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Abstract. We investigate the symbolic dynamics for the double standard maps of
the circle onto itself, given by fa,b(x) = 2x+ a+ (b/π) sin(2πx) (mod 1), where b = 1 and
a is a real parameter, 0 ≤ a < 1.

1. Introduction. In the family of double standard maps of the circle
onto itself, given by
(1.1) fa,b(x) = 2x+ a+ (b/π) sin(2πx) (mod 1),
where the parameters a, b are real and 0 ≤ b ≤ 1, tongues (sets of pa-
rameter values for which there is an attracting periodic point) appear (see
Misiurewicz–Rodrigues [17, 18, 19]).

The aim of this paper is to study the symbolic dynamics for the double
standard family assuming b = 1. We define fa = fa,1 for fa,b in (1.1). More-
over, we relate this to the “Real Fatou Conjecture”, that is, the density of
parameters with attractive periodic orbits.

In the classical theory of Milnor–Thurston the symbolic coding is asso-
ciated to the two intervals where the restriction of the map to each of them
is increasing or decreasing (the basic background for symbolic dynamics and
kneading theory may be found in [7]). Consider the double standard fam-
ily (1.1) with b = 1 and a ∈ [0, 1). Then for each value of the parameter
a the map is increasing for all values of x ∈ [0, 1] except for the values of
the parameter for which there is an attractive periodic orbit of period 1
(see [18]).

2010 Mathematics Subject Classification: Primary 37E10.
Key words and phrases: circle maps, covering maps, double standard maps, symbolic
dynamics, kneading theory.

DOI: 10.4064/fm206-1-5 [61] c© Instytut Matematyczny PAN, 2009



62 M. Benedicks and A. Rodrigues

The explicit computation of the boundary of the period1 tongue (see [19])
gives:

(1.2) a =
1
2
±
√

4b2 − 1− arctan
√

4b2 − 1
2π

,

which allows us to compute the interval [a′0, a0] for which we have an attrac-
tive periodic orbit of period one. We get a0 ' 0.65, the bifurcation point for
the period 1 tongue for a > 1/2, and a′0 = 1− a0.

For a0 < a < 1, fa has a unique fixed point, which we will denote by
p(a). This follows from the bifurcation behavior of the fixed point(s). For
a = 1/2, fa has three fixed points, one at x = 1/2 and two repelling fixed
points. According to the Implicit Function Theorem this behavior persists
for a′0 < a < a0. For a = a0, the two rightmost fixed points go through a
saddle node bifurcation and disappear. Since the only bifurcation of fixed
points for 1/2 < a < 1 appears at a = a0 it is clear that there is at most
one fixed point in this interval, the continuation of the left fixed point that
exists for 1/2 < a < a0. We denote this fixed point by p(a). We will also
prove that p(a) for a0 < a < 1 has a unique preimage different from p(a).
We denote this preimage by q(a). For 0 < a < a′0 the situation is completely
symmetric.

We use a symbolic coding related to Yoccoz partitions of the interval
[23], but in our case we will apply it to the circle. Let J0 = (p(a), q(a)) for
a > 1/2, where the circle segments are chosen so that they have positive
orientation on the circle, and let J1 = int(T \ J0). In the case 0 < a < a′0,
J0 = [0, q(a)) ∪ (p(a), 1) where the circle is represented by the half-open
fundamental domain [0, 1) and as before J1 is the interior of its complement.

A more geometric way to express the same is to say that J0 is the pos-
itively oriented (counterclockwise) open arc on the unit circle from p(a) to
q(a), and J1 is the interior of its complement.

For a given initial point x on the circle such that its orbit does not land
on p or q let

(1.3) in(x) =
{

0 if fna (x) ∈ J0,

1 if fna (x) ∈ J1.

