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A fixed point theorem for
branched covering maps of the plane

by

Alexander Blokh and Lex Oversteegen (Birmingham, AL)

Abstract. It is known that every homeomorphism of the plane which admits an
invariant non-separating continuum has a fixed point in the continuum. In this paper we
show that any branched covering map of the plane of degree d, |d| ≤ 2, which has an
invariant, non-separating continuum Y , either has a fixed point in Y , or is such that Y
contains a minimal (in the sense of inclusion among invariant continua), fully invariant,
non-separating subcontinuum X. In the latter case, f has to be of degree −2 and X has
exactly three fixed prime ends, one corresponding to an outchannel and the other two to
inchannels.

1. Introduction. We denote by C the plane and by C∞ the Rie-
mann sphere. Homeomorphisms of the plane have been extensively studied.
Cartwright and Littlewood [CL51] have shown that each orientation pre-
serving homeomorphism of the plane which has an invariant non-separating
subcontinuum X must have a fixed point in X. This result was generalized
to all homeomorphisms by Bell [Bel78]. The existence of fixed points for
orientation preserving homeomorphisms under various conditions was con-
sidered in [Bro12, Bro84, Fat87, Fra92, Gui94], and of a point of period two
for orientation reversing homeomorphisms in [Bon04].

In this paper we investigate fixed points of light open maps of the plane.
By a Theorem of Stoilow [Why42], all such maps have finitely many critical
points and are branched covering maps of the plane. In particular, if C de-
notes the set of critical points of f , then for each y ∈ C \ f(C), |f−1(y)| is
finite and independent of y. We will denote this number by d(f). All such
maps are either positively or negatively oriented (see definitions below); holo-
morphic maps are prototypes of positively oriented maps. If f is positively
oriented then the degree (of the map f), denoted by degree(f), equals +d(f)
and if f is negatively oriented then degree(f) = −d(f). Easy examples, de-
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scribed in Section 2, show that positively and negatively oriented branched
covering maps of the plane can be periodic point free.

The following is a well-known open problem in plane topology [Ste35]:
Does a continuous function taking a non-separating plane continuum into it-
self always have a fixed point? Bell announced in 1984 (see also Akis [Aki99])
that the Cartwright–Littlewood Theorem can be extended to holomorphic
maps of the plane. This result was extended in [FMOT07] to all branched
covering maps (even to all perfect compositions of open and monotone maps)
which are positively oriented. Thus, if f : C → C is positively oriented
branched covering map of the plane and X ⊂ C is a non-separating contin-
uum such that f(X) ⊂ X then X contains a fixed point. The main remain-
ing question concerning branched covering maps then is that for negatively
oriented maps.

Given a continuum Y in the plane, we denote by T (Y ) the topological hull
of Y , the union of Y and all of the bounded components of C\Y . Also, denote
by U∞(Y ) the unbounded component of C \ Y . Then T (Y ) = C \ U∞(Y )
is a non-separating plane continuum. In this paper we consider a branched
covering map f of the plane of degree with absolute value at most 2 and
prove the following theorem.

Theorem 5.2. Suppose that f : C → C is a branched covering map of
degree with absolute value at most 2 and let Y be a continuum such that
f(Y ) ⊂ T (Y ). Then one of the following holds.

(1) The map f has a fixed point in T (Y ).
(2) The continuum Y contains a fully invariant indecomposable contin-

uum X such that X contains no subcontinuum Z with f(Z) ⊂ Z;
moreover , in this case degree(f) = −2.

It follows that in case (2) f induces a covering map G of the circle of
prime ends of T (X) with degree(G) = −2 and T (X) has exactly three
fixed prime ends and for all of them their principal set is equal to X. More
precisely, let us consider in the uniformization plane the complement D∞ to
the closed unit disk, and choose a Riemann map ϕ : D∞ → C∞ \T (X) such
that ϕ(∞) =∞. Then one of the fixed prime ends, say, α corresponds to an
outchannel (i.e., for sufficiently small crosscuts C whose preimages in the
uniformization plane separate e2πα ∈ S1 from infinity, f(C) separates C from
infinity in C\T (X)), and the other two prime ends correspond to inchannels
(i.e., for sufficiently small crosscuts C separating the corresponding points
on the unit circle from infinity, C separates f(C) from infinity in C\T (X)).

Let us outline the main steps of the proof. By known results we may
assume that degree(f) = −2; we may also assume that f has no fixed points
in T (Y ). Bell [Bel67] (see also [Sie68, Ili70]) has shown that then Y contains a
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subcontinuumX with the following properties: (1)X is minimal with respect
to the property that f(X) ⊂ T (X), (2) f(X) = X is indecomposable, and
(3) there exists an external ray R to T (X) whose principal set is X. Let c
be the critical point of f and τ : C→ C be the map such that τ(c) = c and
τ(x) is the point y 6= x with f(y) = f(x) (if x 6= c). By [Bel78] we assume
that τ(X) ∩X 6= ∅. By way of contradiction we assume that X is not fully
invariant.

The first important step in the proof is made in Lemma 3.7 where we
prove that X ∩ τ(X) is a first category subset of X. Krasinkiewicz [Kra74]
introduced the notions of internal and external composants and described
important properties of these objects. His tools are instrumental for the
results of Section 3. In Section 4 we construct a modification of the map f ,
which coincides with f on T (X) and for which the external ray R has an
invariant tail, i.e. a part of R from some point on to X maps over itself,
repelling points away from X in the sense of the order on R. In doing so we
use a new sufficient condition allowing one to extend a function from the
boundary of a domain over the domain. The proof of Theorem 5.2 is given
in Section 5. There we study how the ray R approaches X and use the map
on R and the fact that τ(X) ∩ X is a first category set in X in order to
come up with a sequence of segments of R which map one onto the other
and converge to a proper subcontinuum of X, a contradiction.

2. Main notions and examples. All maps considered in this paper
are continuous. We begin by giving some definitions (avoiding the most
standard ones). A map f : X → Y is monotone provided for each continuum
or singleton K ⊂ Y , f−1(K) is a continuum or a point. A map f : X → Y is
light provided for each point y ∈ Y , f−1(y) is totally disconnected. A map
f : X → Y is confluent if for each continuum K ⊂ Y and each component C
of f−1(K), f(C) = K. It is well known [Why42] that all open maps between
compacta are confluent. In the above situation components of f−1(K) are
often called pullbacks of K.

Every homeomorphism of the plane is either orientation preserving or
orientation reversing. In this section we will recall an appropriate extension
of this result, which applies to open and perfect maps (see [FMOT07]).

Definition 2.1. Let f : U → C be a map from a simply connected
domain U into the plane. Let S be a simple closed curve in U , and p ∈
U \ f−1(f(S)). Define fp,S : S → S1 by

fp,S(x) =
f(x)− f(p)
|f(x)− f(p)|

.

Then fp,S has a well-defined degree, denoted degree(fp,S). Note that
degree(fp,S) is the winding number win(f, S, f(p)) of f |S about f(p).
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Definition 2.2. A map f : U → C from a simply connected domain
U ⊂ C is strictly positively oriented (strictly negatively oriented) if for each
p ∈ T (S) \ f−1(f(S)) we have degree(fp,S) > 0 (degree(fp,S) < 0 respec-
tively).

Definition 2.3. A map f : C→ C is said to be perfect if preimages of
compacta are compacta. A perfect map f : C→ C is oriented provided for
each simple closed curve S we have f(T (S)) ⊂ T (f(S)).

Remark 2.4. Every strictly positively or strictly negatively oriented
map is oriented because if a point p is such that f(p) 6∈ T (f(S)) for a
simple closed curve S, then degree(fp,S) = 0. Also, if Y is a continuum then
f(T (Y )) ⊂ T (f(Y )) as follows from the definition of an oriented map and
continuity arguments.

The following theorem was established in [FMOT07]:

Theorem 2.5. Suppose that f : C → C is a perfect map. Then the
following are equivalent :

(1) f is either strictly positively or strictly negatively oriented.
(2) f is oriented.
(3) f is confluent.

Let us prove a useful lemma related to Theorem 2.5. A branched covering
map of the plane is a map f such that at all points, except for finitely many
critical points, the map f is a local homeomorphism, at each critical point
c the map f acts as zk at 0 for the appropriate k, and each point which
is not the image of a critical point has the same number d of preimages
(then degree(f) equals d if f is positively oriented and −d if f is negatively
oriented). By a Theorem of Stoilow [Why42] an open light map of the plane
is a branched covering map.

Lemma 2.6. Suppose that f : C→ C is a perfect map such that for every
continuum K and every component K ′ of f−1(K) the image f(K ′) is not
a point. Then f is confluent. If in addition f is light , then it is open (and
hence in this case f is a branched covering map).

Proof. Let f be light and show that then it is open. Suppose that V is
an open Jordan disk, x ∈ V , and f(x) ∈ Bd f(V ). Choose a small semi-
open arc I in C \ f(V ) with an endpoint of I at f(x), and then choose a
component J of f−1(I) containing x. By the assumptions of the lemma, J is
not degenerate. Choose a small disk V ′ so that x ∈ V ′ ⊂ V ′ ⊂ V . Then the
component J ′ of J ∩V ′ containing x is not degenerate. Now, the fact that f
is light implies that there are points of J ′ mapped into I \{f(x)} ⊂ C\f(V ),
a contradiction. By the Theorem of Stoilow [Why42] then f is a branched
covering map of the plane.
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Consider the general case. We can use the so-called monotone-light de-
composition. Indeed, consider the map m which collapses all components of
sets f−1(x) to points. Then it follows that f = g ◦m where g is a light map.
By the above this implies that f is a composition of a monotone map and
an open light map of the plane. Clearly, this implies that f is confluent.

A translation by a vector a (and a translation by a vector a followed
by a reflection with respect to an axis non-orthogonal to a), are obvious
examples of plane homeomorphisms which are periodic point free. Clearly,
any polynomial of degree strictly greater than one, acting on the complex
plane, has points of all periods. The following examples show that this is
not true for all positively oriented branched covering maps of the plane.

Example 2.7. There exists a degree two positively oriented branched
covering map of the plane which is periodic point free.

We will use both polar (r, θ) and rectangular (x, y) coordinates. Set
ϕ(r, θ) = (r, 2θ). We will look for a map f in the form h ◦ ϕ with h(x, y) =
(x + T (y), y) and T : R → R is a continuous positive function such that
T (s) = T (−s). Before we define T , let us describe the set A of all points (r, θ)
such that (r, θ) and ϕ(r, θ) have the same y-coordinates. Then r sin(2θ) =
r sin(θ). Hence, θ ∈ {0, π/3, π, 5π/3}. So, the set A consists of the x-axis
and two radial straight lines coming out of (0, 0) at angles θ = ±π/3. Given
s 6= 0, consider the point Ps of intersection between the horizontal line Ls
of points whose y-coordinate is s and the set A.

The point Ps is the only point on Ls with ϕ-image also on Ls. Then the
distance between the point P and the point ϕ(Ps) (and the origin) is 2|s|/

√
3.

Set T (s) = 2|s|/
√

3+2. Then f(x, s) 6= (x, s) for any point of Ls because all
points of Ls \ {Ps} map off Ls by ϕ, and hence, by the construction, by f .
On the other hand, f translates Ps two units to the right. Hence Ls does
not contain fixed points. Moreover, since f(x, 0) = (|x|+ 2, 0), f also has no
fixed points on the x-axis.

To see that f has no periodic points (1), let B be the set of points in
C whose argument is in (−π/3, π/3). Then f(B) = f(−B) ⊂ B coincides
with the shift of the entire set B to the right by two units (f(B) = f(−B)
because ϕ(B) = ϕ(−B)). Let C = C \ [B ∪ −B], and let Im(z) denote the
imaginary part of z. If z ∈ intC, then |Im(f(z))| < |Im(z)| and if z ∈ BdC,
then |Im(f(z))| = |Im(z)|. Let us show that a point z ∈ C cannot stay in C.
Indeed, otherwise y has to converge to points of C. However, if y were one of
these points, then by continuity we would have |Im(f(y))| = |Im(y)|, which
would imply that y ∈ BdC and hence that f(y) ∈ B, contradicting the
assumption that z stays in C.

