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Predictability, entropy and information
of infinite transformations

by
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Abstract. We show that a certain type of quasifinite, conservative, ergodic, mea-
sure preserving transformation always has a maximal zero entropy factor, generated by
predictable sets. We also construct a conservative, ergodic, measure preserving trans-
formation which is not quasifinite; and consider distribution asymptotics of information
showing that e.g. for Boole’s transformation, information is asymptotically mod-normal
with normalization ∝

√
n. Lastly, we show that certain ergodic, probability preserving

transformations with zero entropy have analogous properties and consequently entropy
dimension of at most 1/2.

0. Introduction. Let (X,B,m, T ) be a conservative, ergodic, measure
preserving transformation and let F := {F ∈ B : m(F ) < ∞}. Call a
set A ∈ F T -predictable if it is measurable with respect to its own past
in the sense that A ∈ σ({T−nA : n ≥ 1}) (the σ-algebra generated by
{T−nA : n ≥ 1}) and let P = PT := {T -predictable sets}.

If m(X) <∞, Pinsker’s theorem ([Pi]) says that

• PT is the maximal , zero-entropy factor algebra,

i.e. P ⊂ B is a factor algebra (T -invariant sub-σ-algebra), h(T,P) = 0 (see
§1) and if C ⊂ B is a factor algebra with h(T, C) = 0, then C ⊆ P. P is also
known as the Pinsker algebra of (X,B,m, T ).

When (X,B,m, T ) is a conservative, ergodic, measure preserving trans-
formation with m(X) =∞, the above statement fails and indeed σ(P) = B:
Krengel has shown ([K2]) that

• For all A ∈ F and ε > 0, there exists B ∈ F with m(A 4 B) < ε
which is a strong generator in the sense that σ({T−nB : n ≥ 1}) = B,
whence σ(PT ) = B.
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It is not known if there is always a maximal, zero-entropy factor algebra
(in case there is some zero-entropy factor algebra).

We recall the basic properties of entropy in §1 and define the class of
log lower bounded conservative, ergodic, measure preserving transformations
in §2.

These are quasifinite in the sense of [K1] and are discussed in §2 in
this context where also examples are constructed, including a conservative,
ergodic, measure preserving transformation which is not quasifinite.

A log lower bounded conservative, ergodic, measure preserving transfor-
mation with some zero-entropy factor algebra has a maximal, zero-entropy
factor algebra generated by a specified hereditary subring of predictable sets
(see §5).

We obtain information convergence (in §4) for quasifinite transforma-
tions (cf. [KS]).

For quasifinite, pointwise dual ergodic transformations with regularly
varying return sequences, we obtain (in §6) distributional convergence of
information. Lastly, we construct a probability preserving transformation
with zero entropy with analogous distributional properties and estimate its
entropy dimension in the sense of [FP]. This example is unusual in that it
has a generator with information function asymptotic to a nondegenerate
random variable (the range of Brownian motion).

1. Entropy. We recall the basic entropy theory of a probability pre-
serving transformation (Ω,A, P, S). Let α ⊂ A be a countable partition.

The entropy of α is

H(α) :=
∑
a∈α

P (a) log
1

P (a)
.

The S-join of α from k to l (for k < l) is

αlk(S) :=
{ l⋂
j=k

S−jaj : ak, ak+1, . . . , al ∈ α
}
.

By subadditivity, the limit

lim
n→∞

1
n
H(αn−1

0 (S)) =: h(S, α)

exists (the entropy (1) of S with respect to α). The entropy of S with respect
to the factor algebra (S-invariant σ-algebra) C ⊂ A is

h(S, C) := sup
α⊂C

h(S, α).

(1) Mean entropy rate.
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By the generator theorem, if α is a partition, then h(S, α) = h(S, σ({Snα :
n ∈ Z})).

The information of the countable partition α ⊂ A is the function I(α) :
Ω → R defined by

I(α)(x) := log
1

P (α(x))

where α(x) ∈ α is defined by x ∈ α(x) ∈ α. Evidently

H(α) =
�

Ω

I(α) dP.

Convergence of information is given by the celebrated Shannon–McMil-
lan–Breiman theorem (see [S], [M], [Br]), the statement (I) here being due
to Chung [C] (see also [IT]).

Let (Ω,A, P, S) be an ergodic probability preserving transformation and
let α be a partition with H(α) <∞. Then

(I)
1
n
I(αN1 (S))→ h(S, α) a.s. as n→∞;

equivalently P (αN1 (S)(x)) = e−nh(S,α)(1+o(1)) for a.e. x ∈ Ω as n→∞ where
x ∈ αN1 (S)(x) ∈ αN1 (s).

We will need Abramov’s formula for the entropy of an induced transfor-
mation of an ergodic probability preserving transformation (Ω,A, P, S):

h(SA) =
1

P (A)
h(S) ∀A ∈ A

where SA : A→ A is the induced transformation on A defined by

SAx := SϕA(x)x, ϕA(x) := min {n ≥ 1 : Snx ∈ A} (x ∈ A).

Abramov’s formula can be proved using convergence of information (see [Ab]
and §4 here).

Krengel entropy. Suppose that (X,B,m, T ) is a conservative, ergodic,
measure preserving transformation. Then using Abramov’s formula (as
shown in [K1]) we obtain

m(A)h(TA) = m(B)h(TB) ∀A,B ∈ F := {F ∈ B : 0 < m(F ) <∞}.
Then h(T ) := m(A)h(TA) (for any A ∈ B with 0 < m(A) < ∞) is the
Krengel entropy of T . More generally, the Krengel entropy of T with respect
to the factor (i.e. σ-finite, T -invariant sub-σ-algebra) C ⊂ B is

h(T, C) := m(A)h(TA, C ∩A) (A ∈ C, 0 < m(A) <∞).

