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Abstract. We show that all periods of periodic points forced by a pattern for interval
maps are preserved for high-dimensional maps if the multidimensional perturbation is
small. We also show that if an interval map has a fixed point associated with a homoclinic-
like orbit then any small multidimensional perturbation has periodic points of all periods.

1. Introduction. For continuous interval maps, the Šarkovskĭı theorem
[7, 8] is the complete answer to the following problem: Given a periodic orbit
of a specified period, find the other periods of periodic orbits that must exist.
One can classify patterns of orbits depending on the arithmetic ordering of
the points on the real line (Definition 2.1), and consider the so-called forcing
problem: Given a period-n orbit of a specified pattern, find, for any posi-
tive integer m, the patterns of period-m orbits that must exist. The forcing
problem is far from being completely solved yet. So far, there are some par-
tial results giving forcing relations such as: A periodic cycle with a certain
pattern forces the existence of periodic cycles with other patterns. In fact,
considering patterns characterized by one parameter, a chain of forcing rela-
tions established in [2, 3, 5, 9] provides a refinement of the Šarkovskĭı theorem
(see also [6, Theorem 2]). A further generalization to patterns characterized
by two parameters was given in [6, Theorem 3]. For more discussions on the
forcing problem, refer to [1] and [3].

In this paper, we study the stability of forcing relations for one-dimension-
al maps with respect to multidimensional perturbations. More precisely, let
Fλ be a one-parameter family of continuous maps on R×Rn such that Fλ(z)
is continuous as a function jointly of λ and z, where λ ∈ R is a parameter,
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and at λ = 0, the map F0 is of one of the following forms:

(i) F0(x, y) = (f(x), g(x)) ∈ R× Rn, where f : R→ R and g : R→ Rn

are continuous functions;
(ii) F0(x, y) = (f(x), g(x, y)) ∈ R × Rn, where f : R → R is continuous

and g : R× Rn → Rn is continuous and g(R× S) ⊂ int(S) for some
compact set S ⊂ Rn homeomorphic to the closed unit ball in Rn.

A natural question is which periods (or patterns) of periodic points the map
Fλ can have when f has a certain period (or pattern) of a periodic point and
|λ| is small.

For the case when g is the zero function, it was shown in [10] that if f
has a periodic point of period k, then for all sufficiently small |λ|, the map
Fλ has a periodic point of period less than k in the Šarkovskĭı ordering.

In the present paper, we remove the constraint g = 0 and consider per-
turbations of a larger class of maps, including the Hénon map Fb(x, y) =
(a− x2 + by, x). We show which periods of periodic points for Fλ are forced
by a given pattern for f . More precisely, first we show that if f has a peri-
odic point of any given pattern A, then for all sufficiently small |λ|, the map
Fλ has periodic points of periods of patterns forced by A (Theorem 2.2).
Second, we show that if there are two points α and β such that either
f(α) ≤ α < β < f(β) < f2(β) and f3(β) ≤ α, or the same with all
inequalities reversed, then for all sufficiently small |λ|, the map Fλ has pe-
riodic points of all periods (Theorem 2.3). In particular, one can consider
the case when f has a fixed point associated with a homoclinic-like point
(Example 6.1). Theorem 2.2 extends the result in [10] because of the Šarkov-
skĭı theorem. In the sense of multidimensional perturbations, Theorem 2.3
extends the results in [2, 5, 6] which concern a fixed point with homoclinic
orbits of certain patterns. The covering relations approach is the main tool
for the proof of our results.

The paper is organized as follows. In the next section, we state the main
results (Theorems 2.2 and 2.3) precisely along with the definition of patterns.
In Section 3, we state the Šarkovskĭı theorem and a stability result for mul-
tidimensional perturbations. In Section 4, we recall the notion of covering
relation and some related results. In Sections 5 and 6, we give the proof of
Theorems 2.2 and 2.3 along with respective examples.

2. Definitions and statement of theorems. First of all, we set up
some notations. For convenience, we will write V = R × Rn and represent
elements v ∈ V as pairs v = (x,w), where x ∈ R and w ∈ Rn. For a map
F : R × V → V, we will use the notation Fλ for the partial map with fixed
λ ∈ R, so Fλ(v) := F (λ, v) for v ∈ V . For a subset S of a metric space, let S,
int(S) and ∂S denote the closure, interior and boundary of S, respectively.
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Let us fix any norm ‖ · ‖ on Rn. For r > 0, we denote by Bn(r) the open ball
of radius r centered at the origin in Rn, i.e. Bn(r) = {w ∈ Rn : ‖w‖ < r},
and by C(r) the family of cylinders of the form [a, b] × Bn(r). When n = 0
the above notations for V and C(r) do not make sense and we let V = R
and C(r) be the set of all closed proper intervals, for any r.