(1) We are indebted to M. Misiurewicz for suggesting this argument.
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Hence, for every z ∈ C, there exists n such that fn(z) ∈ B. Since f(B)
⊂ B, the trajectory stays in B forever. If there exists m such that fm(z)
belongs to the real line, then it converges to +∞. To study the orbit of
a point z ∈ B which does not belong to the real line, observe that there
exists an increasing function ξ : R+ → R+ such that if z ∈ f(B) then
|Im(f(z))| ≥ |Im(z)|+ ξ(|Im(z)|). Therefore if z ∈ f(B) does not belong to
the real line then |Im(fk(z))| → ∞ as k → ∞. Hence in fact |fk(z)| → ∞
for any point z and f has no periodic points.

The example above can be easily modified to obtain a periodic point free
branched covering map of degree −2.

3. Basic preliminaries. A continuum X is called indecomposable if
X cannot be written as the union of two proper subcontinua. Also, Z is
unshielded if Z = BdU∞(Z). We argue by way of contradiction, therefore
the following is our main assumption.

Main Assumption. The map f : C → C is a branched covering map
and Y ⊂ C is a continuum such that f(Y ) ⊂ T (Y ) and f |T (Y ) is fixed point
free.

Bell [Bel67] has shown that in this case Y contains a subcontinuum X
which is minimal with respect to the property that f(X) ⊂ T (X) (then,
clearly, f(X) ⊂ T (X)) and which must have the following properties (see
[Sie68, Ili70] for alternative proofs):

(A0) X is minimal among continua Z ⊂ Y such that f(Z) ⊂ T (Z);
(A1) f(X) = X and T (X) is fixed point free;
(A2) there exists a curve Rβ (a conformal external ray, see below) in

U∞(Z) such that X = Rβ \ Rβ (so that X is unshielded and has
empty interior);

(A3) X is indecomposable.

We will use X exclusively for a continuum with the just listed properties
(A0)–(A3) which are ingredients of the standing assumption on X. Our
main aim is to show that then X is fully invariant (i.e., f−1(X) = X).
Thus, by way of contradiction we can add the following to our standing
assumption (as we progress, the standing assumption will be augmented by
other ingredients as well).

(A4) The set X is not fully invariant.

Below we list well-known facts from Carathéodory theory. Good sources
are the books [Mil00] and [Pom92]. Let D be the open unit disk in the
complex plane and D∞ = C∞ \D. Let ϕ : D∞ → C∞ \T (X) be a conformal
map such that ϕ(∞) = ∞. An external ray Rα = ϕ({re2πiα | r > 1}) is
the ϕ-image of the radial line segment rα = {re2πiα | r > 1}. Clearly, an
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external ray is diffeomorphic to the positive real axis. If R is an external
ray and x is a point such that R \ R = {x} then R is said to land on x.
For convenience we extend the map ϕ onto all angles whose rays land: if the
ray Rα lands at a point x, we set ϕ(e2πiα) = x. Observe that the extended
map ϕ is not necessarily continuous at angles whose rays land. Still, this
extension is convenient and will be used in what follows.

A crosscut C (of T (X) or of U∞(X)) is an open arc in C \ T (X) whose
closure is a closed arc with its endpoints in T (X). If C is a crosscut, then
by the shadow of C, denoted Sh(C), we mean the bounded component of
C∞ \ [T (X) ∪ C]. Sometimes the crosscut which gives rise to a shadow is
said to be the gate of the shadow. In the uniformization plane we consider
D as a continuum analogous to X, which allows us to talk about crosscuts
of D∞ too. Moreover, given a crosscut in D∞ we can then talk about its
shadow etc. It is known that if C is a crosscut of T (X), then ϕ−1(C) is a
crosscut of Bd D∞, and ϕ−1(Sh(C)) = Sh(ϕ−1(C)).

We say that a crosscut C is an Rα-essential crosscut if Rα ∩ C is a
single point, called the central point, and the intersection of C and Rα is
transverse. A sequence of crosscuts {Ci} of T (X) is a fundamental chain
provided Ci+1 ⊂ Sh(Ci), Ci+1 ∩ Ci = ∅ for each i, and lim diam(Ci) = 0.
Two fundamental chains Q = {qn} and Q′ = {q′n} are said to be equivalent
if Sh(qn) contains all but finitely many crosscuts q′n, and Sh(q′n) contains
all but finitely many crosscuts qn. A prime end of U∞(X) is an equivalence
class of fundamental chains; a fundamental chain is said to belong to its
prime end.

Given a fundamental chain {Ci}, the set limϕ−1(Ci) is a point e2πiα ∈
Bd D∞, α ∈ [0, 1); the corresponding prime end may then be identified
with the angle α. Given a prime end α and a corresponding fundamental
chain {Ci}, denote by Imp(α), called the impression of α, the set

⋂
Sh(Ci);

it is known that Imp(α) does not depend on the choice of a fundamental
chain and therefore is well-defined. Also, consider the set Π(α) = Rα \Rα,
called the principal set of Rα (or just of α). It is known that Π(α) ⊂ Imp(α)
and that for each point x ∈ Π(α) there exists a fundamental chain Ci of the
prime end α such that Ci → x.

The last claim can be improved a little. It was shown in [BO06] that
given an angle α, there exists for each z ∈ Rα an Rα-essential crosscut Cz
such that lim diam Cz = 0 as z → X. We call such a family Cz a defining
family of crosscuts of the prime end α. For convenience we order each Rα
so that x <α y if and only if the subarc of Rα from y to ∞ is contained
in the subarc of Rα from x to ∞ (thus, as the points move along Rα from
infinity towards X, they decrease in the sense of the order on Rα). Denote
by (a, b)α the set of points in Rα enclosed between the points a, b ∈ Rα.
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Also, set (0, a)α = {x ∈ Rα | x <α a}. Similarly we define semi-open and
closed subsegments of Rα when possible (e.g., if Rα lands, it makes sense
to talk of [0, a]α, but otherwise the set [0, a]α is not defined). Also, similarly
we define relations ≤α, >α and ≥α. By a tail of Rα we mean the set of all
points y ∈ Rα such that y <α z (or y ≤α z) for some z ∈ Rα.

It is well known that the geometry of the ray Rβ in (A2) and of the
continuum X is quite complicated. The ray approaches X so that on either
side of Rβ the distance to X goes to 0 while it simultaneously accumulates
upon the entire X. It then follows from properties of conformal maps that
round balls, disjoint from X but not from Rβ, with points of the intersection
with Rβ approaching X must go to 0 in diameter. One can say that Rβ “digs
a dense channel” in the plane eventually accumulating on X by (A2).

As was explained in the Introduction, the main remaining question con-
cerning the fixed point problem for branched covering maps is that dealing
with negatively oriented maps of degree d ≤ −2. Since we are interested in
maps f such that |degree(f)| ≤ 2 we may make the following assumption.

(A5) From now on we assume that f is of degree −2.

Then f has a unique critical point, denoted by c, and a unique critical
value, denoted by v = f(c). Let τ : C → C be the involution defined by
τ(c) = c and if x 6= c, τ(x) = x′ where {x′} = f−1(f(x)) \ {x}. Clearly,
τ2 = id (i.e., the map τ is an idempotent homeomorphism of the plane);
sometimes we call τ(z) the sibling of z. Let us establish basic properties
of f in the following lemma (some of the properties hold in more general
situations, but we do not need such generality in this paper).

Lemma 3.1. The following facts hold.

(1) If Z is a continuum then f(int(T (Z))) ⊂ int(T (f(Z)).
(2) Suppose that K is a non-separating continuum. If v 6∈ K then there

are exactly two pullbacks of K which are disjoint and map onto K
homeomorphically (on their neighborhoods). If v ∈ K then f−1(K)
is the unique pullback of K which must contain c.

(3) If Y is a continuum and C is a pullback of Y then T (C) is a pullback
of T (Y ) (and hence f(T (C)) = T (Y )). In particular , a pullback of
a non-separating continuum is non-separating.

(4) Suppose that U is a simply connected domain such that f(U) is also
simply connected. If f |U is not a homeomorphism then U must con-
tain a critical point.

Proof. (1) Suppose otherwise. Then there is a point x ∈ int(T (Z)) such
that f(x) 6∈ int(T (f(Z))). By Remark 2.4, f(x) ∈ T (f(Z)). Since f is open,
we can then find a point y ∈ int(T (Z)) such that f(y) is outside T (f(Z)),
contradicting Remark 2.4.
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(2) If v 6∈ K we can take a curve Q from v to infinity disjoint from K.
Then f−1(Q) is a curve which cuts C into two open half-planes and is dis-
joint from f−1(K). Also, each half-plane maps onto C\K homeomorphically.
Thus, in this case f−1(K) consists of two components each of which maps
onto K homeomorphically (on sufficiently small neighborhoods of the pull-
backs). Suppose that v ∈ K. Then f−1(K) cannot have more than one
component because f is confluent (hence each pullback of K maps onto K)
and v has a unique preimage c.

(3) Let us apply (1) to T (Y ). If v 6∈ T (Y ) then C must be a homeo-
morphic pullback of Y , which implies the desired. Let v ∈ T (Y ) and set
Z = f−1(T (Y )) where by (1), Z is the unique pullback of T (Y ). Let us
show that C is then the unique pullback of Y . Let Y ′ be the boundary of
U∞(T (Y )), and Z ′ be the boundary of U∞(Z). It follows that f(Z ′) ⊂ Y ′

⊂ Y . On the other hand, by (1) no point of int(Z) can map to a point of Y ′,
and by the construction no point from C\Z can map to a point of Y ′. Hence
Z ′ = f−1(Y ′).

This implies that f−1(Y ) is connected. Indeed, suppose otherwise. Then
there are two pullbacks Y1, Y2 of Y each of which maps onto Y . This implies
that Z ′ = (Y1 ∩ Z ′) ∪ (Y2 ∩ Z ′), which contradicts the fact that Z ′ is a
continuum. Thus, C = f−1(Y ). Moreover, Z ′ ⊂ C and hence T (Z ′) =
Z ⊂ T (C). On the other hand, by Remark 2.4, f(T (C)) ⊂ T (Y ) and so
T (C) ⊂ Z. Hence T (C) = Z. If Y is non-separating, then T (Y ) = Y . By
the above T (C) is a pullback of T (Y ) = Y containing C, that is, C. Thus,
C is non-separating as desired.

(4) It immediately follows from (2) that c ∈ U and v ∈ f(U). However,
we need to show that c ∈ U . Take x, y ∈ U such that f(x) = f(y) = z and
connect them with an arc I ⊂ U . Then f(I) ⊂ f(U) = V . Since V is simply
connected by the assumption of the lemma, T (f(I)) ⊂ V . Since f(x) = f(y),
it follows that J = f−1(f(I)) is the unique pullback of f(I) (because f is
confluent and both preimages of z belong to I). By (2) and (3), T (J) is the
unique pullback of T (f(I)), and v ∈ T (f(I)). Since T (f(I)) ⊂ V = f(U),
the unique preimage c of v belongs to U as desired.

Suppose that v 6∈ T (X). Then by Lemma 3.1 it follows that there exists
a neighborhood U of T (X) on which f is a homeomorphism. Again, by
Bell’s results [Bel78] this implies existence of an f -fixed point x ∈ T (X).
(Alternatively, the proof given below in Section 5 can easily be adapted to
cover this case.) Therefore we extend our standing assumption as follows.

(A6) From now on we assume that v ∈ T (X).

Since f is oriented and f(X) = X, f(T (X)) ⊂ T (f(X)) = T (X). By
Lemma 3.1 the continuum X̂ = f−1(T (X)) ⊃ T (X) is non-separating and
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maps onto T (X) in a two-to-one fashion (except for the point c). Let us list
simple consequences of our standing assumption as applies to X in this case.

Lemma 3.2. The set T (X) is not fully invariant , τ(X) 6⊂ T (X), and
X ∩ τ(X) 6= ∅.

Proof. Let us show that T (X) is not fully invariant. By Lemma 3.1 no
point from the interior of T (X) can map to X (recall that X is unshielded
by (A2) and hence no point of X belongs to int(T (X)). Hence if T (X) is
fully invariant then so is X, contradicting (A4). This implies that there are
points of τ(T (X)) outside T (X), and hence τ(X) = Bd τ(T (X)) cannot be
contained in T (X).