Another definition of entropy is given in [Pa].
It is shown in [Pa] that for quasifinite (see §2 below) conservative, ergodic,

measure preserving transformations, the two entropies coincide.
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2. Quasifiniteness and log lower boundedness

Quasifiniteness. Let (X,B,m, T ) be a conservative, ergodic, measure
preserving transformation. Recall from [K1] that a set A ∈ F is called
quasifinite (qf) if HA(ρA) < ∞ where ρA := {A ∩ T−nA \

⋃n−1
j=1 T

−jA :
n ≥ 1}, and that T is so called if there exists such a set. As shown in
Proposition 7.1 in [K1],

• for A ∈ F quasifinite, A ∈ PT ⇔ h(TA, ρA) = 0.

There are conservative, ergodic, measure preserving transformations
which are not quasifinite. An unpublished example by Ornstein is mentioned
in [K2, p. 82].

Here we construct a conservative, ergodic, measure preserving transfor-
mation with no quasifinite extension. To do this we first establish a satura-
tion property for the collection of quasifinite sets:

Proposition 2.0. Suppose that (X,B,m, T ) is a conservative, ergodic,
quasifinite, measure preserving transformation. Then for every F ∈ F there
exists A ∈ B ∩ F such that m(A) > 0 and each B ∈ B ∩A is quasifinite.

Proof. We first show that

¶1 if F ∈ F is quasifinite, then for every ε > 0 there exists A ∈ B ∩ F
such that m(F \A) < ε and each B ∈ B ∩A is quasifinite.

By (I), n−1I(ρF )n−1
0 (TF )) → h(TF , ρF ) a.e. as n → ∞. By Egorov’s theo-

rem, there exists A ∈ B ∩ F such that m(F \A) < ε and the convergence is
uniform on A.

For B ∈ B ∩ A, let Nn,B := # {a ∈ (ρF )n−1
0 (TF ) : m(a ∩ B) > 0}

(where #F means the number of elements in the set F ). Then Nn,B =
enh(TF ,ρF )(1+o(1)) as n→∞.

Define ψ : B → N by ψ(x) := min{n ≥ 1 : TnFx ∈ B}. Then

�

B

ψ dm =
∞∑
n=1

nm([ψ = n]) = m(F ) <∞ (by Kac’s formula),

ϕB(x) =
ψ(x)−1∑
j=0

ϕF (T jFx),

whence

ρB ≺ γB :=
∞⋃
n=1

{[ψ = n] ∩ a : a ∈ (ρF )n−1
0 (TF )}.
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Thus

HmB (ρB) ≤ HmB (γB) =
∞∑
n=1

mB([ψ = n])Hm[ψ=n]
((ρF )n−1

0 (TF ))

≤
∞∑
n=1

mB([ψ = n]) logNn,B <∞

because logNn,B ∼ nh(TF , ρF ), proving ¶1.
To complete the proof, let F ∈ F . Suppose that Q ∈ F is quasifinite.

Then evidently so is T−nQ for all n ≥ 1. By ergodicity, there exists n ≥ 1
such that m(F ∩ T−nQ) > 0. By ¶1, there exists G ∈ B ∩ T−nQ such that
m(T−nQ \ G) < ε := m(F ∩ T−nQ)/9 and each B ∈ B ∩ G is quasifinite.
The set A = G ∩ F is as required.

Example 2.1. Let (X0,B0,m0, T0) be the conservative, ergodic, mea-
sure preserving transformation defined as in [Fr] by the cutting and stacking
construction

B0 = 1, Bn =
Nn⊕
k=1

Bn−10Ln,k

where Nn, Ln,k, 1 ≤ k ≤ Nn, satisfy

Nn+1 ≥ enN1...Nn , Ln,k+1 >
k∑
j=1

Ln,j + khn−1,

where hn := |Bn|.
Proposition 2.1. No extension T of the conservative, ergodic, measure

preserving transformation T0 defined in Example 2.1 is quasifinite.

Proof. Suppose (without loss of generality) that (X,B,m, T ) is a conser-
vative, ergodic extension of T0 and that F ∈ F is quasifinite. Then evidently
so is TnF for all n ≥ 1. By Proposition 2.0 there exists A ∈ B quasifinite
with A ⊂ B0. We will contradict this (and therefore the assumption that a
quasifinite F ∈ F exists).
¶1 Write Bn =

⋃hn−1
j=0 T jbn where bn ⊂ B0, m(bn) = 1/N1 . . . Nn and

Bn =
Nn+1⊎
k=1

B(k)
n =

Nn+1⊎
k=1

T κ(n+1,k)B(1)
n

where κ(n+ 1, 1) = 0 and κ(n+ 1, k) = (k − 1)|Bn|+
∑k−1

j=1 Ln+1,j (i.e. the

B
(k)
n (1 ≤ k ≤ Nn+1) are the subcolumns of Bn appearing in Bn+1).
¶2 For n ≥ 1, let kn := {0 ≤ j ≤ hn − 1 : T jbn ⊂ B0}. Then B0 =⊎

j∈kn
T jbn, |kn| = N1 . . . Nn and {T kB0

x}N1...Nn−1
k=0 = {T jx : j ∈ kn} for

x ∈ bn.
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¶3 Fix 0 < ε < 1/3 and let

bn,ε :=
{
x ∈ bn+1 :

∣∣∣∣ 1
|kn+1|

∑
k∈kn+1

1A(T kx)−m(A)
∣∣∣∣ < εm(A)

}
.

By ¶2 above, for x ∈ bn+1,

1
|kn+1|

∑
k∈kn+1

1A(T kx) =
1

N1 . . . Nn+1

N1N2...Nn−1∑
k=0

1A(T kB0
x)

and a standard argument using the ergodic theorem for TB0 shows that there
exists M so that m(bn,ε) > (1− ε)m(bn+1) for all n ≥M.

¶4 Fix n ≥ M and x ∈ bn+1, and let kA,n,x := {k ∈ kn+1 : T kx ∈ A}
and An,x := {T jx}j∈kA,n,x . Then for x ∈ bn,ε,

#{1 ≤ k ≤ Nn+1 : An,x∩B(k)
n 6= ∅} ≥ (1−e)m(A)

|kn+1|
hn

= (1−ε)m(A)Nn+1.

