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Intertwined internal rays in Julia sets of rational maps

by

Robert L. Devaney (Boston, MA)

Abstract. We show how the well-known concept of external rays in polynomial dy-
namics may be extended throughout the Julia set of certain rational maps. These new
types of rays, which we call internal rays, meet the Julia set in a Cantor set of points, and
each of these rays crosses infinitely many other internal rays at many points. We then use
this construction to show that there are infinitely many disjoint copies of the Mandelbrot
set in the parameter planes for these maps.

External rays in both the dynamical and parameter planes provide an
extremely important tool in complex dynamics. External rays arise as fol-
lows. For complex polynomials, there is always a basin of attraction of the
fixed point at ∞. If the polynomial has degree n, it is well known that, in
a neighborhood of ∞, the polynomial is analytically conjugate to the map
z 7→ zn also defined in a neighborhood of infinity (the so-called Böttcher
coordinate). Now zn maps straight rays of the form t exp(2πiθ) for t > 1 to
straight rays of the form tn exp(2πinθ). So, under the conjugacy, the images
of these straight rays in the basin of∞ are also preserved by the polynomial.
These images are the external rays for the polynomial. How these rays “land”
on the Julia set often completely determines the structure of the Julia set
for this map.

In this paper, we shall concentrate on rational maps, not polynomials.
Specifically, we consider the family of maps

Fλ(z) = zn +
λ

zn

where λ ∈ C and n > 2. We are interested in this family for two reasons.
First, like polynomials, these maps always have a superattracting fixed point
at∞, so we have external rays for these maps. Second, like the family zn+c,
n > 1, there is essentially only one critical orbit for each member of this
family, so the natural parameter plane is the λ-plane.
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Our goal in this paper is to introduce a different type of ray into the
dynamical planes of these maps, namely, internal rays. Basically, internal
rays in the dynamical plane are curves that connect the endpoints of external
rays to the origin (the only pole) by winding in a specific way through the
Julia set. Unlike the external rays, however, the internal rays always cross
other internal rays, usually at multiple points; hence they are “intertwined.”
In this paper, we will describe a special Cantor set of such internal rays.
These rays are important in that how they wind through the Julia sets of
these maps is the same no matter what the parameter λ is; for other internal
rays, how they wind through the Julia set does depend upon the parameter.
Moreover, how these special internal rays cross each other subdivides the
Julia sets into regions where the structure is then easy to understand. As
an example, we shall use the structure of the internal rays in the dynamical
planes for these maps to prove the following result:

Theorem. In the parameter plane for zn+λ/zn, n > 2, there are count-
ably many distinct copies of the Mandelbrot set, i.e., Mandelbrot sets that
are not subsets of larger Mandelbrot sets. In particular, there are (n − 2) ·
(2n−2)k−1 distinct baby Mandelbrot sets with base period k in the parameter
plane for Fλ.

In a subsequent paper [4] we shall describe an analogous set of internal
rays in the parameter planes for these maps.

It is a pleasure to acknowledge the fundamental work of Michał Misiu-
rewicz in dynamical systems over the years. Indeed, it was his pathbreaking
paper on the dynamics of the complex exponential [10] that originally got
me interested in holomorphic dynamics.

1. Preliminaries. Let

Fλ(z) = zn + λ/zn

where n > 2 and λ ∈ C. The Julia set of Fλ, denoted by J(Fλ), is defined to
be the set of points at which the family of iterates of Fλ fails to be a normal
family in the sense of Montel. There are many other equivalent definitions of
the Julia set. For example, the Julia set is the closure of the set of repelling
periodic points of Fλ, and, in our special case, it is also the boundary of the
set of points whose orbits escape to∞. As a consequence, the Julia set is the
set of points on which Fλ behaves chaotically, since arbitrarily close to any
point in J(Fλ) there is both a repelling periodic point and a point whose
orbit escapes to ∞. The complement of the Julia set is called the Fatou set.

One checks easily that Fλ has 2n free critical points given by cλ = λ1/2n.
The origin and ∞ are also critical points but they are not free since ∞
is fixed and 0 is mapped directly to ∞. Despite the large number of free
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critical points for these maps, there are only two critical values: n of the
critical points are mapped to 2

√
λ and the other n are mapped to −2

√
λ.

In fact, there is really only one critical orbit, since, when n is even, both
of the critical values are then mapped to the same point, while, when n is
odd, the entire orbits of the critical values are symmetric under z 7→ −z.
Thus this family of maps, like the quadratic polynomial family, is a natural
one-parameter family of maps. The parameter plane (the λ-plane) is then
a record of the behavior of the free critical orbit, just as in the case of the
Mandelbrot set. There are also 2n prepoles at the points pλ = (−λ)1/2n, so
Fλ(pλ) = 0.

Let Cλ be the circle given by |z| = |λ|1/2n. Note that Cλ contains all of
the critical points and prepoles of Fλ. A straightforward computation shows
that Fλ maps Cλ 2n-to-one onto the straight line connecting the two critical
values. We call Cλ the critical circle and its image the critical line. One may
also check that any other circle centered at the origin is mapped n-to-one
onto an ellipse whose foci are ±vλ.

There are several symmetries for these maps. Let ν be the primitive 2nth
root of unity. Then we have Fλ(νz) = νnFλ(z), so it follows easily that J(Fλ)
is invariant under z 7→ νz. Also, let Hλ(z) be one of the n involutions given
by Hλ(z) = λ1/n/z. Then we have Fλ(Hλ(z)) = Fλ(z), so the Julia set is
also preserved by each of these involutions.

The parameter plane for Fλ also possesses several symmetries. First of
all, we have Fλ(z) = Fλ(z) so that Fλ and Fλ are conjugate via the map
z 7→ z. The parameter plane is also symmetric under z 7→ ωz where ω is
an (n − 1)st root of unity, though the symmetrically located maps are not
always conjugate (though their second iterates are conjugate). See [6] for
details.