Finally, suppose that X ∩ τ(X) = ∅. Since there are points of τ(X)
outside T (X), this implies that τ(T (X)) = T (τ(X)) is disjoint from T (X).
Hence f |T (X) is a homeomorphism and so f(T (X)) = T (X). However, then
by (A6) we have c ∈ T (X), a contradiction with T (X) and τ(T (X)) being
disjoint. We conclude that X ∩ τ(X) 6= ∅ as desired.

For convenience let us make the conclusions of Lemma 3.2 a part of our
standing assumption.

(A7) T (X) is not fully invariant, τ(X) 6⊂ T (X), and X ∩ τ(X) 6= ∅.
A composant of x in a continuum Y is the union of all proper subcon-

tinua of Y which contain x. If Y is indecomposable then any two composants
of Y are either equal or disjoint; clearly, if g(Y ) ⊂ Y for some continuous
map g, then the image of a composant, being a connected set, either co-
incides with Y , or is contained in a composant of Y . It follows from the
definition that if Z is a composant of Y then for each p, q ∈ Y , there exists
a subcontinuum P ⊂ Y such that p, q ∈ P . It is well known [Kra74] that if Y
is indecomposable, then each composant in a dense first category Fσ-subset
of Y . By the Baire Category Theorem there are uncountably many distinct
composants in an indecomposable continuum.

Again, assume that Y is indecomposable. A composant Z of Y is internal
if every continuum L ⊂ C which meets C\Y and Z, intersects all composants
of Y . Equivalently, a composant Z of Y is internal if and only if every
continuum L ⊂ C which meets C \ Z and Z, intersects all composants of
Y (indeed, if C ⊂ Y meets Z and Y \ Z then C must coincide with Y ).
A composant which is not internal is called external. We denote the union
of all external composants by E∗Y . Clearly, an internal composant Z does
not contain accessible points: if z ∈ Z is accessible (from C \ Y ), then we
can choose an arc in the appropriate component of C \ Y with an endpoint
at z which intersects Y only at z, a contradiction with Z being internal.
Thus, an external composant is a generalization of a composant containing
an accessible (from C \ Y ) point.
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The following results are due to Krasinkiewicz [Kra74].

Lemma 3.3 (Krasinkiewicz). Let Y be an indecomposable continuum in
the plane. Then the following claims hold.

(1) The set E∗Y is a first category Fσ-subset of Y ; hence, the union of
all internal composants is a dense Gδ-set in Y .

(2) Let C be an internal composant of Y . If L is any continuum which
meets C and the complement of Y , and does not contain Y , then
there exists a neighborhood U of L and a continuum Z ⊂ C which
separates U between two distinct points of L.

A plane continuum is called tree-like if it is one-dimensional (has no
interior in the plane) and non-separating. Recall that X is an invariant
continuum which is minimal among continua with respect to the property
that f(X) ⊂ T (X). The set X has a number of properties listed at the
beginning of this section, in particular it is indecomposable (and hence one-
dimensional) and unshielded. We now study other properties of X. First we
need a few technical lemmas.

Lemma 3.4. Suppose that A ⊂ X is a dense Gδ-subset of X. Then f(A)
is not a first category subset of X.

Proof. First let us show that there exists a point x ∈ X and a small
neighborhood U of x such that f |U is a homeomorphism onto its image
and f(X ∩ U) = f(U) ∩ X. Indeed, this is obvious if X is fully invariant.
Otherwise choose a point x ∈ X so that τ(x) 6∈ X (i.e., f(x) has a unique
preimage in X, namely x, and x is not critical). If now U is a sufficiently
small neighborhood of x, then τ(U) ∩ X = ∅; hence f(U) ∩ X consists of
points of X which cannot have preimages in τ(U) ∩X = ∅, but must have
some preimages because f(X) = X. The only preimage points of f(U) ∩X
are those in U ∩X, which implies that f(X ∩ U) = f(U) ∩X as desired.

Now, by the conditions of the lemma A∩(X∩U) is a Gδ-subset of X∩U ,
hence by the previous paragraph f(A∩ (X ∩U)) is a Gδ-subset of X ∩f(U).
Therefore f(A) cannot be a first category subset of X.

The next lemma uses Lemma 3.4.

Lemma 3.5. Suppose that D is a union of some composants of X which
is a first category subset of X. Then there exists a composant T of X such
that f(T ) ∩D = ∅.

Proof. By way of contradiction suppose that for every composant T the
image f(T ) of T intersects D. Take a composant Q whose image contains
points not from D. By the assumption Q also has points mapped into D.
Hence f(Q) contains points of at least two distinct composants, which im-
plies that f(Q) = X. If there is another composant R such that f(R) is not
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contained in D, then it again follows that f(R) = X. Since f is two-to-one,
this implies that X = Q∪R, which is impossible because there are countably
many pairwise disjoint composants of X. Hence for any composant R 6= Q
we have f(Q) ⊂ D. However, the union of all composants except for Q is a
Gδ-subset of X while the set D is a first category subset of X. By Lemma 3.4
this is impossible.

The next lemma studies the images of composants.

Lemma 3.6. Suppose that Z is an internal composant of X. Then f(Z)
is an internal composant of X.

Proof. By way of contradiction suppose that f(Z) is not an internal
composant of X. Then there are two possibilities: (1) f(Z) is an external
composant of X or f(Z) = X, or (2) f(Z) is contained in a composant with
which it does not coincide. We consider these possibilities separately.

(1) Suppose that f(Z) is either an external composant or the entire X.
Then there exists a continuum B such that B∩f(Z) 6= ∅ 6= B\X and B∩X
is contained in the union of some, but not all, composants of X. Then all
composants which intersect B are external, and hence their union D is a
first category subset of X.

Choose z ∈ B ∩ f(Z) and then z′ ∈ Z such that f(z′) = z. Then choose
the pullback B′ of B which contains z′. Since Z is an internal composant and
B′ meets C \X, by definition B′ intersects all composants of X. Hence all
composants of X have points mapped into the union D of some composants
which is a first category subset of X. By Lemma 3.5, this is impossible.

(2) Suppose that f(Z) ( Y where Y is a composant of X. Choose a
subcontinuum E ⊂ Y which contains a point z ∈ f(Z) and a point of y ∈ Y \
f(Z). Choose the pullback E′ of E which contains a point z′ ∈ Z such that
f(z′) = z. Then E′ 6⊂ X because otherwise it would be contained in Z and
its image would not contain y. Hence E′ meets C\X and contains the point
z′ ∈ Z, which implies that E′ intersects all composants of X (because Z is
an internal composant). Since f(E′) = E, this implies that all composants
of X have points mapped into Y , and Y , being a composant of X, is a first
category subset of X. Again, by Lemma 3.5 this is impossible.

In what follows we will use the following lemma which studies the set
τ(X) ∩X. In the proof we rely upon the above developed tools.

Lemma 3.7. The set τ(X) ∩ X is contained in the union E∗X of all
external composants of X. In particular , τ(X)∩X is a proper closed subset
of X with empty interior in X.

Proof. By (A7), τ(X)∩X 6= ∅ and τ(X) \X 6= ∅. Choose x ∈ τ(X) \X,
then τ(x) ∈ X \ τ(X), and hence τ(X)∩X is a proper, closed subset of X.
The fact that τ(X) ∩X has empty interior in X is much less trivial.
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Let us first show that at most countably many composants of X contain
a subcontinuum which separates C. Indeed, if C ⊂ Z is a separating contin-
uum, we can associate to Z a bounded component VZ of C \ C. Since X is
unshielded, the sets VZ , VQ for distinct composants Z,Q of X are disjoint.
Hence at most countably many composants of X contain a subcontinuum
which separates C. Also, there is exactly one composant which contains the
critical value v. By Lemma 3.3(1) and since each composant is a first cat-
egory Fσ-subset of X (see Lemma 2.1 of [Kra74]), the union of the above
listed countably many composants and all external composants of X is still
a first category Fσ-subset of X. Its complement is the union I∗X of points
of all composants from the collection IX of all internal composants of X for
which every subcontinuum is tree-like not containing the critical value v.
Thus, I∗X is still a dense Gδ-subset of X.

By Theorem 4.2 of [CMT], f(E∗X) is a first category Fσ-subset of X.
Hence we can choose a point y ∈ I∗X \ f(E∗X). Let Y be the internal com-
posant of X which contains y. Choose z ∈ f−1(y)∩X; then z is contained in
an internal composant Z of X. By Theorem 5.5 of [Rog98], f−1(Y ) = Y1∪Y2

such that Y1 ∩ Y2 = ∅ and for each i and any p, q ∈ Yi, there exists a sub-
continuum P ⊂ Yi such that p, q ∈ P . Moreover, the map f |Yi : Yi → Y is
a bijection for each i. Assume that z ∈ Y1. Then by Lemma 3.6, f(Z) = Y
and Z = Y1. Hence X and τ(X) contain the disjoint, internal composants
Y1 and τ(Y1) = Y2, respectively.

Let us show that if Q is any internal composant of X, then Q ∩ Y2 = ∅.
Indeed, suppose otherwise. Then by symmetry the internal composant τ(Q)
of τ(X) intersects Y1. Choose a point u ∈ τ(Q)\X and a point v ∈ τ(Q)∩Y1;
then choose a continuum L ⊂ τ(Q) which contains both u and v. Since Y1 is
an internal composant of X, this implies that τ(Q) intersects all composants
of X. On the other hand, f(τ(Q)) = f(Q) is an internal composant of X by
Lemma 3.6. Thus, the images of all composants of X are non-disjoint from
the composant f(Q), contradicting Lemma 3.5.

In order to finish the proof it suffices to show that τ(X) ∩ X ⊂ E∗X .
Suppose that this is not the case. Then τ(X) meets an internal composant
I of X. It is easy to verify that Lemma 3.3 applies to this situation with
τ(X) playing the role of L, I playing the role of C, and X playing the role
of Y . Thus, it follows from Lemma 3.3(2) that there exists a neighborhood
U of τ(X) and a continuum K ⊂ I such that K separates two points of
τ(X) in U . Since by the above Y2 and I are disjoint, Y2 is contained in one
component of U \K, contradicting the fact that Y2 is dense in τ(X). This
completes the proof of the lemma.

4. Creating an invariant ray. In what follows Rβ-essential and Rβ-
defining crosscuts are called simply essential and defining. To begin with,
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we need a lemma which will allow us to simplify the applications of results
of [FMOT07, OT08, KP94] in this section. For simplicity when talking of
angles we often mean the points of S1 with arguments equal to these angles;
here S1 is considered as the boundary of the unit disk in D∞. Take the
(Euclidean) convex hull Ch(X) of X. Then the ray Rβ eventually enters
Ch(X) through a crosscut Ê ⊂ Bd Ch(X) so that the tail of Rβ stays inside
the shadow Sh(Ê). Observe that Ê is a straight segment. This defines the
arc I = (α̂, γ̂) of angles whose rays have tails in Sh(Ê), and it follows that
β ∈ I. Consider now a hyperbolic geodesic Eg of D∞ (i.e., a circle arc in D∞
connecting two points of S1 and orthogonal to S1) connecting α̂ and γ̂, and
its counterpart Ef = ϕ(Eg), which is a crosscut of X. Clearly, Rβ eventually
enters (and stays in) the shadow of Ef .

Lemma 4.1. There exists an essential crosscut C ′ ⊂ Sh(Ef ) with the
following properties.

(1) Sh(C ′) ∩ τ(X) = ∅, and hence f(Sh(C ′)) ∩X = ∅.
(2) Let A(C ′) be the set of points in X accessible from Sh(C ′). Then

f |[Sh(C′)∪A(C′)] is one-to-one and f(Sh(C ′)) = Sh(f(C ′)). Moreover ,
there exist ε, δ > 0 such that any defining crosscut Cz, z ∈ Rβ ∩
Sh(C ′), is less than ε in diameter , and any essential crosscut C ⊂
Sh(C ′) less than ε in diameter , maps to a crosscut f(C) which is at
least δ-distant from C.