Next, we define forcing relations and some basic terminology (refer to [1]).

Definition 2.1. We say that (P,ϕ) is a cycle if P ⊂ R is a finite
nonempty set and ϕ is a cyclic permutation of P . The number of elements
of P will be denoted by |P | and will be called the period of (P,ϕ). We also
denote by 〈P 〉 the smallest closed interval in R containing P . An interval
is said to be proper if it contains more than one point. If f is a continuous
map on R and (P,ϕ) is a cycle, we say that f has a cycle P is ϕ = f |P , the
restriction of f to P .

Let P be the set of all cycles in R. We define two equivalence relations
in P as follows. Let (P,ϕ), (Q,ψ) ∈ P. We say that (P,ϕ) ∼

pat
(Q,ψ) if and

only if there exists a homeomorphism h : 〈P 〉 → 〈Q〉 such that h(P ) = Q
and ψ ◦ h|P = h ◦ ϕ|Q. If additionally h can be chosen in such a way that
it preserves orientation, then we write (P,ϕ) ∼

opat
(Q,ψ). Equivalence classes

of the relation ∼
pat

(resp. ∼
opat

) in P will be called patterns (resp. oriented
patterns).

If A is a pattern (resp. oriented pattern) and (P,ϕ) ∈ A we say that the
cycle P has pattern A (resp. oriented pattern A), and the period of A is
defined to be |P | and will be denoted by |A|. An oriented pattern B is called
a component of a pattern A if there exists a cycle which has both oriented
pattern B and pattern A.

The forcing relations between patterns and oriented patterns are defined
as follows. Let A and B be two patterns (resp. oriented patterns). We say
that A forces B and write A=⇒

pat
B (resp. A=⇒

opat
B) if every continuous map

on R which has a cycle with pattern A (resp. oriented pattern A) has a cycle
with pattern B (resp. oriented pattern B).

For a pattern A, let Per(A) = {|B| : B 6= A is a pattern such that
A=⇒

pat
B}.

Now, we state the main results. The first one is that all periods of pe-
riodic points forced by a pattern for interval maps are preserved for high-
dimensional maps if the multidimensional perturbation is small.

Theorem 2.2. Let F : R × V → V be a continuous function such that
for all (x, y) ∈ V , either (i) F0(x, y) = (f(x), g(x)), where f is continu-
ous on R and g is a continuous function from R to Rn, or (ii) F0(x, y) =
(f(x), g(x, y)), where f is continuous on R and g is continuous on R×S and
g(R×S) ⊂ int(S), for some compact set S ⊂ Rn homeomorphic to the closed
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unit ball in Rn. If f exhibits a pattern A, then there exists a positive constant
λ0 such that if |λ| < λ0 then Fλ has periodic points of all periods in Per(A).

The second result shows that any small multidimensional perturbation
of an interval map with f(α) ≤ α < β < f(β) < f2(β) and f3(β) ≤ α has
periodic points of all periods.

Theorem 2.3. Let F : R × V → V be a continuous function such that
for all (x, y) ∈ V , either (i) F0(x, y) = (f(x), g(x)), where f is continu-
ous on R and g is a continuous function from R to Rn, or (ii) F0(x, y) =
(f(x), g(x, y)), where f is continuous on R and g is continuous on R × S
and g(R× S) ⊂ int(S), for some compact set S ⊂ Rn homeomorphic to the
closed unit ball in Rn. If there are two points α and β in R such that either
f(α) ≤ α < β < f(β) < f2(β) and f3(β) ≤ α, or the same with all inequal-
ities reversed , then there exists a positive constant λ0 such that if |λ| < λ0

then Fλ has periodic points of all periods.

3. Šarkovskĭı order. The Šarkovskĭı theorem [7, 8] yields forcing rela-
tions on periods for interval maps.