When |z| is large, the term λ/zn in the formula for Fλ is negligible, so
Fλ(z) ≈ zn near ∞. Consequently, the point at ∞ is a superattracting fixed
point for Fλ, so we have an immediate basin of attraction Bλ at ∞. Since
Fλ has a pole of order n at 0, there is an open neighborhood of 0 that is
mapped n-to-one onto a neighborhood of ∞ in Bλ. If the immediate basin
of ∞ is disjoint from this neighborhood around the origin, then there is an
open set about 0 that is mapped n-to-one onto Bλ. This set is called the
trap door , since any orbit that eventually enters Bλ must do so by passing
through the trap door. We denote the trap door by Tλ.

As in the case of the quadratic polynomials z2 + c, the orbits of the free
critical points may tend to ∞. However, unlike the quadratic case, there
are three distinct ways these critical orbits escape, and these lead to three
different types of Julia sets for these maps. The following theorem was proved
in [6].
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Theorem (The escape trichotomy).
1. If vλ lies in Bλ, then J(Fλ) is a Cantor set.
2. If vλ lies in Tλ 6= Bλ, then J(Fλ) is a Cantor set of concentric simple

closed curves surrounding the origin.
3. In all other cases, J(Fλ) is a connected set. In particular, if F jλ(vλ) ∈
Tλ 6= Bλ for some j ≥ 1, then J(Fλ) is a Sierpiński curve.

We remark that case 2 of this theorem does not occur when n = 2; this
is one of the reasons why we restrict n to be larger than 2. See Figure 1 for
a picture of the parameter planes for the cases n = 3 and n = 4. In each
case, the exterior region contains the parameters for which the Julia set is a
Cantor set; this is the Cantor set locus. The small, central disk is the region
where the Julia set is a Cantor set of circles; this is the McMullen domain
as it was McMullen who first discovered this type of Julia set (see [8]). The
complement of these two regions is the connectedness locus. The “holes” in
this region are the sets where the Julia set is a Sierpiński curve; we call these
regions Sierpiński holes. See [1], [2], and [5] for other ways that Sierpiński
curve Julia sets arise in this family.

Note that there are two large Mandelbrot sets along the real axis in the
parameter plane for n = 3 and three when n = 4. In general, there are n− 1
symmetrically located Mandelbrot sets in the parameter plane for zn+λ/zn.
These are the so-called principal Mandelbrot sets; their existence was shown
in [3]. In this paper we shall prove the existence of infinitely many other
Mandelbrot sets some of which are visible in Figure 1.

Fig. 1. The parameter planes when n = 3 and n = 4

Finally, since ∞ is superattracting, there is a Böttcher coordinate in a
neighborhood of∞. This is an analytic map φλ that conjugates Fλ to z 7→ zn
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near ∞. It is known that

φλ(z) = lim
k→∞

(F kλ (z))n
−k
.

Furthermore, φλ is unique up to multiplication by an (n− 1)st root of unity
and we may choose φ′λ(∞) = 1. See [9], [11].

2. Internal rays in the dynamical plane. In this section, for sim-
plicity, we restrict attention to the family of maps

Fλ(z) = z3 + λ/z3.

At the end of this paper we sketch the straightforward modifications needed
to extend these results to the case where n > 3. Because of the (n− 1)-fold
symmetry in the parameter plane noted earlier, we may restrict attention
to parameters λ that lie in the upper half-plane which we denote by H.
Since Fλ and F−λ are conjugate by the map z 7→ −z, the construction below
works equally well for parameters for which π < Arg λ < 2π. The case where
λ ∈ R is somewhat special but straightforward; this case will be discussed
later.

Let c0 = c0(λ) = λ1/6 denote the critical point that lies on the real
axis when λ ∈ R+ and that varies analytically as λ ranges through H. Let
cj = cj(λ) = c0 exp(2πij/6), so the cj are arranged in counterclockwise order
around the origin as j increases. Three of the critical points (namely, c0, c2,
and c−2) are mapped to vλ = 2

√
λ which lies in the region 0 < Arg vλ < π/2;

the other three critical points are mapped to −vλ, which lies in the negative
of this region.

The straight line connecting the origin to ∞ and passing through cj is
called a critical point ray and is denoted by ζj . For j = 0, 1, 2, 3, let Sj be the
closed sector bounded by the critcal point rays ζj and ζj+1. Define S−1 to be
−S1 and S−2 to be −S2. So these sectors are arranged in counterclockwise
order about the origin as S0, S1, S2, S3, S−1, S−2. The reason for this some-
what peculiar ordering will become clear when we define the internal rays
for these maps. Sj is called a prepole sector since there is a unique prepole
at the “center” of each Sj . One checks easily that the image of ζj under Fλ is
a straight ray connecting one of the two critical values to∞; we call this ray
a critical value ray. Note that, since λ does not lie in R+, the image of each
critical point ray lies in the interior of either S0 or S3 for each λ. As a con-
sequence, it follows that Fλ maps each of S1, S2, S−1, and S−2 univalently
over a region that contains the union of these four sectors. The internal rays
that we consider in this paper will always lie in one of these four sectors.

Let γλ denote the circle of radius r = r(λ) centered at the origin and
lying in Bλ. We choose r so that r(λ) depends smoothly on λ and Fλ(γλ)
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Fig. 2. The region I

lies strictly outside γλ. Let µλ be the circle of radius |λ|1/3/r; that is, µλ =
Hλ(γλ). So Fλ(γλ) = Fλ(µλ) and Fλ also maps µλ strictly outside γλ.

Now consider the closed region in each Sj bounded on the outside by γλ
and on the inside by µλ. Denote this region by Ij = Ij(λ). Let I = I(λ)
denote the union of the four regions I1, I2, I−1, and I−2. The two regions I0
and I3 are not contained in I. See Figure 2. Let Λλ denote the set of points
whose orbits remain in I for all iterations. Then we have:

Proposition. The set Λλ is homeomorphic to a Cantor set for each
λ ∈ H. Also, Fλ|Λλ is conjugate to the one-sided shift on the four symbols
±1,±2. The sets Λλ vary analytically with λ ∈ H.