For a point that eventually hits p after possibly passing through q, the
coding is so far not defined. For these orbits, we define the coding by either
i0 . . . in 0 1 or i0 . . . in 1 0, and we identify these sequences. Note that this is
exactly the same identification as is made of the binary expansions

0.i0 . . . in 0 1 and 0.i0 . . . in 1 0,

when they are interpreted as real numbers.
Thus, we associate with each x ∈ T a finite or infinite sequence of the

symbols 0, 1 called its itinerary. We denote by I(x) the sequence {in(x)}∞n=0

and this sequence is also naturally identified with a real number in [0, 1].
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As usual the kneading sequence will be the itinerary of the critical value
fa(1/2) = a and we denote it by K(fa). We will sometimes also use the
notation K(a) = K(fa), in particular when we consider the function a 7→
K(a).

The paper is organized as follows. In Section 2 we introduce the sym-
bolic coding and we study the monotonicity of the itinerary map and of the
kneading sequence. In Section 3 we investigate some properties of the peri-
odic kneading sequences. In Section 4 we investigate some properties of the
aperiodic kneading sequences and we show how to connect our work to the
“Real Fatou Conjecture”, which in the present setting is a result by Levin
and van Strien [11, Theorem C]. In Section 5 we state some results concern-
ing the abundance of positive Lyapunov exponents and invariant measures.
Finally, in Section 6 we state some conjectures.

2. Kneading sequences. Let I(x), I(y) be two sequences of the sym-
bols {0, 1} such that I(x) 6= I(y). Suppose

(2.1) I(x) = i10i
1
1i

1
2 · · · i1n, I(y) = i20i

2
1i

2
2 · · · i2n,

where in is the smallest index for which i1n 6= i2n. We order the sequences
(2.1) lexicographically: if i1n = 0, i2n = 1 then I(x) < I(y). It is obvious that
this order coincides with the order of the real numbers corresponding to the
symbol sequences interpreted as binary expansions. It is clear that the map
x 7→ I(x) is continuous, where the topology on the kneading sequences is
the topology of real numbers.

We prove the following lemma:

Lemma 2.1. For f = fa,b as in (1.1) with b = 1 and for a fixed value of
the parameter a, if x < y then I(x) ≤ I(y).

Proof. By the continuity of x 7→ I(x) it is enough to treat the case when
x and y are not binary rationals.

We will prove

(2.2) I(x) > I(y) ⇒ x > y.

We argue by induction on the index where I(x) and I(y) differ. For n = 0,
(2.2) is obvious. Assume it has been proved for n−1 and we wish to prove it
for n. But I(x) > I(y)⇒ I(f(x)) > I(f(y)). By (2.2) for n− 1, we conclude
that f(x) > f(y). But by the strict monotonicity of f it now follows that
x > y.

We also define an order on the kneading sequences in exactly the same
way as we defined an order on the itineraries.

We have the following lemma:
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Lemma 2.2. Fix b = 1 in (1.1). Assume that 1/2 < a∗ < 1 does not
belong to the period 1 tongue and that fa∗ has the property that the critical
point 1/2 is eventually fixed , i.e. there is an integer j so that f ja∗(1/2) = p.
Then a 7→ K(fa) is strictly monotonic at a∗. More precisely , there is a real
number δ > 0 so that

a∗ − δ < a1 < a∗ < a2 < a∗ + δ < 1 ⇒ K(fa1) < K(fa2).

Proof. Outside the period 1 tongue we have a0 < a < 1. We begin by
proving that for a in this interval we have 0 < p(a) < 1/6 and that p(a)
decreases as a function of a. Consider the lift Fa of (1.1) to the real line.
The fixed point of fa satisfies

Fa(x) = 2x+ a+
1
π

sin(2πx) = x+ 1.

Consider the function Ga(x) = Fa(x) − x − 1 and 1/2 < a < 1. We have
Ga(0) = a − 1 < 0 and Ga(1/6) = −5/6 + a +

√
3/2π > 0. Thus, there is

0 < c < 1/6 such that Ga(c) = Fa(c)− c− 1 = 0.
Differentiating Fa(p(a)) = p(a) + 1 with respect to a yields

[1 + 2 cos(2πp(a))]
dp(a)
da

+ 1 = 0.

Now if 0 ≤ p(a) < 1/6 then cos(2πp(a)) > −1/2 and we conclude that
dp(a)/da < 0. Since p(a) = 0 only for a = 1, we conclude that 0 < p(a)
< 1/6.