Proof. (1) Consider a defining family Cz, z ∈ Rβ, of crosscuts of β. Then
there exists a sequence of defining crosscuts Czi = Ci, i = 1, 2, . . . , such that
z1 >β z2 >β · · · , the points zi ∈ Rβ converge to X, and all Ci’s are disjoint
from τ(X) (otherwise for some z′ ∈ Rβ and all z <β z′ we would have
Cz ∩ τ(X) 6= ∅, implying that τ(X) ⊃ Π(Rβ) = X, a contradiction with
Lemma 3.7). We may assume that C1 ⊂ Sh(Ef ).

Denote by Ui the open component of C \ [Ci ∪Ci+1 ∪X] which contains
points of Rβ located between zi and zi+1. By way of contradiction (and
refining the sequence Ci if necessary) we may assume that every Ui contains
points of τ(X). Choose a point x ∈ Ui−1 ∩ τ(X) and a point y ∈ Ui ∩ τ(X).
Connect these points with an arc A in Ui−1 ∪ Ui which intersects Ci in just
one point w. Then choose points s, t ∈ A ∩ τ(X) so that the subarc B of A
with endpoints s, t is disjoint from τ(X) and contains w.

It follows that B is a crosscut of τ(X). Denote the endpoints of Ci by
y′, y′′. Also, denote by W the shadow of B in the sense of τ(X). Then it
follows that one of the points y′, y′′ belongs to W and the other not. Now,
consider an internal composant Z of X. It has points close to both y′ and y′′,
hence it has points both inside W and outside W . However, by Lemma 3.7,
τ(X) is disjoint from any internal composant of X, a contradiction. Hence
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indeed there exists an essential crosscut C such that Sh(C) ∩ τ(X) = ∅,
which implies that f(Sh(C)) ∩X = ∅.

(2) We may assume that C and all Rβ-defining crosscuts Cz, z ∈ Rβ ∩
Sh(C), are sufficiently small. By continuity and since T (X) is fixed point
free, the images of all these crosscuts are disjoint from the crosscuts them-
selves (each crosscut moves off itself by a distance which is bounded away
from 0). Moreover, by (A2) and because of the properties of crosscuts,
Cz’s approach all points of X. Choose a crosscut C ′ among them so that
C ′ is sufficiently far from c and hence f(C ′) is sufficiently far from v so
that v 6∈ T (f(C ′)). By Lemma 3.1 then C ′ is a homeomorphic pullback of
f(C ′) and so f(C ′) is a small crosscut too. Also, we can choose C ′ so that
c 6∈ Sh(C ′).

We claim that f(Sh(C ′)) = Sh(f(C ′)) and f |Sh(C′) is a homeomorphism.
Indeed, Bd f(Sh(C ′)) ⊂ f(Bd Sh(C ′)) since f is open. Hence we see that
Bd f(Sh(C ′)) ⊂ X ∪ f(C ′). Points of Sh(C ′) cannot be mapped to U∞(X)
outside Sh(f(C ′)) because otherwise there will be points of Bd f(Sh(C ′))
not in X ∪ f(C ′). Considering points close to C ′ shows that some points
of Sh(f(C ′)) are in f(Sh(C ′)). Now the fact that f(Sh(C)) ∩ X = ∅ im-
plies that f(Sh(C ′)) ⊂ Sh(f(C ′)). Finally, if f(Sh(C ′)) 6= Sh(f(C ′)) then
there will have to be points of Bd f(Sh(C ′)) in Sh(C ′), a contradiction
to Bd f(Sh(C ′)) ⊂ X ∪ f(C ′). Thus, f(Sh(C ′)) = Sh(f(C ′)). Hence by
Lemma 3.1, f |Sh(C′) is a homeomorphism.

This easily implies that f |[Sh(C′)∪A(C′)] is one-to-one too. Indeed, suppose
that z = f(x) = f(y) for x 6= y ∈ A(C ′). Clearly, x 6= c, y 6= c, z 6= v.
Choose an arc A joining x to y in Sh(C ′). Then f(A) is a simple closed
curve S such that S ∩X = {z}. Choose a small arc Q = [w,w′] ⊂ S (in the
circular order on S) so that z ∈ Q, z 6= w, z 6= w′. Then there exist arcs
Qx and Qy, containing x and y, respectively such that f(Qx) = f(Qy) = Q.
Since X is indecomposable, and hence contains no cutpoints, Qx ∪ Qy ⊂
Sh(C ′)∪{x}∪ {y}. This contradicts the fact that f is one-to-one on Sh(C ′)
and completes the proof.

Recall that ϕ : D∞ → U∞(X) is a Riemann map with ϕ(∞) = ∞ (we
extend ϕ over the set of angles with landing rays). Next we introduce a
construction from [FMOT07] simplified in our case thanks to Lemma 4.1.
Take a closed round ball B such that int(B) ∩ X = ∅ and Ch(B ∩ X) ⊂
Sh(Ef )∩X is non-degenerate. Observe that points of B ∩X are accessible.
Call a ball B essential if (BdB) \X contains an essential crosscut (i.e., if B
“crosses over Rβ” from one “side” of Rβ to the other in an essential way).

Let B′ be the family of all closed round balls B with int(B)∩X = ∅ and
let B be the family of all balls B ∈ B′ such that Ch(B∩X) ⊂ Sh(Ef ) consists
of at least two points. Then B is maximal in the sense of inclusion among
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all balls in B′. It is easy to give examples reflecting various possibilities for
the sets B ∩ X; in exceptional cases, the set B ∩ X could be infinite, and
in truly exceptional cases it can even contain arcs of BdB. The following
lemma allows us to introduce the exact shadow in the plane in which we
will change the map to make a tail of Rβ invariant. It will be improved later
and is needed here as matter of convenience to simplify the forthcoming
construction.

Lemma 4.2 ([FMOT07]). There exists an essential ball B∗ ∈ B of di-
ameter less than ε such that int(B∗) ⊂ Sh(C ′) and |B∗ ∩X| = 2.

Consider the two crosscuts which are components of (BdB∗)\X. Choose
among them the crosscut C̃ which gives rise to the shadow containing
int(B∗). Clearly, C̃ is essential (it suffices to consider the picture in the
plane containing the set D∞). Suppose that C̃ has the endpoints a, d ∈ X.
For the corresponding angles in S1 we use the notation α′, γ′. Connect α′, γ′

with a hyperbolic geodesic in D∞ and denote this new crosscut of D∞ by C ′g.
Denote the crosscut ϕ(C ′g) of X by C ′f (C ′f replaces the crosscut C ′ previ-
ously introduced in Lemma 4.1 and has all the properties of C ′ listed in
Lemma 4.1).

Now, mimicking the construction from [FMOT07] we transport the map
f to the set U = Sh(C ′g) by considering a map g(x) = ϕ−1 ◦ f ◦ϕ(x), x ∈ U .
Since f |Sh(C′

f ) is a homeomorphism, so is the map g|U . Consider the arc of
S1 defined as [α′, γ′] = BdU ∩ D∞. It follows from the construction that
β ∈ (α′, γ′).

To make a distinction, we use “g-” in the names of the objects in the
uniformization plane (mostly these objects are ϕ−1-images of their coun-
terparts from the f -plane). Thus, the uniformization plane is called the
g-plane; to each essential crosscut C ⊂ Sh(C ′f ) we associate its counter-
part ϕ−1(C), called an essential g-crosscut (which is an arc connecting two
points of S1, one in (α′, β) and the other in (β, γ′), inside U and intersecting
ϕ−1(Rβ) = R′β only once); etc. It will follow that g(ϕ−1(C)) is again an es-
sential g-crosscut associated to the crosscut f(C). The results of [FMOT07]
give more information about how the map g acts on g-crosscuts. Namely,
the following theorem holds.

Theorem 4.3 ([FMOT07, Theorems 6.5 and 9.1]). The map g can be
continuously extended over the arc [α′, γ′]. Moreover , it has the following
properties:

(1) g(β) = β;
(2) g maps the arc [α′, γ′] onto the arc [g(α′), g(β′)] homeomorphically

and changes orientation (so that g flips essential g-crosscuts con-
tained in Sh(C ′g));
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(3) for every essential crosscut C ′′ ⊂ Sh(C ′f ) of diameter less than ε, the
g-crosscut g(ϕ−1(C ′′)) separates ϕ−1(C ′′) from ∞ in D∞.

Suppose that a closed set Y ⊂ S1 is chosen and consider its convex
hull hypconv∞(Y ) = A in the sense of the hyperbolic metric in D∞. Hence
hypconv∞(Y ) can be obtained by considering the set of components Ci of
S1\Y and joining the endpoints ai, bi of Ci by the geodesic in the hyperbolic
metric (i.e., the intersection of the round circle through the points ai and bi
with D∞ which crosses S1 perpendicularly; see [FMOT07]). Technically,
A ∩ D∞ is a subset of D∞ which can be mapped to the f -plane by ϕ. The
closure of ϕ(A∩D∞) may be very complicated and not homeomorphic to A.
However, if the rays with the arguments from Y land at distinct points of
X then A and ϕ(A) are homeomorphic. In this case the set A will be called
a g-cell and the set ϕ(A) will be called an f -cell. In what follows speaking
of a map ϕ restricted to a cell, we always extend ϕ over the boundary of
the cell (by definition, ϕ then remains a homeomorphism). Observe that a
g-cell could be an arc (without endpoints) or a Jordan disk (with points
on Bd D∞ removed). Moreover, if θ ∈ S1 is an angle such that Rθ lands
on ϕ(θ) then we say that θ is a degenerate g-cell and ϕ(θ) is a degenerate
f -cell.

The map ϕ can give a good correspondence between closed Jordan disks
in the f -plane and in the g-plane. Suppose that D is a closed Jordan disk
in the g-plane such that ϕ extends over the boundary of D. Then we call D
strongly homeomorphic to ϕ(D) = A if |D ∩ S1| ≥ 2 and ϕ|D is a homeo-
morphism. A closed Jordan disk A in the f -plane, strongly homeomorphic
to ϕ−1(A), is called admissible. One can transform an admissible Jordan
disk A in the f -plane to an f -cell H(A): choose the hyperbolic convex hull
hypconv∞(ϕ−1(A)∩S1) of D∩S1 and then take its ϕ-image denoted H(A).

A hyperbolic geodesic ` in the g-plane is called a g-geodesic. If ϕ(`)
is homeomorphic to ` (i.e., to the closed interval), then ϕ(`) is called an
f -geodesic. Thus, boundary arcs of a g-cell are g-geodesics whose ϕ-images
are f -geodesics. Clearly, two angle-arguments give rise to a g-geodesic whose
ϕ-image is an f -geodesic if and only if the rays with these arguments land.
We will also consider a degenerate geodesic with argument θ, i.e. an accessible
point at which the ray Rθ lands. Important facts concerning f -geodesics were
established in [OT08].

Definition 4.4. Given an admissible Jordan disk A in the f -plane,
define the following sets:

(a) PA = (BdA) ∩X;
(b) CA = A (if A is a crosscut) or the unique component of (BdA) \X

which is a crosscut with int(A) ⊂ Sh(CA);
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(c) IA ⊂ S1 is an arc such that rays with arguments from IA have tails
in Sh(CA);

(d) YA = ϕ−1(A) ∩ S1 (recall that according to the definition we have
ϕ−1(A) ∩ D∞ = hypconv∞(YA)).

We need to study g-geodesics and f -geodesics. As a tool we use the so-
called maximal ball foliation constructed and studied in [FMOT07, OT08,
KP94]. Given a crosscut T , denote the set Sh(T )∪T by Sh+(T ). We foliate
the sets Sh+(C ′g) in the g-plane and Sh+(C ′f ) in the f -plane by corresponding
(to each other) and specifically constructed g-cells and f -cells. However, first
we need to introduce some definitions.

Definition 4.5. Suppose that there is a g-geodesic T in the g-plane
and that ϕ(T ) is an f -geodesic. Suppose that there is a family A of g-
cells such that the following holds. For any z ∈ Sh+(T ) either there is a
unique g-geodesic from the boundary of a g-cell A ∈ A containing z, or z
belongs to the interior of a unique A ∈ A. The geodesic containing z may
be the intersection of two distinct g-cells. Then we call A a (g-)foliation
(of Sh+(T )).

By the definition of a g-cell this property is transported to the f -plane by
means of the map ϕ and applies also to the family ϕ(A) of the correspond-
ing f -cells and the set Sh+(ϕ(T )). Then ϕ(A) is called an (f -)foliation (of
Sh+(ϕ(T ))). The collections A, ϕ(A) are then said to be sibling foliations
(of Sh+(T ) and Sh+(ϕ(T )), respectively). Also, the closure of a g- or an
f -geodesic on the boundary of a g- or an f -cell is called a (g-) or (f -)leaf
(of the corresponding foliation).