Proof. For each λ ∈ H, Fλ maps the boundary curves γλ and µλ strictly
outside γλ, and hence outside I. Also, Fλ maps the two critical point ray
boundaries of each of the Ij in I to the two critical value rays, both of which
lie in the interior of S0 or S3 for each λ ∈ H and hence also outside I.
Therefore it follows that Fλ maps each Ij in I univalently onto a region that
completely covers each of the other Ik in I. Standard arguments from com-
plex dynamics then give that Λλ is a Cantor set with Fλ|Λλ conjugate to the
one-sided shift map on the four symbols ±1,±2. Since the Ij vary analyti-
cally with λ, we have that the points in Λλ also vary analytically with λ.

Remark. We emphasize that the set Λλ is only a subset of J(Fλ); in-
deed, J itself may be connected.

LetΣ denote the space of one-sided sequences of the four symbols±1,±2,
and let σ : Σ → Σ be the one-sided shift map. By the preceding proposition,
each point in Λλ corresponds a unique itinerary s = (s0, s1, s2, . . .) ∈ Σ.

We shall next be concerned with a special subset Γ of Σ. The subset Γ
consists of all sequences in Σ satisfying:

1. the digits −1 and 2 can only be followed by either 1 or 2;
2. the digits 1 and −2 can only be followed by either −1 or −2.
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Clearly, Γ is a shift-invariant subset of Σ. Indeed, the shift map on Γ can
be thought of as the subshift of finite type on the four symbols ±1,±2 that
obeys the above rules.

We can think of Γ in another way. Let τ denote the angle-tripling map
on the unit circle, i.e., τ(θ) = 3θ mod 1 where θ is defined mod 1. Consider
the four arcs in the circle given by J1 = [1/4, 1/3], J2 = [5/12, 1/2], J−1 =
[3/4, 5/6], and J−2 = [11/12, 1]. Then it follows immediately that τ expands
J1 and J−2 over both J−1 and J−2, while τ expands J2 and J−1 over J1

and J2. Thus the set of points on the unit circle whose orbits under τ re-
main for all iterations in these four arcs is homeomorphic to the set Γ and,
moreover, the map τ on this set is conjugate to the shift map on Γ . With a
slight abuse of notation, we denote the set of all of these angles on the unit
circle by Γ as well. We similarly denote the itinerary of the angle θ under τ
by s(θ) = (s0, s1, s2, . . .) ∈ Γ .

As a remark, we could equally well have defined Γ to be the set of angles
that remain in the two arcs [1/4, 1/2] and [3/4, 1] under angle tripling mod 1.
We prefer the above definition since it matches with the subshift definition
given earlier.

As mentioned earlier, since ∞ is superattracting, we have a Böttcher
coordinate φλ : Bλ → C−D. This is an analytic map that conjugates Fλ in
a neighborhood of ∞ to the map z 7→ z3 also near ∞. We may choose φλ
so that φ′λ(∞) = 1. It is known that, when λ lies in the connectedness locus
or in the McMullen domain, φλ may be extended to a map that takes Bλ
univalently onto the exterior of the closed unit disk in the Riemann sphere
(see [9], [11]). When λ lies in the Cantor set locus, the domain of φλ is smaller
due to the presence of critical points in Bλ.

Given an angle θ mod 1, the external ray of angle θ, denoted by ξθλ(t),
is the image of the straight ray t 7→ t exp(2πiθ), t ∈ (1,∞], under the
inverse map φ−1

λ . We set ξθλ(∞) = ∞ for each θ ∈ Γ . When λ lies in the
connectedness locus or the McMullen domain, each ξθλ(t) is defined for all
t > 1, and all of these external rays accumulate on the boundary of Bλ,
though they may not limit on a unique landing point in ∂Bλ if ∂Bλ is not
locally connected. However, the following proposition shows that we always
do have a unique landing point whenever the angle θ lies in Γ ; in particular,
this also occurs in case λ lies in the Cantor set locus.

Proposition. Let θ ∈ Γ and λ ∈ H. Then the external ray ξθλ may be
extended so that it lands on (i.e., tends to a limit as t → 1 at) the unique
point in Λλ whose itinerary is the same as that of θ under the angle-tripling
map τ .

Proof. Recall that each of the prepole sectors S1, S2, S−1, and S−2 is
mapped univalently over the union of all four of these sectors by Fλ and
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that the exterior of the circle γλ of radius r = r(λ) lies in Bλ. Given λ ∈ H,
let Nr = {z | |z| ≥ r(λ)} and let N j

r = Nr ∩ Sj . Since φ′λ(∞) = 1, we may
further assume that r(λ) is chosen large enough so that, for each θ ∈ Γ ,
the portion of the external ray ξθλ lying in Nr is precisely the set of points
in Nr whose orbits have the exact same itinerary through the sets N j

r as the
angle θ has under τ , namely s(θ).

Now we can extend this concept to the entire collection of sectors Sj with
j = ±1,±2 by pulling back the portions of the external rays that lie in Nr

by F−1
λ . More precisely, take the portion of the external ray with itinerary

(s1, s2, s3, . . .) that lies in N s1
r and pull it back under F−1

λ into Ss0 . This
extends the portion of ξθλ lying in N s0

r further back into Ss0 . Continuing in
this fashion with the portion of the ray with itinerary (sn, sn+1, sn+2, . . .)
in N sn

r shows that the entire external ray ξθλ(t) for all t > 1 is defined and
lies in Ss0 .

Now suppose that ξθλ(t) accumulates on some point z ∈ C as t → 1.
Then z cannot lie in Bλ. This follows immediately when λ does not lie in
the Cantor set locus since φλ is defined and univalent on all of Bλ. If λ
does lie in the Cantor set locus and z lies in Bλ, then we may iterate Fλ
forward enough times so that F kλ (z) lies in the region where the Böttcher
coordinate is defined and analytic. But then the corresponding external ray
would accumulate on a point in Bλ as t→∞ and that cannot happen. Thus
ξθλ(t) must accumulate on a point in J(Fλ). But this accumulation point
must then have the same itinerary through the Sj as that of θ. However, we
know that there is a unique such point in the Julia set, namely the point
in Λλ with this itinerary. Thus each external ray ξθλ lands at the unique point
in ∂Bλ whose itinerary is the same as that of θ whenever θ ∈ Γ .