We now prove that q(a) exists and decreases as a function of a. For
a0 < a < a0 + ε with ε small we have q(a) ' 0.61. For 1− ε < a < 1, q(a) is
small and positive. Since q(a) satisfies

Fa(q(a)) = p(a) + 1,

differentiating with respect to a and inserting the expression for dp(a)/da
yields

[(2 + 2 cos(2πq(a))]
dq(a)
da

= −1− dp(a)
da

= − 2 cos(2πp(a))
1 + 2 cos (2πp(a))

.(2.3)

From the Implicit Function Theorem it follows that q(a) exists in the relevant
interval a0 < a < 1. Using the fact that 0 < p(a) < 1/6 for a0 < a < 1 and
the behavior at the end points we conclude that dq(a)/da < 0 for a0 < a < 1.

We want to prove that fna (1/2) increases as a function of a. Recall the
proof of Lemma 2.6 from [18]: since fna (x) = fn−1

a (fa(x)), we have

∂fna
∂a

(x) =
∂fn−1

a

∂a
(fa(x)) + (fn−1

a )′(fa(x))
∂fa
∂a

(x).
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By (1.1), ∂fa

∂a (y) = 1 for every y, so by induction we obtain

∂fna
∂a

(x) =
n−1∑
k=0

(fka )′(fn−ka (x)).

Since f ′a is non-negative everywhere, so is (fka )′. Moreover, if k = 0 then
(fka )′ ≡ 1.

Set ξn(a) = fna (1/2). We assume that a∗ is such that we do not have a
period 1 tongue. Let a be very close to a∗. When a increases, ξn(a) = fna (1/2)
hits p for a = a∗ and there is a change in the nth symbol of the kneading
sequence. But actually ξn−1 must simultaneously hit the preimage q. This
means that there are two symbols that change simultaneously. The mono-
tonicity properties of ξn(a), p(a) and q(a) proved above show that in changes
from 1 to 0 but in−1 changes from 0 to 1. The latter change of in−1 has more
weight since it is of lower index. Hence the kneading must increase at a∗
when a increases.

As a consequence we obtain the following statement on the monotonicity
of kneading sequences for the family fa.

Theorem 2.3. Let fa1 , fa2 belong to the double standard family. Then

(i) K(fa1) < K(fa2) implies a1 < a2;
(ii) a1 < a2 implies K(fa1) ≤ K(fa2).
Proof. We first prove the theorem in the case a0 < a1, a2. The case

a1, a2 < a′0 will be postponed until after the proof of Lemma 2.4. Let n be
the first index where K(fa1) = (k1

i )
∞
i=0 and K(fa2) = (k2

i )
∞
i=0 differ. The

proof of (i) goes by induction on n. To begin, the statement is true for n = 1
by direct computation. Suppose that (i) is proven for all indices of change
≤ n− 1 and let n ≥ 2.

Suppose that a1 < a2 and K(a1) > K(a2) and suppose that k1
1k

1
2 . . . k

1
n

and k2
1k

2
2 . . . k

2
n differ in the nth binary digit. This digit changes at points

{ai}, where the critical point is preperiodic. By the analyticity there are
only finitely many of these points. Note that at each of these points, the
map is strictly locally increasing by Lemma 2.3. If there are more than one
point {a′i} this would mean that more than one of the digits {k1

i }
n−1
i=1 change

in a decreasing order as a function of a, which contradicts the induction
assumption. If there is only one point a′1 the local strict increase at that
point contradicts K(a1) > K(a2).

Now the proof of (ii) is immediate. We again argue by contradiction. If
we assume K(fa1) > K(fa2), by (i) we get a1 > a2, which contradicts the
assumption a1 < a2.

Lemma 2.4. Assume that 1/2 < a1 < 1, a2 = 1−a1 and K(fa1),K(fa2)
are the corresponding kneading sequences interpreted as real numbers. Then
K(fa1) = 1−K(fa2).
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Proof. Assume that 1/2 < a1 < 1 and a2 = 1− a1. We start by proving
that if p(a1), p(a2) are fixed points of fa1 , fa2 , respectively, then p(a2) =
1−p(a1) and q(a2) = 1− q(a1). Consider the lifting Fa of fa to the real line.
A fixed point of fa satisfies

Fa = 2x+ a+
1
π

sin(2πx) = x+ 1.