In some cases we can say much more about continuity properties of
foliations. To this end we need another definition.

Definition 4.6. Suppose that there is a g-geodesic T in the g-plane
and that there is a foliation A of Sh+(T ). Then A is said to be upper-
semicontinuous if the following holds: if a sequence of distinct g-cells from
A converges, and its limit is not a point, then it converges to a g-leaf. If the
ϕ-images of these g-cells converge to the f -leaf ϕ(`), then we say that ϕ(A)
is upper-semicontinuous.

The sheer fact that A is a foliation of Sh+(T ) easily implies that Hg
is upper-semicontinuous. Indeed, a sequence of g-cells Ai which does not
converge to a point must converge to a g-geodesic ` (recall that as elements
of A the g-cells do not intersect inside D∞). If ` is not from the boundary
of an element of A, then, since all points inside Sh+(T ) must belong to
an element of A, we will find an element of A which intersects Ai, a con-
tradiction. The fact that the corresponding foliation ϕ(A) of Sh+(ϕ(T )) is
upper-semicontinuous is rather non-trivial.
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We also give a definition close to Definition 4.6 which deals with null-
sequences of admissible Jordan disks. Given an admissible Jordan disk Z,
define ρZ(x, y) as the infimum of diameters of open arcs J(x, y) = J in U∞
whose closures J connect x, y and are homotopic to arcs I(x, y) = I ⊂ Z
connecting x, y inside Z ∩U∞ under a homotopy in U∞ fixing x and y (the
definition is inspired by the Mazurkiewicz metric discussed later).

Lemma 4.7. There exists a universal constant K with the following prop-
erty. Suppose that A is an admissible Jordan disk in the f -plane such that
for any two points x, y of A ∩ X = PA we have ρA(x, y) ≤ M . Then
diam(H(A)) ≤ KM .

Proof. Take points x, y ∈ PA. By the assumptions of the lemma and by
Pommerenke [Pom92, Theorem 4.2], there exists a constant K ′ such that the
diameter of the f -geodesic G(x, y) is at most K ′M . The geodesic G(x, y)
is chosen to be homotopic to one of the arcs I(x, y) = I connecting x, y
inside Z ∩ U∞ under a homotopy in U∞ fixing x and y. Now, given two
points u, v ∈ H(A), connect them by the f -geodesic I and then extend it
to the f -geodesic I1 which connects points u ∈ BdH(A) and v ∈ BdH(A).
Choose the f -geodesics I2, I3 from the boundary of H(A) such that u ∈ I2
and v ∈ I3. Fix an endpoint of I2, an endpoint of I3, and the f -geodesic
I4 which connects them. Then by the triangle inequality and by the above,
|I| ≤ |I1| ≤ |I2| + |I3| + |I4| ≤ 3K ′M . So, any two points of H(A) can be
connected by an f -geodesic of diameter at most 3K ′M , which completes the
proof.

In what follows by a null-sequence we mean a sequence of sets whose
diameters converge to zero.

Definition 4.8. Suppose that A and ϕ(A) are sibling foliations. Sup-
pose that given a sequence of g-cells Ai ∈ A and the corresponding se-
quence ϕ(Ai) of f -cells, {Ai} is a null-sequence if and only if {ϕ(Ai)} is a
null-sequence. Then we call the foliations A, ϕ(A) null preserving.

We can finally single out pairs of foliations we want to work with.

Definition 4.9. Suppose that there is a crosscut T in the g-plane
and that ϕ(T ) is a crosscut of X. Moreover, suppose that A, ϕ(A) are
sibling foliations of Sh+(T ) and Sh+(ϕ(T )) respectively which are upper-
semicontinuous and null preserving. Then we say that they form a canonical
pair (of foliations) or just that they are canonical.

Observe that elements of foliations are always g-cells and f -cells. If
A, ϕ(A) are canonical then for distinct g-cells A′, A′′ ∈ A only the following
cases are possible: (1) A′, A′′ have a common g-geodesic in their boundaries
but are otherwise disjoint: (2) the closures of A′, A′′ have a unique point of
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S1 in common; (3) the closures of A′, A′′ are disjoint. This implies that the
sets A′ ∩ S1, A′′ ∩ S1 are unlinked, i.e. one of them is contained in a com-
ponent of the complement to the other (except for the endpoints). Observe
that the collection of geodesics in the boundaries of all the g-cells A ∈ A is
a lamination of Sh(T ) (cf. [Thu85]).

In general ϕ is far from being continuous near S1. However, the existence
of canonical foliations allows us to use a version of continuity of ϕ justified
by Lemma 4.10 below. By d(a, b) we understand the standard Euclidian
distance between two points a, b ∈ C.

Lemma 4.10. Let A, ϕ(A) be canonical foliations. Then the family of
restrictions {ϕ|A}A∈A is equicontinuous: for any ε′ there exists δ′ such that
if x′, z′ ∈ A, A ∈ A and d(x′, z′) ≤ δ′ then d(ϕ(x′), ϕ(z′)) ≤ ε′.

Proof. By way of contradiction suppose that x′i, z
′
i ∈ Ai, Ai ∈ A, are

two sequences with d(x′i, z
′
i) → 0 (here Ai ∈ A is a sequence of g-cells

from A), but d(ϕ(x′i), ϕ(z′i)) 9 0. Refining the sequences, we may assume
that limx′i=lim z′i=a while ϕ(x′i)→xf , ϕ(z′i)→zf and xf 6= zf . Let us show
that Ai is not a null-sequence. Indeed, if Ai is a null-sequence, then ϕ(Ai)
is a null-sequence (since A, ϕ(A) are canonical) and d(ϕ(x′i), ϕ(z′i)) → 0,
a contradiction. Since the foliations are canonical we may assume that Ai
converge to a g-geodesic ` on the boundary of a g-cell. Then ϕ(Ai) converge
to the f -geodesic ϕ(`), and hence the fact that limx′i = lim z′i = a implies
that limϕ(x′i) = limϕ(z′i), a contradiction with x′f 6= z′f .

An important example of a canonical pair of foliations comes from the
construction of the family B of maximal closed, round balls introduced right
before Lemma 4.2 (the corresponding tools can be found in [FMOT07] and
[KP94]). Let Hg be the family of all sets of the form hypconv∞(ϕ−1(B∩X))
⊂ Sh(C ′g), B ∈ B. Denote by Hf the corresponding family of all sets
H(B) ⊂ Sh(C ′f ), B ∈ B.

Theorem 4.11 ([FMOT07], see also [KP94]). The foliations Hg and Hf
are sibling foliations of Sh+(C ′g) and Sh+(C ′f ) respectively.

The main next step is to show that Hg,Hf form a canonical pair of
foliations. The following corollary follows from [FMOT07].

Corollary 4.12. Suppose that there is a sequence An of distinct g-cells
from Hg. Then the following facts hold.

(1) If An converge to a hyperbolic geodesic ` = αβ, then ` is a g-leaf
of Hg, ϕ(`) is an f -leaf of Hf , and ϕ(An) converge to ϕ(`).

(2) If An is a null-sequence, then ϕ(An) is a null-sequence.

Proof. Each of the f -cells ϕ(An) corresponds to a maximal ball Bn ∈ B.
In case (1) the balls Bn have diameters bounded away from zero and may
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be assumed to converge to a non-degenerate maximal ball B. In case (2),
by way of contradiction and after refining the sequence, we may assume
that An converge to a point α = β ∈ S1 while ϕ(An) converge to a non-
degenerate continuum. By Lemma 4.7 the fact that the diameters of ϕ(An)
are bounded away from zero implies that the diameters of Bn ∩ ϕ(An) are
bounded away from zero (otherwise by Lemma 4.7 the diameters of ϕ(An)
go to zero). Hence again the balls Bn converge to a maximal ball B ∈ B.
By Lemma 4.2 in [FMOT07], ϕ(An) ⊂ Bn. By Lemma 5.1 in [FMOT07],
limϕ(An)∩X = {α, β}. Hence limϕ(An) = T ⊂ B. So far the situation has
been similar for both cases, but now we consider them separately.

(1) From geometric considerations in the f -plane, T ⊂ ϕ(`) ∪ Imp(α) ∪
Imp(β). The fact that ϕ(An) ∩ X converges to {ϕ(α), ϕ(β)} and int(Bn)
does not contain ϕ(α), ϕ(β) implies that there is an arc Jn ⊂ BdB such
that Jn ⊂ int(Bn) (thus, J ∩ X = ∅) and lim Jn = J is an arc in BdB
from α to β. Hence J ∩X = {ϕ(α), ϕ(β)}. Let K = (BdB) \J and suppose
that K contains a point x ∈ X \ {ϕ(α), ϕ(β)}. Let Cn be the component of
Bn \ ϕ(`) which contains ϕ(An) (recall that ϕ(α) and ϕ(β) are outside the
interior of Bn). Then it is easy to observe that there exists ε > 0 such that
d(x,Cn) > ε. Hence limϕ(An) = ϕ(`).

(2) By the above and by the conditions of the lemma, T ⊂ B ∩X. Since
T is a continuum, it follows that T ⊂ BdB is a non-degenerate arc. Clearly,
this contradicts the fact that An is a null-sequence.

In Theorem 4.13 we summarize the above results.

Theorem 4.13 ([FMOT07], see also [KP94]). The sibling foliations Hg
and Hf form a canonical pair.

Proof. By the remark after Definition 4.6, Hg is upper-semicontinuous.
Suppose that ϕ(An) is a convergent sequence of distinct f -cells whose limit
is not a point. By Corollary 4.12(2) the diameters of An are bounded away
from zero. Hence we may assume that An converge to a g-leaf of Hg. Now
by Corollary 4.12(1), ϕ(An) converge to an f -leaf of Hf and Hf is upper-
semicontinuous. On the other hand, if ϕ(An) is a null-sequence of f -cells in
Hf while An is not a null-sequence of g-cells, then, after refining An and by
Corollary 4.12(1), we may assume that An converge to a g-leaf ` and ϕ(An)
converge to its non-degenerate image ϕ(`), a contradiction.

Let us state a useful corollary of results of [FMOT07].

Corollary 4.14. Let ξ ∈ (α′, γ′) ⊂ S1 be an angle which is not an end-
point of a g-leaf of Hg. Then there exists a sequence Bi of Rξ-essential balls
from B with radii converging to zero and such that Sh(C ′f ) ⊃ Sh(CH(B1)) ⊃
Sh(CH(B2)) ⊃ · · · and hypconv∞(ϕ−1(Bi ∩X))→ {ξ}.
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By the above, the foliationsHg andHf , induced by maximal balls, form a
canonical pair of foliations. The next lemma allows us to extend this result to
a more general situation. However, first we need to define the Mazurkiewicz
metric ρ. Consider the set G(X) = G of all pairs (ϕ(α), α) such that the ray
Rα lands on ϕ(α). Given t = (ϕ(α), α) and w = (ϕ(β), β), define ρ(t, w) as
follows. If t = w set ρ(t, w) = 0. If t 6= w, let ρ(t, w) be the infimum of the
diameters of open arcs J in U∞ whose closures are closed arcs from ϕ(α) to
ϕ(β) or simple closed curves containing ϕ(α) = ϕ(β) such that ϕ−1(J) is
homotopic to the geodesic αβ ∈ D∞ under a homotopy fixing α, β.

Lemma 4.15. Let T be a g-geodesic and ϕ(T ) be an f -geodesic. Let
A, ϕ(A) be sibling foliations of Sh+(T ),Sh+(ϕ(T )) respectively. Consider a
sequence Ai of distinct g-cells of A which converge to a (degenerate) g-leaf
` such that ϕ(Ai) ∩ X → ϕ(`) ∩ X in the Mazurkiewicz metric. Then the
closed f -cells ϕ(Ai) converge to the closed (degenerate) f -leaf ϕ(`).

Proof. Consider first the case when ` = θ is a degenerate g-geodesic.
By the conditions of the lemma it follows that Lemma 4.7 applies to ϕ(Ai).
Thus, the diameters of ϕ(Ai) converge to zero and ϕ(Ai) converge to ϕ(θ)
as required.