Given an itinerary s = s(θ) = (s0, s1, s2, . . .), we define the negative of
s to be the itinerary −s(θ) = (−s0,−s1,−s2, . . .) and the shift of s to be
σ(s) = (s1, s2, s3, . . .). Also, let θ̂ = θ + 1/2 mod 1 and τ̂(θ) = τ(θ) + 1/2
mod 1. Consequently, s(τ̂(θ)) = −σ(s(θ)). For example, if θ = 1/3, then
s(1/3) = (1,−2) and τ̂(1/3) = 1/2. So we have s(τ̂(1/3)) = s(1/2) = (2) =
−σ(s(1/3)) as required.

Let S denote the union of the four sectors S±1 and S±2. Given a point
z whose entire orbit lies in S, we may define its itinerary as above to be
s(z) = (s0, s1, s2, . . .) where sj = k implies that F jλ(z) ∈ Sk. Note that, even
though a pair of sectors overlap along the critical point rays, points on these
rays are mapped immediately outside of S. Consequently, the itinerary s(z)
is always well-defined when the entire orbit of z lies in S.
Definition. Let θ ∈ Γ and suppose that s(θ) = (s0, s1, s2, . . .). The full

ray of angle θ, denoted by ωθλ, consists of all points in S whose itinerary is of
the form (s0,±s1,±s2,±s3, . . .) together with the origin and∞. That is, ωθλ
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consists of all points in Ss0 whose itinerary is the same as that of θ, except
that we may change the sign of any of the sj with j > 0.

Note that in this definition we always choose θ so that s(θ) ∈ Γ . However,
the points on the full ray with angle θ have itineraries that lie in the larger
set Σ, not just Γ . Also, note that the external ray ξθλ is part of the full ray
ωθλ since all points on the external ray have itinerary s(θ). This implies that
the set of points in Λλ whose itinerary corresponds to an angle in Γ lies in
∂Bλ when λ lies in the connectedness locus or the McMullen domain. This is
the dynamical significance of the set Γ . We also denote the pair of full rays
ωθλ ∪ωθ̂λ by Ωθ

λ (or, equally well, Ωθ̂
λ). Finally, this defintion explains why we

choose the peculiar ordering of the Sj when j is negative; we only have to
change the signs of the sj to determine all points in the full ray.

Definition. The internal ray of angle θ, denoted νθλ, is the complement
of the external ray ξθλ in the full ray ωθλ.

Theorem. Let λ ∈ H and θ ∈ Γ . Then the full ray ωθλ has the following
properties:

1. ωθλ meets J(Fλ) in a Cantor set of points.
2. ωθλ is mapped univalently onto the pair of full rays Ωτ(θ)

λ .
3. ωθλ is a continuous curve extending from 0 to ∞, i.e., there is a con-

tinuous, one-to-one map taking the closed half-line [0,∞] onto ωθλ.

Proof. For part 1, consider the portion of ωθλ that lies inside the bounded
region Is0 ⊂ Ss0 and contains no points whose orbits tend to ∞, i.e., the en-
tire orbit lies in I. This portion of ωθλ corresponds exactly to the set of points
in Λλ whose itinerary in Σ is a sequence of the form (s0,±s1,±s2,±s3, . . .).
As shown earlier, there is exactly one such point for each given sequence,
and these points lie in J(Fλ). It follows immediately that the points with
these itineraries form a Cantor set in Is0 .

For part 2, we see that ωθλ can be divided into two disjoint subsets, those
points with itinerary (s0,+s1,±s2,±s3,±s4, . . .) and those with itinerary
(s0,−s1,±s2,±s3,±s4, . . .). These portions of ωθλ are mapped one-to-one by
Fλ onto ωτ(θ)λ and ωτ̂(θ)λ respectively since Fλ|Ss0 is univalent.

Finally, for part 3, we first note that there is a preimage of the external
ray ξτ̂(θ)λ that lies in Ss0 and connects a point in J(Fλ) to the origin. This
arc then lies in ωθλ since its itinerary is (s0,−s1,−s2,−s3 . . .). If λ lies in the
connectedness locus or the McMullen domain, then this arc lies in the trap
door.

Now consider the pair of full rays ωθλ and ωθ̂λ. We first claim that this set
of points is a closed, connected set. To see this, note that the set of points
whose itinerary begins with either s0 or −s0 is a closed connected set in C
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(here as elsewhere we include both the origin and∞ in this set). Indeed, this
set is just the two closed sectors Ss0 and S−s0 . In the Riemann sphere, this
set is a pair of closed “disks” that meet at two points, namely at 0 and ∞.
Recall that each of these sectors is mapped univalently over Ss1 ∪ S−s1 . We
therefore have a preimage of Ss1 ∪S−s1 in each of Ss0 and S−s0 , and each of
these preimages connects 0 to∞. So the set of points whose itinerary begins
±s0,±s1 is then a string of four closed disks that are contained in Ss0∪S−s0 .
Each of these disks meet exactly two of the other disks, one at either 0 or∞
and the other at one of the two preimages of 0 that lie in the previous set.
Then the preimage of this set is a string of eight closed disks, each of which
meets exactly two others at 0,∞, or their first or second preimages, and this
string of disks is again contained in the previous set. Continuing inductively,
we see that the set of points with this set of itineraries is a nested intersection
of closed, connected sets in C, each of which is a string of 2n closed disks,
and each of these disks meets exactly two others at different points on its
boundary. Hence the intersection is also a closed, connected set.

Now any point in ωθλ that is not in J(Fλ) must lie in the Fatou set. If
such a point does not eventually tend to ∞, its orbit must be bounded. But
then this point would correspond to some point in Λλ which then must lie in
J(Fλ). Therefore, the orbits of all other points in ωθλ must eventually tend
to∞. This implies that they must, at some iteration, say the nth, land on an
external ray in S whose itinerary is of the form (±sn,±sn+1,±sn+2, . . .). But
there are only two choices for such an external ray. To see this, recall that
the itinerary of any external ray whose orbit lies in S corresponds to that of
an angle in Γ . We know two possible such external angles, namely τn(θ) and
τ̂n(θ), i.e., the itineraries (sn, sn+1, sn+2, . . .) and (−sn,−sn+1,−sn+2, . . .).
Any other possible itinerary involving these digits would then change some
digit following sn or −sn in this sequence. Say sn+k is changed where k > 0.
Then, to keep this sequence in ωθλ, we can only change sn+k to −sn+k. But,
if sn+k is allowed to follow sn+k−1, then the rules governing the itineraries
in Γ say that −sn+k cannot follow sn+k−1.