Consider the map G(a, x) = Fa(x) − x − 1. If (a1, p(a1)) is a solution of
G(a, x) = 0 then (1− a1, 1− p(a1)) is also a solution. Assume Ga1(p(a1)) =
p(a1)+a1+π−1 sin(2πp(a1))−1=0. ThenG1−a1(1−p(a1))=−Ga1(p(a1))=0.

We now prove that if p(a1) < fna1
(1/2) < q(a1), then q(a2) < fna2

(1/2) <
p(a2), for a2 = 1− a1. We see that

p(a1) < fna1
(1/2) < q(a1)

implies
1− p(a2) < fn1−a2

(1/2) < 1− q(a2),
and so

q(a2) < 1− fn1−a2
(1/2) < p(a2).

We will prove that
(2.4) fna2

(1/2) = 1− fn1−a2
(1/2)

by induction on n. For n = 1 we have fna2
(1/2) = 1 − fn1−a2

(1/2) = a2

(mod 1). Assume (2.4) holds for n. We show it holds for n+ 1:
fa2(f

n
a2

(1/2)) = fa2(1− fn1−a2
(1/2)) = fa2(−fna2

(1/2)) = −f−a2(f
n
1−a2

(1/2))

= −f1−a2(f
n
1−a2

(1/2)) = −fn+1
1−a2

(1/2) = 1− fn+1
1−a2

(1/2).

Hence we see that for the nth item in the kneading sequences if kn(fa1) = 0
then kn(fa2) = 1 and vice-versa, so K(fa1) = 1−K(fa2).

Proof of Theorem 2.3 for a < 1/2. We suppose that 0 < a1 < a2 < a′0.
Then 1 − a2 < 1 − a1 and by Theorem 2.3 for a > 1/2 it follows that
K(1− a2) ≤ K(1− a1) and (ii) follows. The proof of (i) is similar.

The next lemma will be quite useful. Since K(a) for 0 ≤ a ≤ a′0 and
a0 ≤ a < 1, may be interpreted as real numbers, it will immediately imply
an intermediate value theorem for kneading sequences:

Lemma 2.5. The map a 7→ K(a) is continuous, where the topology on
the space of kneading sequences is given by the topology of the real numbers
in the interval [0, 1].

Proof. The argument is standard; see e.g. the proof of [7, Proposition
III.1.2]. One sees that A0 = {a | K(a) > K0} and A′0 = {a | K(a) < K0} are
both open by verifying that each point in these sets is contained in an open
set of the type {a | kj(a) = k0

j , j = 0, . . . , n}, which in turn is contained in
the corresponding set A0 and A′0 respectively.
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3. Periodic kneading sequences. In this section we prove that the
kneading sequence corresponding to a periodic orbit is a periodic sequence.
Furthermore, we prove that it corresponds to the binary expansion of the
rational number assigning the order of the given tongue as described in [19].

Let W be an open subset of T. We say that f |W has a sink if there is an
open interval K ⊂W such that f(K) ⊂ K for some n ≥ 1 and f j(K) ⊂W ,
j = 1, . . . , n− 1 (and hence for all j).

We note the following lemma:

Lemma 3.1. If f = fa is a map from the double standard family and
W is an open subset of T such that f |W has a sink then W contains an
attractive periodic orbit.

Proof. If f has a sink then g = fn|K is a homeomorphism of K into
itself. We want to show that g has a stable fixed point in K. It is obvious
that there is a point x ∈ K such that g(x) = x. We pick the leftmost fixed
point of this type. If g maps K into K this fixed point lies in K and must
satisfy 0 ≤ g′(x) ≤ 1. If 0 ≤ g′(x) < 1, we are done. If g′(x) = 1 then x is
stable from the left.

If g(x) = x for some x ∈ ∂K then we argue as follows. Suppose x is the
left endpoint. If g′(x) ≤ 1 and g(y) < y for y near x in K then x is one-sided
stable. If g(y) > y for y near x or g′(x) > 1 then we argue as in the case
g(K) ⊂ K. The right endpoint is handled in a symmetric fashion.