Suppose now that ` = αβ and α 6= β. Clearly, ϕ(`) ⊂ lim supϕ(Ai).
Partition the sequence Ai into two sequences which converge to ` from op-
posite sides (in D∞) and consider them separately. Without loss of gen-
erality assume that there are αi, βi ∈ Ai ∩ S1 such that αi < α < β
< βi and there are no points of Ai ∩ S1 between αi and α and between
β and βi. Let αiα be the g-geodesic connecting αi and α. Define the left
wing Imp−(α) =

⋂
Sh(ϕ(ααi)) of the impression Imp(α); define the right

wing Imp+(β) of the impression Imp(β) similarly. Then it is easy to see that
lim supϕ(Ai) ⊂ ϕ(`) ∪ Imp−(α) ∪ Imp+(β).

It follows from the conditions of the lemma and Theorem 4.2 from
[Pom92] that ϕ(αiα) → ϕ(α) and ϕ(βiβ) → ϕ(β). Choose ε > 0. Choose
i such that for any n ≥ i we have the following: (1) diam(ϕ(αiα)) +
diam(ϕ(ββi)) < ε, and (2) if we denote the set ϕ(αi, α) ∩ An by Aαn, then
the ρ-distance between the set ϕ(Aαn) and ϕ(α) is less than ε, and similarly
for β and the similarly defined sets Aβn. The set An \ [ααi ∪ ββi] consists of
three components. Let Tn be the one of them containing Aαn, Ln be the one
of them containing Aβn, and Mn be the remaining third component. Then
limMn = ` and limϕ(Mn) = ϕ(`).

Consider the hyperbolic convex hull Qαn of the points of Aαn, αi, α. Then
Tn ⊂ Qαn. By the choice of i any two points of ϕ(Qαn) ∩X can be joined by
an arc in U∞ of diameter less than 2ε. Then by Lemma 4.7, diam(ϕ(Tn)) ≤
diam(ϕ(Qαn)) ≤ 2Kε. Hence limϕ(Tn) = {ϕ(α)}. Similarly, limϕ(Ln) =
{ϕ(β)}. Thus, limϕ(An) = ϕ(`) as desired.
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Observe that Lemma 4.15 gives another proof of Corollary 4.12. Indeed,
let An be a sequence of distinct g-cells of Hg taken from Corollary 4.12. As
in the initial part of the proof of that corollary, we may assume that An
converge to a g-leaf αβ and the corresponding maximal balls Bn, associated
with f -cells ϕ(An), have radii bounded away from zero and converge to a
non-degenerate ball B. Then it follows from geometric considerations that
the ρ-distance between two “clusters” of ϕ(An) ∩Bn = ϕ(An) ∩X and the
corresponding points α or β goes to zero. By Lemma 4.15, this implies that
ϕ(An)→ ϕ(αβ) as desired.

Denote by G the family of all g-leaves in Hg; denote the union of all
such leaves by G∗. Note that if B ∈ B and |PB| = |B ∩ X| = 2, then
hypconv∞(ϕ−1(B ∩X)) ∈ G and hypconv∞(ϕ−1(B ∩X)) is a g-leaf. A set
hypconv∞(B) which is not a g-leaf is said to be a g-gap. Thus, if |PB| =
|B ∩X| ≥ 3, then hypconv∞(ϕ−1(B ∩X)) is a g-gap and all geodesics in its
boundary are g-leaves. The ϕ-images of g-leaves are called f -leaves. Their
entire family is denoted by Gf . The ϕ-images of g-gaps are called f -gaps.
The ϕ-image of G∗ is denoted by G∗f .

We will show in Theorem 4.16 that we can modify the map f to a
branched covering map f∗ such that f∗|Rβ∩Sh(C) : Rβ ∩ Sh(C) → Rβ is an
embedding for some Rβ-essential crosscut C.

Theorem 4.16. There exists an Rβ-essential crosscut C and a branched
covering map f∗ : C → C of degree −2 such that f∗|C\Sh(C) = f |C\Sh(C),
f∗|Sh(C) : Sh(C) → f(Sh(C)) is a homeomorphism with f∗(Rβ ∩ Sh(C)) =
Rβ ∩ Sh(f(C)), and there exists x0 ∈ Rβ such that f∗(x) >β x for all
x <β x0.

Proof. The first step in the proof is to refine the sequence Bi from Corol-
lary 4.14 so that it has the following property. Consider H(B1) and the cross-
cut CH(B1), “farthest away from X” among crosscuts from BdH(B1). Let
IH(B1) = IB1 = (α, γ) ⊂ S1. By Corollary 4.14, we may choose B1 so that
the following holds. Denote the endpoints of CH(B1) by p1 and q1. Choose
B1 so that both CH(B1) and f(CH(B1)) are contained in Sh(C ′f ). In addi-
tion choose it so that the f -geodesic joining f(p1), f(q1) is also contained in
Sh(C ′f ).

Let Q = Sh(CH(B1)). It will also be useful to consider ϕ−1(Q). Clearly,
Bdϕ−1(Q) is the union of ϕ−1(CH(B1)) and the arc IB1 = (α, γ) ⊂ S1. By
Theorem 4.13 the restrictions of the foliations Hg and Hf to ϕ−1(Q) and Q
form a canonical pair. For simplicity, we still denote them Hg and Hf .

The idea is to modify the map g so that a tail of the radial ray ϕ−1(Rβ)
= rβ is fixed and then transport it back to the f -plane. The new map g∗ will
coincide with g on S1. The modification of g takes place inside Sh(C ′g) while
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the corresponding modification of f takes place in Sh(C ′f ). We construct g∗

in a few steps. First, we construct a foliation whose elements are the future
images (under the map g∗ when it is defined) of the associated elements
of Hg. Then g∗ is defined inside elements of Hg so that it satisfies the
standard continuity and extension conditions and keeps a tail of Rβ invariant
as desired.

Elements of the new foliation are associated to elements of Hg as follows.
Observe that by Theorem 4.3 the map g on (α, γ) ⊂ S1 is a homeomorphism
with a fixed repelling point β; the map g flips points around β. Therefore the
fact that all sets A∩S1, A ∈ Hg, are unlinked implies that the sets g(A∩S1),
A ∈ Hg, are unlinked too. Denote the convex hull of the set g(A ∩ S1) in
the hyperbolic metric in D∞ by ZA. We conclude that the sets ZA form a
foliation H∗g of the set Sh(K) where K is the g-geodesic in D∞ connecting
points g(α), g(γ).

For angles u, v ∈ S1 let uv be the g-geodesic connecting u and v. We want
to define a homeomorphic extension g∗ from Sh(αγ) to Sh(g(α)g(γ)). We
do this so that, for each g-cell A, g∗ maps A ∈ Hg onto ZA as an orientation
preserving homeomorphism and coincides with g on A∩ S1. In particular, a
boundary g-geodesic of A maps to the corresponding boundary g-geodesic
of ZA so that the endpoints are mapped as the map g prescribes. We can
then extend this map over all gaps by mapping the barycenter of each gap
to the barycenter of the image gap and subsequently “coning” the map on
the gap (see [OT08]).

Let A ∩ rβ 6= ∅. By Theorem 4.3 then ZA intersects rβ farther away
from S1 than A in the sense of the order on rβ. It is easy to see that then
g∗ can be designed so that in addition to the above we have g∗(rβ ∩ A) =
rβ ∩ ZA. By Theorem 4.13 the entire tail of rβ inside ϕ−1(Q) is covered
by the sets A ∩ rβ, A ∈ Hg, hence the new map g∗ maps ϕ−1(Q) onto
Sh(K) so that g∗(rβ ∩ ϕ−1(Q)) = rβ ∩ Sh(K). Since by Theorem 4.3 the
map g is continuous, the newly constructed map g∗ can be constructed to
be continuous on ϕ−1(Q). Clearly, g∗ is a homeomorphism. The next claim
is crucial for the proof of the theorem.

Claim 1. The foliations H∗g, ϕ(H∗g) of Sh(K) are canonical.

Proof of Claim 1. Let A be a g-cell. Let us show that ϕ(ZA) and ZA are
homeomorphic. Indeed, by the above g∗|A is a homeomorphism from A to
Z(A). SinceHg andHf are a canonical pair, A and ϕ(A) are strongly homeo-
morphic. By Lemma 4.1, f(ϕ(A)) and ϕ(A) are homeomorphic. This implies
that ϕ(ZA) and ZA are homeomorphic to each other and to A and ϕ(A).

Hence H∗g, ϕ(H∗g) are sibling foliations. Moreover, by the remark right
after Definition 4.6, H∗g is upper-semicontinuous. We need to show that the
foliation ϕ(H∗g) is upper-semicontinuous.
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Indeed, consider a sequence of g-cells Ai ∈ H∗g which converges to a
g-geodesic ` in the boundary of a g-cell A ∈ H∗g. Denote the endpoints (“end-
angles”) of ` by θ′ and θ′′. As in the remark right after Lemma 4.15, the
geometric considerations imply that the ρ-distance between two “clusters”
of the set ϕ(An) ∩X and the appropriate points ϕ(θ′), ϕ(θ′′) goes to zero.
It follows from Lemma 4.15 that then the f -cells ϕ(Ai) converge to the
f -geodesic in the boundary of ϕ(A) connecting the landing points of the
rays Rθ′ and Rθ′′ .

It remains to show that under ϕ null-sequences of cells in H∗g and in
ϕ(H∗g) = H∗f correspond to each other. One way it immediately follows: if
a sequence of f -cells is null but their ϕ-preimages form a sequence which is
not null, then we can refine the latter to get a sequence converging to a non-
trivial set inside D∞. Its ϕ-image has to be contained in the limit of the just
introduced f -cells which can only be a point, a contradiction. Now, suppose
that Ai ∈ H∗g is a null sequence. We may assume that Ai ∩ S1 = g(Di ∩ S1)
where Di ∈ Hg. Since g is a homeomorphism, Di form a null sequence. Then
by Theorem 4.13, the f -cells ϕ(Di) form a null-sequence too. Therefore by
continuity and Lemma 4.1, diama(f(ϕ(Di))) → 0. By Lemma 4.7, and by
the construction, then diama(ϕ(Ai))→ 0 as desired. Hence H∗g is canonical
and Claim 1 is proven.

We define g∗ so that it maps A ∈ Hg onto ZA as an orientation preserving
homeomorphism and coincides with g on A ∩ S1. In particular, a boundary
g-geodesic of Amaps to the corresponding boundary g-geodesic of ZA so that
the endpoints are mapped as the map g prescribes. We can then extend this
map over all gaps by mapping the barycenter of each gap to the barycenter
of the image gap and subsequently coning the map on the gap. Suppose
that A ∩ rβ 6= ∅. It follows from Theorem 4.3 that then ZA intersects rβ
farther away from S1 than A in the sense of the order on rβ. It is easy to
see that then g∗ can be designed so that in addition to the above we have
g∗(rβ ∩ A) = rβ ∩ ZA. By Theorem 4.13 the entire tail of rβ inside ϕ−1(Q)
is covered by the sets A ∩ rβ, A ∈ Hg, hence the new map g∗ maps ϕ−1(Q)
onto Sh(K) so that g∗(rβ ∩ ϕ−1(Q)) = rβ ∩ Sh(K). Since by Theorem 4.3
the map g is continuous, the newly constructed map g∗ can be constructed
to be continuous on ϕ−1(Q).

Now the map g∗ can be transported to the f -plane by means of the
map ϕ. To begin with, the new map f∗ is defined only on Q as follows:
f∗ = ϕ ◦ g∗ ◦ϕ−1. Moreover, by the construction the map f∗ is also defined
on entire sets A,A ∈ Hf . Still, there are two problems which need to be
resolved before we complete the proof of the theorem.

First, we need to extend f∗ from Q, beyond the crosscut CH(B1) which
serves as the gates into the shadow Q, onto the strip between CH(B1) and C ′f .
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To see that this is possible, notice that under f∗ the f -geodesic crosscut
CH(B1) is mapped so that (a) f∗(CH(B1)) = ϕ(K) is an f -geodesic crosscut
in whose shadow CH(B1) is contained, and (b) f and f∗ on CH(B1) are
homotopic outside T (X). Clearly, the map f∗ can be extended to the region
between CH(B1) and C ′f as a homeomorphism so that its action coincides
with that of f on C \ Sh(C ′f ) and with f∗ on CH(B1).