For n ≥M and x ∈ bn,ε, write

{1 ≤ k ≤ Nn+1 : An,x ∩B(k)
n 6= ∅} =: {κi(x) : 1 ≤ i ≤ ν}

where ν − 1 > (1− ε)m(A)Nn+1 and κi(x) < κi+1(x) for all i.

For 1 ≤ i ≤ ν, let k
(i)
A,n,x := {k ∈ kn+1 : T kbn+1 ⊂ An,x ∩ B(κi)

n } and let

mi := min k
(i)
A,n,x, mi := max k

(i)
A,n,x; yi := mi+1 −mi (1 ≤ i ≤ ν − 1). Note

that

yi ≤
κi∑
j=1

Ln+1,j + κihn < L(n+ 1, κi + 1) ≤ L(n+ 1, κi+1) ≤ yi+1.

¶5 For K ⊂ kn+1, let aK := {x ∈ bn+1 : kA,n,x = K} and

βn := {aK : K ⊂ kn+1}, αn :=
{
â :=

⋃
j∈kn

T ja : a ∈ βn
}
.

For a ∈ βn, a ⊂ bn,ε, and 1 ≤ i ≤ ν − 1, we have

m(a ∩ [ϕA = yi(a)]) =
m(a)

N1 . . . Nn+1
.

Thus

H(ρA) ≥ H(ρA‖αn)

≥
∑

a∈βn, a⊂bn,ε

m(a)
ν−1∑
i=1

m([ϕA = yi(a)]|a) log
1

m([ϕA = yi(a)]|a)
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≥ m(̂bn,ε)
(ν − 1) log(Nn+1)
N1 . . . Nn+1

≥ (1− ε)2m(A)
logNn+1

N1N2 . . . Nn

> (1− ε)2m(A)n ↑ ∞.

Log lower boundedness. For (X,B,m, T ) a conservative, ergodic, mea-
sure preserving transformation, set

Flog,T :=
{
A ∈ B : 0 < m(A) <∞,

�

A

logϕA dm <∞
}
.

Note that Flog,T ⊂ {quasifinite sets}, because

(F) pn ≥ 0,
∑
n=1

pn log n <∞ ⇒
∑
n=1

pn log
1
pn

<∞.

Call T log lower bounded (LLB) if Flog,T 6= ∅.

Proposition 2.2.

(i) T is LLB iff

1
log n

n−1∑
k=0

f ◦ Tn →∞ a.e. as n→∞

for some and hence all f ∈ L1(m)+ := {f ∈L1 : f≥0,
	
X f dm>0}.

(ii) T is not LLB iff

lim inf
n→∞

1
log n

n−1∑
k=0

f ◦ Tn = 0 a.e. for some and hence all f ∈ L1
+.

(iii) If (X,B,m, T ) is LLB and C ⊂ B is a factor , then C ∩ Flog,T 6= ∅.
(iv) Flog,T is a hereditary ring.

Proof. Statements (i) and (ii) follow from Theorem 2.4.1 in [A], and (iii)
follows from these. We prove (iv).

Suppose that A ∈ Flog,T , B ∈ B, and B ⊂ A. Then

ϕB(x) =
ψ(x)−1∑
k=0

ϕA(T kAx) (x ∈ B)

where ψ : B → N, ψ(x) := min{n ≥ 1 : TnAx ∈ B}.
By the Kac formula,

�

B

ψ−1∑
k=0

f ◦ T kA dm =
�

A

f dm ∀f ∈ L1(m).
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To see that B ∈ Flog,T , we use this and log(k + l) ≤ log(k) + log(l):

�

B

logϕB dm =
�

B

log
(ψ−1∑
k=0

ϕA ◦ T kA
)
dm

≤
�

B

ψ−1∑
k=0

log(ϕA ◦ T kA) dm =
�

A

logϕA dm <∞.

Suppose that A,B ∈ Flog,T . Then ϕA∪B ≤ 1AϕA + 1BϕB, whence
�

A∪B
log(ϕA∪B) dm =

�

A

log(ϕA∪B) dm+
�

B

log(ϕA∪B) dm

≤
�

A

log(ϕA) dm+
�

B

log(ϕB) dm <∞.

3. Examples of LLB transformations

Pointwise dual ergodic transformations. A conservative, ergodic, mea-
sure preserving transformation (X,B,m, T ) is called pointwise dual ergodic
if there is a sequence of constants (an(T ))n≥1 (called the return sequence
of T ) so that

1
an(T )

n−1∑
k=0

T̂ kf →
�

X

f dm a.e. for some (and hence all) f ∈ L1(m)+

where T̂ : L1(m)→ L1(m) is the transfer operator defined by�

A

T̂ f dm =
�

T−1A

fdm (f ∈ L1(m), A ∈ B).

See [A, 3.8].

Proposition 3.1. Let (X,B,m, T ) be a pointwise dual ergodic, conser-
vative, ergodic, measure preserving transformation. Then

T is LLB ⇔
∞∑
n=1

1
nan(T )

<∞.

Proof. Let A ∈ F be a uniform set in the sense that for some f ∈
L1(m)+,

1
an(T )

n−1∑
k=0

T̂ kf →
�

X

f dm uniformly on A.

By Lemma 3.8.5 in [A],
�

A

(ϕA ∧ n) dm = m
( n⋃
k=0

T−kA
)
� n

an(T )
,
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whence

A ∈ Flog ⇔
∞∑
n=1

m(
⋃n
k=0 T

−kA)
n

<∞ ⇔
∞∑
n=1

1
nan(T )

<∞.

Remarks. 1) For example, the simple random walk on Z is LLB (be-
cause an(T ) ∝

√
n), whereas the simple random walk on Z2 is not LLB

(because an(T ) ∝ log n).
2) It is not known whether the simple random walk on Z2 is quasifinite,

or even has a factor with finite entropy.