Theorem 3.1. Let f : I → R be a continuous map. If n B k and f has
a periodic point of period n then f also has a periodic point of period k,
where B, called the S̆arkovskĭı ordering of positive integers, is defined as
follows:

3 B 5 B 7 B · · ·B 2 · 3 B 2 · 5 B 2 · 7 B · · · B 22 · 3 B 22 · 5 B 22 · 7B

· · ·B 2i · 3 B 2i · 5 B 2i · 7 B · · ·B 2j B 2j−1 B · · ·B 22 B 2 B 1.

In [10] it was shown that the forcing relation on periods is stable with
respect to multidimensional perturbations of 1-dim maps. The precise state-
ment is

Theorem 3.2. Let f : R → R be continuous and F : [0, 1] × V → V be
continuous with F0(x,w) = (f(x), 0). If f has a periodic point of period k,
then for any r > 0, there exists λ0 > 0 such that for all 0 ≤ λ ≤ λ0 and
m 6= k with k B m, the map Fλ has a periodic point of period m in the set
R×Bn(r).

The proof of the above theorem uses the notion of covering relation
in multidimensional situation and the continuation of 1-dimensional orbits
with nonzero fixed point index for multidimensional perturbations of 1-
dimensional maps. This technique is recalled in Section 4.

4. Covering relations and continuation. In this section, we define
the notion of covering relation and introduce some related results which will
be used in the proof of the main results. In our presentation we follow [12],
where the results from [10] have been restated in a more readable form.
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For a cylinder N = [a, b]×Bn(r) ∈ C(r), we set

L(N) = {a} ×Bn(r), the left lid of N,

R(N) = {b} ×Bn(r), the right lid of N,
H(N) = [a, b]× ∂Bn(r), the horizontal boundary of N,
SL(N) = (−∞, a)×Bn(r), the left side of N,
SR(N) = (b,∞)×Bn(r), the right side of N.

Definition 4.1. Let N0, N1 ∈ C(r) and G : V → V be continuous. We
say that N0 G-covers N1 (horizontally) and write N0

G⇒ N1 if

(4.1) G(N0) ⊂ (−∞,∞)×Bn(r)
and one of the following two conditions holds:

G(L(N0)) ⊂ SL(N1) and G(R(N0)) ⊂ SR(N1),(4.2)
G(L(N0)) ⊂ SR(N1) and G(R(N0)) ⊂ SL(N1).(4.3)

Condition (4.1) means that the image of N0 under G is contained in the
“horizontal” strip defined by N1. Conditions (4.2) and (4.3) mean that the
left and right lids of N0 are mapped to different sides of N1.

We would like to adapt the above notion of horizontal covering to one-
dimensional maps.

Definition 4.2. Let N0, N1 be closed intervals and G : N0 → R. We
say that N0 G-covers N1 (horizontally) and write N0

G⇒ N1 if one of the
following two conditions holds:

G(L(N0)) ⊂ SL(N1) and G(R(N0)) ⊂ SR(N1)(4.4)
G(L(N0)) ⊂ SR(N1) and G(R(N0)) ⊂ SL(N1),(4.5)

where L([a, b]) = {a}, R([a, b]) = {b}, SL([a, b]) = (−∞, a), SR([a, b]) =
(b,∞).

The following result is the main tool based on covering relations, which
will be used to obtain periodic orbits.

Theorem 4.3 ([10, Theorem 4]). Let Ni ∈ C(r) and Gi : V → V for
0 ≤ i ≤ l. Suppose that

N0
G0==⇒ N1

G1==⇒ N2
G2==⇒ · · ·

Gl−1===⇒ Nl
Gl==⇒ N0.

Then there exists x ∈ int(N0) such that

Gi ◦Gi−1 ◦ · · · ◦G0(x) ∈ int(Ni+1) for 0 ≤ i ≤ l − 1

and
Gl ◦Gl−1 ◦ · · · ◦G0(x) = x.
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4.1. Nested sequences of topological horseshoes

Definition 4.4. If n > 0, then we assume that G : (−∞,∞)×Bn(r)→
(−∞,∞) × Bn(r) is continuous. If n = 0 we assume G : (−∞,∞) →
(−∞,∞) is continuous.

Let l ∈ N and k ∈ N ∪ {∞} be such that 0 < l < k. Let {N s
i ∈ C(r) :

i ∈ {0, 1} and l ≤ s ≤ k, s ∈ N} be a family of cylinders such that int(N l
0)∩

int(N l
1) = ∅ and N s

i ⊃ N s+1
i for i ∈ {0, 1} and l ≤ s ≤ k. We say that G

has an (l, k)-nested sequence of topological horseshoes if for all i ∈ {0, 1} and
l ≤ s ≤ k, N s

i horizontally Gs-covers both the cylinders N l
0 and N l

1.