Second, we define f∗ on the entire C as f∗ (already defined above on
Sh(C ′f )) and f elsewhere. We need to show that the map f∗ is continuous.
This needs to be proven only at points of X. Indeed, let xi → x, x ∈ X,
and show that then f∗(xi) → f(x). We may assume that xi 6∈ T (X). Then
for each i we can choose an f -cell Li ∈ Hf with xi ∈ Li. To each Li we
associate the corresponding g-cell Mi = ϕ−1(Li), which by the construction
is the convex hull of the set Mi ∩ S1 in the hyperbolic metric on D∞.

Suppose that diam(Li)→ 0. Then the sets ϕ−1(Li) form a null-sequence
(since Hg,Hf are canonical), hence their g∗-images form a null-sequence
of g-cells from H∗g, hence by Claim 1 the sets ϕ(g∗(ϕ−1(Li))) = f∗(Li)
form a null-sequence of f -cells from H∗f . Since xi → x and Li form a null-
sequence, we can find points zi ∈ Li∩X with zi → x. Then since f does not
change on X, f∗(zi) = f(zi) → f(x). On the other hand, d(f∗(xi), f∗(zi))
→ 0 because {f∗(Li)} is a null-sequence. Hence f∗(xi) → f∗(x) = f(x) as
desired.

Suppose now that f∗(xi) 9 f∗(x) = f(x). We may assume (by the
previous paragraph) that diamLi ≥ ε′′ for some ε′′ > 0. Then since Hf and
the corresponding foliation Hg are canonical, we may assume that Li →
L ∈ Hf and Mi →M ∈ Hg with both L,M being non-degenerate. Clearly,
the points ϕ−1(xi) converge to a point ϕ−1(x) ∈ M ∩ S1, which implies
that there are points zi ∈ Li ∩X such that zi → x and ϕ−1(zi) → ϕ−1(x).
Therefore, by the construction, d(g∗(xi), g∗(zi)) → 0. By Lemma 4.10 this
implies that d(ϕ(g∗(xi)), ϕ(g∗(zi))) = d(f∗(xi), f∗(zi)) → 0. Since f∗(zi) =
f(zi) → f∗(x) = f(x), we finally conclude that f∗(xi) → f∗(x) as desired.
Thus, the map f∗ has all the required properties and the theorem is proven.

5. Converging arcs and fixed points. By (A1)–(A7), X is an inde-
composable continuum containing no subcontinua Y with f(Y ) ⊂ T (Y ). In
particular, X contains no invariant subcontinua not equal to X. By the con-
struction, if we prove our Main Theorem for f∗, it will hold for f too. Thus,
in what follows we denote the map f∗ constructed in Section 4 by simply f .
Also, set Rβ = R. We deal a lot with subsegments of R and from now on
skip the subscript β in denoting them (so that [a, b] means in fact [a, b]β
etc.). Similarly we denote the order <β in R simply by < (the situation con-
sidered in this section allows us to do so without causing any ambiguity).
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Sometimes, however, we need to deal with subarcs of other arcs/rays/lines,
not contained in R. In that case we indicate this with a subscript; thus, if
T is an arc/ray/line and u, v ∈ T then by [u, v]T we mean the closed subarc
of T with endpoints u, v (for rays Rα we use the usual notation [a, b]α).
Denoting subsets of R we use ∞ in the obvious sense (thus, (x,∞) is the
subray of R consisting of all points y ∈ R with y > x).

By Section 4, we may assume that for some z ∈ R the tail (0, z] of R
is invariant in the sense that f |(0,z] : (0, z] → (0, f(z)] is an embedding
such that for all x ∈ (0, z], f(z) > z. The ray R is ordered from infinity
towards X; if u, v ∈ R and u < v, say that v is R-closer to X (u is closer
to ∞) than u. We also say R-closer speaking of points on R and meaning
the order on R.

We need the following lemma.

Lemma 5.1. If Z ⊂ X is nowhere dense in X then for any n the set
Z ∪ f(Z) ∪ · · · ∪ fn(Z) is nowhere dense in X too. Hence, since X ∩ τ(X)
is a closed and nowhere dense subset of X, for any n ∈ Z+ there exists an
open set U ⊂ X such that for each i = 0, 1, . . . , n, f i(U) ∩ τ(X) = ∅.

Proof. Given a closed ball B not containing the critical image, we have
f−1(B) = B′ ∪ B′′ with both B′, B′′ homeomorphic to B. Since Z ∩ B′ is
nowhere dense in B′ ∩X, then f(Z ∩B′) is nowhere dense in f(B′ ∩X) ⊂
B∩X. Similarly, f(Z ∩B′′) is nowhere dense in B∩X too. Hence f(Z)∩B,
which is the union of two sets nowhere dense in B ∩X, is nowhere dense in
B∩X. This implies that f(Z) is nowhere dense in X and proves, inductively,
the first claim of the lemma.

Set Z = X ∩ τ(X). Then the complement to Z ∪ f(Z) ∪ · · · ∪ fn(Z) is
a dense open subset W of X (by the first paragraph). On the other hand,
W consists of the points x such that the sets {x}, f−1(x), . . . , f−n(x) are
disjoint from Z. Hence any point y ∈ f−n(x) is such that y, f(y), . . . ,
fn(y) = x do not belong to Z. Hence if we take a small neighborhood U of
y it will satisfy the requirements of the lemma.

Now we are ready to prove our main theorem.

Theorem 5.2. Suppose that f : C→ C is a branched covering map such
that the absolute value of the degree is at most 2, and let Y be a continuum
such that f(Y ) ⊂ T (Y ). Then one of the following holds.

(1) The map f has a fixed point in T (Y ).
(2) The continuum Y contains a fully invariant indecomposable contin-

uum X such that X contains no subcontinuum Z with f(Z) ⊂ Z;
moreover , in this case degree(f) = −2.

Proof. As before, we assume that (1) does not hold while the standard
assumptions (A1)–(A7) apply to an indecomposable continuum X ⊂ Y . We
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also assume that the map has already been modified according to Theo-
rem 4.16 and that therefore there exists a ray R = Rβ with all properties of
Rβ as well as properties listed in Theorem 4.16. We may assume that X is
a non-degenerate continuum containing no invariant subcontinua and such
that f |T (X) is fixed point free. Note that by (A7), f−1(X) = X ∪ τ(X) ) X
is a continuum.

By Lemma 3.7, the set X∩τ(X) is nowhere dense in X while X \τ(X) =
Q is a dense open subset of X. By Lemma 5.1 we can choose a point p ∈ Q
so that f(p) = q ∈ Q, f(q) ∈ Q, f2(q) ∈ Q. We may assume that p is not
equal to c and its first preimages. Thus we can choose a small neighborhood
V of p such that f3|V is a homeomorphism. Set U = f(V ), U ′ = f(U),
U ′′ = f2(U); we may assume that X ∩ (V ∪U ∪U ′ ∪U ′′) ⊂ X \ τ(X). Since
the principal set of R is X, the sibling ray τ(R) is dense in τ(X) in the
sense that τ(R) \ τ(R) = τ(X). This implies that for some δ > 0 the sibling
ray τ(R) does not come closer than δ to p, q, f(q) or f2(q). Hence we may
assume that V , U , U ′ and U ′′ are all disjoint from τ(R).

Choose an R-defining family of crosscuts Ct (see Section 3). Since R
converges to X, there is a point r ∈ V ∩ R with Cr ⊂ U . Choose r ∈ R
to satisfy a few conditions. First, we may assume that (r,∞) is a vertical
line and Cr is a horizontal segment. By Theorem 4.16, we may assume that
f4(r) ∈ R and f |Sh(Cf3(r))

: Sh(Cf3(r)) → Sh(f(Sh(Cf3(r)) is a homeomor-
phism so that f maps points on R∩Sh(Cf3(r)) to points on R closer to∞. Let
W = Sh(Cf3(r)). We may also assume that W contains no fixed points of f .

In the forthcoming arguments we move along the ray R towards X and
use the terms like “after”, “before” etc. in the appropriate sense. Figure 1
may help the reader to visualize the following construction. Extend Cr a
bit to the left while removing the part located to the right of r to create
an arc G ⊂ V disjoint from (r,∞). We may assume that (0, r) intersects G
infinitely often. To see this, take a sequence of points on R converging to the
endpoint of G distinct from r, draw an arc through them all which ends at
the left endpoint of G and is disjoint from Cr, and then add this arc to G.
The added arc can be chosen arbitrarily small. Then shorten G a little by
choosing its endpoint t distinct from r as the first point after r (closest to
r in the sense of the order on R) of (0, r) intersecting the just extended G.
Then [r, t] ∪ G is a Jordan curve, and we may assume that X meets both
the unbounded component and the bounded component of C \ {[r, t] ∪G}.
Indeed, we can choose a point y ∈ R and an essential crosscut Cy such that
Cy∩Cr = ∅. Then we can construct G so that G\Cr is very small and hence
is disjoint from Cy. This implies that one of the two endpoints of Cy is inside
the unbounded component and the other is in the bounded component of
C \ {[r, t] ∪G}.
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Fig. 1. The ray R = Rβ

By Section 4 the image of G is the arc f(G) = H ⊂ U which grows out
of R at f(r) = a and sticks out of R to the right (the other endpoint of
H is f(t) = x). By Section 4 the image of H is the arc f(H) = H ′ ⊂ U ′

which grows out of R at f(a) = a′ and sticks out of R to the left (the other
endpoint of H ′ is f(x) = x′). Finally, we consider the arc f2(H) = H ′′ ⊂ U ′′
which grows out of R at f2(a) = a′′, sticks out of R to the right and has
the other endpoint f2(x) = x′′. By the choice of U the segments H,H ′

and H ′′ are pairwise disjoint. Moreover, by the choice of q the points of
X ∩ (G ∪H ∪H ′ ∪H ′′) have no siblings in X. To simplify the language we
may assume that G,H,H ′, H ′′ are all horizontal segments.

By the choice of G the set G∩R is infinite. Hence the sets H ∩R, H ′∩R
and H ′′∩R are infinite. Also, recall that by the above choices τ(R) is disjoint
from V,U, U ′, U ′′ and hence from H and H ′. Clearly, there are irreducible
subsegments of R connecting points of H and H ′. We call such segments of
R prime segments, or simply primes. Two distinct primes intersect at most
in one of their endpoints (in this case one can call them concatenated).
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The idea of what follows is to consider primes and their pullbacks. We
show that there is a “monotone” sequence of primes P0, P−1, . . . in the sense
that their endpoints on H and H ′ are ordered monotonically. Moreover, the
primes have the property that f(P−n−1) ⊂ P−n. Then these primes converge
to a limit continuum K with f(K) ⊂ K. However, the monotonicity implies
that P0 cuts the limit continuum K off some points of X and hence K 6= X,
a contradiction with the assumption that X contains no proper invariant
subcontinuum. Defining the desired sequence of primes requires some purely
geometric considerations in the plane.

Our arguments are based upon the observation that if moving along R
from infinity towards X we meet a point, then before that we must have
met the image of that point; this is based upon the fact that the points in
R map towards infinity (i.e., f(z) > z for z ∈ R ∩W ). By the construction
R passes through x. Let us show that this is the first time R intersects H
after r. Indeed, otherwise there is a point z > x, z ∈ H ∩R. The point z has
the preimage z′ ∈ G which cannot belong to τ(R) because τ(R) is disjoint
from U . Hence z′ ∈ R. Moreover, z′ > t because z > x. This contradicts
the choice of t. Similarly, x′ and x′′ are the first times after r when the ray
R intersects the arcs H ′ and H ′′ respectively. This in turn implies, by the
same argument, that in fact x′ is the first point at which R hits f−1(H ′′).