As a consequence, ωθλ consists of the external ray ξθλ, the preimage of
ξ
τ̂(θ)
λ connecting to the origin, the Cantor set of points described earlier, and
all points with the required itinerary that eventually land on the external
rays with angle τn(θ) or τ̂n(θ), n > 1, together with 0 and ∞. But, for each
n > 1, there are only a finite number of such preimages, in fact, exactly
2n−1 such arcs. Each of these curves then connects to a single point in the
Cantor set portion of ωθλ since we know that the original external rays of
angle ±θ have this property. The other endpoint of these curves is one of the
2n−2 nth preimages of ∞ in ωθλ. Since, as we showed above, the union of all
of the points in ωθλ is closed and connected, it then follows that the entire
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set must be a closed curve that extends from 0 to ∞. Here the preimages
of the two external rays with angle ±τn(θ) fill in the “gaps” in the Cantor
set, since there are a pair of preimages of the external rays that connect to
each preimage of 0 and also to a pair of points in J(Fλ). This completes the
proof.

As a consequence of this result, we can identify any point on the internal
ray νθλ uniquely as follows.
Theorem (Internal ray specification). Let z ∈ νθλ. Then we may iden-

tify z uniquely by:

1. If z ∈ νθλ ∩ Λλ, then we simply specify its itinerary in Σ.
2. If z lies in the complement of this set in νθλ, then there is a first iterate,

say the kth where k ≥ 1, at which the orbit of this point reaches Bλ.
Then this point lies on the external ray with angle either τk(θ) or
τ̂k(θ), so on some point of the form either ξτ

k(θ)
λ (t) or ξτ̂

k(θ)
λ (t). So

we may specify this point uniquely by giving θ, t, and which of the two
external angles τk(θ) or τ̂k(θ) the orbit of z lands on.

Remark. As mentioned above, the case where λ lies in the lower half-
plane is entirely analogous, as the parameter plane is symmetric with respect
to complex conjugation. The case where λ ∈ R is somewhat different. For
example, if λ ∈ R+, the critical values have orbits that remain in R. If this
orbit is bounded, we can then extend the definition of the internal rays to
include those in the sectors S0 and S3. The difference arises in that certain
external rays now separate into a pair of internal rays when they enter the
Julia set. For example, the external ray along R+ now joins up with the
internal ray with itinerary 0 in S0 and also with the internal ray 2 in S2.
Despite these differences, most of the above construction then proceeds in
similar fashion, though the symbolic dynamics is now more complicated. We
leave the details of this special case to the reader.

3. Intertwined internal rays. In this section, we show how the internal
rays whose angle θ lies in Γ are always “intertwined.” By intertwined, we
mean that each of these internal rays crosses infinitely many other such
internal rays. More precisely, we shall prove:
Theorem (Intertwined internal rays). Let θ ∈ Γ and suppose the first

digit of s(θ) is s0. Then the internal ray of angle θ crosses every other in-
ternal ray whose angle lies in Γ and whose itinerary begins with s0 at some
interior point of Ss0.

Proof. For definiteness, we first consider the external rays that lie in the
sector S2. These external rays are mapped univalently onto the set of all
external rays of angle τ(θ) ∈ Γ lying in S1 ∪S2. Moreover, the external rays
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in S2 are arranged in the exact same order in S2 as θ is ordered in Γ . That
is, if θ1 < θ2, then ξθ1λ lies above ξθ2λ in the sector S2.

Now each external ray ξθλ in S2 connects to a unique internal ray νθλ that
also lies in S2, and each of these internal rays contains an arc in the Fatou
set that extends from the origin to a first point in J(Fλ). Call this arc µθλ.
Then µθλ is the preimage in S2 of the external ray ξτ̂(θ)λ . The collection of
arcs µθλ in S2 is just the collection of all preimages of external rays that lie
in S−1 ∪ S−2 (with angles in Γ ).

We claim that the arcs µθλ are arranged around the origin in S0 in the
exact opposite order of the ξθλ as θ increases. This occurs since, close to the
origin, Fλ ≈ λ/z3, so Fλ reverses the ordering of rays near the origin as they
are mapped to the external rays near ∞. That is, if θ1 < θ2, then µθ2λ lies
above µθ1λ in the natural ordering of these rays around the origin in S2. Since
ξθλ must connect to µθλ for each θ, it then follows that any two internal rays of
different angles must cross at some point in S2 that is not the origin nor ∞.

For rays lying in the other sectors similar arguments work as well.

As a specific example of intertwining, let θ = 1/2. Then s(1/2) = (2),
and ξ1/2λ is the fixed external ray lying in S2. Similarly, when θ = 0, ξ0λ lies
in S−2 and has itinerary (−2). So ω1/2

λ is mapped over the pair of full rays
ω

1/2
λ and ω0

λ, which we have named Ω
1/2
λ (or Ω0

λ). Similarly, θ = 1/4 has
itinerary s(1/4) = (1,−1) so ξ1/4λ lies in S1 and is mapped to ξ3/4λ in S−1,
while ξ3/4λ is mapped back to ξ1/4λ . So ω1/4

λ lies in S1 and is mapped over
Ω

1/4
λ , while ω3/4

λ lies in S−1 and is also mapped onto the same pair of full
rays. Note that Ω1/2

λ is a simple closed curve in the Riemann sphere that
passes through the origin and∞ and lies in S2∪S−2, while Ω

1/4
λ is a similar

simple closed curve that lies in S1 ∪ S−1. Hence these curves only meet at 0
and∞. Also note that Fλ(Ω

1/2
λ ) = Ω

1/2
λ and Fλ(Ω

1/4
λ ) = Ω

1/4
λ ; indeed, these

are the only pairs of full rays that are mapped over themselves by Fλ.
Now consider the preimages of Ω1/2

λ and Ω1/4
λ in S. One computes that

Fλ(Ω
1/3
λ ) = Ω0

λ = Ω
1/2
λ and Fλ(Ω

5/12
λ ) = Ω

1/4
λ . Each of the two curves Ω1/3

λ

and Ω5/12
λ must pass through the two preimages of 0 in the pair of sectors in

which they reside, so Ω5/12
λ meets Ω1/2

λ in a total of four points, the origin,
∞, and the two preimages of 0. Similarly, Ω1/3

λ meets Ω1/4
λ in four points.