Theorem 4.5 ([10]). Let G : (−∞,∞) × Bn(r) → (−∞,∞) × Bn(r)
be a continuous map and p ≥ 2 be an integer. If G has a (p, 2p − 1)-nested
sequence of topological horseshoes, then there exists an integer m(p) such
that G has periodic points of all periods greater than m(p).

For example m(2) = 6 and m(5) = 30. The proof of this theorem is based
on Theorem 4.3 and several arithmetical lemmas; see [10].

4.2. 1-dim coverings. Let us fix a 1-dimensional continuous map f . We
define a one-dimensional f -covering relation between segments.

Definition 4.6. Let I = [a, b] and J be two intervals. We denote
I

f,+1−−−→ J if f(a) < f(b) and J ⊂ [f(a), f(b)], and denote I f,−1−−−→ J if
f(b) < f(a) and J ⊂ [f(b), f(a)]. We say that I f -covers J and write I f→ J

if either I f,+1−−−→ J or I f,−1−−−→ J .

The above definition of covering relation for interval maps differs from
the standard one presented in [4] in two ways: here we require that the end-
points of I are mapped to different sides of J and we introduce a sign. Both
those features will be exploited in Section 4.3 devoted to the continuation of
individual periodic orbits.

Let us remark that the relation of horizontal covering is stronger than
the 1-dim covering : we have

if I f⇒ J then I f−→ J,

but there is no implication in the reverse direction (as an example, consider
the identity map). We need some condition which will guarantee the reverse
implication. The following trivial lemma presents such a condition.

Lemma 4.7. Let I and J be closed intervals with I f→ J . Then I
f⇒ K

for any closed interval K with K ⊂ int(J).

The following lemma is contained implicitly in the proof of Theorem 2.8.1
in [1]; in fact, it is an immediate consequence of Lemmas 2.6.9, 2.6.10, and
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2.6.12 therein. It demonstrates that a forcing relation for interval maps im-
plies existence of a closed loop of covering relations (in the sense of Defini-
tion 4.6).

Lemma 4.8. Let f : R→ R be a continuous map having a cycle with ori-
ented pattern A and assume that B 6= A is an oriented pattern and A=⇒

opat
B.

Then the map f has a cycle Q with oriented pattern B. Moreover , there
exists z ∈ Q̃ and closed proper intervals J0, J1, . . . , J|Q| such that the follow-
ing loop of 1-dim covering relations holds:

J0
f→ J1

f→ · · · f→ J|Q|−1
f→ J|Q|

and

J0 ⊂ J|Q|,
Ji ∩ Jj = ∅ for all 0 ≤ i, j ≤ |Q| − 1 with i 6= j,

f i(z) ∈ Ji for all 0 ≤ i ≤ |Q|,
f |Q|(t) 6= t for all t ∈ J0 ∩ ∂(J|Q|).

We also need the following lemma for the proof of our main results:

Lemma 4.9. Let f : R → R be a continuous map such that f has no
periodic point of period different from a power of 2 and f exhibits a pattern
A of period 2k for some integer k ≥ 0. If B is a pattern forced by A, then
the period of B is 2i for some integer 0 ≤ i ≤ k.

Proof. Let f exhibit the oriented pattern Ã for one of the components
Ã of A. By Corollary 2.7.1 of [1], Ã=⇒

opat
B̃ for one of the components B̃

of B. Since f has no periodic point of period different from a power of 2, by
Corollary 2.12.5 of [1], Ã is primary. By Theorem 2.11.1 of [1], Ã is simple.
Since |Ã| = 2k, by Lemma 2.11.5 of [1], |B̃| = 2i for some i ≤ k.

4.3. Continuation. Let f, g, Fλ be as in Theorems 2.2 or 3.2 with (i)
F0(x, y) = (f(x), g(x)) or (ii) F0(x, y) = (f(x), g(x, y)).