We next turn to a result which in the unimodal case is due to Gucken-
heimer [9].

Theorem 3.2. If fa belongs to the double standard family then:

(i) fa has a stable periodic orbit if and only if K(fa) is periodic.
(ii) If K(fa1) is periodic and K(fa1) = K(fa2)and the periodic orbits

of fa1 and fa2 are two-sided attracting , then fa1 and fa2 are topolog-
ically conjugate.

Remark. Theorem 3.2(ii) implies that the fa’s with parameters in the
interior of the tongues are topologically conjugate. The functions with pa-
rameters on the endpoints of the tongues have one-sided attracting periodic
orbits and are not conjugate to those with parameters in the interior.

Proof of Theorem 3.2. We start by proving (i). Assume that f has a
stable periodic orbit of period n. Let x be a point on the orbit. Let y be
a critical point of fn so that 0 < |Dfn| ≤ 1 on (x; y) ((x; y) is (x, y) or
(y, x), depending on whether x < y or x > y). Such a critical point exists
since there is always a critical point in the immediate basin of an attractive
periodic orbit by Singer’s theorem.
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Let j be such that f j(y) = 1/2. Now f rn(y) converges monotonously to
x when r → ∞. Therefore f j(f rn(y)) = f rn(1/2) converges monotonously
to f j(x).

Assume now p∈ (fk(1/2); fk+j(x)) for some k. This implies p∈ (fk+j(y);
fk+j(x)); in particular when rn > k + j there is a z in (y;x) such that
f rn(z) = p. But this contradicts the fact that the entire interval (y;x) is at-
tracted to the attractive periodic orbit. Hence the case p∈ (fk(1/2); fk+j(x))
does not occur. We conclude thatf(1/2) andf j+1(x) have the same itinerary.
Hence I(f(1/2)) is periodic (and not only eventually periodic).

If on the other hand I(f(1/2)) is periodic then all points in the interval
(fm+1(1/2); f(1/2)) have the same itineraries. Either fm+1(1/2) = f(1/2)
and we have a superattractive orbit. If not, let us for convenience assume
that fm+1(1/2) < f(1/2). Then the interval (fm+1(1/2), f(1/2)) is mapped
to (f2m+1(1/2), fm+1(1/2)). In the same way

(f jm+1(1/2), f (j−1)m+1(1/2)) 7→ (f (j+1)m+1(1/2), f jm+1(1/2)).

It follows that the sequence f jm+1(1/2) is monotonous as a function of j and
it converges to a point. This must be a point of an attractive periodic orbit,
which then obviously exists. The case fm+1(1/2) > f(1/2) is completely
analogous.

Now we turn to the proof of (ii). We follow the proof of Theorem II.6.3
in [7], but the present case is actually easier since Df(x) > 0. Let us write
f = fa1 and g = fa2 . Let Uf be the stable neighborhood of 1/2 for f . Then
fn(x) ∈ Uf if and only if Sn+1(I(x)) = If (f(1/2)) = K(f). We set

Ef = {x : fn(x) does not tend to the stable periodic orbit}.

Hence we can determine whether x ∈ Ef from its itinerary. Note that x 7→
If (x) is injective for x ∈ Ef . This follows since for all x ∈ Ef the orbit
of x must avoid the attractive neighborhood of 1/2. Hence Mañé’s theorem
(see e.g. [15, Theorem III.5.1]) is applicable. We conclude that there exist
constants C > 0 and λ > 1 so that

|Dfn(x)| ≥ Cλn ∀n ≥ 0 ∀x ∈ Ef ,

and this forbids the existence of an interval of points with constant itinerary.
The same considerations apply to g and hence we can define a homeomor-
phism h : Ef → Eg by the property If (x) = Ig(h(x)). We extend h to
the set

