2 + ζ2

=
2√

ζ2 + ξ2 + η2 + ξ2η2/ζ2
.

By taking the first and second derivatives of f(u) = αu+ β/u, α, β > 0, we
easily see that minu>0 f(u) = f(

√
β/α), so that for all ζ > 0 we have

ζ2 +
ξ2η2

ζ2
≥ ξη + ξ2η2

ξη
= 2ξη

and therefore

κ(x, y, z) ≤ 2√
ξ2 + η2 + 2ξη

=
2

|ξ|+ |η|
.

Case 2. If x ∈ E1, y ∈ E3, xy 6= 0 we need z ∈ E2 in order to have
κ(x, y, z) > 0, but then κ(x, y, z) = κ(x,−y, z), so that we can assume that
y ∈ E1. This was already done in Case 1.

Case 3. If x ∈ E1, y ∈ E2, xy 6= 0 we note that κ(x, y, z) = κ(x, y,−z)
for z ∈ E3, so that we may assume z ∈ E1. Then

κ(x, y, z) =
2η√

ξ2 + η2
√
ζ2 + η2

≤ 2η√
ξ2 + η2

√
η2

=
2√

ξ2 + η2
≤ 2

√
2

|ξ|+ η
.
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In all cases we have

κ(x, y, z) ≤ 2
√
2

|ξ|+ |η|
for all z ∈ E \ {x, y},

which for p ∈ (1, 2) gives us

I1p (E) ≤ 9 · 23p/2
1�

0

1�

0

( 1

s+ t

)p
dL1(s) dL1(t)

=
9 · 23p/2

1− p

1�

0

[(1 + t)1−p − t1−p] dL1(t)

=
9 · 23p/2

(1− p)(2− p)
[(1 + t)2−p − t2−p]10

=
9 · 23p/2

(1− p)(2− p)
[
[22−p − 1]− [1− 0]

]
=

9 · 23p/2+1(21−p − 1)

(1− p)(2− p)
.

Now the rest of the proposition follows from Lemma 2.7.

Proposition 6.3 (The set E has finiteM1
p for p ∈ [2, 3)). Let E be the

set from (6.1). For p ∈ [2, 3) we have

M1
p(E) ≤ 72π

(3− p)2
,

and consequentlyM1
p(E) <∞ for p ∈ (0, 3).

Proof. Step 1. We set

Fp(A,B,C) :=
�

C

�

B

�

A

κp(x, y, z) dH1
A(x) dH1

B(y) dH1
C(z).

Since the integrand κp vanishes on certain sets, we have∑
i,j,k∈{1,2,3}
#{i,j,k}=1

Fp(Ei, Ej , Ek) +
∑

i,j,k∈{1,3}

Fp(Ei, Ej , Ek) = 0,

furthermore

M1
p(E1 ∪ E2) =

∑
i,j,k∈{1,2}
#{i,j,k}=2

Fp(Ei, Ej , Ek) =
∑

i,j,k∈{2,3}
#{i,j,k}=2

Fp(Ei, Ej , Ek)

=M1
p(E2 ∪ E3),

as the energy is invariant under isometries. We obtain

M1
p(E1 ∪ E2) = 3(Fp(E1, E1, E2) + Fp(E1, E2, E2)) = 6Fp(E1, E1, E2),

and the same forM1
p(E2 ∪E3), where the last equality is, again, due to the

invariance of the integrand under isometries. By considering the integrand
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κp in the form

κp(x, y, z) =

(
2 dist(x, Lzy)

d(x, y)d(x, z)

)p
for x ∈ E2, y ∈ E1 and z ∈ E3 we note that κp(x, y, z) = κp(x, y,−z); by
mapping E3 onto E1 via z 7→ −z we find Fp(E3, E1, E2) = Fp(E1, E1, E2),
so that ∑

i,j,k∈{1,2,3}
#{i,j,k}=3

Fp(Ei, Ej , Ek) = 6Fp(E1, E1, E2).

All in all we obtain

M1
p(E)

=
( ∑
i,j,k∈{1,2,3}
#{i,j,k}=1

+
∑

i,j,k∈{1,3}
#{i,j,k}=2

+
∑

i,j,k∈{1,2}
#{i,j,k}=2

+
∑

i,j,k∈{2,3}
#{i,j,k}=2

+
∑

i,j,k∈{1,2,3}
#{i,j,k}=3

)
Fp(Ei, Ej , Ek)

= 18Fp(E1, E1, E2) = 18Fp(E2, E1, E1).

Step 2. Let us first choose parametrisations

γ1 : [0, 1]→ R2, t 7→ (−t, 0) and γ2 : [0, 1]→ R2, t 7→ (0, t)

of E1 and E2, respectively. This gives

Fp(E2, E1, E1) =

1�

0

1�

0

1�

0

(
2x√

x2 + y2
√
x2 + z2

)p
dL1(x) dL1(y) dL1(z)

Lemma A.2
≤

1�

0

1�

0

2p
π

2p
(zy)−(p−1)/2 dL1(y) dL1(z)

= π

1�

0

z(1−p)/2
[

2

3− p
y(3−p)/2

]1
0

dL1(z) = π

[
2

3− p
z(3−p)/2

]1
0

2

3− p

=
4π

(3− p)2
.

Notice that the range p ≥ 2 was necessary to apply Lemma A.2. Now the
rest of the proposition follows from Lemma 2.7.

7. Weak approximate tangents are optimal for α = 1. The weak
approximate 1-tangents in the results for I1p and M1

p are optimal in the
following sense:

Proposition 7.1 (A set with no approximate tangent and finite I1p for
all p ∈ (0,∞)). Set an := 2−n

nn3 , An := [an/2, an] and
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F :=
[ ⋃
n∈N

A2n × {0}︸ ︷︷ ︸
=:B2n

]
∪
[ ⋃
n∈N
{0} ×A2n−1︸ ︷︷ ︸

=:B2n−1

]
.

Then F does not have an approximate 1-tangent at 0 and

• I1p (F ) <∞ for all p ∈ (0,∞),
• M1

p(F ) <∞ for all p ∈ (0,∞).

Proof. In Example 4.6 it was already shown that F does not have an
approximate 1-tangent at 0, so it remains to prove the finiteness of the
energies.

Step 1. For l 6= k we denote

µ := min{k, l} and M := max{k, l}.

Then

dist(Bk, Bl) ≥ dist(Ak, Al) = 2−(µ
µµ3+1) − 2−M

MM3

= 2−(µ
µµ3+1)(1− 2(µ

µµ3+1)−MMM3
) ≥ 2−(µ

µµ3+2) = aµ/4.

Let y ∈ Bk, z ∈ Bl with k 6= l. Then

κi(y, z) ≤
2

dist(Bk, Bl)
≤ 8

aµ
=

8

amin{k,l}
=

8

max{ak, al}
.

Step 2. Let q > 1. We now compute some inequalities for the indices. Let
k,m ∈ N, k < m, i.e. m = k + i for some i ∈ N. Then

m3 = (k + i)3 = k3 + 3k2i+ 3ki2 + i3,

so that

−m3 + k3 = −(3k2i+ 3ki2 + i3) ≤ −3(k + i) = −3m.(7.1)

As qkk ≤ mm for 1 < q ≤ k < m we have

−mmm3 + qkkk3 ≤ −qkkm3 + qkkk3 = qkk(−m3 + k3)

(7.1)
≤ qkk(−3m) ≤ −3m.

Consequently, for all 1 < q ≤ k < m,

am
aqk

=
2−m

mm3

2−qkkk3
= 2−m

mm3+qkkk3 ≤ 2−3m.(7.2)



186 S. Scholtes

Step 3. As H1(Bn) = an/2 we have, for p ≥ 3, and q = p− 1 > 1,∑
k,m∈N
k 6=m

�

Bk

�

Bm

κpi (y, z) dH
1
F (y) dH1

F (z) ≤
∑
k,m∈N
k 6=m

[
8

max{ak, am}

]pakam
4

≤ 2 · 8p

4

∑
k,m∈N
1≤k<m

akam
max{ak, am}p

≤ 4 · 8p−1
∑
k,m∈N
1≤k≤q
k<m

akam
max{ak, am}p

+ 4 · 8p−1
∑
k,m∈N
q≤k<m

am

ap−1k

≤ 4 · 8p−1
∑
k,m∈N
1≤k≤q
k<m

akam
apdqe

+ 4 · 8p−1
∑
k,m∈N
q≤k<m

am
aqk

(7.2)
≤ 4 · 8p−1

apdqe

∑
k,m∈N

2−k2−m + 4 · 8p−1
∑
k,m∈N
q≤k<m

2−3m

≤ 4 · 8p−1

apdqe
+ 4 · 8p−1

∑
k,m∈N
q≤k<m

2−k2−m ≤ 4 · 8p−1

apdqe
+ 4 · 8p−1

∑
k,m∈N

2−k2−m

= 4 · 8p−1
(

1

apdqe
+ 1

)
.

Step 4. Let y, z ∈ Bn. Then κ(x, y, z) > 0 if and only if x ∈ Bk for
(k − n)mod 2 = 1. To simplify matters we may without loss of generality
assume that k is even and n is odd. We now have (cf. Remark 2.2)

κ(x, y, z) =
2ξ√

ξ2 + η2
√
ξ2 + ζ2

,

where we denote the non-zero entries of x, y and z by ξ, η and ζ, respectively.
If we set f(ξ) := κ(x, y, z)/2 for fixed y and z, we have

f ′(ξ) =
1√

ξ2 + η2
√
ξ2 + ζ2

− ξ2√
ξ2 + η2

3√
ξ2 + ζ2

− ξ2√
ξ2 + η2

√
ξ2 + ζ2

3

=
(ξ2 + η2)ζ2 − ξ2(ξ2 + ζ2)√

ξ2 + η2
3√

ξ2 + ζ2
3 =

η2ζ2 − ξ4√
ξ2 + η2

3√
ξ2 + ζ2

3 ,

which is 0 if and only if ξ =
√
ηζ, because ξ, η, ζ > 0. That f attains its

maximum at ξ =
√
ηζ is clear from f ′ ≥ 0 on [0,

√
ηζ] and f ′ ≤ 0 on

[
√
ηζ,∞). Since

√
ηζ ∈ An we have (

√
ηζ, 0) 6∈ F , as n is odd, so that

κi(y, z) = supx∈F κ(x, y, z) is attained for x = (ξ, 0), ξ ∈ {an+1, an−1/2}.
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We have

f(an+1) =
an+1√

a2n+1 + η2
√
a2n+1 + ζ2

≤ an+1

a2n+1 + a2n/4
≤ 4

an+1

a2n

and

f(an−1/2) =
an−1/2√

a2n−1/4 + η2
√
a2n−1/4 + ζ2

≤ an−1/2

a2n−1/4 + a2n/4
≤ 2

an−1
a2n−1

≤ 4

an−1
.

As 2nnn3 ≤ (n+ 1)(n+ 1)n(n+ 1)3 = (n+ 1)n+1(n+ 1)3 and an−1 ≤ 1 we
have an+1an−1 ≤ a2n and hence for n ≥ 2,

κi(y, z) = 2max{f(an+1), f(an−1/2)} ≤ 2max

{
4an+1

a2n
,

4

an−1

}
=

8

an−1
.

Consequently, for p ≥ 3 we have
∞∑
n=1

�

Bn

�

Bn

κpi (y, z) dH
1
F (y) dH1

F (z)

≤ 2p

dist(B1,R× {0})p

(
1

4

)2

+
∞∑
n=2

8p

apn−1
H1(Bn)H1(Bn)

≤ 2p

(1/4)p

(
1

4

)2

+

∞∑
n=2

8p

apn−1

a2n
4
≤ 8p

16
+ 8p

∞∑
n=2

an
apn−1

≤ 8p

16
+ 8p

dpe+1∑
n=2

an
apn−1

+ 8p
∞∑

n=dpe+1

an
apn−1

(7.2)
≤ Cp + 8p

∞∑
n=dpe+1

2−3n ≤ Cp + 8p
∞∑
n=0

2−n ≤ Cp + 8p · 2.

Step 5. For p ≥ 3 we now conclude that

I1p (F ) ≤
∑
k,l∈N

�

Bk

�

Bl

κpi (y, z) dH
1
F (y) dH1

F (z)

=
∑
k,l∈N
k 6=l

�

Bk

�

Bl

κpi (y, z) dH
1
F (y) dH1

F (z)

+
∑
n∈N

�

Bn

�

Bn

κpi (y, z) dH
1
F (y) dH1

F (z) <∞.

Using H1(F ) ≤ 2 together with Lemma 2.7 we have I1p (F ) < ∞ and
M1

p(F ) <∞ for all p ∈ (0,∞).
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Appendix

Lemma A.1 (dist(Lx,y, 0) in terms of ](x, 0, y)). Let x, y ∈ Rn \ {0},
x 6= y, be such that ε := arccos(x · y/(‖x‖‖y‖)) ∈ (0, π) and let Lx,y denote
the straight line connecting x and y. Then

dist(Lx,y, 0) ≥
sin(ε)

2
min{‖x‖, ‖y‖}.

Proof. We can assume that 0, x, y ∈ R2. Now we compute the area of the
triangle given by 0, x, y as

1

2
sin(ε)‖x‖ ‖y‖ = 1

2
‖x− y‖dist(Lx,y, 0)

and obtain the proposition via ‖x− y‖ ≤ 2max{‖x‖, ‖y‖}.
Lemma A.2 (Integral I). For y, z > 0 and p ≥ 2 we have

1�

0

xp

(x2 + y2)p/2(x2 + z2)p/2
dx ≤ π

2p
(zy)−(p−1)/2.

Proof. We have
1�

0

xp

(x2 + y2)p/2(x2 + z2)p/2
dx =

1�

0

xp

(x4 + (y2 + z2)x2 + y2z2)p/2
dx

y2+z2≥2yz
≤

1�

0

xp

(x4 + 2yzx2 + y2z2)p/2
dx

=

1�

0

xp

(x2 + yz)2p/2
dx =

1�

0

xp

(x2 + yz)p
dx

=

1�

0

1

(x+ yz/x)p
dx =

1�

0

1

(x+ yz/x)2
1

(x+ yz/x)p−2
dx

x+zy/x≥2√zy
≤

1�

0

1

(x+ yz/x)2
1

(2
√
zy)p−2

dx

Lemma A.3
=

1

2p−2
1

(zy)p/2−1
1

2

(
arctan(1/

√
zy)

√
zy

− 1

1 + zy︸ ︷︷ ︸
≥0

)

≤ 1

2p−2
1

(zy)p/2−1
1

2

π

2

1
√
zy

=
π

2p
(zy)−(p−1)/2.

Lemma A.3 (Integral II). For a > 0 we have
1�

0

1

(x+ a/x)2
dx =

1

2

(
arctan(1/

√
a)√

a
− 1

1 + a

)
.
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Proof. Indeed,[
1

2

(
arctan(x/

√
a)√

a
− x

x2 + a

)]′
=

1

2

(
1√

a(1 + (x/
√
a)2)

1√
a︸ ︷︷ ︸

= 1
a+x2

− 1

x2 + a
+

2x2

(x2 + a)2

)

=
x2

(x2 + a)2
=

1

(x+ a/x)2
.

Acknowledgements. The author wishes to thank his advisor Heiko von
der Mosel for constant support and encouragement, reading and discussing
the present paper, as well as giving many helpful remarks, like the idea to
allow for α 6= 1 as in [17]. He is also grateful to Martin Meurer for the
joint efforts that led to Lemma 2.10. Furthermore the author is indebted
to Thomas El Khatib, who gave some helpful remarks and a better proof
for Lemma A.1. Finally, the author thanks the referees for shortening some
proofs and improving some of the results.

References

[1] S. Blatt, A note on integral Menger curvature for curves, preprint, ETH Zürich,
2011.

[2] S. Blatt, The energy spaces of the tangent point energies, preprint, ETH Zürich,
2011.

[3] S. Blatt and S. Kolasiński, Sharp boundedness and regularizing effects of the integral
Menger curvature for submanifolds, Adv. Math., to appear.

[4] J. Cantarella, R. B. Kusner, and J. M. Sullivan, On the minimum ropelength of
knots and links, Invent. Math. 150 (2002), 257–286.

[5] J. J. Dudziak, Vitushkin’s Conjecture for Removable Sets, Universitext, Springer,
New York, 2010.

[6] K. J. Falconer, The Geometry of Fractal Sets, Cambridge Tracts in Math. 85, Cam-
bridge Univ. Press, Cambridge, 1985.

[7] O. Gonzalez and R. de la Llave, Existence of ideal knots, J. Knot Theory Ramif. 12
(2003), 123–133.

[8] O. Gonzalez and J. H. Maddocks, Global curvature, thickness, and the ideal shapes
of knots, Proc. Nat. Acad. Sci. USA 96 (1999), 4769–4773.

[9] O. Gonzalez, J. H. Maddocks, F. Schuricht, and H. von der Mosel, Global curvature
and self-contact of nonlinearly elastic curves and rods, Calc. Var. Partial Differential
Equations 14 (2002), 29–68.

[10] I. Hahlomaa, Menger curvature and rectifiability in metric spaces, Adv. Math. 219
(2008), 1894–1915.

[11] S. Kolasiński, Integral Menger curvature for sets of arbitrary dimension and codi-
mension, arXiv:1011.2008, 2011.

http://dx.doi.org/10.1007/s00222-002-0234-y
http://dx.doi.org/10.1142/S0218216503002354
http://dx.doi.org/10.1073/pnas.96.9.4769
http://dx.doi.org/10.1007/s005260100089
http://dx.doi.org/10.1016/j.aim.2008.07.013


190 S. Scholtes

[12] S. Kolasiński and M. Szumańska, Minimal Hölder regularity implying finiteness of
integral Menger curvature, arXiv:1111.1141, 2011.

[13] J.-C. Léger, Menger curvature and rectifiability, Ann. of Math. (2) 149 (1999), 831–
869.

[14] G. Lerman and J. T. Whitehouse, High-dimensional Menger-type curvatures. II.
d-separation and a menagerie of curvatures, Constr. Approx. 30 (2009), 325–360.

[15] G. Lerman and J. T. Whitehouse, High-dimensional Menger-type curvatures. Part
I: Geometric multipoles and multiscale inequalities, Rev. Mat. Iberoamer. 27 (2011),
493–555.

[16] Y. Lin, Menger curvature, singular integrals and analytic capacity, Ann. Acad. Sci.
Fenn. Math. Diss. 111 (1997), 44 pp.

[17] Y. Lin and P. Mattila, Menger curvature and C1 regularity of fractals, Proc. Amer.
Math. Soc. 129 (2001), 1755–1762.

[18] M. Á. Martín and P. Mattila, k-dimensional regularity classifications for s-fractals,
Trans. Amer. Math. Soc. 305 (1988), 293–315.

[19] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge Stud.
Adv. Math. 44, Cambridge Univ. Press, Cambridge, 1995.

[20] K. Menger, Untersuchungen über allgemeine Metrik, Math. Ann. 103 (1930), 466–
501.

[21] H. Pajot, Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Inte-
gral, Lecture Notes in Math. 1799, Springer, Berlin, 2002.

[22] S. Scholtes, For which positive p is the integral Menger curvature Mp finite for all
simple polygons?, preprint 50, RWTH Aachen Univ., Inst. Math., 2011.

[23] S. Scholtes, A characterisation of inner product spaces by the maximal circumradius
of spheres, preprint 53, RWTH Aachen Univ., Inst. Math., 2012.

[24] F. Schuricht and H. von der Mosel, Global curvature for rectifiable loops, Math. Z.
243 (2003), 37–77.

[25] F. Schuricht and H. von der Mosel, Characterization of ideal knots, Calc. Var. Partial
Differential Equations 19 (2004), 281–305.

[26] P. Strzelecki, M. Szumańska, and H. von der Mosel, A geometric curvature double
integral of Menger type for space curves, Ann. Acad. Sci. Fenn. Math. 34 (2009),
195–214.

[27] P. Strzelecki, M. Szumańska, and H. von der Mosel, Regularizing and self-avoidance
effects of integral Menger curvature, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 9
(2010), 1–43.

[28] P. Strzelecki and H. von der Mosel, On a mathematical model for thick surfaces,
in: Physical and Numerical Models in Knot Theory, J. A. Calvo et al. (eds.), Ser.
Knots Everything 36, World Sci., Singapore, 2005, 547–564.

[29] P. Strzelecki and H. von der Mosel, Global curvature for surfaces and area mini-
mization under a thickness constraint, Calc. Var. Partial Differential Equations 25
(2006), 431–467.

[30] P. Strzelecki and H. von der Mosel, On rectifiable curves with Lp-bounds on global
curvature: self-avoidance, regularity, and minimizing knots, Math. Z. 257 (2007),
107–130.

[31] P. Strzelecki and H. von der Mosel, Integral Menger curvature for surfaces, Adv.
Math. 226 (2011), 2233–2304.

[32] P. Strzelecki and H. von der Mosel, Tangent-point repulsive potentials for a class of
non-smooth m-dimensional sets in Rn. Part I: Smoothing and self-avoidance effects,
J. Geom. Anal. (2012), to appear.

http://dx.doi.org/10.2307/121074
http://dx.doi.org/10.1007/s00365-009-9073-z
http://dx.doi.org/10.1090/S0002-9939-00-05814-7
http://dx.doi.org/10.1007/BF01455705
http://dx.doi.org/10.1007/s00209-002-0448-0
http://dx.doi.org/10.1007/s00526-003-0216-y
http://dx.doi.org/10.1007/s00526-005-0334-9
http://dx.doi.org/10.1007/s00209-007-0117-4
http://dx.doi.org/10.1016/j.aim.2010.09.016


Tangency properties of geometric curvature energies 191

[33] P. Strzelecki and H. von der Mosel, Tangent-point self-avoidance energies for curves,
J. Knot Theory Ramif. 21 (2012), no. 5, 1250044, 28 pp.

Sebastian Scholtes
Institut für Mathematik
RWTH Aachen University
Templergraben 55
D-52062 Aachen, Germany
E-mail: sebastian.scholtes@rwth-aachen.de

Received 16 April 2012;
in revised form 14 June 2012




	Introduction
	Curvature energies and notation
	Hausdorff density and lower estimates of annuli
	Approximate tangents, counterexamples
	Finite integral curvature energy implies (weak) approximate tangents for p above the threshold value
	Finite integral curvature energy does not imply (weak) approximate tangents for =1 and p below threshold value
	Weak approximate tangents are optimal for =1