Lemma 4.10. Let p be a positive integer. Suppose that there exist inter-
vals I0, I1, . . . , Ip−1 such that the following covering relations for f hold :

(4.6) I0
f,ε1−−→ I1

f,ε2−−→ · · · f,εp−−→ I0 with ε1 . . . εp = −1,

where εi ∈ {−1, 1} for all 1 ≤ i ≤ p. Let I =
⋃p−1
i=0 Ii and r be a positive

number greater than the maximum of ‖g‖ on I for case (i) and on I × S for
case (ii). Then there exists λ0 > 0 such that for |λ| < λ0, the map Fλ has a
periodic point zλ such that

F iλ(zλ) ∈ int(Ii)×Bn(r) for all 0 ≤ i ≤ p− 1, F pλ (zλ) = zλ.
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The above lemma is adapted from [10, Theorem 14] in which g is assumed
to be the zero function and r is any positive number; the proof given there
also applies here if we take r as above.

In the one-dimensional situation this lemma expresses the method of
obtaining periodic points in the standard proof of the Šarkovskĭı theorem
(see for example [7], [9]). In this case the assumption concerning the product
of εi’s in (4.6) can be dropped.

5. The proof of Theorem 2.2 and an example. First, let us ob-
serve that Theorem 3.2 is also valid for Fλ satisfying the assumptions of
Theorem 2.2. Namely, we have the following

Theorem 5.1. Let F : R × V → V be a continuous function such that
for all (x, y) ∈ V , either (i) F0(x, y) = (f(x), g(x)), where f is continu-
ous on R and g is a continuous function from R to Rn, or (ii) F0(x, y) =
(f(x), g(x, y)), where f is continuous on R and g is continuous on R×S and
g(R×S) ⊂ int(S), for some compact set S ⊂ Rn homeomorphic to the closed
unit ball in Rn. If f has a periodic orbit of period k in a compact interval I,
than for any number r greater than the maximum of ‖g‖ on I for case (i)
and on I × S for case (ii), there exists λ0 > 0 such that for all |λ| ≤ λ0 and
m 6= k with k B m, the map Fλ has a periodic point of period m in the set
R×Bn(r).

With the choice of r as above, the proof of Theorem 3.2 from [10] is also
valid in the above situation.

We are in a position to prove the first main result.

Proof of Theorem 2.2. Let B be A or a pattern forced by A such that the
period of B, denoted by m, is maximal in the sense of the Šarkovskĭı order
in Per(A)∪ {|A|}, i.e. mB l for all l ∈ Per(A)∪ {|A|} with l 6= m. From the
Šarkovskĭı theorem it follows that Per(A) ∪ {|A|} = {m} ∪ {l ∈ N : mB l}.
Such a maximal period must exist due to Lemma 4.9.

From Theorem 5.1, it follows that for r sufficiently large, there exists
λ1 > 0 such that for all |λ| < λ1 the map Fλ has periodic points of all
periods in {l ∈ N : m B l} = Per(A) ∪ {|A|} \ {m} in the set I × Bn(r),
where I is the closed interval containing the orbit realizing pattern A. If
m = |A|, then we already have all periods from Per(A) for Fλ with |λ|
sufficiently small. Therefore we can assume that m 6= |A|, and hence B 6= A
and A=⇒

pat
B. From the above we have all periods from Per (A) \ {|B|} for

Fλ with |λ| sufficiently small and we have to prove that the pattern B can
be continued to a periodic orbit for Fλ of period |B|.

Since f exhibits a pattern A, f exhibits the oriented pattern Ã for one
of the components of A. Since A=⇒

pat
B, by Corollary 2.7.1 of [1], Ã=⇒

opat
B̃
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for one of the components of B. By Lemma 4.8 applied to Ã=⇒
opat

B̃ and f ,
there exist closed proper intervals J0, J1, . . . , Jm, where m = |B|, such that
the following loop of 1-dim covering relations holds:

J0
f→ J1

f→ · · · f→ Jm−1
f→ Jm

such that

J0 ⊂ Jm,
Ji ∩ Jj = ∅ for all 0 ≤ i, j ≤ m− 1 with i 6= j,

fm(t) 6= t for all t ∈ J0 ∩ ∂(Jm).

Hence fm(J0) ⊃ Jm. Thus there exist a, b ∈ J0 such that fm(a) = min(Jm)
and fm(b) = max(Jm). Since there is no t ∈ J0∩∂(Jm) such that fm(t) = t,
it follows that fm(a) < a and fm(b) > b.

We have two cases: a < b and a > b. Assume first that a < b. Observe
that [a, b] ⊂ int(Jm). By using Lemma 4.7, it is easy to find intervals Ki ⊂ Ji
for i = 0, . . . ,m− 1 such that

K0
f⇒ K1

f⇒ · · · f⇒ Km−1
f⇒ K0.