Example 3.2. There is a quasifinite, conservative, ergodic, Markov
shift (X,B,m, T ) with an(T ) �

√
log n.

Note that by Proposition 3.1, this T is not LLB.

Proof. Let f44n := 1/2n for n ≥ 1 and fk := 0 for k ∈ N \ 44N
. Then

f ∈ P(N).
Let Ω := NZ and let P = fZ ∈ P(Ω,B(Ω)) be the product measure.

Then (Ω,B(Ω), P, S) is an ergodic, probability preserving transformation
where S : Ω → Ω is the shift.

Define ϕ : Ω → N by ϕ(ω) := ω0 and let (X,B,m, T ) be the tower
over (Ω,B(Ω), P, S) with height function ϕ. It follows that (X,B,m, T ) is
a conservative, ergodic, Markov shift with an(T ) �

∑n
k=0 uk where u is

defined by the renewal equation: u0 = 1, un =
∑n

k=1 fkun−k.
To see that (X,B,m, T ) is quasifinite, we check that Ω is quasifinite.

Indeed,

HΩ(ρΩ) =
∞∑

k≥1, fk>0

fk log
1
fk

=
∞∑
n=1

n log 2
2n

<∞.

To estimate an(T ), recall that by Lemma 3.8.5 in [A], an(T ) � n/L(n)
where

L(n) := m
( n⋃
k=0

T−kΩ
)

=
n∑
k=0

∞∑
l=k+1

fl.

Now,
∞∑

l=k+1

fl =
∑

n>log4 log4 k

1
2n
� 1

2log4 log4 k
=

1√
log4 k

.

Thus L(n) � n/
√

log n and an(T ) �
√

log n.

The Hajian–Ito–Kakutani transformations. Let Ω = {0, 1}N, `(ω) :=
min{n ≥ 1 : ωn = 0} and let τ : Ω → Ω be the adding machine defined by

τ(1, . . . , 1, 0, ω`(ω)+1, . . .) := (0, . . . , 0, 1, ω`(ω)+1, . . .).
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For p ∈ (0, 1), define µp ∈ P(Ω) by µp([a1, . . . , an]) := pa1 . . . pan where
p0 := 1− p, p1 := p. It follows that (Ω,A, µp, τ) is an ergodic, nonsingular
transformation with dµp◦τ

d µp
=
(1−p

p

)φ where φ := `− 2.
Now let X := Ω ×Z and define T : X → X by T (x, n) = (τx, n+ φ(x)).

For p ∈ (0, 1), define mp ∈M(X) by

mp(A× {n}) := µp(A)
(

1− p
p

)−n
.

As shown in [HIK] (see also [A]), Tp = (X,B,mp, T ) is a conserva-
tive, ergodic, measure preserving transformation (known as the Hajian–Ito–
Kakutani transformation). The entropy is given by h(Tp) = h((Tp)Ω×{0})
= 0 by [MP] since (Tp)Ω×{0} is the Pascal adic transformation.

Proposition 3.3. (X,B,mp, T ) is LLB for all 0 < p < 1.

Proof. As in the proof of Proposition 5.1 in [A1],
2n−1∑
k=0

1Ω×{0} ◦ T k(x, 0) = #
{

0 ≤ k ≤ 2n − 1 :
k−1∑
j=0

φ(τ jx) = 0
}

≥ #
{

0 ≤ K ≤ n− 1 :
2K−1∑
j=0

φ(τ jx) = 0
}
.

Now
∑2K−1

j=0 φ(τ jx) = φ(SKx) where S : Ω → Ω is the shift, and so

2n−1∑
k=0

1Ω×{0} ◦ T k(x, 0) ≥ #{0 ≤ K ≤ n− 1 : φ(SKx) = 0} ∼ (1− p)n

for µp-a.e. x ∈ Ω by Birkhoff’s theorem for the ergodic, probability preserv-
ing transformation (Ω,B(Ω), µp, S). The LLB property now follows from
Proposition 2.2.

Let G be the Polish group of measure preserving transformations of
(R,B(R),mR) equipped with the weak topology.

Proposition 3.4. The collection of LLB measure preserving transfor-
mations is meagre in G.

Proof. Let

£ :=
{
T ∈ G : ∃nk →∞,

Snk(f)
log nk

→ 0 a.e. ∀f ∈ L1

}
where Sn(f) = STn (f) :=

∑n−1
j=0 f ◦T j . By Proposition 2.2, it suffices to show

that £ is a dense Gδ set in G.
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By Example 3.2, there exists a conservative, ergodic, measure preserving
transformation T ∈ £. The set £ is conjugacy invariant, and so dense in G
by the conjugacy lemma (e.g. 3.5.2 in [A]).

To see that £ is a Gδ set, let P ∼ m be a probability, fix {An : n ∈ N} ⊂
F := {A ∈ B : m(A) <∞} so that σ({An : n ∈ N}) = B and let

£′ :=
∞⋂
k=1

∞⋃
n=k

k⋂
ν=1

{
T ∈ G : P

([
Sn(1Aν ) >

1
k

log n
])

<
1
2k

}
.

Then £′ is a Gδ. We claim £′ = £.
Evidently,

£′ =
{
T ∈ G : ∃nk →∞,

Snk(1Aν )
log nk

→ 0 a.e. ∀ν ≥ 1
}
,

whence £′ ⊃ £.
Now suppose that T ∈ £′ and Snk(1Aν )/log nk → 0 a.e. for all ν ≥ 1,

and let f ∈ L1. Evidently Sn(f)/ log n → 0 a.e. on D, the dissipative part
of T . The conservative part of T is

C =
∞⋃
ν=1

Âν where Âν :=
[ ∞∑
n=1

1Aν ◦ Tn =∞
]
.

By Hopf’s theorem, Sn(f)(x)/Sn(1Aν )(x) → hν(f) a.e. on Aν for all ν ≥ 1
where hν(f) ◦ T = hν(f) and

	
Aν
hν(f) dm =

	
X f dm, whence, a.e. on Âν ,

Snk(f)
log nk

=
Snk(f)
Snk(1Aν )

· Snk(1Aν )
log nk

→ 0.