See Figure 3. In similar fashion, one computes that the preimage of Ω5/12
λ in

S2 ∪ S−2, i.e., Ω
17/36
λ , meets Ω1/2

λ in eight points, the previous four points
plus four of the second preimages of 0 lying in this region. Similarly, the
preimages of ω5/12

λ in S1 ∪ S−1, namely Ω11/36
λ , meets Ω1/3

λ in eight points.
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5/6
λ

ω
1/3
λ

Fig. 3. Some of the rays in the dynamical plane for a fixed λ ∈ H

Continuing in this fashion, we see that any full ray that is a jth preimage of
Ω

1/2
λ or ω1/4

λ meets these curves in exactly 2j points.
In particular, note that every internal ray whose itinerary begins with

the digit s0 must pass through the preimage of 0 that lies in the sector Ss0 .
Indeed, infinitely many internal rays whose itinerary is allowable cross at
each kth preimage of 0.

4. A model for the internal rays. In this section we construct a
piecewise linear model that exhibits the structure of the internal rays de-
scribed in the previous two sections. The model for this collection of rays
will be drawn in the Sierpiński carpet. This is not intended to say that the
Julia sets through which we have drawn the internal rays are always Sier-
piński curves; they sometimes are but they need not be such sets. We use
the carpet only to facilitate the drawing of the model for these internal rays.

Recall that the Sierpiński carpet consists of infinitely many smaller copies
of itself. At stage one, we have the entire carpet. At stage 2, we may break
the carpet up into eight copies of itself, each of which is one-third the size of
the original. At stage 3, there are 82 copies of the carpet that are 1/32 the
size of the original, and so forth. We will draw three types of internal straight
rays in certain of these self-similar portions of the carpet: horizontal rays,
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diagonal rays, and connecting rays. By a horizontal ray, we always mean a
straight line passing left to right through the center of a Sierpiński carpet,
and by a diagonal ray, we always mean a straight line connecting the upper
left corner of a carpet to the lower right corner.

We proceed inductively. At stage one, we draw a horizontal and diagonal
ray through the entire carpet. The horizontal ray corresponds to the internal
rays ν0

λ ∪ ν
1/2
λ while the diagonal ray corresponds to ν1/4

λ ∪ ν3/4
λ . Note that

these rays meet only at the center of the carpet.
Note that these two rays cross through four of the eight copies of the

carpet at stage 2. In each of these four smaller carpets, we either have a
smaller diagonal or a smaller horizontal ray. So, at this stage, we add a new
ray to this carpet of the opposite type; that is, if there is a diagonal ray in
this stage 2 carpet, we add a horizontal ray. So we have added four portions
of rays so far. Now what we do is join up these portions of the rays with
connecting rays which are straight lines passing through the center of the
original carpet and joining the endpoints of a pair of rays just constructed.
That is, we join up the two new horizontal rays with a connecting ray and
the two new diagonal rays as well. See Figure 4. This produces two new rays
that correspond to the internal rays ν1/3

λ , ν5/12
λ , ν5/6

λ , and ν11/12
λ .
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Fig. 4. The first two stages of the construction of the piecewise linear model for the
intertwined rays. The rays that correspond to νp/qλ in Figure 3 are indicated by p/q.

Now we proceed inductively. At stage 3, our previously constructed (in
stage 1 and stage 2) diagonal and horizontal rays (not the connecting rays)
cross through exactly 42 copies of the carpet at stage 3, so we again adjoin
a ray of the opposite type in each of these carpets. Then we connect up
these rays as follows. First, inside the smaller stage 2 carpets, we pass a
connecting line through the center of this smaller carpet and join the ends
of symmetrically located rays. Then, in the original carpet, we connect up
the endpoints with connecting rays passing through the center of the largest
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Fig. 5. The first three stages of the construction of the piecewise linear model for the
intertwined rays.

carpet. See Figure 5. Taking the limit of this process yields an uncountable
collection of curves in the carpet. Given a vertical line through the carpet,
this collection of curves meets this line in a Cantor set of points provided that
the vertical line does not pass through the center of any of the complementary
squares. On the other hand, this collection of curves meets the vertical lines
that pass through the centers of the complementary squares in only finitely
many points, indeed, in exactly 2k−1 points if the complementary square is
at the center of a stage k carpet.

One checks easily that, using the mapping properties of Fλ on the various
sectors Sj , this construction corresponds exactly to that of the internal rays
in the dynamical plane.

5. Baby Mandelbrot sets. Our goal in this section is to prove the
existence of infinitely many disjoint copies of the Mandelbrot set in the
parameter plane for z3 + λ/z3. We continue to assume that λ lies in H, the
upper half-plane, at least initially. Let Rλ denote the collection of all full
rays whose angle θ lies in Γ . The set Rλ is a closed subset of the Riemann
sphere whose complement consists of a countable collection of open disks
(recall that 0 and ∞ lie on all of the full rays). One of these complementary
disks contains the critical value vλ that lies in the upper half-plane; call this
disk U0. Note that U0 contains the entire sector S0 as well as portions of both
S1 and S−2. Another complementary disk is U3 = −U0. This disk contains
the entire sector S3 and also pieces of S2 and S−1. Note that U0 contains the
critical points c0 and c1 that lie on the boundary of S0, while U3 contains
the critical points c3 and c−2 lying on the boundary of S3. See Figure 6.