⋃
i>0 f

−i(Uf ) assuming that we have already constructed a topolog-
ical equivalence h from fn|Uf

to gn|Ug , where n is the smallest integer for
which fn(Uf ) ⊂ Uf (and hence also gn(Ug) ⊂ Ug). For each component K
of f−i(Uf ) other than Uf there is a j ≤ i with f j mapping K homeomor-
phically into Uf . Then we define h for x ∈ K by h(f j(x)) = gj(h(x)) and
the requirement that the itineraries If (x) and Ig(h(x)) are the same (this
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identifies the component). It is easy to see that h defined this way is a topo-
logical equivalence. It remains to define h on Uf . The set Uf must always
be of the form (p, q), where fn(p) = p and fn(q) = q with an attractive
periodic point in the interior of Uf and Ug is of the same form. The usual
fundamental domains argument in the proof of Hartman’s theorem is then
used to define the conjugacy h on Uf .

The order of the tongues for the family (1.1) corresponds to the order of
rational numbers with denominator 2n − 1. Let Fa,b be the lift of fa,b to the
real line. The limit

(3.1) Φa,b(x) = lim
j→∞

F ja,b(x)

2j
,

where each Fa,b is continuous increasing (as a function of x) and Fa,b(x+k) =
Fa,b(x) + 2k for every integer k, exists uniformly in x (see [19, Lemma 3.1]).

The fact that the periodic part of the binary expansion of Φa(x) gives us
a periodic coding in 0’s and 1’s suggests that there is a relation between a
periodic kneading and the periodic part of this binary expansion.

Theorem 3.3. If a is such that fa has a periodic orbit of period n (n > 1)
then K(fa) corresponds to the shift of the binary expansion of Φa(1/2) =
k/(2n − 1) where k is a natural number and k = 1, . . . , 2n − 2.

Proof. We make a linear conjugacy (or rotation)

(3.2) T (ξ) = ξ + p.

The map in the new coordinates is

(3.3) f̂(ξ) = T−1 ◦ f ◦ T,

and it has a fixed point at ξ = 0.
We want to compute the limit

lim
j→∞

F ja (x)
2j

,

in particular for x = 1/2 we want to show that the itinerary goes with this
limit.

The point q is defined by F (q) = 1. We have

F (x) =
{
f(x), 0 ≤ x ≤ q,
f(x) + 1, q ≤ x ≤ 1,

and

F (x) =
{
f(x− k) + k, k ≤ x ≤ q + k,

f(x− k) + k + 1, q + k ≤ x ≤ k + 1.
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For an itinerary {ij}∞j=0 we have the recursion formula{
aj+1 = 2aj + ij ,

ξj+1 = f(ξj),

for j = 0, 1, 2, which is equivalent to{
xj+1 = F (xj),
xn = an + ξn,

for an ∈ Z, 0 ≤ ξn < 1.
From these we get the following recursion formula for ai:

a0 = 0, a1 = i0, a2 = 2i0 + i1, a3 = 4i0 + 2i1 + i2, . . . .

In the case x = 1/2 we obtain by the periodicity of K(fa) that

akn = 2kn−1i0 + 2kn−2i1 + · · ·+ 2k(n−1)in−1 + 2k(n−1)−1i0 + · · ·+ in−1

= i02n−1 2kn − 2n−1

2n − 1
+ · · ·+ in−1

2kn − 1
2n − 1

.

Since we know that the limit exists (see [19, Theorem 3.1]), we get

lim
j→∞

F ja (1/2)
2j

= lim
k→∞

akn
2kn

=
i02n−1 + · · ·+ in−1

2n − 1
,

which is the statement of our theorem.

4. Aperiodic kneading sequences. In this section we study the mono-
tonicity for fa from the double standard family of maps for which there is
an aperiodic kneading sequence. We prove that the itinerary map is strictly
increasing in this case. Furthermore, we show how to relate the work in the
present paper to the “Real Fatou Conjecture”.

Theorem 4.1. Assume that K(fa1) and K(fa2) are aperiodic kneading
sequences. Then the two maps are topologically conjugate and both are con-
jugate to the doubling map of the circle

x 7→ 2x (mod 1).

Theorem 4.2. If f = fa from the double standard family has an aperi-
odic kneading sequence, then the itinerary map x 7→ I(x) is strictly increas-
ing , i.e.,

x < y ⇒ I(x) < I(y).