Clearly, the arc [a′′, x′′] ⊂ R together with H ′′ forms a Jordan curve S
which encloses an open Jordan disk D. Moreover, since both H and H ′′ are
located to the right of R and since H is disjoint from S except for a we see
that H \ {a} ⊂ D. Now, the ray R may have other points of intersection
with H ′′ after x′′ and before it hits H ′ for the first time at x′. Denote by y′′

the last point of H ′′ before x′. Clearly, the ray points up as it finally exits
D at y′′ for otherwise the point y′′ would not be the last point on R before
it hits H ′ (we use the fact that R can only exit D through H ′′ and that H ′

is outside D).
Let P be the subarc of R given by [y′′, x′]. It follows that [a′′, y′′]H′′ ∪P ∪

H ′ ∪ [a′, a′′] is a simple closed curve T which encloses a disk D̂ (recall that
intervals without subscripts are subarcs ofR). Observe that the simple closed
curves S = [a′′, x′′] ∪H ′′ and T have an arc [a′, a′′] ∪ [a′′, y′′]H′′ in common
and therefore form a θ-curve. Observe also that by the construction, D ⊂ D̂
(see Figure 1).

Repeating the above arguments with obvious changes in notation we see
that after x′ the ray R may have intersections with H ′, then it finally goes
off H ′ at a point u′ ∈ R ∩ H ′ and then it hits H for the first time at the
point x. We claim that as R goes off H ′ at u′, it points up and moves out-
side D̂. Indeed, suppose otherwise. Then the ray R after u′ goes inside D̂ and
crosses H at x for the first time while not crossing H ′ before that. Consider
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the Jordan disk D′ whose boundary is formed by H ′ and the subsegment
[a′, x′] of R. Since R cannot intersect itself and, by the assumption, it does
not intersect H ′ after u′ before it intersects H, we see that [u′, x] ⊂ D′.
However by the construction the point x lies outside D′, a contradiction.

Thus, after u′ the ray R goes up. By the choice of u′ as the last point on
H ′ on R before R hits H, it follows that R has to penetrate D 3 x through
H ′′ in order to reach out to x. Since P = [y′′, x′] shields the subarc [y′′, x′′]H′′

of H ′′ from R, the first point of intersection between R and H ′′ after u′ has
to be a point v′′ ∈ [a′′, y′′]H′′ . Clearly, R approaches H ′′ from above before it
hits H ′′ at v′′. As we continue towards H, the ray R after v′′ may have more
intersections with H ′′, but then it finally hits H at x. This creates our first
prime P0 = [u′, x] on which we have a subarc [u′, v′′] with v′′ ∈ [a′′, y′′]H′′ .
The prime P0, together with the arc [u′, a′]H′ ∪ [a′, a] ∪ H, forms a simple
closed curve Y which encloses a disk L0.

Let us now define the first pullback of P0. It follows that the “zigzag”
arc I = H ′∪ [a′, a]∪H can be pulled back to the arc J = G∪ [a, r]∪H (this
pullback is simply a restriction of the corresponding branch of the inverse
function which is a homeomorphism). Observe that all points of R ∩ I then
pull back to points of R ∩ J (otherwise there will have to be points of τ(R)
in J , which is impossible). In particular, there exists a point u ∈ H ∩ R
with f(u) = u′. This pullback can then be extended onto P0, say, starting
at x and then by continuity. Let us show that this results in a subarc of R
which connects t ∈ G to u ∈ H. Indeed, under this pullback the point x
pulls back to t. Recall that by the construction R hits G at t for the first
time. Hence P0 pulls back to an arc Q which at least around t is a subarc
of R, and hence overall (as a set) is a subarc of R too. The other endpoint
of this subarc of R should be the unique preimage of u′ belonging to R, and
by the shown above this can only be the point u. Moreover, since at u′ the
prime P0 points up, so does the arc Q at u.

Observe also that Q cannot intersect H at more than one point since
otherwise its image P0 will intersect H ′ at more than one point. Therefore
the arc Q exits L0 at u only to penetrate back into L0 later through H ′

in order to reach out to t ∈ G. Denote by s the point of H ′ closest to u
on Q and show that s = v′ is the unique preimage of v′′ on H ′. Indeed,
since τ(R) is “far away” from V , U , U ′ and U ′′, then τ(G ∪H ∪H ′ ∪H ′′)
is disjoint from R. In particular, there are no points of τ(H ′) in [u, s) ⊂ Q.
On the other hand, there are no points of H ′ in [u, s) by the choice of s.
Therefore there are no points of f−1(H ′′) in [u, s), which implies that there
are no points of H ′′ in [u′, f(s)) while f(s) ∈ H ′′. By the definition of v′′

this implies that f(s) = v′′ and hence s = v′ as desired. Moreover, u ∈ H
is closer to a on H than x and v′ is closer to a′ on H ′ than u′. Indeed, the
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former is obvious. Also, as we pointed out before, Q exits L0 at u and then
it can only come back into L0 through [u′, a′]H′ so that indeed v′ is closer
to a′ on H ′ than u′.

The arc [u, v′] ⊂ Q is then declared to be the next prime P−1. By the
construction, its image is a subarc of P0. Moreover, P−1 connects H and H ′

in a specific way, namely so that the initial small segments at the endpoints
of P−1 point up with respect to the horizontal arcs H and H ′ respectively.
To make the notation consistent let us from now on denote the endpoints
of P0 by α0 = x, β0 = u′ and the endpoints of P−1 by α1 = u and β1 = v′.
Observe that G ⊂ L0. The endpoints of P−1 are located so that α1 is closer
to a on H than α0, and β1 is closer to a′ on H ′ than β0.

The above established properties of primes can be used in the inductive
process showing that we can construct a sequence of primes with similar
properties. Namely, suppose that we already have a finite sequence of pair-
wise disjoint primes P0, P1, . . . , P−n such that the following holds.

(1) P−i = [βi, αi] with βi ∈ H ′, αi ∈ H and P−i ∩ (H ′ ∪H) = {αi, βi};
(2) for each i, 0 ≤ i ≤ n−1, the point βi+1 is closer to a′ than the point

βi on the arc H ′;
(3) for each i, 0 ≤ i ≤ n− 1, the point αi+1 is closer to a than the point

αi on the arc H;
(4) for each i, 0 ≤ i ≤ n− 1, we have f(αi+1) = βi;
(5) the initial segments of P−i at the endpoints of P−i point up;
(6) for each i, 0 ≤ i ≤ n− 1, we have f(P−(i+1)) ⊂ P−i.

Let us show that then we can construct the next prime P−n−1 so that
all these properties are satisfied. First, though, we locate a few points using
the fact that f3|V is a homeomorphism. Since f(αn) = βn−1, we see that
f([a, αn]H) = [a′, βn−1]H′ . Hence there is a preimage of βn ∈ H ′ in H
between a and αn. Denote this preimage αn+1. Also, choose ζn+1 on G so
that f(ζn+1) = αn. Finally, set [αn, a]H ∪ [a, a′] ∪ [a′, βn]H′ = Qn. Then it
follows from the location of the primes that P−n ∪ Qn = En is a Jordan
curve which encloses a Jordan disk Ln, and L0 ⊂ L1 ⊂ · · · ⊂ Ln. Moreover,
G ⊂ L0.

The point βn has two preimages, αn+1 and τ(αn+1). One of them belongs
to R, the other to τ(R). Since τ(R) is disjoint from V , U , U ′, U ′′ we have
αn+1 ∈ R. Similarly we see that ζn+1 ∈ R. Hence the pullback Sn of P−n
within R (we can talk about it because by Theorem 4.16 we assume that
a tail of R is invariant) connects ζn+1 and αn+1. Moreover, Sn points up
at the points ζn+1 and αn+1 because so does Pn at their images, i.e. at the
points αn and βn.

It follows that at αn+1 the arc Sn exits Ln and that Sn intersects H only
at αn+1 (otherwise Pn would intersect H ′ at more than one point βn). Since



A fixed point theorem 109

the other endpoint of Sn is ζn+1 ∈ Ln, it must enter back into Ln, and by
the above it can only do so through H ′ closer to a′ than βn (the rest of H ′

is shielded from Sn by P−n). Follow Sn from αn+1 on towards ζn+1 until it
meets H ′ for the first time. Denote by βn+1 the point of Sn which belongs to
H ′ and is closest to αn+1 on R. Then the arc [αn+1, βn+1] = P−n−1 satisfies
all the conditions on primes listed above. Thus, we have been able to make
the induction step which proves the existence of an infinite sequence of
primes {P−i}∞i=0 with the above properties.

By the construction the sequence of primes {P−i} converges to a contin-
uum which we denote Z. Indeed, the endpoints of the primes αn, βn converge
to points α ∈ H ∩ X, β ∈ H ′ ∩ X respectively. Choose Z to be the limit
of a subsequence of primes, then choose a small neighborhood M of Z, and
then choose P−N so that the arc [α, αN ]H ∪P−N ∪ [βn, β]H′ ⊂M . It follows
that then the Hausdorff distance between P−k and Z for any k > N must
be small, which implies that Z is the limit (in the Hausdorff metric) of the
sequence of primes P−n.

Obviously, Z ⊂ X. Moreover, by the construction there are points of
X inside L0 while Z is disjoint from L0. Therefore Z 6= X. However, by
continuity the fact that f(P−(i+1)) ⊂ P−i for every i implies that f(Z) ⊂ Z,
which contradicts the minimality of X. Hence we may finally conclude that
the assumption of X not being fully invariant fails. In other words, X is
fully invariant (i.e. f−1(X) = X = f(X)) as desired.

We would like to make a few concluding remarks here. The fact that
X is fully invariant allows us to work with the entire uniformization plane.
Recall that ϕ : D∞ → U∞(X) is a Riemann map with ϕ(∞) = ∞. Then
the map f is transported to the uniformization plane on which we obtain
a well-defined map g(x) = ϕ−1 ◦ f ◦ ϕ(x), x ∈ D∞. This construction is
exactly the same as the standard construction from complex dynamics; it
was used in a more complicated situation of a non-fully invariant continuum
in [FMOT07] as well as above in Section 4 (though in that case the map g
was not considered on the entire D∞).

By the results of [FMOT07], f induces a covering mapG : S1 → S1 on the
circle of prime ends of T (X) (i.e., g continuously extends over S1 = Bd D∞
as a covering map of the circle). It is easy to check that deg(G) = −2.
Hence, G has exactly three fixed points {α1, α1, α3} in S1. Suppose that Cn
is a fundamental chain of crosscuts of the prime end αj . Since diam(Cn)→ 0
and f is fixed point free on T (X), for all n sufficiently large, f(Cn)∩Cn = ∅.
Hence from that point on either f(Cn) separates Cn from infinity in C\T (X)
(the points are “repelled” from X in the sense of the order on the ray Rαj ,
in which case we have the so-called outchannel defined more precisely in
[FMOT07]), or Cn separates f(Cn) from infinity in C\T (X) (the points are
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“attracted” towards X in the sense of the order on the ray Rαj , in which
case we have the so-called inchannel defined more precisely in [FMOT07]).
By [FMOT07] there exists exactly one outchannel, therefore two of the fixed
prime ends must correspond to inchannels. Hence the induced map G on the
circle of prime ends has degree −2, exactly one repelling fixed point and two
attracting fixed points. This details the dynamics in the neighborhood of X.
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théorème de Poincaré–Birkhoff, Topology 33 (1994), 331–351.

[Ili70] S. D. Iliadis, Location of continua on a plane and fixed points, Vestnik
Moskov. Univ. Mat. 25 (1970), no. 4, 66–70 (in Russian).

[Kra74] J. Krasinkiewicz, On internal composants of indecomposable plane continua,
Fund. Math. 84 (1974), 255–263.

[KP94] R. S. Kulkarni and U. Pinkall, A canonical metric for Möbius structures and
its applications, Math. Z. 216 (1994), 89–129.

[Mil00] J. Milnor, Dynamics in One Complex Variable, 2nd ed., Vieweg, Wiesbaden,
2000.



A fixed point theorem 111

[OT08] L. G. Oversteegen and E. D. Tymchatyn, Extending isotopies of planar con-
tinua, arXiv:0811.0364v1.

[Pom92] Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer, 1992.
[Rog98] J. T. Rogers, Jr., Diophantine conditions imply critical points on the bound-

aries of Siegel disks of polynomials, Comm. Math. Phys. 195 (1998), 175–193.
[Sie68] K. Sieklucki, On a class of plane acyclic continua with the fixed point prop-

erty, Fund. Math. 63 (1968), 257–278.
[Ste35] L. Sternbach, Problem 107 (1935), in: The Scottish Book: Mathematics from
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