4. Information convergence. Let (X,B,m, T ) be a conservative, er-
godic, measure preserving transformation. A countable partition ξ ⊂ B is
called cofinite if there exists A = Aξ ∈ F with Ac ∈ ξ. We call Ac the cofinite
atom of ξ and A the (finite) core of ξ.

If ξ ⊂ B is cofinite, then ξlk(T ) is also cofinite, with core Aξlk(T ) =⋃l
j=k T

−jA.
The T -process generated by a cofinite partition ξ restricted to its core A

is given by Krengel’s formula [K1]:

(K) ξ
ϕn(x)
1 (T )(x) = (ρA ∨ ((ξ ∩A) ∨ ρA)n1 (TA))(x) for a.e. x ∈ A

where for x ∈ X and α a partition of X, α(x) is defined by x ∈ α(x) ∈ α,
and

ϕn(x) :=
n−1∑
k=0

ϕA(T kAx), ρA :=
{
A ∩ T−nA \

n−1⋃
k=1

T−kA : n ∈ N
}
.
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A cofinite partition ξ ⊂ B is called quasifinite (qf) if A = Aξ is quasifinite
and HA(ξ) <∞. Note that ξ quasifinite ⇒ HA(ξ ∨ ρA ∨ TA ρA) <∞.

Convergence of information for quasifinite partitions

Proposition 4.1 (cf. [KS]). Let (X,B,m, T ) be a conservative, ergodic,
measure preserving transformation, let ξ ⊂ B be a quasifinite partition and
let p ∈ L1(m), p > 0,

	
X p dm = 1. Then for a.e. x ∈ X,

1
Sn(p)(x)

I(ξn1 (T ))(x)→ h(T, ξ)

where

Sn(p)(x) :=
n−1∑
k=0

p(T kx) and I(ξn1 (T ))(x) := log
1

m(ξn1 (T )(x))
.

Proof. Let A be the core of ξ and set ς := (ξ ∩A) ∨ ρA. Then by (K),

ς
sn(x)
0 (TA)(x) ⊆ ξn1 (T )(x) ⊆ ςsn(x)−1

1 (TA)(x) a.e. x ∈ A
where x ∈ ξ(x) ∈ ξ and sn := Sn(1A).

By (I), for TA, a.e. on A, I(ςN1 (TA)) ∼ Nh(TA, ς), whence for a.e. x ∈ A,

log
1

m(ξn1 (T )(x))
∼ log

1

m(ςsn(x)
1 (TA)(x))

∼ sn(x)h(TA, ς)

∼ Sn(p)(x)m(A)h(TA, ς) = Sn(p)(x)h(T, ξ).

We obtain convergence a.e. on
⋃N
k=0 T

−kA by substituting ξN1 (T ) for ξ;
whence convergence a.e. on X as

⋃N
k=0 T

−kA ↑ X.

Abramov’s formula is proved analogously in case (X,B,m, T ) is an er-
godic, probability preserving transformation. As in [Ab],

h(T, ξ)
(I)← 1
n

log
1

m(ξn1 (T )(x))
≈ 1
n
sn(x)h(TA, ς)

Birkhoff’s PET−−−−−−−−−→m(A)h(TA, ς).

5. Pinsker algebra. Let (X,B,m, T ) be a LLB, conservative, ergodic,
measure preserving transformation. Define

FΠ := {A ∈ Flog,T : A ∈ σ({T−kA : k ≥ 1})} = P ∩ Flog,T .

In this section, we show that (in case FΠ 6= ∅) BΠ := σ(FΠ) is the maximal
zero entropy factor of T . To do this, we will need

Krengel’s predictability lemma ([K1]). Let (X,B,m, T ) be a quasi-
finite, conservative, ergodic, measure preserving transformation, let ξ ⊂ B
be a quasifinite partition with core A, and let ζ = ξ ∩A. Then

ξ ⊂ ξ∞1 (T ) mod m ⇔ h(TA, ζ ∨ ρA) = 0.
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In particular ,
A ∈ σ({T−nA : n ≥ 1}) ⇔ h(TA, ρA) = 0.

For F ∈ F , set
PF = PTF := {A ∈ B ∩ F : A ∈ σ({T−kF A : k ≥ 1})}.

By Pinsker’s theorem ([Pi]),

• PF is a TF -factor algebra of subsets of F with h(TF ,PF ) = 0,
• if A ⊂ B ∩ F is another TF -factor algebra of subsets of F with
h(TF ,A) = 0, then A ⊂ PF .

Theorem 5.1.

(i) FΠ is a ring and FΠ ∩ F = PF for all F ∈ FΠ .
(ii) If FΠ 6= ∅, then σ(FΠ) is the maximal factor of zero entropy.

Proof. ¶1 Let A ∈ Flog. By Krengel’s predictability lemma, F ∈ FΠ
iff h(TF , ρF ) = 0. Thus, F ∈ FΠ iff there is a factor B0 with F ∈ B0 and
h(T,B0) = 0.
¶2 Next, fix F ∈ FΠ . We claim that ρF ⊆ PF . This is because F ∈

FΠ ⇒ h(TF , ρF ) = 0.
¶3 We now show that PF ⊆ FΠ ∩ F for all F ∈ FΠ . Fix F ∈ FΠ and

let B0 := σ{TnA : n ∈ Z, A ∈ PF }. Then B0 is a factor, F ∈ B0 and
B0 ∩ F = PF . Thus h(T,B0) = h(TF ,PF ) = 0 and by ¶1, PF ⊆ FΠ ∩ F .
¶4 Now we claim that A,B ∈ FΠ ⇒ A ∪ B ∈ PF . Set C := A ∪ B.

Then C∈Flog,T . Set ζ := {A ∩B,A \B,B \A} and ξ := ζ ∪ {Cc}. By (K),
ξ∞1 (T ) ∩ C = ρC ∨ (ζ ∨ ρC)∞1 (TC).