We set Ni = Ki × Bn(r). By the continuity of Fλ as a function of λ, there
exists 0 < λ2 ≤ λ1 such that for all |λ| < λ2,

N0
Fλ==⇒ N1

Fλ==⇒ · · · Fλ==⇒ Nm−1
Fλ==⇒ N0.

From Theorem 4.3, we obtain a periodic point of period m for Fλ with
|λ| < λ2.

Consider now the case a > b. It is easy to see that we can apply Lem-
ma 4.10 to obtain a periodic point of period m for Fλ with |λ| sufficiently
small.

Next, we give an example.

Example 5.2. Consider the case when f has a period-(m+ k) point x0.
Assume that the points of the orbit satisfy either

xm+k−1 < · · · < xk+1 < xk < x0 < x1 < x2 < · · · < xk−1

or the same with all inequalities reversed, where xi = f i(x0) for i ≥ 0. By
Theorems 2 and 3 of [6], the set of all periods of patterns which are forced
by the above pattern is N. By Theorem 2.2, for all sufficiently small |λ|, the
high-dimensional map Fλ has periodic points of all periods.

6. Proof of Theorem 2.3 and an example

Proof of Theorem 2.3. We will only prove the theorem when f(α) ≤
α < β < f(β) < f2(β) and f3(β) ≤ α; the proof for the case with all
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inequalities reversed is similar. We set I = [α, f2(β)], I0 = [α, f(β)] and
I1 = [f(β), f2(β)]. We have

I0
f,+1−−−→ Ij , I1

f,−1−−−→ Ij , j = 0, 1, I ⊂ f(I).

We will now show that the map F0 has a (2,∞)-nested sequence of topolog-
ical horseshoes such that N s

0 ⊂ Is0 × Bn(r) and N s
1 ⊂ Is1 × Bn(r), where r

is a positive number greater than the maximum of ‖g‖ on I for case (i) and
on I × S for case (ii). Indeed, two preimages of f(β) exist: one in I0 (this
could be β), denoted by γ0, and another one in I1, denoted by γ1. We set
I2
0 = [γ0, f(β)] and I2

1 = [f(β), γ1]. Observe that I2
i ⊂ int(I) and I ⊂ f2(I2

i )
for i = 0, 1. Using this and I ⊂ f(I) we can easily construct two nested
sequences of intervals Is+1

i ⊂ Isi for s = 2, 3, . . . and i ∈ {0, 1} such that
fs(Isi ) = I. It is immediate to verify that we have a (2,∞)-nested sequence
of topological horseshoes for F0, where N s

i = Isi ×Bn(r).
For any k > 2 there exists λk > 0 such that for any |λ| < λk, the

map Fλ has a (2, k)-nested sequence of horseshoes. It is enough to take
k = 3 and apply Theorem 4.5 with p = 2. Thus, there exists an integer
M(p) such that the map Fλ with |λ| < λ3 has periodic points of all periods
greater than M(p). There are a finite number of periods left and we need
to continue them one by one using Lemma 4.10, which can be done by
considering the following loops of covering relations for f : I1

f,−1−−−→ I1 for
period one and I1

f,−1−−−→ I0
f,+1−−−→ I0

f,+1−−−→ I0
f,+1−−−→ · · · f,+1−−−→ I0

f,+1−−−→ I1 for
other periods. From Lemma 4.10 we obtain, for λ sufficiently small, a periodic
orbit z0, z1, . . . , zp−1, z0 = F pλ (z0), where p is the length of the loop, such that

z0 ∈ int(I1)×Bn(r),
zi = F iλ(z0) ∈ int(I0)×Bn(r) for all 1 ≤ i ≤ p− 1.

Since int(I0) ∩ int(I1) = ∅ we see that the principal period of z0 is equal
to p.

The following example shows that if an interval map has a fixed point
associated with a homoclinic-like orbit then any small multidimensional per-
turbation has periodic points of all periods.

Example 6.1. Consider the case when f has a fixed point α associated
with an orbit {βi}∞i=−∞ satisfying f(βi) = βi+1 for all integers i, and β3 ≤
α < β0 < β1 < β2. By Theorem 2.3, for all sufficiently small |λ|, the high-
dimensional map Fλ has periodic points of all periods. Notice that if, in
addition, limi→±∞ βi = α, then β0 is a homoclinic point for α and it forces
certain patterns for f ; refer to [2, 5, 6].
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