Before we prove Theorem 4.2 we recall the following definition.

Definition 4.3. We say that J is a wandering interval if:

1. {f j(J)}∞j=0 are disjoint.
2. The ω-limit set of J is not a single periodic orbit.
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Let N be either the interval [−1, 1] or the circle T. We say that a critical
point c of a C2 map f : N → N is non-flat if there is a C2 local diffeomor-
phism ϕ with ϕ(c) = 0 such that f(x) = ±|ϕ(x)|α + f(c) in a neighborhood
of c.

The double standard family is obviously a circle map with non-flat critical
points.

The proof of Theorem 4.2 will follow from the following result obtained
in [13]. For an exposition see [15, Chapter 4].

Theorem 4.4 ([15, Chapter 4, Theorem A]). If f is a C2 map with
non-flat critical points, then f has no wandering intervals.

Proof of Theorem 4.2. Let x < y and I(x) = I(y) and define J = (x, y).
We first claim {f j(J)}∞j=0 must be disjoint. Suppose not. Then there are
n ≥ 0 and k > 0 such that f(J) and fn+k(J) are not disjoint. Thus
K =

⋃
p≥0 f

n+kp(J) is an interval. Form L =
⋃p−1
j=0 f

j(K). We know that
L is not the entire circle T since I(x) = I(y), and p and q cannot be in
{f j(J)}∞j=0. Obviously f(K) ⊂ K and then f |L has a sink and hence an
attractive periodic orbit. Since the kneading sequence is aperiodic this con-
tradicts Theorem 3.2.

We also have to verify that the ω-limit set of J is not a single periodic
orbit. We first claim that the critical point c = 1/2 is in the ω-limit set.
Suppose not. Then there is a neighborhood U of the critical point so that for
all x ∈ J , f j(x) /∈ U for j ≥ 0. This means that we can again apply Mañé’s
theorem. We conclude that there exist constants C > 0 and λ > 1 so that

|Dfn(x)| ≥ Cλn ∀n ≥ 0.

This would mean that |fn(J)| grows exponentially, a contradiction.
Hence fn(J) accumulates on c. We have to prove part 2 in the definition

of a wandering interval. Suppose that the ω-limit set of J is a periodic orbit.
Since c is in the ω-limit set the periodic orbit must contain c. Hence fa has a
superattractive periodic orbit and c and the kneading sequence is periodic.
This is a contradiction. We conclude that I(x) < I(y) and the theorem is
proved.

Proof of Theorem 4.1. Suppose fa has an aperiodic kneading sequence.
Let ϕ(x) = If (x) be the itinerary map and D(x) be the doubling map

D(x) = 2x (mod 1).

It is then clear that ϕ is a homeomorphism and f = ϕ−1 ◦ D ◦ ϕ, so the
conjugacy is proven.

Theorem 4.5. Assume that K(fa1) and K(fa2) are aperiodic kneading
sequences such that K(fa1) = K(fa2). Then a1 = a2.
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Proof. Since the map a 7→ K(a) is non-decreasing, i.e.

a1 < a2 ⇒ K(a1) ≤ K(a2),

it is enough to prove that there are no intervals where K(a) is constant. But
by the density of hyperbolicity [11], in such a parameter interval there must
be a point a′ with an attractive periodic orbit. But for this parameter a′, by
Theorem 3.2, K(a′) is periodic, and this is a contradiction.

It is clear that Theorem 4.5 is really equivalent to the density of param-
eters with attractive periodic orbits (“The Real Fatou Conjecture”) in our
present case of the double standard map.

We can realize this as follows. Let a∗ be a parameter point. We want
to prove that a∗ can be approximated by a sequence of points an such that
K(an) is periodic and therefore corresponds to an attractive periodic orbit.
If K(a∗) itself is periodic there is nothing to prove. If K(a∗) is aperiodic
we can approximate it from below by a sequence Kn of increasing periodic
kneading sequences. Since a 7→ K(a) is increasing and continuous, by the
intermediate value theorem there is an increasing sequence {an}∞n=0 so that
K(an) = Kn. Obviously an tends to a limit, which we denote by a′. By
the continuity of a 7→ K(a), K(a′) = K(a∗). If a′ < a, there would be an
interval of parameters with constant aperiodic kneading sequence, which is
not possible according to Theorem 4.5.