By assumption, ζ ⊂ ξ∞1 (T ) ∩ C, whence also ρC ⊂ ξ∞1 (T ) ∩ C. Thus

ζ ∨ ρC ⊂ ρC ∨ (ζ ∨ ρC)∞1 (TC), so ζ ∨ ρC ∨TC ρC ⊂ (ζ ∨ ρC ∨TρC)∞1 (TC),

and (using HC(ζ ∨ ρC ∨ TC ρC) <∞) we have
h(TC , ρC) ≤ h(TC , ζ ∨ ρC ∨ TC ρC) = 0,

whence C ∈ σ({T−kC : k ≥ 1}) and C ∈ FΠ .
¶5 Now we show that FΠ is a ring by proving that A,B ∈ FΠ ⇒ ζ :=

{A ∩ B,A \ B,B \ A} ⊂ FΠ . By ¶3, it suffices to show that ζ ⊂ PC where
C := A ∪B. To see this, fix a ∈ ζ. Then

h(TC , {a,C \ a}) ≤ h(TC , ζ) ≤ h(TC , ζ ∨ ρC ∨ TC ρC) = 0

(as above) and a ∈ PC .
¶6 To complete the proof of (i), we show that FΠ ∩ F ⊆ PF for all

F ∈ FΠ . Fix F ∈ FΠ , A ∈ FΠ ∩F . Let ζ := {A,F \A}, ξ := ζ ∪ {F c}. By
the ring property, A ∈ FΠ , whence ξ ⊂ ξ∞1 (T ) mod m. By Proposition 4.1,
h(TF , ζ ∨ ρF ) = 0, whence

h(TF , ζ) ≤ h(TF , ζ ∨ ρF ) = 0
and A ∈ PF .
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¶7 To see (ii), fix F ∈ FΠ . Then by (i), FΠ ∩ F = PF = FΠ ∩ F ∩ F ,
whence h(T, σ(FΠ)) = m(F )h(TF ,PF ) = 0 and if C ⊂ B is a factor with
h(T, C) = 0, then by ¶1, C ∩ Flog ⊂ FΠ , whence C ⊂ σ(FΠ).

6. Asymptotic distribution of information with infinite invari-
ant measure

Pointwise dual ergodic transformations. Let (X,B,m, T ) be a pointwise
dual ergodic, measure preserving transformation and assume that the re-
turn sequence an = an(T ) is regularly varying with index α (α ∈ [0, 1]).
Then by the Darling–Kac theorem (Theorem 3.6.4 in [A]—see also references
therein),

(')
1
an

STn (f) d−→
�

X

f dm ·Xα as n→∞ ∀f ∈ L1(m)+

where Xα is a Mittag-Leffler random variable of order α normalised so that
E(Xα) = 1, and Fn

d−→ Y means�

X

G(Fn) dP → E(G(Y )) ∀P ∈ P(X,B), P � m, G ∈ C([0,∞]).

Note that X1 ≡ 1, X0 has exponential distribution, and for α ∈ (0, 1), Xα =
1/Y α

α where E(e−tYα) = e−ct
α

(for some c = cα > 0). In particular, X1/2 =
|N | where N is a centred Gaussian random variable on R.

Proposition 6.1. Suppose that (X,B,m, T ) is a quasifinite, pointwise
dual ergodic, measure preserving transformation, and assume that the return
sequence an = an(T ) is regularly varying with index α ∈ [0, 1]. If ξ ⊂ B is
quasifinite, then

1
an(T )

log
1

m(ξn1 (T )(x))
d−→ h(T, ξ)Xα as n→∞.

Proof. This follows from Proposition 4.1 and (').

Example 6.2 (Boole’s transformation). Let (X,B,m, T ) be given by
X = R, m = Lebesgue measure and Tx = x − 1/x. Then T (see [A]) is
a pointwise dual ergodic, measure preserving transformation with an(T ) ∼√

2n/π, so FΠ 6= ∅ and T is LLB, whence quasifinite.
By Proposition 6.1, if ξ ⊂ B is quasifinite, then

(_)
1

an(T )
log

1
m(ξn1 (T )(x))

d−→ h(T, ξ)|N | as n→∞.

7. Analogous properties of probability preserving transforma-
tions. The last section is devoted to the construction of an ergodic, proba-
bility preserving transformation having a generating partition with proper-
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ties analogous to (_). The related “measure-theoretic invariant” is entropy
dimension as in [FP].

Let (T, T ,mT, R) be an irrational rotation of the circle (equipped with
Borel sets and Lebesgue measure). Let f ∈ L2(T) satisfy the weak invariance
principle, i.e. Bn(t)→ B(t) in distribution on C([0, 1]) where B is Brownian
motion and

Bn(t) := f[nt]−1 + (nt− [nt])f ◦ T [nt]

(where fk :=
∑k−1

j=0 f ◦Rj). Existence of such f ∈ L2(T) is shown in [V].
In particular,

Ln√
n
,
Rn√
n

d−→ |N |, Ln +Rn√
n

d−→ R

where Rn := max1≤k≤n fk, Ln := max1≤k≤n(−fk) and R := maxt∈[0,1]B(t)
−mint∈[0,1]B(t).

The random variable R is known as the range of Brownian motion. Its
(non-Gaussian) distribution is calculated in [Fe].

Let (Y, C, µ, S) be the 2-shift with generating partition Q = {Q0, Q1} and
symmetric product measure. Let ρ : Y → R be defined by ρ = α01Q0 +α11Q1

where α0 < α1,
	
Y ρ dµ = 1 and α0, α1 are rationally independent. Then

the special flow (under ρ) (Y ρ, Cρ, q, Sρ) is Bernoulli where

Y ρ := {(y, s) : y ∈ Y, s ∈ [0, ρ(y))}, Cρ := C × Lebesgue, q := µ× λ,

and

Sρt (y, s) := (Sny, s+ t− ρn(y))

where 0 ≤ s+ t− ρn(y) < ρ(Sny), ρn :=
∑n−1

j=0 ρ ◦ Sj .
Note that the “vertical” partition Q := {Q0, Q1} where Qi := Qi×[0, αi)

(i = 0, 1) generates C under Sρ.
Define the probability preserving transformation (X,B,m, T ) by

(�)
X := T× Y ρ, m = mT × q, B := T × Cρ,
T (x, (y, s)) := (R(x), Sρf(x)(y, s)).