There are two other open sets in the complement of Rλ that contain
critical points. Let U2 be the open disk containing c2, and U−1 the open disk
containing c−1. Then U2 is the region that separates the full rays in S2 from
those in S1, while U−1 separates the full rays in S−1 from those in S−2.
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Fig. 6. Some of the rays in Rλ and the Uj .

Let Xλ denote the complement of the two disks U0 and U3. Then Xλ
is a closed subset of the Riemann sphere that contains Rλ, U2, U−1, and
countably many other open disks.

We next discuss how Fλ acts on the complementary domains in Rλ.
First, Rλ is Fλ-invariant and Fλ maps this set of full rays four-to-one onto
itself. It follows that the open disk U2 is mapped two-to-one onto U0 since
Fλ(c2) = vλ. Similarly, U−1 is mapped two-to-one onto U3. These are the
only open disks in Xλ that are mapped outside Xλ.

There must be two other preimages of Xλ, and so one of these preimages
lies in U0; call this preimage X 0

λ . The other preimage lies in U3 and is called
X 3
λ = −X 0

λ . Note that each of these sets is mapped one-to-one onto Xλ. Thus
we have all of the preimages of Xλ and all we need are the four remaining
preimages of U0 and U3. These necessarily lie in U0 and U3.

Since vλ lies in U0, it follows that there is an open set in U0 − X 0
λ that

contains c0 and is mapped two-to-one onto U0 and another open set that
contains c1 and is mapped two-to-one onto U3. Similarly, there are a pair of
open sets in U3 − X 3

λ each of which contains a critical point and is mapped
two-to-one onto either U0 or U3. To summarize all of this, we have shown:

Proposition.

1. Fλ maps U2 two-to-one onto U0.
2. Fλ maps U−1 two-to-one onto U3.
3. Fλ maps U0 (and U3) two-to-one onto U0∪U3 and one-to-one onto Xλ.
4. Fλ maps Xλ two-to-one onto both U3 and U0 and four-to-one onto

itself.

In order to prove the existence of baby Mandelbrot sets for this family,
we first recall the theory of polynomial-like maps. Suppose V ′ ⊂ V are a pair
of bounded, open, simply connected subsets of C with V ′ relatively compact
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in V . A map G : V ′ → V is called a polynomial-like map of degree two if
G is holomorphic and proper of degree two. Hence such a map has a unique
critical point c ∈ V ′. The filled Julia set of G is defined in the natural manner
as the set of points whose orbits never leave the subset V ′ under iteration
of G. By the results in [7], it is known that G is topologically conjugate to
some quadratic polynomial in a neighborhood of the polynomial’s filled Julia
set in C, hence the name polynomial-like.

Now suppose that we have a family of polynomial-like mapsGµ : V ′µ → Vµ
depending on a parameter µ ∈ C and satisfying:

1. The parameter µ lies in an open set in C that contains a closed disk
W , and the boundaries of V ′µ and Vµ vary analytically as µ varies.

2. The map (µ, z) 7→ Gµ(z) depends holomorphically on both µ and z.
3. Each Gµ : V ′µ → Vµ is polynomial-like of degree two.

Then we may consider the set of parameters in W for which the orbit of the
critical point, cµ, does not escape from V ′µ and so the corresponding filled
Julia set is connected. Suppose that for each µ in the boundary of W we
have that Gµ(cµ) lies in Vµ−V ′µ and that, moreover, Gµ(cµ)− cµ winds once
around 0 as µ winds once around the boundary of W . Then, in this case, it
is also shown in [7] that the set of µ-values for which the orbit of cµ does not
escape from V ′µ is homeomorphic to the Mandelbrot set and that the poly-
nomial to which Gµ corresponds under this homeomorphism is conjugate to
Gµ on some neighborhood of its Julia set. This result thus gives a criterion
for proving the existence of small copies of a Mandelbrot set inside H.

As a warm-up to how we will proceed to prove the existence of baby
Mandelbrot sets, consider the following scenario. Recall that the region X 0

λ
is mapped univalently over Xλ. Hence there is an open disk V ′λ ⊂ X 0

λ that is
mapped univalently onto the region U2. But then U2 is mapped two-to-one
onto U0 ⊃ V ′λ. So it appears that F 2

λ is a polynomial-like map taking V ′λ onto
the larger set U0. In addition, let the subset of the parameter plane we are
considering be the entire region H. Then the critical orbit for F 2

λ |V ′λ contains
c2 and lands, at the second iteration, on vλ. As λ winds once around H, the
critical value then winds once around the sector given by 0 ≤ Arg z ≤ π/2.

There are two problems with this argument. First, the disk V ′λ actually
extends all the way to∞, so V ′λ is not properly contained in F 2

λ (V ′λ). Second,
as we wind around the boundary of H, the critical value is no longer defined
for all λ.

To remedy these defects, we first restrict attention to the subset S of H
given by S = {λ ∈ C | |λ| < 2 and Imλ > 0}. Secondly, we constrain the
open disks Uj to lie in a region that is bounded away from both 0 and∞. We
accomplish this as follows. Choose a level curve β0 of the Green’s function
lying in Bλ and surrounding J(Fλ). Then Fλ maps β0 strictly outside itself.
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Let β1 be the curve in Tλ that is mapped onto Fλ(β0). Let Aλ denote the
annulus bounded by β0 and β1. So we see that, if λ ∈ S, Fλ maps both
boundary curves of Aλ strictly outside the β0. Furthermore, all of the critical
points of Fλ lie in Aλ.

U3

U0

U2

U−1

qc2
qc3

qc−2

qc−1

qc1
qc0

q−vλ
qvλ

Fig. 7. The regions Rλ and the Uj in Aλ

We now consider the restriction of the sets Rλ, Xλ, and the Uj to the
annulus Aλ. With a slight abuse of notation, we continue to denote these
sets by Rλ, Xλ, and Uj . Since Fλ takes Xλ four-to-one over itself (and both
critical points in Xλ are mapped outside of Xλ), it follows that there are four
preimages of U2 in Xλ. There are then 16 open disks lying in Xλ whose first
images under Fλ also lie in Xλ and whose image under F 2

λ is U2. Continuing,
there are 4k−2 open disks in Xλ whose images under F jλ , j = 0, . . . , k − 2,
lie in Xλ and such that F k−2

λ maps each of these sets univalently onto U2.
Hence F k−1

λ maps each of these sets in two-to-one fashion onto a set that
contains U0 and so the image of these sets completely contains the closure
of the set X 0

λ ⊂ U0. Moreover, the critical value for F k−1
λ on these sets is vλ.

Now Fλ takes X 0
λ univalently over a region containing Xλ. So there are

4k−2 open disks in X 0
λ each of which is mapped univalently onto one of the

4k−2 open disks in Xλ that are mapped by F k−2
λ over U2. Hence F kλ maps

each of these open disks in two-to-one fashion onto a disk that properly
contains each of them. Thus F kλ is a polynomial-like map of degree two on
each of these subsets. If we then let λ travel around the boundary of S, then
the critical value of F kλ on each of these sets, namely vλ, travels once around
the quarter of a disk bounded by |z| = 2

√
2, 0 ≤ Arg λ ≤ π/2, together with

the intervals in the positive real and imaginary axes connecting the origin
and 2

√
2. So the critical value winds once around each of the preimages

in X 0
λ . This shows that there are 4k−2 Mandelbrot sets with base period k
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(i.e., the period of the cycle corresponding to parameters drawn from the
main cardioid of these Mandelbrot sets is k).

Remarks. 1. Technically, we should not move the parameter around the
boundary of S since, when we pass through the origin, the critical value 2

√
λ

no longer varies analytically. However, if we take a slight diversion along a
semi-circle surrounding the origin and lying in the McMullen domain, the
previous argument then works as well. This proves the existence of infinitely
many copies of the Mandelbrot set in S.

2. For parameters drawn from these Mandelbrot sets, there are actu-
ally two attracting cycles with base period k. This follows since Fλ(−z) =
−Fλ(z). In the case above, there is only one preimage of U2 lying in X 0

λ and
none in X 3

λ . So the negatives of these preimages give another polynomial-like
map with exactly one preimage in X 3

λ and none in X 0
λ .

We call the Mandelbrot sets constructed above Type 1 Mandelbrot sets,
for there is another way Mandelbrot sets arise in the parameter plane, and
parameters from these Mandelbrot sets have somewhat different dynamical
behavior. Consider the 4k−2 preimages of U2 described above and lying in X .
There are the same number of preimages of these sets in X 3

λ , not X 0
λ as was

considered above. But then each of these sets is mapped by F kλ two-to-one
over the exact same region containing U0 above. So, for definiteness, call
one of these preimages V . Then F kλ maps V two-to-one over a region that
properly contains the set −V , not V . Now consider the map −F kλ on V .
This map is now a polynomial-like map of degree two on V , and, as above,
in the parameter plane corresponding to the map −F kλ there is again a copy
of the Mandelbrot set. But the dynamics of the second iterate of −F kλ and
the map of F 2k

λ are the same, so there is also a copy of a Mandelbrot set for
our family corresponding to the same parameters. The difference here is that
maps drawn from the main cardioid of this set now have an attracting cycle
of period 2k. Also, there are two critical points lying in the immediate basin
of this cycle, not 1, and the cycle is symmetric under z 7→ −z. We say that
these Mandelbrot sets also have base period k. This produces an additional
collection of 4k−2 baby Mandelbrot sets. We say that these Mandelbrot sets
also have base period k, and we call them Type 2 baby Mandelbrot sets.
We get a similar number of Type 1 and 2 Mandelbrot sets in the lower half
of the parameter plane by the complex conjugation symmetry, so this gives
a total of 4k−1 Type 1 and Type 2 baby Mandelbrot sets in the parameter
plane. Therefore we have proved:

Theorem. Let k ≥ 2. For the family of maps Fλ(z) = z3 + λ/z3, there
are 2 · 4k−2 Type 1 baby Mandelbrot sets with base period k in the parameter
plane for Fλ and the same number of Type 2 baby Mandelbrot sets with base
period k.
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6. Final remarks. In this paper we have concentrated on the family of
maps z3 + λ/z3. But all of the above results (except for the piecewise linear
model) go through in essentially the same manner for the families zn+λ/zn

with n > 3. The difference here is that we now work with 2n sectors given by
S0, S1, . . . , Sn together with S−j = −Sj for j = 1, . . . , n− 1. The parameter
plane now has (n− 1)-fold symmetry, so we restrict attention to parameters
that satisfy 0 < Arg λ < 2π/(n− 1). Then, as before, the two critical values
±2
√
λ lie in S0 and Sn. We then get a Cantor set of points Λλ lying in the

Julia set on which Fλ is conjugate to the shift map on the 2n − 2 symbols
±1, . . . ,±(n− 1). Let Σ now denote this sequence space.

Then we can define the relevant subset Γ ⊂ Σ in two ways. First, Γ
consists of all points on the unit circle whose angles mod 1 always lie in the
pair of arcs given by [1/(n+ 1), 1/2] and [n/(n+ 1), 1]. As a subshift of Σ,
Γ can also be defined as all sequences of symbols ±1,±2, . . .± (n−1) where

1. odd positive integers are only followed by negative integers;
2. even positive integers are only followed by positive integers;
3. odd negative integers are only followed by positive integers when n

is odd, but, if n is even, odd negative integers are only followed by
negative integers;

4. even negative integers are only followed by negative integers when n
is odd, but, if n is even, even negative integers are only followed by
positive integers.

Then the definition of the full and internal rays goes through exactly as
above.

We can also use the same techniques to produce copies of baby Man-
delbrot sets as in the previous section. One difference here is that, when n
is even, we no longer have the z 7→ −z symmetry that creates Type 1 and
2 Mandelbrot sets of base period k; instead, since all of the critical points
map to the same point at iteration two, the above techniques always produce
attracting cycles with period k, never 2k. In any event, a similar count yields
the existence of (n− 2)(2n− 2)k−1 baby Mandelbrot sets of base period k.
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