The following conjecture is in many cases implied by Theorem B of [11].

Conjecture 4.6. Suppose that K(a1) = K(a2) are two aperiodic knead-
ing sequences. Then the corresponding maps fa1 and fa2 are quasisymmetri-
cally conjugate.

An independent proof of Conjecture 4.6, in particular, if it could be done
with purely real methods, would be of interest. This would lead to a different
proof of Theorem 4.5.

5. Abundance of positive Lyapunov exponents and invariant
measures. We first state a theorem which corresponds to a result which in
the case of the quadratic family is a consequence of results of M. Misiurewicz
from his famous paper [16].

Theorem 5.1. If a is such that K(a) is preperiodic but not periodic,
then fa has an absolutely continuous invariant measure.

We will not give the proof here since it can be given following the ideas
given by Misiurewicz. See also the book [7] for an exposition of this proof.

One would expect that the set of parameters satisfying the condition
that K(a) is preperiodic but not periodic is of Lebesgue measure 0. In the
case of the quadratic family the corresponding result is due to D. Sands
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[22]. Because of this fact the following result of Collet–Eckmann type is of
interest:

Theorem 5.2. There is a subset A ⊂ [0, 1] of positive Lebesgue measure
and constants c and C > 0 such that for all a ∈ A,

|Dfna (fa(1/2))| ≥ Cecn, ∀n ≥ 0.

We will not give the proof of this result either since it can be given along
the same principles as the proof of the corresponding theorem in the case of
the quadratic family following e.g. [4] and [5].

Corollary 5.3. For a ∈ A the map fa has an absolutely continuous
invariant measure.

As a direct consequence of Theorem 5.2 it follows immediately that Dn =
|Dfna (f(1/2))| satisfies

∞∑
n=0

D−1/l
n <∞.

In our case l = 3, since this is the power-law behavior of the maps at the
critical inflexion point 1/2.

This indicates that an analogy to a result of Nowicki–van Strien, [21,
Main Theorem], proved in the interval case, should be applicable, and if so
we conclude that there is an absolutely continuous invariant measure.

It is also clear that a direct proof of Corollary 5.3 can also be given
following the ideas of e.g. [4, part II], or [6].

6. Conjectures and further results. It seems reasonable that the
analogy to the quadratic family could be carried even further. In particular,
Nowicki, Martens and Lyubich [14] proved that the parameter space of the
quadratic family x 7→ qa(x) = 1− ax2, 0 < a < 2, can be written as a union

(0, 2) = A ∪B ∪ S a.e.,

where A is the set of parameters for which qa has an absolutely continuous
invariant measure, B is the set of parameters for which qa has an attractive
periodic orbit, and S is the set of parameters for which qa has a singular
non-atomic invariant measure µs, which is also the unique physical measure,
i.e. a.e. point in the dynamic interval is Birkhoff generic:

n−1∑
k=0

δfk(x) → µs for a.e. x,

in the weak-∗ topology.
Later Lyubich [12] proved that S is of Lebesgue measure 0. It seems

natural to conjecture that the corresponding result is true for the double
standard family for b = 1.



74 M. Benedicks and A. Rodrigues

Conjecture 6.1. For the double standard family fa, 0 ≤ a < 1 the
parameter space can be subdivided into three sets

(6.1) [0, 1] = A ∪B ∪ S a.e.,

so that

(i) A, the set of a’s such that fa has an absolutely continuous invariant
measure, is of positive Lebesgue measure;

(ii) B, the set of a’s such that fa has a stable periodic orbit , is open and
dense;

(iii) S, the set of parameters for which fa has a unique non-atomic sin-
gular physical measure, is of Lebesgue measure 0.

Let us finish with some remarks about what is known about this conjec-
ture.

(i) is Theorem 5.2 above. (ii) is the Real Fatou Conjecture in this case
and is a result of Levin and van Strien [11]. The subdivision (6.1) and (iii)
are open problems in the case of the double standard family even if these
facts are both known for the quadratic family.
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