For P a finite partition of T into intervals (which generates T under R),
define the partition ξ = ξP of X by

(Z) ξ(ω, y, s) := P (ω)×
( ∨
t∈ι(0,f(ω))

Sρ−tQ
)

(y, s)

where for x, y ∈ R, ι(x, y) := [x ∧ y, x ∨ y] (the closed interval joining x
and y). Next, we show that ξ is measurable and H(ξ) <∞.
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Proposition 7.1. The partition ξ is measurable, generates B under T ,
H(ξ) <∞ and

([)
1√
n
I(ξn−1

0 (T )) d−→ h(Sρ)R as n→∞,

where R is the range of Brownian motion.

Proof. The proof is in several stages. We first claim that

(�) ξn−1
0 (T )(ω, y, s) = Pn−1

0 (R)(ω)×
( ∨
t∈[−Ln(ω),Rn(ω)]

Sρ−ttQ
)

(y, s).

To see this, note that for n ≥ 1,

(T−nξ)(ω, y, s) = ξ(Rn(ω), Sρfn(ω)(y, s))

= P (Rn(ω))×
( ∨
t∈ι(0,f(Rn(ω)))

Sρ−ttQ
)

(Sρfn(ω)(y, s))

= P (Rn(ω))×
( ∨
t∈ι(fn(ω),fn(ω)+f(Rn(ω)))

Sρ−ttQ
)

(y, s)

= P (Rn(ω))×
( ∨
t∈ι(fn(ω),fn+1(ω))

Sρ−ttQ
)

(y, s).

To continue, we need the following (elementary) proposition:

¶ Let an ∈ R (n ≥ 1). Then
n−1⋃
k=0

ι(sk, sk+1) = [mn,Mn]

where a0 :=0, sn :=
∑n

k=0 ak, mn :=min0≤k≤n sk, Mn :=max0≤k≤n sk.

To finish the proof of (�), note that

ξn−1
0 (T )(ω, y, s) =

n−1∨
k=0

T−kξ(ω, y, s)

=
n−1⋂
k=0

P (Rk(ω))×
( ∨
t∈ι(fk(ω),fk+1(ω))

Sρ−ttQ
)

(y, s)

= Pn−1
0 (R)(ω))×

( ∨
t∈

Sn−1
k=0 ι(fk(ω),fk+1(ω))

Sρ−ttQ
)

(y, s)

¶
= Pn−1

0 (R)(ω)×
( ∨
t∈[−Ln(ω),Rn(ω)]

Sρ−tQ
)

(y, s),

proving (�).
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Now consider ρn : Y → R defined by

ρn(y) :=


∑n−1

k=0 ρ(Sky), n > 0,

0, n > 0,∑|n|
k=1 ρ(S−ky), n < 0.

Then ρn(y) < ρn+1(y) and for all y ∈ Y , ρn(y)→ ±∞ as n→ ±∞.
For y ∈ Y and t ∈ R, define [t]y ∈ Z to be so that ρ[t]y(y) ≤ t < ρ[t]y+1(y).

It follows that for t ∈ R,

|t|/α1 − 1 ≤ |[t]y| ≤ |t|/α0, Sρt (y, s) = (S[s+t]yy, s+ t− ρ[s+t]y(y)).

Our next claim is that

(�) ξn−1
0 (T )(ω, y, s) = Pn−1

0 (R)(ω)×Q[s+Rn(ω)]y
[s−Ln(ω)]y

(S)(y)× ηn(ω, y)(s)

where for each (ω, y) ∈ Ω×Y, ηn(ω, y) is a partition of [0, ρ(y)) into at most
(Rn(ω) + Ln(ω) + 1)/α0 intervals. Indeed, fixing (ω, y, s) ∈ X and n ≥ 1,
we have( ∨
t∈[−Ln(ω),Rn(ω)]

Sρ−tQ
)

(y, s) =
⋂

t∈[−Ln(ω),Rn(ω)]

Q(Sρt (y, s))

=
⋂

t∈[−Ln(ω),Rn(ω)]

Q(S[s+t]yy)× [0, ρ(S[s+t]yy))

=
⋂

j∈[[s−Ln(ω)]y ,[s+Rn(ω)]y ]

S−jQ(y)× ηn(ω, y, s)

= Q
[s+Rn(ω)]y
[s−Ln(ω)]y

(S)(y)× ηn(ω, y)(s)

where for each (ω, y) ∈ Ω×Y, ηn(ω, y) is a partition of [0, ρ(y)) into at most
[Rn(ω)]y − [−Ln(ω)]y ≤ (Rn(ω) + Ln(ω) + 1)/α0 intervals. This proves (�).

Now (�) with n = 1 shows that

ξ(ω, y, s) = P (ω)×Qν+(ω,y,s)
−ν−(ω,y,s)(S)(y)× η1(ω, y)(s)

where

ν+(w, y, s) = [s+ f(ω) ∨ 0]y, ν−(w, y, s) = [s+ f(ω) ∧ 0]y.

Thus, ξ is measurable. Moreover, writing Z := {[ν− = k, ν+ = l] : k, l ∈ Z},
we see that

I(ξ | Z)(ω, y, s) = I(P )(ω) + I(Q[s+f(ω)∨0]y
[s+f(ω)∧0]y

)(S)(y) + I(η1(ω, y)(s))

≤ I(P )(ω) + ([s+ f(ω) ∧ 0]y + [s+ f(ω) ∨ 0]y) · log 2 + log
1 + |f(ω)|

α0

≤ I(P )(ω) +
|f(ω)|+ 1

α0
· log 2 + log

1 + |f(ω)|
α0
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and

H(ξ | Z) ≤ H(P ) +
log 2
α0

(‖f‖1 + 1) +
�

Ω

log
1 + |f |
α0

dm <∞.

