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Abstract. We consider definably complete Baire expansions of ordered fields: every
definable subset of the domain of the structure has a supremum and the domain cannot be
written as the union of a definable increasing family of nowhere dense sets. Every expansion
of the real field is definably complete and Baire, and so is every o-minimal expansion of a
field. Moreover, unlike the o-minimal case, the structures considered form an axiomatizable
class. In this context we prove a version of the Kuratowski–Ulam Theorem, some restricted
version of Sard’s Lemma and a version of Khovanskii’s Finiteness Theorem. We apply
these results to prove the o-minimality of every definably complete Baire expansion of an
ordered field with any family of definable Pfaffian functions.

1. Introduction. We recall that a subset A of a topological space X is
said to be meager if there exists a collection {Yi : i ∈ N} of nowhere dense
subsets of X such that A ⊆

⋃
i∈N Yi. The Baire Category Theorem implies

that every open subset of R (with the usual topology) is nonmeager, i.e. R is
a Baire space.

The notion of Baire space is clearly not first order. Here we consider
a similar (definable) notion, which instead is preserved under elementary
equivalence, and which coincides with the classical notion over the real num-
bers (this is made precise in Subsection 2.2).

The (first order) structures we consider are definably complete expan-
sions of ordered fields. Definable completeness (see Definition 2.1) is a weak
version of Dedekind completeness, which is preserved under elementary
equivalence.

It is shown in [17], [21], [10] that, as in the o-minimal case, (a definable
version of) most results of elementary real analysis can be proved in every
definably complete expansion of an ordered field. However, to obtain less el-
ementary results one would need some more sophisticated machinery, in the
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direction of Sard’s Lemma and Fubini’s Theorem. Both of the cited classical
results refer to a notion of smallness (having measure zero), which has no
natural translation in our context. We consider instead a topological notion
of smallness (being meager), propose a definable version of this notion and
carry out a theory of definably complete Baire (DCB) structures, i.e. expan-
sions of ordered fields such that every definable subset of the domain has
a supremum and the domain cannot be written as the union of a definable
increasing family of nowhere dense sets.

One of our aims in this article is to extend a few standard facts from
real analysis to the “definable” context: for DCB structures we prove an
analogue to Fubini’s Theorem (the Kuratowski–Ulam Theorem 4.1) and a
weak form of Sard’s Lemma (Theorem 6.8). We claim that these results are
strong enough to extend some nontrivial theorems to DCB structures: as
a test case, we show that, in analogy with Khovanskii’s theory [14], there
are uniform and recursive bounds on the number of definably connected
components of definable Pfaffian varieties (Definition 7.1 and Theorem 7.2).

Our second aim is to give new examples of definably complete structures,
o-minimal or not (see Subsection 2.3); this theme will be developed more
fully in [7].

Our third aim is to apply the theorems about “abstract” DCB structures
to obtain new results about o-minimal expansion of the real line. An example
is given in [9], where we show the existence of recursive bounds on some
topological invariants of sets definable in the Pfaffian closure of an o-minimal
expansion of the real field.

Every o-minimal expansion of a field is a definably complete Baire struc-
ture (see 2.17). The converse is clearly not true. However, in Section 8 we
give necessary and sufficient conditions for a definably complete Baire ex-
pansion of a field by C∞ functions to be o-minimal (Theorem 8.1). We derive
the o-minimality of every definably complete Baire expansion of an ordered
field with any family of definable Pfaffian functions (e.g. an exponential
function). For instance, let K be an ordered exponential field (i.e. an expan-
sion of an ordered field with a function f satisfying f ′ = f, f(0) = 1). Then
our results imply that K is o-minimal iff K is definably complete and Baire
(see also Remark 8.3).

Finally, a few words about the proofs. One of the main difficulties to
extend results from the real case to the nonarchimedean context is that the
union of a countable family of definable sets is not necessarily definable.
Therefore, we have to modify the definitions and proofs that involve count-
able unions: one cogent example is in the definition of meager sets (and
therefore of DCB structures: see Subsection 2.2). While sometimes we are
successful in these modifications, other times we have to settle for weaker
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results: see the discussion after Corollary 3.9, or consider the fact that we
are able to prove Sard’s Lemma only under a stronger hypothesis than usual
(Subsection 6.1). Another difficulty (which however does not appear in this
article) is that we cannot construct sets by recursion: an important example
is given by the proof that the real line is not meager, which we are still not
able to generalize to definably complete structures (Conjecture 2.20).

1.1. Notation. Throughout this paper, K is a (first-order) structure
expanding an ordered field. We use the word “definable” as a shorthand for
“definable in K with parameters from K”.

We denote by x, y, z, . . . the points in Kn. When we want to stress the
fact that they are tuples, we write x̄, ȳ, z̄, . . . , where x̄ = (x1, . . . , xn), etc.

For convenience, on Km instead of the usual Euclidean distance we will
use the equivalent distance

d : (x, y) 7→ max
i=1,...,m

|xi − yi|.

For δ > 0 and x ∈ Km, we denote by Bm(x; δ) := {y ∈ Km : d(x, y) < δ}
the open “ball” of center x and “radius” δ and its closure by B

m(x; δ); we
will drop the superscript m if it is clear from the context.

We denote by R̃ the expansion of the real field with a predicate for every
subset of

⋃
n∈N Rn.

Let X ⊆ Y ⊆ Kn, with Y definable. We write clY (X) (or simply X if Y
is clear from the context) for the topological closure of X in Y , intY (X) (or
simply X̊) for the interior of X in Y , bdY (X) := X \ X̊ for the boundary
of X (in Y ), and ∂YX := X \X for the frontier of X (in Y ).

We define Πm+n
n : Km+n → Km to be the projection onto the first m

coordinates. If A ⊂ Km+n and x ∈ Km, we denote by Ax the fibre of A
over x, i.e. the set {y ∈ Kn : (x, y) ∈ A}.

2. Definably complete Baire structures

2.1. Definably complete structures

Definition 2.1. An expansion K of an ordered field is called definably
complete if every definable subset of K has a supremum in K ∪ {±∞}.

Generalities on definably complete structures (first introduced in [20])
can be found in [21], [4, §2], [10], and [17].

From now on, K will denote a definably complete expansion of
an ordered field.

Definition 2.2. X ⊆ Km is definably compact (d-compact for short) if
it is definable, closed in Km, and bounded.
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Definably compact sets were introduced (for K o-minimal) in [19]. We
will often use without further comment the following results:

Lemma 2.3 ([17]). Let X ⊆ Kn be definable. Then X is definably com-
pact iff for every definable decreasing family (Y (t))t∈K of closed nonempty
subsets of X, we have

⋂
t Y (t) 6= ∅.

Lemma 2.4 ([17]). Let f : Kn → Km be a definable continuous function
and let C ⊂ Kn be d-compact. Then f(C) is d-compact.

Definition 2.5. An n-dimensional definable embedded CN K-manifold
V ⊆ Kd (which we will simply call n-dimensional K-manifold) is a definable
subset V of Kd such that for every x ∈ V there exists a definable neighbour-
hood U(x) of x (in Kd) and a definable CN diffeomorphism fx : U(x) ' Kd

such that U(x) ∩ V = f−1
x (Kn × {0}).

Remark 2.6. Note that a K-manifold V can always be written as the
intersection of a definable closed set and a definable open set. In fact, let
δ : V → K ∪ {+∞} be the definable map

δ(x) := sup{r ∈ K : ∀s ∈ K (0 < s < r ⇒ B(x; s) ∩ V is closed in B(x; s))}.
Let U :=

⋃
x∈V B(x; δ(x)/2); then V = V ∩ U .

Note moreover that the dimension n of a K-manifold V is uniquely de-
termined by V , because Kn and Kn′

are locally diffeomorphic iff n = n′. If
we consider only C0 manifolds, it is not clear anymore if the dimension is
well defined.

The analogue of the Implicit Function Theorem and its usual corollaries
hold in definably complete structures [21].

Finally, recall the following definition.

Definition 2.7. A definable set X ⊂ Kn is definably connected if it
cannot be expressed as a union of two definable nonempty disjoint open
sets. A subset C ⊆ X is a definably connected component of X if it is a
maximal definably connected subset of X.

Note that if X has finitely many definably connected components, then
each component of X is definable (it is an atom of the finite Boolean algebra
of clopen definable subsets of X). Moreover, if K expands the real field,
every definable and (topologically) connected set is also definably connected.
The converse could in general not be true (but we do not have a counter-
example). However it is true if K is o-minimal.

2.2. Meager sets. Let X ⊆ Y ⊆ Kn, with Y definable.

Definition 2.8. X is nowhere dense (in Y ) if intY (clY (X)) = ∅. X is
definably meager (in Y ) if there exists a definable increasing family (A(t))t∈K
of nowhere dense subsets of Y such that X ⊆

⋃
tA(t). We will call the family
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(clY (A(t)))t∈K a witness of the fact thatX is definably meager.X is definably
residual (in Y ) if Y \X is definably meager.

Notice that if (A(t))t∈K is a witness of the fact that X is meager in Kn,
then also the family

(Bn(0; |t|) ∩A(t))t∈K

is a witness, hence we may always assume that each A(t) is d-compact.
Notice also that we do not require that a definably meager set is definable.
The subsets of Y , with the operations 4 (symmetric difference) and ∩,

form a commutative ring; the definably meager subsets of Y form an ideal
of this ring.

Definition 2.9. Y is definably Baire if no nonempty open definable
subset of Y is definably meager (in Y ).

Note that if K has countable cofinality, then X is definably meager
(Baire, respectively) in Kn if X is meager (Baire, respectively) in the usual
topological sense. In general, the converse is not true: for instance, if K is a
countable o-minimal structure, then it is definably Baire, but not Baire in
the topological sense. However, clearly the two notions coincide for R̃.

Convention 2.10. From now on, we will write “meager” for “definably
meager”, and “topologically meager” for the usual topological notion, and
similarly for “residual” and “Baire”.

As in the classical case, one can prove the following results.

Proposition 2.11. Let Y be definable, and ∅ 6= U ⊆ Y be definable and
open. Then U is meager in Y iff it is meager in itself.

Corollary 2.12. Let Y ⊆ Km be definable. The following are equiva-
lent:

(1) Y is Baire;
(2) for all X ⊆ Y , if X is meager, then X̊ = ∅;
(3) every x ∈ Y has a definable neighbourhood (in Y ) which is Baire.

Remark 2.13. Note that, for all n ∈ N, Kn is Baire iff it is not meager
in itself. In fact, let B ⊂ Kn be an open box. If B is meager in Kn then, by
Proposition 2.11, B is also meager in itself. Since K expands a field, B is
definably homeomorphic to Kn, hence Kn is meager in itself.

The following result is not trivial and will be proved in Section 4.

Proposition 2.14. If K is Baire, then for every m ≥ 1, Km is Baire.

The converse, however, is trivial: if Km is Baire for some m ≥ 1, then K
is Baire.
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2.3. DCB structures: definition and examples

Definition 2.15. An expansion K of an ordered field is a definably
complete Baire structure (DCB) if it is definably complete and K is definably
Baire as a definable subset of K itself, in the sense of Def. 2.9. A theory T
is definably complete and Baire if every model of T is a definably complete
Baire structure.

Remark 2.16. The fact that K is definably complete and Baire can be
expressed by a first-order axiom scheme; therefore, every K′ elementarily
equivalent to K also satisfies the hypothesis.

Moreover, an ultraproduct of definably complete Baire structures is also
definably complete and Baire; the same cannot be said for o-minimal struc-
tures.

Moreover, a reduct of a definably complete (and Baire) structure, which
does still expand an ordered field, is also definably complete (and Baire).

Examples 2.17. The following are examples of definably complete Baire
structures.

• Every expansion of R (because R is Dedekind complete and topologi-
cally Baire).
• Every o-minimal expansion of a field. In fact, a nowhere dense definable

subset of K is finite, and definable families of finite sets are uniformly finite;
hence, the union of a definable increasing family of nowhere dense sets is
finite, and cannot coincide with the whole structure.
• Let B be an o-minimal expansion of a field, and let A 4 B be a dense

substructure. Then the expansion BA of B, generated by adding a unary
predicate symbol for A, is definably complete and Baire. This follows from
the fact that if X ⊆ B is BA-definable, then its topological closure X is
B-definable (see [5, Theorem 4]). Hence, X is dense in a finite union of
intervals. Moreover, if X is closed and nowhere dense, then it is finite, and,
since BA satisfies the Uniform Finiteness condition (see [5, Corollary 4.5]),
the union of a definable increasing family of nowhere dense sets is finite. More
generally, as shown in [4, §3.5], any definably complete structure satisfying
the Uniform Finiteness condition is definably Baire (one can even show that
if K is definably complete, and every definable closed discrete subset of K
is bounded, then K is Baire [7]).

Example 2.18. For every n ∈ N, consider the nth iterate of the expo-
nential function, defined inductively as exp1 = exp and expn+1 = exp(expn).
Let L be the language of ordered field with an extra unary function sym-
bol f . For each n ∈ N, let R(expn) be the expansion of the real field to the
L-structure where f is interpreted as expn. Let M(f) be some nonprinci-
pal ultraproduct of (R(expn) : n ∈ N). It is not known whether M(f) is
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o-minimal (if it were, it would provide the first example of an o-minimal
expansion of a field which is not exponentially bounded).

However, since each R(expn) is o-minimal, we can conclude that M(f)
is definably complete and Baire.

Example 2.19. Let No be the field of surreal numbers (see e.g. [11]). As
shown in [11, 6], No has a canonical structure as an elementary extension
of Ran(exp), which we denote by No(an, exp), and therefore it is o-minimal.
Moreover, since No is isomorphic to the field of power series R((No)), it also
has a full real analytic R((Z))-structure, which is also o-minimal (see [3] for
the definition and proof), which we denote by No(ov). We conjecture that
the full expansion No(an, exp, ov) is definably complete and Baire. If this
were the case, then we claim that this structure would also be o-minimal.

Finally, a general conjecture:

Conjecture 2.20. Every definably complete expansion of a field is also
definably Baire.

We have a partial result in this direction:

Proposition 2.21 ([7, Theorem 7.32]). If K is a definably complete
expansion of a field, Z ⊂ Kn is definable and discrete, and f : Z → K is
some definable function, then f is not surjective.

3. Fσ-sets. We now consider a class of sets for which it is easy to de-
termine whether they are meager or not. These sets have also been studied
in [4], where they are called DΣ-sets.

Definition 3.1. Let X ⊆ Y ⊆ Kn, with Y definable. X is in Fσ in Y
(or “X is an Fσ-subset of Y ”) if X is the union of a definable increasing
family of closed subsets of Y , indexed by K. X is in Gδ if its complement is
in Fσ.

The proof of the following lemma can be found in [4].

Lemma 3.2. Let A be either the family of Fσ-subsets or the family of
Gδ-subsets of Kn, for some n ∈ N. Then each A ∈ A is definable. A is closed
under finite unions, finite intersections, Cartesian products and preimages
under definable continuous functions. Finite Boolean combinations of defin-
able open subsets of Kn are in A. The family of Fσ-subsets is also closed
under images under definable continuous functions.

In general, the family of Gδ-subsets of some Kn is not closed under images
under definable continuous functions.

Notice that, by Remark 2.6, every K-manifold is an Fσ-set.

Remark 3.3. Let X ⊆ Kn. Then X is in Fσ iff X is of the form
Πn+m
n (Z) for some Z ⊆ Kn+m closed and definable. In fact, let (X(t))t∈K
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be a definable increasing family of closed subsets of Kn such that X =⋃
t∈KX(t). Define Z :=

⋃
t∈K(X(t)× {t}).

Notice that if K is o-minimal, then every definable subset X of K is a
finite Boolean combination of definable closed sets (because X is a finite
union of cells), and therefore X is in Fσ.

Remark 3.4. If X ⊆ Kn is meager, then there exists a meager Fσ-set
containing X.

The main property of Fσ-sets is the following.

Lemma 3.5. Let Y be definable and Baire, and D ⊆ Y . Assume that D
is in Fσ. Then D is meager iff D̊ = ∅ (1).

Proof. If D̊ 6= ∅, then, since Y is Baire, D cannot be meager. Conversely,
assume that D is not meager. If D is in Fσ, then D =

⋃
tD(t) for some

definable increasing family of closed subsets. Since D is not meager, at least
one of the D(t), say D(t0), satisfies int(D(t0)) 6= ∅ (otherwise, D(t0) would
be nowhere dense), and therefore D̊ 6= ∅.

Note that if X ⊆ Rn is in Fσ for the previously mentioned structure R̃,
and has Lebesgue measure zero, then X is meager, but the converse is not
true.

We now give a local condition which is sufficient to prove that the image
of an Fσ-set under a continuous definable function is meager.

Proposition 3.6. Let C ⊆ Km ×Kn be in Fσ, f : C → Kd be definable
and continuous. Assume that for every y ∈ Πm+n

m (C) there exists a neigh-
bourhood Vy ⊆ Km of y, such that f((Vy×Kn)∩C) is meager. Then f(C) is
meager.

The next lemma will be used in the proof of the above proposition.

Lemma 3.7. Let C ⊂ Kn be a nonempty d-compact set, and let V :=
{V (t) : t ∈ I} be a definable open cover of C. Then there exists 0 < δ0 ∈ K
(a Lebesgue number for V and C) such that, for every subset X ⊆ C of
diameter smaller than δ0, there exists t ∈ I such that X ⊆ V (t).

Proof. Suppose for a contradiction that (∀δ > 0)(∃y ∈ C)(∀t ∈ I) B(y; δ)
* V (t). For every δ > 0, define Y (δ) := {y ∈ C : (∀t ∈ I) B(y; δ) * V (t)}.
Note that (Y (δ))δ>0 is a definable family of subsets of C, increasing as δ
decreases. Let y0 be an accumulation point for the family (Y (δ))δ>0 as δ → 0
(which exists by Lemma 2.3).

(1) This is not true for Gδ-sets: for instance, the set of irrational numbers in R̃ is a Gδ
which is not meager (it is even residual), but has empty interior.
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Let t0 ∈ I and δ0 > 0 be such that B(y0; 2δ0) ⊆ V (t0). Let δ1 ≤ δ0

be such that there exists y ∈ Y (δ1) with |y − y0| < δ0. Then B(y; δ0) ⊆
B(y0; 2δ0) ⊆ V (t0), contradicting the fact that y ∈ Y (δ1).

Proof of Proposition 3.6. If K is meager in itself, then by Proposition 2.14
there is nothing to prove. Thus, we may assume that K (and hence Kd) is
Baire.

We proceed by induction on m. The case m = 0 is clear.
Assume that we have already proved the conclusion for m − 1 (and

every n). We want to prove it for m. First, we consider the case when C is
d-compact. We can assume that 0 ∈ C. Remember that, for every r > 0 and
y ∈ Km, Bm(y; r) ⊂ Km is the closed hypercube of side 2r and centre y; let
Sm(y; r) be its boundary. Moreover, define D(r) := f(C ∩ (Bm(0; r)×Kn)).

Note that f(C) =
⋃
rD(r) and each D(r) is d-compact. Therefore, to

prove that f(C) is meager, it suffices to prove that each D(r) has empty
interior. Suppose, for a contradiction, that f(C) is not meager, and let

r0 := inf{r > 0 : int(D(r)) 6= ∅}.

Since the D(r) are closed, r0 = inf{r > 0 : D(r) is not meager}. We have
r0 > 0 by hypothesis, and r0 < +∞ because f(C) is not meager.

Let P := Πn+m
m (C). Since P is d-compact, if K = R, we could find

y1, . . . , yk ∈ P such that P ⊆ Vy1 ∪ · · · ∪ Vyk . In the general situation, we
need another argument. Let 5δ0 be a Lebesgue number for the open cover
{Vy : y ∈ P} of P (we may also assume that δ0 is small in comparison
with r0); δ0 > 0 exists by Lemma 3.7.

Note that

B
m(0; r0 + δ0/2) ⊆ Bm(0; r0 − δ0/2) ∪

⋃
y∈Sm(0;r0)

B
m(y; δ0),

hence

D(r0 + δ0/2) ⊆ D(r0 − δ0/2) ∪
⋃

y∈Sm(0;r0)

f(C ∩ (Bm(y; δ0)×Kn)).

By the definition of r0, we know that D(r0 + δ0/2) is not meager, while
D(r0− δ0/2) is meager. Hence, to obtain a contradiction, it suffices to show
that

⋃
y∈Sm(0;r0) f(C ∩ (Bm(y; δ0) ∩Kn)) is meager.

Note that Sm(0; r0) is the finite union of the faces of the closed hypercube
B
m(0; r0): hence, we only need to show that for each face S of Sm(0; r0) the

set D :=
⋃
y∈S f(C ∩ (Bm(y; δ0) × Kn)) is meager. We can assume that S

is the “top” face {y ∈ B
m(0; r0) : ym = r0} and we may identify S with

B
m−1(0; r0)× {r0}.
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Define
C̃ := C ∩

⋃
y∈S

(Bm(y; δ0)×Kn), f̃ := f�C̃.

Claim. C̃ and f̃ satisfy the hypothesis of the proposition, with n′ = n+1,
m′ = m− 1, and V ′z = B(z; δ0).

C̃ is d-compact, and therefore it is in Fσ. Let P̃ ⊆ Km−1 be the projection
of C̃ onto Km−1; note that P̃ is d-compact. Fix z ∈ P̃ ; by definition, there
exists t ∈ [r0 − δ0, r0 + δ0] such that y := (z, t) ∈ P . Notice that

C̃∩(V ′z×K×Kn) ⊆ C∩(V ′z× [r0−δ0, r0 +δ0]×Kn) ⊆ C∩(Bm(y; 2δ0)×Kn).

Since 5δ0 is a Lebesgue number for the cover {Vy : y ∈ P} of P , it follows
that there exists y′ ∈ P such that Bm(y; 2δ0) ⊂ Vy′ . Putting everything
together, we find that C̃ ∩ (V ′z × Kn+1) ⊂ C ∩ (Vy′ × Kn) and thus f̃(C̃ ∩
(V ′z ×Kn+1)) is meager, which proves the claim.

Therefore, by inductive hypothesis, f̃(C̃) is meager. However, D ⊆ f̃(C̃),
and we have reached a contradiction.

We now treat the general case when C is in Fσ. Note that C is an
increasing union of d-compact sets C(t). For each t ∈ K, define D(t) :=
f(C(t)); note that each D(t) is d-compact. By the d-compact case, we can
conclude that each D(t) is meager, and therefore nowhere dense. Thus, D =⋃
tD(t) is meager.

Corollary 3.8. Let C ⊆ Km be in Fσ, and f : C → Kd be definable and
continuous. Assume that for every x ∈ C there exists a neighbourhood Vx
of x such that f(C ∩ Vx) is meager. Then f(C) is meager.

Proof. Apply the proposition to the case n = 0.

Corollary 3.9. Let C ⊆ Km be in Fσ. If every x ∈ C has a neighbour-
hood Vx such that C ∩ Vx is meager, then C is meager.

Proposition 3.6 and the following corollaries are trivial when K is o-
minimal, since in this case C ⊂ Kn is meager iff dim(C) < n.

For the classical topological notions, we know the following facts to be
true:

(1) Let C ⊆ Rn and f : C → Y (not necessarily continuous). Assume
that, for every x ∈ C, there exists a neighbourhood Vx ⊆ C of x such
that f(C ∩ Vx) is topologically meager. Then f(C) is topologically
meager.

(2) Let C ⊆ Y . If every x ∈ C has a neighbourhood Vx such that Vx∩C
is topologically meager, then C is topologically meager.

The first fact follows from the fact that Rn is second countable; the
second from [13, Theorem 6.35]. We have been able to prove the definable
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versions only under an additional hypothesis (e.g., C in Fσ); however, these
results are strong enough for our applications.

Lemma 3.10. Let f : Kn → Km be definable, and

Df := {x̄ ∈ A : f is discontinuous at x̄}.
If the graph of f is an Fσ-set, then Df is meager.

Proof. If, for a contradiction, Df is not meager, then since it is an Fσ, it
contains a nonempty open box B. Therefore, we can assume that Df = Kn,
and that Kn is Baire. Let Γ (f) =

⋃
tX(t), where (X(t))t∈K is a definable

increasing family of d-compact sets. Let Y (t) := Πn+m
n (X(t)). Note that

each Y (t) is d-compact, and Kn =
⋃
t Y (t). Since Kn is Baire, there exists

t0 such that Y (t0) contains a nonempty open box B′. Let B′′ ⊆ B′ be
a closed box with nonempty interior, and g := f�B′′. Note that Γ (g) =
X(t0)∩ (B′′ ×Km); therefore, Γ (g) is d-compact, and so, as in the classical
case, g is continuous, contradicting the fact that B′′ ⊆ Df .

4. The Kuratowski–Ulam Theorem. The main result of this section
is the following theorem.

Theorem 4.1. Let D ⊆ Km+n. Define T := Tm(D) := {x ∈ Km :
Dx is meager in Kn}. If D is meager (in Km+n), then T is residual.

This is a definable version of the Kuratowski–Ulam Theorem [18, The-
orem 15.1], which in turn is an analogue of Fubini’s Theorem: they both
imply that if D is negligible, then Dy is negligible for almost every y; in the
Kuratowski–Ulam Theorem negligible means “meager”, while in Fubini’s
Theorem negligible means “of measure zero”.

It is not clear whether in the above theorem D definable implies that T
is definable. Note that if K is o-minimal and D is definable, then T is also
definable.

As a corollary, we obtain Proposition 2.14:

Proof of Proposition 2.14. By induction on m. The case m = 1 is our
assumption on K. Assume that we have already proved that Km is Baire:
we want to prove that Km+1 is Baire. Suppose not; then Km+1 is meager in
itself. If we apply Theorem 4.1 with n = 1, we find that either Km or K is
meager in itself, a contradiction.

Definition 4.2. A definable function f : Y →K is lower semi-continuous
if, for every x ∈ Y , either x is an isolated point of Y , or

lim inf
x′→x
x′∈Y

f(x′) ≥ f(x).

Remark 4.3. Let C ⊆ Kn+1 be d-compact. For every x∈D :=Πn+1
n (C),

let f(x) := minCx. Then f : D → K is lower semi-continuous.
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Lemma 4.4. Let Y ⊆ Kn be definable, f : Y → K be lower semi-
continuous and definable, and Df ⊆ Y be the set of points of discontinuity
of f . Then Df is meager (in Y ).

Proof. See [4, Lemma 2.8(1)].

In the above lemma, if Y = K = R, we cannot conclude that Df has
Lebesgue measure zero. In fact, let C ⊆ R be closed, with empty interior,
and of positive measure, and f be the characteristic function of R\C. Then
Df = C, and therefore it is of positive measure.

On the other hand, it is always true that if f : Km → K is definable,
then Df is in Fσ (see the proof of [18, Theorem 7.1]).

Proof of Theorem 4.1. If Km is meager in itself, then the conclusion is
trivially true, because then every subset of Km is meager. Hence, we can
assume that Km is Baire.

Case 1: n = 1 and D is d-compact. Hence, D has empty interior, and
eachDx is also d-compact. Therefore, by Lemma 3.5, T = {x∈Km : D̊x = ∅}.
Let E := Km \ T . We have to prove that E is meager.

For every ε > 0 let X(ε) := {(x, y) ∈ Km × K : B1(y; ε) ⊆ Dx}. Let
E(ε) := π(X(ε)) = {x ∈ Km : Dx contains a ball of radius ε}. Note that
X(ε) is d-compact, since its complement is the projection of an open set,
therefore so is E(ε). Note that E =

⋃
ε>0E(ε); hence, to prove that E is

meager, it suffices to prove that each E(ε) is nowhere dense. Since each E(ε)
is d-compact, it suffices to prove the following claim.

Claim 1. For every ε > 0, int(E(ε)) = ∅ (see also [4, Lemma 2.8(2)]).

Assume, for a contradiction, that there exists a nonempty open box
U ⊆ E(ε). Define

f : U → K, x 7→ min{y ∈ K : (x, y) ∈ X(ε)}.

Note that f is lower semi-continuous and definable. By Lemma 4.4, f is
continuous outside a meager set Df ⊆ U . Since Km is Baire, Df 6= U , and
therefore there exists x0 ∈ U such that f is continuous at x0. It is now easy
to show that a neighbourhood of (x0, f(x0)) is contained in D, contradicting
the fact that D̊ = ∅.

Case 2: n = 1 and D is an arbitrary meager subset of Km+1. Let
(D(p))p∈K be an increasing definable family of d-compact subsets of Km+1

with empty interior such that D ⊆
⋃
pD(p). For each p ∈ K, let E(p) :=

{x ∈ Km : D(p)x is not meager in K}. By what we have seen above, E(p) =⋃
ε>0E(p, ε), where (E(p, ε))0<ε∈K, p∈K is a definable family of subsets of K,

increasing in p and decreasing in ε, such that each E(p, ε) is closed and
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nowhere dense. Let
E′ :=

⋃
ε,p

E(p, ε) =
⋃
p

E(p).

Claim 2. Km \ T ⊆ E′.
In fact, let x /∈ T . Thus, Dx is not meager. However, Dx ⊆

⋃
pD(p)x.

Since (D(p)x)p∈K is an increasing definable family of closed subsets of K,
there exists p0 such thatD(p0)x has nonempty interior. Thus, x∈E(p0)⊆E′.

Therefore, it suffices to prove that E′ is meager to conclude that T is
residual. However, E′ =

⋃
p>0E(p, 1/p), and we are done.

Case 3: n > 1 and D is an arbitrary meager subset of Km+n. We argue
by induction on n. Suppose that we have already proved the conclusion for
n (and for every m). We want to prove the conclusion for n + 1. First, we
will assume that D ⊆ Km+n+1 is in Fσ. We want to prove that the set
T := Tm(D) := {x ∈ Km : Dx is meager} is residual. Define

S := Km+1 \ Tm+1(D) := {(x, yn+1) ∈ Km ×K : D(x,yn+1) is not meager},
R := Tm(S) = {x ∈ Km : Sx is meager}.

Notice that (for the moment) we do not know whether S and R are
definable, even assuming that D is in Fσ.

Claim 3. S is meager.

By inductive hypothesis.

Claim 4. R is residual.

By the case n = 1 and the previous claim.

Claim 5. R ⊆ T .

Fix x ∈ Km. Assume that x /∈ T . We have to prove that x /∈ R. Define
F := Dx ⊆ Kn+1. Note that F is in Fσ; therefore, since x /∈ T , F̊ 6= ∅. Let
U := U1 × U2 be a nonempty open box contained in F , U1 ⊆ K, U2 ⊆ Kn.
For every yn+1 ∈ U1, D(x,yn+1) = Fyn+1 ⊇ U2, and therefore (x, yn+1) ∈ S.
Thus, U1 ⊆ Sx, and x /∈ R.

Hence, T contains a residual set, and therefore it is residual.
For D arbitrary, let D′ ⊆ Km+n be a meager Fσ-set containing D. By

the previous case, the corresponding set T ′ := Tm(D′) is residual. Since
T ′ ⊆ T , we are done.

5. Almost open sets. Let K be a definably complete Baire structure.
Let Y ⊆ Km be definable. We have seen that the family of meager subsets
of Y is an ideal, hence it defines an equivalence relation on the family of
subsets of Y , given by X ∼ X ′ iff X 4X ′ is meager.
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Definition 5.1. X ⊆ Y is almost open (in Y ), or a.o. for short, if X is
equivalent to a definable open set (2).

Lemma 5.2. Let Y ⊆ Km be definable, and A and B be a.o. subsets
of Y . Then A∩B, A∪B and Y \A are also a.o. Moreover, Fσ-subsets and
Gδ-subsets of Y are a.o. Finally, if Y1 and Y2 are definable, and Ai ⊆ Yi are
a.o. for i = 1, 2, then A1 ×A2 is a.o. in Y1 × Y2.

The proof is left as an exercise.
Consequently, X ⊆ Y is a.o. iff it is equivalent to a definable closed

subset of Y .

Remark 5.3. Every meager set is a.o., being equivalent to the empty
set. Every residual set is also a.o., being equivalent to the ambient space.

The following is a partial converse of Theorem 4.1.

Proposition 5.4. Let D be an a.o. subset of Km+n, and define T (D) :=
{x ∈ Km : Dx is meager}. Then D is meager iff T (D) is residual.

Proof. The “only if” direction is Theorem 4.1. For the other direction, let
U be an open set such that E := D4U is meager. By Theorem 4.1, T (E) is
residual. Moreover, since Ux = Dx 4 Ex, we have T (U) ⊇ T (D) ∩ T (E),
and therefore T (U) is also residual. However, U is open and Kn is Baire;
therefore, T (U) is the complement of the projection of U on Km. Since U
is open, T (U) is closed. Therefore, T (U) is closed and residual; since Km is
Baire, T (U) = Km. Thus, U is empty, and we are done.

The hypothesis that D is a.o. in the above proposition is necessary: [18,
Theorem 15.5] gives an example of a set E ⊆ R2 that is not topologically
meager and such that no three points of E are collinear.

6. The Sard property. In this section we investigate some conse-
quences of Sard’s Lemma, and prove a version of this lemma in a particular
case. Let K be a definably complete Baire structure.

Definition 6.1. Fix positive natural numbers d, r,m. Let V ⊆ Kd be a
K-manifold of dimension n. Let f : V → Km be a definable Cr function and
∆f be the set of singular points of f . If Σf := f(∆f ) is meager in Km, then
we say that f has the Sard property.

Remark 6.2. If K is o-minimal, then every C1 definable function f :
V → Km has the Sard property [1, Theorem 3.5]. If K = R̃ and f : V → Km

is as in the above definition with r > max{0, n −m}, then f has the Sard
property. In fact, by Sard’s Lemma, Σf has Lebesgue measure zero, and
therefore it has empty interior. Since Σf is in Fσ, it is also meager.

(2) Almost open sets are called “sets with the property of Baire” in [18].
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Proposition 6.3. Suppose f : Kn → Kn has the Sard property, and let
C ⊂ Kn be meager. Then f(C) is meager.

Proof. We may assume that C ∈ Fσ, since C is contained in a meager
Fσ-set. Let Λ := Kn \∆f be the set of regular points of f . Note that Λ is
open.

By the Sard property, f(C ∩ ∆f ) is meager. Hence, it suffices to show
that f(C ∩ Λ) is meager. Let x ∈ C ∩ Λ. Since x is a regular point for f ,
by the Implicit Function Theorem there exists a neighbourhood V of x such
that f is a diffeomorphism on V ; therefore, f(C ∩ V ) is meager, and, by
Corollary 3.8, f(C ∩ Λ) is meager.

The following lemma is a generalization of Proposition 5.4.

Lemma 6.4. Let f : Kn → Km be a C1 definable function with the Sard
property. Let Λ be the set of regular points of f , and C ⊆ Kn be almost open.
For every ȳ ∈ Km, let Fȳ := f−1(ȳ), Cȳ := Fȳ ∩ C, and T := {ȳ ∈ Km :
Cȳ is meager in Fȳ or Fȳ = ∅}. Then T is residual iff C ∩ Λ is meager.

Proof. This follows from the Implicit Function Theorem, Proposition 5.4,
and Corollary 3.8.

6.1. The Sard property and Noetherian differential rings. In this
subsection we will show a version of Sard’s Lemma for functions belonging
to a Noetherian differential ring.

Definition 6.5. Fix n ∈ N \ {0} and a definably connected definable
open set U ⊆ Kn. Let C∞(U,K) be the ring of definable C∞ functions from
U to K. Fix a subring M ⊆ C∞(U,K) which is Noetherian and closed under
partial derivation, and containing K[x1, . . . , xn]. M is called a Noetherian
differential ring.

If G := (g1, . . . , gk) ∈Mk, we denote by V (G) the set of zeros of G, and
by V reg(G) the set of regular zeros of G.

Generalities on Noetherian differential rings of functions over definably
complete structures can be found in [21]. In particular, we will need the
following result, which states that in a Noetherian differential ring there are
no flat functions.

Proposition 6.6. Let 0 6≡ g ∈ M . Then for every x ∈ U such that
g(x) = 0, there exist k ∈ N and a derivative θ of order k such that θg(x) 6= 0.

Remark 6.7. For g1, . . . , gk∈M , the set V reg(g1, . . . , gk) is a K-manifold
and hence is in Fσ.

In this subsection we prove the following version of Sard’s Lemma:

Theorem 6.8. Fix k,m ∈ N, k ≤ n. Let

• H = (h1, . . . , hn−k) ∈Mn−k and V := V reg(H) 6= ∅;
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• F = (F1, . . . , Fm) ∈Mm and f := F �V .

Then f : V → Km has the Sard property, i.e. Σf is a meager set (in Km).

Proof. We proceed by induction on dimV and m. If m = 0, there are
no singular points. If dimV = 0, then V is discrete. In particular, for every
a ∈ ∆f there exists a neighbourhood Ua of a such that ∆f ∩ Ua = {a}.
Hence we can apply Corollary 3.8 and we are done.

Consider now the general case.

Claim 1. We can restrict to the case V = Kk.

By Corollary 3.8, it suffices to prove that for every a ∈ ∆f there exists
a neighbourhood Ua of a such that f(Ua ∩ ∆f ) is meager. Fix a ∈ ∆f .
Using the Implicit Function Theorem, it is easy to check that there is a
neighbourhood Ua of a and a definable diffeomorphism Φ : Kk → V ∩ Ua
such that H ◦Φ ≡ 0 and each Fi ◦Φ belongs to a Noetherian differential ring
M ′ ⊆ C∞(Kk,K) (see [21] for the details). Hence Claim 1 is proved and we
may assume that f : Kk → Km, and f ∈M ⊆ C∞(Kk,K).

Let X0 := {a ∈ ∆f : Df(a) 6= 0}, where Df is the Jacobian matrix of f .
We first prove that f(X0) is meager.

Again by Corollary 3.8, it suffices to prove that for every a ∈ X0 there
exists a neighbourhood Ua of a such that f(Ua ∩X0) is meager.

Fix a ∈ X0.

Claim 2. We may assume that f(x) = (x1, f2(x), . . . , fm(x)).

In fact, since Df(a) 6= 0, we can assume that ∂f1(a)/∂x1 6= 0 and a = 0.
Consider definable neighbourhoods O and Õ ⊂ Kk of 0, where the fol-

lowing map is a diffeomorphism:

G : O → Õ, x 7→ (f1(x), x2, . . . , xk).

Let ∆ be the determinant of the Jacobian of G and let M̂ := {g ◦G−1 :
g ∈M} ⊂ C∞(Õ,K); then the ring M̃ := M̂ [∆−1] is clearly Noetherian and
differentially closed; define f̃ := f ◦G−1 ∈ M̃ . Since G is a diffeomorphism,
it is enough to prove the statement for M̃ and f̃ , and Claim 2 is proved.

For every t ∈ K, consider the Noetherian differential ring

Nt := {gt := g(t, x2, . . . , xk) : g ∈M} ⊂ C∞(Õ ∩Kk−1,K).

Let ft : Kk−1 → Km−1 be the map ((f2)t, . . . , (fm)t). By inductive hypoth-
esis, the set Σft is meager in Km−1. Moreover, f(X0 ∩ Õ)∩ ({t}×Km−1) ⊆
{t} ×Σft . Hence f(X0 ∩ Õ) ⊆ D := {(t, y) ∈ K×Kk−1 : y ∈ Σft}. By what
we have just observed, T (D) := {t ∈ K : Dt is meager} is residual, because
Dt = Σft , hence by Proposition 5.4, D is meager. It follows by Corollary 3.8
that f(X0) is meager.
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Now, let a ∈ ∆f be such that Df(a) = 0, and let P be the least natural
number such that there exists i ≤ m and a derivative θ of order P such
that if gθ := θfi, then gθ(a) = 0 and Dgθ(a) 6= 0. Such a P exists by
Proposition 6.6. Let Wθ := V reg(gθ) ⊂ Kk (notice that the inclusion is
strict, hence dimWθ < k). Then there is a definable open neighbourhood O
of a such that

∆f ∩O ⊆
⋃

ord(θ)≤P

Wθ.

Hence it is enough to prove that f(∆f ∩Wθ) is meager. Let hθ := f�Wθ. By
inductive hypothesis, Σhθ is meager. Note that if x ∈Wθ is a singular point
for f , then x is also a singular point for hθ; that is, ∆f ∩Wθ ⊆ ∆hθ , and we
are done.

Corollary 6.9. Let F ∈ Mk and G ∈ M . Define X := V reg(F ) ⊆ U ,
and, for every ā ∈ Kn, gā : X → K as gā(x̄) := G(x̄) +

∑
aixi. Then the set

A = {(a1, . . . , an) ∈ Kn : gā is not a Morse function (3) on X} is meager.

Proof. We proceed as in [12].

Claim 1. The corollary is true if k = 0, i.e. if X = U .

In fact, ā ∈ A iff −ā is a critical value of ∇G, and we can apply Theo-
rem 6.8.

By the Implicit Function Theorem, around every point p ∈ X there exists
an open definable neighbourhood Up such that the restriction of some n− k
of the coordinate functions on Kn (say, the first n−k) constitute a coordinate
system in Up; let Vp := Πn

n−k(Up) and φp : Vp → Up be the inverse map of
Πn
n−k�Up. Let M̃ be the ring of functions on Vp of the form h ◦ φ, where

h ∈M : notice that M̃ is contained in some Noetherian differential ring Mp

(see [21]). Let Ap = {(a1, . . . , an) ∈ Kn : gā is not a Morse function on Vp}.
Proceeding as in [12], using Proposition 5.4 instead of Fubini’s theorem, and
Claim 1 applied to functions in the ring Mp, we see that Ap is meager for
every p ∈ X. Since A =

⋃
p∈X Ap, Corollary 3.9 implies that A is meager.

7. Pfaffian functions. Let K be a definably complete Baire structure.

Definition 7.1. Let f1, . . . , fs : Kn → K be definable and C1. We
say that (f1, . . . , fs) is a Pfaffian chain (in K) of length s if ∂fi/∂xj ∈
K[x̄, f1, . . . , fi] for i = 1, . . . , s and j = 1, . . . , n. A definable map F =
(F1, . . . , Fm) : Kn → Km is Pfaffian (in K) if F1, . . . , Fm ∈ K[x̄, f1, . . . , fs]
for some Pfaffian chain (f1, . . . , fs).

(3) A definable C2 function f , from a C2 K-manifold to K, is a Morse function if, as
in the classical definition, every singular point of f is nondegenerate.
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Consider polynomials pij ∈ K[x̄, y1, . . . , yi], qk ∈ K[x̄, y1, . . . , ys] such
that

∂fi
∂xj

(x̄) = pij(x̄, f1(x̄), . . . , fi(x̄)), i ≤ s, j ≤ n,

Fk(x̄) = qk(x̄, f1(x̄), . . . , fs(x̄)), k ≤ m.
The complexity of F is the sequence of integers (n,m, s, deg qk, deg pij :

i ≤ s, j ≤ n, k ≤ m).

We prove the following version of Khovanskii’s Theorems (see [14, The-
orems 1 and 2]).

Theorem 7.2.

(1) Suppose F : Kn → Kn is Pfaffian. Then the number of regular zeros
of F is finite and can be bounded by a function of the complexity
of F .

(2) Suppose F : Kn → Km is Pfaffian. Then the number of definably
connected components of F−1(0) is finite and can be bounded by a
function of the complexity of F .

The fact that the bounds in the above theorem depend only on the
complexity implies, in particular, that they do not depend on the coefficients
of the polynomials in the Pfaffian chain, or on other parameters in the
definition of F . Moreover, the reader can verify that the explicit bounds
given in [14] continue to work in this context.

7.1. Proof of Theorem 7.2. We will follow the outline of [16]; the
results that we do not prove here are easy modifications of the ones in [16].

We prove the first statement by induction on the length s of the Pfaffian
chain; the second one will follow from the first. If s = 0 then F is a polyno-
mial map, and the bound in the first and the second statement is given by
[2, Proposition 11.5.4].

Let s > 0, and suppose that, for all Pfaffian chains of length ≤ s−1, the
first statement of Theorem 7.2 holds true.

In the following proof, notice that the various reductions might increase
the complexity of the Pfaffian functions involved; however, the length will
only stay the same or decrease.

Let F : Kn → Kn be Pfaffian with respect to a Pfaffian chain f̄ =
(f1, . . . , fs), with F = (F1, . . . , Fn) and Fi(x̄) = qi(x̄, f1(x̄), . . . , fs(x̄)).

Define H : Kn+1 → Kn and G : Kn+1 → K as follows:
Hi(x̄, y) := qi(x̄, f1(x̄), . . . , fs−1(x̄), y), i = 1, . . . , n,
G(x̄, y) := y − fs(x̄).

Remark 7.3. H and G are Pfaffian maps. Moreover,

(1) H has length s− 1 and G has length s.
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(2) The complexities of G and H depend only on the complexity of F .
(3) V (G) = V reg(G).
(4) If ā ∈ V reg(F ) ⊆ Kn, then there exists b ∈ K such that (ā, b) ∈

V reg(H,G) ⊆ Kn+1.

Hence it is enough to bound the cardinality of V reg(H,G).

Definition 7.4. A definable continuous function f : Kd → Kd′
is proper

if the preimage of every d-compact set is d-compact. Notice that f is proper
iff lim|x̄|→∞|f(x̄)| = +∞.

Lemma 7.5. We may assume that H is proper.

Proof. In [16, bottom of p. 183] it is shown how to reduce to the case
when qn does not depend on f1, . . . , fs, and lim|x̄|→∞|qn(x̄)| = +∞; in this
case, Hn(x̄, y) = qn(x̄), and thus H is proper.

Lemma 7.6. We may assume that V (H) = V reg(H) and V (H,G) =
V reg(H,G).

Proof. Suppose this is not the case. For every b̄ ∈ Kn, we consider the
Pfaffian proper map Hb̄ := H − b̄. Note that Hb̄ has length s − 1 and the
same complexity as H.

Let B be the set of all b̄ ∈ Kn such that V (Hb̄) = V reg(Hb̄) and
V (Hb̄, G) = V reg(Hb̄, G). By Theorem 6.8, B is a residual subset of Kn.
Suppose we did prove that, for every b̄ ∈ B, |V reg(Hb̄, G)| ≤ N . The set of
all ā ∈ Kn such that |V reg(Hā, G)| ≥ N + 1 is open (by the Implicit Func-
tion Theorem, applied to H restricted to the manifold V (G) = V reg(G))
and disjoint from B, and therefore empty.

We have thus reduced our problem to the following situation: Γ :=
V reg(H) = V (H) ⊆ Kn+1 is a smooth d-compact Pfaffian curve of length
s − 1 and G : Kn+1 → K is a Pfaffian map of length s such that g := G�Γ
has only regular zeros. Notice that we have never changed the definition of
G = y − fs(x̄) in the above reductions. We need to bound the number of
zeros of g (which will be done in Lemma 7.14).

Definition 7.7. Given a C1 function f : Kd → Kd, let J(f) : Kd → K
be the determinant of the Jacobian matrix of f .

Definition 7.8. An arc of a nonsingular curve Γ is the image of a
definable differentiable function φ : I → Γ such that I ⊆ K is an interval
and φ′(t) is nonzero for all t ∈ I. The function φ is called a parametrization
of the arc. When no confusion is possible we use the word “arc” both for φ
and its image.

In [16, pp. 184–186], the proof continues as follows: since Γ is a compact
C1 curve of dimension 1, it has a finite number of connected components
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Γ1, . . . , Γr, each of which is diffeomorphic to the unit circle S1. Moreover, g
has a finite number of zeros (because V (g) is discrete and compact). Hence,
for i = 1, . . . , r, there is a parametrization φ : R → Γi, and using such
parametrization we can speak about consecutive zeros of g (Definition 7.10).
Set g̃ := g ◦ φ : R→ R; since all the zeros of g (and hence all zeros of g̃) are
regular, the derivative g̃′ changes sign at two consecutive zeros of g̃ (Rolle’s
Theorem). Hence, there is a zero z of g̃′ between each pair of consecutive
zeros of g̃, and therefore φ(z) is a zero of L := (H,J(H,G)); thus, |V (g)| ≤
|V (L)|. However, the length of L is still s, thus we cannot use the inductive
hypothesis to bound V (L) (even assuming that 0 is a regular value of L).

Khovanskii’s idea was to define another function Ĵ : Kn+1 → K of length
s − 1 such that Ĵ and J(H,G) coincide on V (G) (actually, it is enough
that Ĵ and J(H,G) coincide on V (H,G)). Let ̂ := Ĵ�Γ ; notice that ̂
changes sign between two consecutive zeros of g, because ̂ coincides with
J(H,G) on V (g); thus, |V (̂)| ≥ |V (g)|. The last trick is to show that if
(∗) |V reg(̂t)| ≤ N for every t ∈ K, then |V (g)| ≤ N , where ̂t := ̂ − t.
Finally, we can apply the inductive hypothesis to ̂t for every t, and obtain
a bound N satisfying (∗).

To generalize to our situation, the main difficulty lies in proving the
existence of a parametrization for Γ .

Proposition 7.9. Γ is the union of finitely many arcs.

Proof. Let 0 6= ā = (a1, . . . , an) ∈ Kn be such that the function u : Γ →
K given by x̄ 7→ ā · x̄ is Morse (such an ā exists by Corollary 6.9).

Claim 1. There exists an effective finite bound N on the cardinality of
the set of critical points of u, in terms of the complexity of H.

In fact, each critical point of u is a regular point of (H,J(H,U)), where
U(x̄) := ā · x̄, and we can apply the inductive hypothesis to the latter map.

For every t ∈ K, let Γt := u−1(t); notice that, since u is Morse, Γt is a
discrete set.

Claim 2. For every t ∈ K, |Γt| ≤ 2N .

In fact, let c1 < · · · < cm be the critical values of u. For every t ∈ K,
let ∆t be the set of singular points of u in Γt. Fix t ∈ [c1, cm]. Since u is a
Morse function, Γt and ∆t are discrete and d-compact.

Using the Implicit Function Theorem and the fact that u is Morse, we
see that for every x ∈ Γt there exists a definable neighbourhood Vx of x and
εx > 0 such that:

◦ if x is a regular point of u, then |Vx ∩ Γt′ | = 1 for every t′ ∈ B(x; εx);
◦ if x is a singular point of u, then |Vx ∩ Γt′ | ≤ 2 for every t′ ∈ B(x; εx).
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Since Γt is discrete and d-compact, the sets Vx can be chosen to be pairwise
disjoint and we can choose ε independently of x. By possibly reducing ε, we
can prove the following:

◦ If t is a regular value of f , then |Γt| = |Γt′ | for every t′ ∈ B(t; ε).
◦ If t is a singular value of f , then

∣∣|Γt| − |Γt′ |∣∣ ≤ |∆t| for every t′ ∈
B(t; ε).

We can conclude that for every i = 1, . . . ,m− 1, and every t, t′ ∈ (ci, ci+1),
either both Γt and Γt′ are infinite, or |Γt| = |Γt′ |. Hence, |Γc1 | = |∆c1 |; |Γt| ≤
2|∆c1 | for all t ∈ (c1, c2); |Γc2 | ≤ 2|∆c1 |+ |∆c2 |; . . . .

This completes the proof of the claim.

Claim 3. Let n,N ∈ N. There is a subset D(n,N) ⊂ Zn of cardinality
nN2 +1 such that for every N -tuple of distinct points p1, . . . , pN ∈ Kn there
is Z ∈ D(n,N) such that all the scalar products Z ·p1, . . . , Z ·pN are distinct
elements of K.

For a proof, see for example [22, Lemma 6.1].

Claim 4. Let Z ∈ Kn. The set SZ,m = {t ∈ K : |Z · Γt| ≥ m} is a finite
union of open intervals and points.

In fact, the set SZ,m is the projection onto the t-axis of the zero-set
of the Pfaffian map (of length s − 1) R(x̄, w̄, t) which sends (x̄1, . . . , x̄m,
w1,2, . . . , wm−1,m, t) to

(H(x̄1), . . . ,H(x̄m), u(x̄1)− t, . . . , u(x̄m)− t, . . . , (Z · x̄i−Z · x̄j)wi,j−1, . . .).

By [21, Theorem 45], V (R) has finitely many definably connected compo-
nents, hence so does its projection SZ,m.

Finally, we can prove the proposition. Since Γ is a nonsingular curve,
it is a union of arcs. We must show that finitely many arcs suffice. By
Corollary 6.9, there is a linear function U : Kn+1 → K whose restriction u
to Γ is a Morse function. By Claim 1, u has a finite number of critical points,
and by Claim 2 we can find N ∈ N such that each fibre Γt has cardinality
at most N . Fix D(n + 1, N) ⊂ Zn+1 as in Claim 3. By Claim 4 for each
Z ∈ D(n + 1, N) and m ∈ N, the set SZ,m = {t ∈ K : |Z · Γt| ≥ m} is a
finite union of open intervals and points. Since SZ,m is empty for m > N ,
the Boolean algebra generated by the sets SZ,m is finite. Its atoms give a
partition D of K into a finite union of open intervals and points. If I ∈ D,
then |Z ·Γt1 | = |Z ·Γt2 | for all t1, t2 ∈ I and all Z ∈ D(n+1, N). By Claim 3
it then follows that there is ZI ∈ D(n + 1, N) such that |ZI · Γt| = |Γt| for
all t ∈ I. So in particular there is kI ∈ N such that |Γt| = kI for all t ∈ I.
By Claim 1, u has finitely many critical points, so we can assume, refining
the partition, that no interval I ∈ D contains critical values of u. We order
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the finite set ZI · Γt by the order it inherits as a subset of K. For i ≤ kI let
φI,i(t) ∈ Γt be such that ZI · φI,i(t) is the ith element of ZI · Γt.

We claim that φI,i is continuous. This is clear if I is a point, so suppose
it is an interval. Then by our assumptions I does not contain critical points
of u. Fix t ∈ I. To prove the continuity of φI,i at t, let Γt = {x̄1, . . . , x̄kI},
where x̄i = φI,i(t). Since x̄i is not a critical point of u, we can choose an
open neighbourhood Ui of x̄i which is mapped by u diffeomorphically onto
an open interval (a, b) ⊆ I containing t. By choosing the Ui small enough
we can assume that ZI ·U1, . . . , ZI ·UkI are disjoint open intervals of K and
that u(Ui) = (a, b) for every i. It then follows that φI,i maps (a, b) into Ui
and it coincides with the inverse of the diffeomorphism u�Ui. Thus φI,i is
continuous.

The curve Γ is the union of finitely many arcs parametrized by the
functions φI,i, with I an interval of D, together with finitely many points
(the images of the functions φI,i when the set I ∈ D is just a point). To
complete the proof it suffices to observe that since Γ is a nonsingular curve,
each of these finitely many points is contained in some arc.

Definition 7.10. Let ξH be the unique vector field on Kn+1 such that
for every smooth definable function g : Kn+1 → K we have ξH(x̄) · ∇g(x̄) =
J(H, g)(x̄). Note that ξH is tangent to Γ and is never zero on Γ . We say
that the arc φ : I → Γ is orientation preserving if φ′(t) · ξH(φ(t)) > 0 for
every t ∈ I. Note that if φ : (a, b) → Γ is not orientation preserving, then
its reverse arc −φ(t) := φ(b− t+ a) is orientation preserving.

We say that two points x̄, ȳ ∈ V (g) are consecutive if there are an orien-
tation preserving arc φ : I → Γ = V (H) and t1 < t2 in I such that x̄ = φ(t1),
ȳ = φ(t2) and φ(t) /∈ V (g) for every t ∈ (t1, t2).

The proof of the following lemma is elementary.

Lemma 7.11. Let x̄, ȳ be consecutive points in V (g). Then J(H,G) as-
sumes opposite signs at x̄, ȳ. So in particular x̄ 6= ȳ.

Lemma 7.12. For each x̄ ∈ V (g), there is ȳ ∈ V (g) such that x̄, ȳ are
consecutive.

Proof. In the case when K expands R, one would use the fact that V (g)
is finite; but we do not know it yet in our situation. However, to prove the
conclusion it suffices to notice that V (g) is discrete and d-compact.

Lemma 7.13. There is a Pfaffian function Ĵ : Kn+1 → K of length s− 1
which coincides with J(H,G) on V (G).

As we said before, ̂ := Ĵ�Γ assumes opposite signs at two consecutive
points x̄, ȳ of V (g). Hence, reasoning as in [16, Lemma 3.1], we can prove
the following lemma.
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Lemma 7.14. V (g) is finite, and we can compute a bound on its cardi-
nality in terms of the complexity of (H,G).

Proof. Let ε be the minimum of the absolute value of ̂ on the closed
and bounded set V (g). Then ̂ assumes every value between −ε and +ε
between any two consecutive points x̄, ȳ of V (g). By Theorem 6.8, ̂ has a
regular value t ∈ (−ε,+ε). Since Ĵ has length ≤ s − 1, using the inductive
hypothesis we can compute a finite bound on the cardinality of ̂−1(t). This
is also a bound on V (g) since we can associate injectively to each x̄ ∈ V (g)
a point of ̂−1(t) lying in the arc between x̄ and the point consecutive to x̄
(which exists by Lemma 7.12).

Combining all the lemmas, we obtain a proof of the first statement of
Theorem 7.2.

We now prove the second statement. Let F : Kn → Km be Pfaffian with
respect to a Pfaffian chain (f1, . . . , fs). We need some preliminary results.

Definition 7.15. Let Cofin(K) be the cofinality of K. A sequence is a
map x : Cofin(K)→ Km. If (xk)k<Cofin(K) is a sequence, we say that xk → l
if for every neighbourhood V of l there exists µ < Cofin(K) such that xk ∈ V
for every k > µ. We call (xk)k<Cofin(K) infinitesimal if xk → 0.

The following lemma is a modification of an observation by Alessio Mar-
tini.

Lemma 7.16. Let F : Kn → K be definable, continuous, proper and
nonnegative, and M ∈ N. Suppose there is an infinitesimal nonnegative
sequence (εk)k<Cofin(K) such that for every k < Cofin(K), F−1(εk) has fewer
than M definably connected components. Then F−1(0) has fewer than M
definably connected components.

Proof. Since F is proper, F−1(0) and F−1(εk) are d-compact. Assume,
for contradiction, that there exists a partition {C0, . . . , CM−1} of F−1(0)
into nonempty definable clopen subsets. Let

δ :=
1
3

min
i 6=j

d(Ci, Cj), W := {x̄ ∈ Kn : d(x̄, F−1(0)) < δ},

Bi := {x̄ ∈ Kn : d(x̄, Ci) < δ}, Ji := F (Bi).

Note that δ > 0, the Bis are open (inKn) and disjoint, Bi∩F−1(0) = Ci, and
W =

⋃
iBi. We note that each Ji is definably connected. Indeed, assume,

say, i = 0. Let ε ∈ J0, and let ȳ ∈ B0 be such that F (ȳ) = ε. Let x̄ ∈ C0

be such that d(x̄, ȳ) < δ. Note that the segment [x̄, ȳ] is contained in B0.
Since [x̄, ȳ] is definably connected, F ([x̄, ȳ]) is also definably connected, and
therefore ε is in the same definably connected component of J0 as 0; since
this is true for every ε ∈ J0, J0 is definably connected.
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Let θi := sup Ji and η1 := mini θi. We claim that there exists η2 > 0 such
that F−1([0, η2)) ⊆W . Let D := F−1([0, 1])\W . Note that D is d-compact,
because F is proper. If D = ∅, we can define η2 = 1. Otherwise, F (D) is
d-compact and nonempty. Let η2 := minD. Since F−1(0) ∩D = ∅, we have
η2 > 0. Let F (x̄) < η2. Then x̄ /∈ D, and therefore x̄ ∈W .

Define η = min(η1, η2). Therefore, for every ε < η, we have

F−1(ε) ