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Abstract. We consider the problem of embedding odometers in one-dimensional cel-
lular automata. We show that (1) every odometer can be embedded in a gliders-with-
reflecting-walls cellular automaton, which one depending on the odometer, and (2) an
odometer can be embedded in a cellular automaton with local rule xi 7→ xi + xi+1 mod n
(i ∈ Z), where n depends on the odometer, if and only if it is “finitary.”

1. Introduction. An odometer is the “+1” map on a countable product
of finite cyclic groups. A (one-dimensional) cellular automaton (X,T ) is a
dynamical system defined by a local rule on a closed, T -invariant subset of
either AN or AZ, where A is a finite alphabet. In [3] the authors and M. Pivato
partially solved the “give me a cellular automaton and I will find an odometer
that can be embedded in it” problem. In this paper we completely solve the
converse problem: “give me an odometer and I will find a cellular automaton
that it can be embedded in.”

Theorem 1. Every odometer can be embedded in a gliders-with-reflec-
ting-walls cellular automaton.

Although finitary odometers (defined in Theorem 2 below) can be embed-
ded in a number of cellular automata [7], Theorem 1 identifies a (relatively
small) class of cellular automata such that every odometer can be embedded
in one of them.

Theorem 2. Every finitary odometer (Z(S),+1), i.e. one such that the
set of prime divisors of the members of S is finite, can be embedded in the
one-dimensional , two-sided cellular automaton with local rule xi 7→ xi +
xi+1 mod n (i ∈ Z), defined on the space of all doubly infinite sequences with
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entries from Zn, the ring of integers modulo n, where n is the product of the
primes that divide infinitely members of S.

Conversely , only finitary odometers can be embedded in such cellular au-
tomata.

Definitions and background. Let S = (s1, s2, . . .) be a sequence of
integers greater than 1. Define

Z(S) :=
∏
k≥1

Z/skZ and Z̃(S) := inv lim
k→∞

(Z/s1 · · · skZ, βk),

where the binding maps βk : s1 · · · sk+1Z→ s1 · · · skZ are defined by

z 7→ z mod s1 · · · sk.

Addition in Z(S) is “with carrying,” addition in Z̃(S) is coordinatewise, i.e.
without carrying. Z(S) and Z̃(S) are isomorphic, compact, abelian, topolog-
ical groups [4].

The +1 map on Z(S) is defined by

z 7→ z + (1, 0, 0, . . .)

and the +1̃ map on Z̃(S) is defined by

z 7→ z + (1, 1, . . .).

(Z(S),+1) and (Z̃(S),+1̃) are topologically conjugate (any topological group
isomorphism of Z(S) onto Z̃(S) that takes 1 to 1̃ is a topological conjugacy)
and are called the S-adic odometer. When S = (n, n, . . .), (Z(S),+1) is the
well-known n-adic odometer, denoted (Z(n),+1).

By Theorem 7.6 of [2], a complete topological conjugacy invariant of
(Z(S),+1) is the multiplicity function MULTS : {primes} → {0, 1, . . . ,∞},
defined by

MULTS(p) :=
∑

i

{max j : pj divides si}.

Thus MULTS(p) is the total number of times that p divides members of S.
Throughout this paper a two-sided cellular automaton (X,T ) will be a

dynamical system defined on a closed, T -invariant subset of AZ, where A is a
finite alphabet and T is given by a local rule τ : A2m+1 → A for some m ≥ 0
as follows: [T (x)]i = τ(xi−m, . . . , xi+m) (i ∈ Z). We note that T is continuous
and commutes with the shift σ : AZ → AZ, defined by [σ(x)]i = xi+1 (i ∈ Z).
When appropriate, we will write x ∈ AZ as xL.xR, where the dot separates
the negative indices from the non-negative ones. One-sided cellular automata
are similarly defined.

When A has n elements, we may sometimes assume that A = Zn, the ring
of integers modulo n. The cellular automaton defined on all doubly infinite
sequences with entries from Zn and local rule xi 7→ xi + xi+1 mod n (i ∈ Z)
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will be denoted (ZZ
n, Tn). The maps Tn have no memory and so we define

one-sided cellular automata (Tn)R : ZN0
n → ZN0

n by the same local rule. Here
N := {1, 2, . . .} is the natural numbers and N0 := {0, 1, 2, . . .}.

A more geometric class of cellular automata is the class of gliders-with-
reflecting-walls cellular automata [6, Example 6.5].

The alphabet for all these one-sided cellular automata is

{W,L,R, ∅},
whereW is a stationary wall, L is a left-moving particle, R is a right-moving
particle, and ∅ is an empty space.

The spaces X ⊆ AN satisfy: for every x ∈ X, x1 = W , xi = W for
infinitely many i, and between any two consecutive W there is exactly one
particle.

The local rule for these automata is as follows:
• Walls do not move.
• If the space immediately to the left of L is empty, then L and ∅ change

places. If the space immediately to the left of L isW , then L becomes R
but does not move.
• If the space immediately to the right of R is empty, then R and ∅

change places. If the space immediately to the right of R is W , then
R becomes L but does not move.

For a dynamical system (X, f), whereX is a subset of some AZ or AN, the
space-time diagram of (X, f) with seed x is the array whose (i, j)th entry
is [f j(x)]i. It is a convenient way of visualizing the forward f -orbit of x,
{f j(x) : j ≥ 0}. Here we think of “increasing time” as going down. Space-
time diagrams for systems on one-sided sequences are similarly defined, and
are convenient ways of visualizing odometers.

For dynamical systems (X, f) and (X̂, f̂), we say that (X, f) can be
embedded in (X̂, f̂) if there is a closed, f̂ -invariant subset X̂ ′ of X̂ such that
(X, f) is topologically conjugate to (X̂ ′, f̂ | bX′).

Every odometer can be embedded in a gliders-with-reflecting-
walls cellular automaton. Gliders-with-reflecting-walls cellular automata
(X,T ) are defined on one-sided infinite sequences with entries from {W,L,
R, ∅}, with local rules defined in the preceding section.

Theorem 1. Every odometer can be embedded in a gliders-with-reflect-
ing-walls cellular automaton.

Proof. Let S = (s1, s2, . . .).
First assume that at least one si is even. Since the multiplicity function

is a complete topological conjugacy invariant of (Z(S),+1), the order of the
si is irrelevant, so we may assume that s1 is even.
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Consider the set X of all points in {W,L,R, ∅}N of the form
W ← 1

2s1 →W ← 1
2s1s2 →W ← · · · ,

where the gaps contain exactly one particle. The columns of gaps in the
space-time diagram of a gliders-with-reflecting-walls cellular automaton with
any such point as seed are periodic with least periods s1, s1s2, . . . .

We show that this one-sided cellular automaton is topologically conjugate
to (Z̃(s1, s2, s3, . . .),+1̃). Let T̃ be the gliders-with-reflecting-walls cellular
automaton map and label the gaps, left-to-right, G1, G2, . . . . Consider the
space-time diagram of (X, T̃ ) with seed x̄, defined by “R appears at the
extreme left of each gap.” For x in the forward T̃ -orbit-closure of x̄, define

x 7→ z = (z1, z2, . . .) ∈
∏
k≥1

Z/s1 · · · skZ

as follows. For i ≥ 1, let zi, 0 ≤ zi ≤ s1 · · · si − 1, satisfy

x|Gi = T̃ zi(
←− 1

2
s1s2···si−→

R, ∅, ∅, . . . , ∅ ),

i.e. (
←− 1

2
s1s2···si−→

R, ∅, ∅, . . . , ∅ ) appears in row zi in this space-time diagram. This map
is continuous, one-to-one, and commutes with the appropriate actions, and
so is a topological conjugacy.

Now assume that all the si are odd. In this case the cellular automaton
(X, T̃ 2), defined on all points of {W,L,R, ∅}N of the form

W ← s1 →W ← s1s2 →W ← · · · ,
in the forward T̃ 2-orbit-closure of x̄ (defined as above, R at the extreme left
of each gap), is topologically conjugate to (Z̃(S),+1̃).

An odometer can be embedded in a cellular automaton with
local rule x0 + x1 if and only if it is “finitary”. The word “finitary” in
the title of this section refers to odometers (Z(S),+1) such that the set of
prime divisors of the members of S is finite.

Throughout this section, (ZZ
n, Tn) will denote the two-sided cellular au-

tomaton with local rule xi 7→ xi + xi+1 mod n (i ∈ Z). To avoid notational
clutter, we may write T rather than Tn when n is clear.

Lemma 1. Let x̄ = . . . 000.100 . . . . and let X be the forward Tn-orbit-
closure of x̄.

(1) For any n ≥ 2, x̄R := 100 . . . is (Tn)R-fixed.
(2) For any x ∈ X, if some column [T j

n(x)]i (j ≥ 0) in the space-time
diagram of (X,Tn) with seed x is periodic with least period m, then
the column immediately to the left , [T j

n(x)]i−1 (j ≥ 0), is periodic with
least period mn′ for some factor n′ of n (n′ = 1 or n is possible).
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(3) For any n ≥ 2, x̄ has an infinite forward Tn-orbit.
(4) For n = p prime, there exist 1 = k1 < k2 < · · · such that for every

i ≥ 1, the columns [T j
p (x̄)]i (j ≥ 0), i = −ki+1 + 1, . . . ,−ki, are

periodic with least period pi.

Proof. Write T in place of Tn. (1) is clear.
(2) We prove this part for n = p prime, leaving it to the reader to supply

the details for the general case. Suppose that column i in the space-time
diagram of (X,T ) with seed x is periodic with least period m: [T j(x)]i =
[T j+m(x)]i (j ≥ 0). If

m−1∑
j=0

[T j(x)]i ≡ 0 mod p,

then column i− 1 is periodic with least period m. If
m−1∑
j=0

[T j(x)]i 6≡ 0 mod p,

then column i− 1 is periodic with least period pm.
(3) If x̄ has a finite forward T -orbit, then there exists K ≥ 0 such that

x−k = 0 for every point x in this orbit and for every k ≥ K. This contra-
dicts (2).

(4) follows from (1), (2), and (3).
We divide the “if and only if” statement of Theorem 2 into two separate

theorems.
Theorem 2A. Every finitary odometer (Z(S),+1), i.e. one such that

the set of prime divisors of the members of S is finite, can be embedded in
the one-dimensional , two-sided cellular automaton (ZZ

n, Tn) with local rule

xi 7→ xi + xi+1 mod n (i ∈ Z),

where n is the product of the primes that divide infinitely many members
of S.

Since the multiplicity function is a complete topological conjugacy invari-
ant, every finitary odometer is topologically conjugate to one of the following
two canonical forms:

(1) the n-adic odometer, (Z(n),+1) := (Z(n, n, . . .),+1), where n is the
product of distinct primes,

(2) (Z(m,n, n, . . .),+1), where m and n are relatively prime and n is the
product of distinct primes.

Theorem 2A follows from Lemmas 2–7 below.
Lemma 2. For p prime and m ≥ 2 such that p is not a factor of m, both

(Z(p),+1) and (Z(m, p, p, . . .),+1) can be embedded in (ZZ
p , Tp).
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Proof. Throughout this proof, we write T in place of Tp.
First we prove the lemma for (Z(p),+1). Consider the space-time diagram

of (ZZ
p , T ) with seed

x̄ = . . . 000.1000 . . . .

We show that T restricted to the forward T -orbit-closure of x̄ is topologically
conjugate to (Z(p),+1). Recall from Lemma 1(3), (1) that x̄ has an infinite
forward T -orbit and that x̄R := 100 . . . is TR-fixed.

Define a mapping x 7→ z from the forward T -orbit-closure of x̄ to Z(p) as
follows. For x in the forward T -orbit-closure of x̄, let z = (z1, z2, . . .) ∈ Z(p)
be such that

T
Pk

i=1 zip
i−1

(x̄)→ x as k →∞.

That such a sequence exists follows from Lemma 1. (The partial sums of∑∞
i=1 zip

i−1 are the rows in the space-time diagram of (ZZ
p , T ) with seed x̄

at which the appropriate “right tails” of x appear, so z is well-defined.)
This mapping is continuous, one-to-one, and commutes with the appropriate
actions. Therefore it is a topological conjugacy.

The proof of the lemma for (Z(m, p, p, . . .),+1) follows the proof for
(Z(p),+1) provided we can find a seed ȳ = ȳL.ȳR such that ȳ has an in-
finite forward T -orbit and ȳR is TR-periodic with least period m. That we
can do this is Lemma 4 below.

Lemma 3. (ZN0
p , TR) is topologically conjugate to the full one-sided shift

(ZN0
p , σL), where σL is the left-shift defined by [σL(x)]i := xi+1 (i ≥ 0).

Proof. The topological conjugacy x 7→ y is given by yi := [T i
R(x)]0

(i ≥ 0). For a more general result, see [1].

Lemma 4. Let m ≥ 1. There is a point ȳ = ȳL.ȳR with an infinite
forward T -orbit and such that ȳR is TR-periodic with least period m.

Proof. By Lemma 3 there is a TR-periodic point ȳR = ȳ0ȳ1 . . . with
least period m. It follows from Lemma 1(2) that column 0 in the space-time
diagram of T (N.B. T , not TR) with seed any left extension of ȳR is periodic.
So it suffices to show that ȳR has a left extension such that the columns in
the appropriate space-time diagram have arbitrarily large least periods.

By Lemma 3, for every k ≥ 1 there are pk T k
R-fixed points. For k = 1

(since p2 > p1), there exist ȳ−1 and ȳ−2 such that ȳ−2ȳ−1ȳ0 . . . is not TR-
fixed. For k = 2, there exist ȳ−3, ȳ−4, and ȳ−5 such that ȳ−5ȳ−4 . . . is not
T 2

R-fixed. Continue with k = 3, 4, . . . .

Lemma 5. If (X, f) can be embedded in (X̂, f̂) and (Y, g) can be embed-
ded in (Ŷ , ĝ), then (X, f)× (Y, g) can be embedded in (X̂ × Ŷ , f̂ × ĝ).
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Lemma 6. Let m,n ≥ 2 be relatively prime. Then (Z(mn),+1) is topo-
logically conjugate to (Z(m)× Z(n), (+1,+1)). If , in addition, s ≥ 2 is rel-
atively prime to both m and n, then (Z(s,mn,mn, . . .),+1) is topologically
conjugate to (Z(s,m,m, . . .)× Z(n), (+1,+1)).

Proof. To prove the first statement it suffices to find a topological group
isomorphism of Z(mn) onto Z(m) × Z(n) that takes (1, 0, . . .) ∈ Z(mn) to
((1, 0, . . .), (1, 0, . . .)) ∈ Z(m)× Z(n).

Map Z(mn) to Z(m)× Z(n) by

(z0, z1, . . .) 7→ ((z′0, z
′
1, . . .), (z

′′
0 , z
′′
1 , . . .)),

where for every k ≥ 0,
∑k

i=0 z
′
im

i is the beginning of the base m expansion
of

∑k
i=0 zi(mn)i; similarly for z′′. This map is well-defined, takes (1, 0, . . .)

to ((1, 0, . . .), (1, 0, . . .)), and satisfies all the conditions of topological group
isomorphism, except possibly ontoness. To see that it maps Z(mn) onto
Z(m)× Z(n), notice that it maps the set

{k(1, 0, . . .) ∈ Z(mn) : k ≥ 0},
which is dense in Z(mn), onto the set

{(k(1, 0, . . .), k(1, 0, . . .)) ∈ Z(m)× Z(n) : k ≥ 0}.
The latter set is dense in Z(m)×Z(n) because m and n are relatively prime.

The proof of the second statement is similar. We omit the details.

Lemma 7. Let m,n ≥ 2 be relatively prime. Then (ZZ
mn, Tmn) is topo-

logically conjugate to (ZZ
m × ZZ

n, Tm × Tn).

Proof. Any ring isomorphism of Zm ×Zn onto Zmn is a topological con-
jugacy of (ZZ

m × ZZ
n, Tm × Tn) onto (ZZ

mn, Tmn).

Theorem 2B. If an odometer (Z(S),+1) can be embedded in the one-
dimensional , two-sided cellular automaton (ZZ

n, Tn) with local rule

xi 7→ xi + xi+1 mod n (i ∈ Z),

then (Z(S),+1) is finitary , i.e. the set of prime divisors of the members of S
is finite.

Proof. Suppose that (Z(S),+1) is topologically conjugate to (X,Tn),
where X is a closed, Tn-invariant subset of ZZ

n. Consider the space-time
diagram of (Z(S),+1) with seed (0, 0, . . .). Every column is periodic and for
p prime, p divides the least period of some column if and only if p divides
some s ∈ S.

It follows from the uniform continuity of the topological conjugacy and its
inverse that every column in any space-time diagram of (X,Tn) is periodic.
For p prime, p divides the least period of some column in a space-time
diagram of (X,Tn) if and only if p divides the least period of some column
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in the space-time diagram of (Z(S),+1) with seed (0, 0, . . .). The proof is
completed by applying the lemma below.

Lemma 8. For any n ≥ 2, the set of primes p such that p divides the
least period of some column in a space-time diagram of (X,Tn) is finite.

Proof. Since every column in the space-time diagram of (Z(S),+1) with
seed (0, 0, . . .) is periodic, it follows from Lemma 1 that every column in any
space-time diagram of (X,Tn) is periodic. Furthermore, if column i has least
period m, then column i− 1 has least period n′m, where n′ is a factor of n.

So if a column has least period m, then any prime that divides the least
period of some column to its left also divides mn. Hence the set of all primes
that divide the least period of any column is finite.
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