Now |ν±(ω, y, s)| ≤ (|f(ω)|+ 1)/α0 and

(ν+(w, y, s), ν−(w, y, s)) =

{
([s+ f(ω) ∨ 0]y, 0), f(ω) ≥ 0,

(0, [s+ f(ω) ∧ 0]y), f(ω) < 0;

whence by (F) (see page 7), H(Z) <∞ and

H(ξ) = H(ξ | Z) +H(Z) <∞.

Since ξ is measurable, (�) now shows that it generates B under T .
To establish ([), we claim that for a.e. (x, y, s), any ε > 0, and sufficiently

large n = n(x, y, s),

(♣) Pn−1
0 (R)(x)×QRn(x)(1+ε)

−Ln(x)(1+ε)(S)(y)× ηn(x, y)(s) ⊆ ξn−1
0 (T )(x, y, s)

⊆ Pn−1
0 (R)(x)×QRn(x)(1−ε)

−Ln(x)(1−ε)(S)(y)× ηn(x, y)(s)

where for each (ω, y) ∈ Ω×Y, ηn(ω, y) is a partition of [0, ρ(y)) into at most
(Rn(ω) + Ln(ω) + 1)/α0 intervals.

To see this note that for a.e. (x, y, s) ∈ X, Rn(x), Ln(x) ↑ ∞ and
ρn(y) ∼ n, whence |[s − Ln(x)]y| ∼ Ln(ω) and [s + Rn(ω)]y ∼ Rn(x). Now
(♣) follows from (�) using this.

We next claim that for all (x, y) ∈ T× Y ,

(☼)
1√
n

(I(Pn−1
0 (R)) + I(ηn(x, y))) m−→ 0.

Indeed, #ηn(x, y) ≤ En(x) := (Rn(x) + Ln(x) + 1)/α0 and #Pn−1
0 (R) ≤

Mn for some M > 0 and all n ≥ 1, whence

m([I(Pn−1
0 (R)) ≥ t

√
n]) ≤ 1

t
√
n
H(Pn−1

0 (R)) .
log n
t
√
n
→ 0 as n→∞

and for all (x, y),

m([I(ηn(x, y)(s))) ≥ t
√
n]) ≤ 1

t
√
n
H(ηn(x, y))

≤ log En(x)
t
√
n

m−→ 0 as n→∞,

proving (☼).
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Using (♣), (☼) and (I) for S we have, as n→∞,

1√
n
I(ξn−1

0 (T ))(x, y, s) =
1√
n
I(QRn(x)(1+o(1))

−Ln(x)(1+o(1))(S))(y) +O

(
log n√
n

)
=

1√
n

(Ln(x) +Rn(x)) log 2(1 + o(1)) +O

(
log n√
n

)
d−→ R log 2 = Rh(Sρ).

Estimation of entropy dimension. Let (Z,D, ν, R) be a probability pre-
serving transformation and let P ⊂ D be a countable partition of Z. As in
[FP], for n ≥ 1, ε > 0 and a =

⋂n−1
k=0 R

−kak ∈ Pn−1
0 (R), let

B(n, P, a, ε) :=
⋃

a′∈Pn−1
0 (R), d(a,a′)<ε

a

where d(a, a′) := n−1#{0 ≤ k ≤ n− 1 : ak 6= a′k} is the Hamming distance,
and let

K(P, n, ε) := min
{

#F : F ⊂ Pn−1
0 (R), ν

( ⋃
a∈F

B(n, P, a, ε)
)
> 1− ε

}
.

The ergodic, probability preserving transformation is said to have upper
entropy dimension ∆ ∈ [0, 1] if for some countable, measurable generat-
ing partition P with finite entropy (and hence—as proved in [FP]—for all
such),

lim
n→∞

log logK(P, n, ε)
log n

−→
ε→0

∆.

Proposition 7.2. Let (X,B,m, T ) be as in (�). Then the upper en-
tropy dimension is at most 1/2.

Proof. Let ξ = ξP be as in (Z) and let h = h(Sρ). For n ≥ 1 and J ⊂ R+

an interval bounded away from 0 and ∞, define

ξn(J) :=
{
a ∈ ξn−1

0 (T ) :
1√
n

log
1

m(a)
∈ hJ

}
.

We claim that

#ξn(J) ∼ E(1J(R)ehR
√
n)eo(

√
n) as n→∞.

To see this, suppose that J = [r − δ, r + δ]. Then

P (R ∈ J)← m

([
1√
n
I(ξn−1

0 (T )) ∈ hJ
])

=
∑

a∈ξn(J)

m(a) = #ξn(J)e−h
√
n(r±δ)
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(because m(a) = e−h
√
n(r±δ) for all a ∈ ξn(J)); whence

E(eh
√
n(R−2δ)1J(R)) . #ξn(J) . E(eh

√
n(R+2δ)1J(R)).

Using this on a decomposition of J into a finite union of disjoint short enough
intervals yields #ξn(J) = E(eh

√
nR1J(R))e±ε

√
n for all ε > 0, proving the

claim.
Evidently K(ξ, n, ε) ≤ #ξn([1/M,M ]) for some M = Mε > 0, whence

K(ξ, n, ε) ≤ ecε
√
n(1+o(1)) and

lim
n→∞

log logK(ξ, n, ε)
log n

≤ 1
2
∀ε > 0.

Remark on the lower bound. The upper estimate for the entropy dimen-
sion follows from the weak invariance principle for the “random walk” fn.
In a similar manner, a lower estimate would follow from an analogous result
for the “local time” of the random walk. Such a result is not available for the
present example. However, such considerations show that the “relative en-
tropy dimension” over its Bernoulli factor of an aperiodic, centered random
walk in random scenery with jumps of finite variance is 1/2.
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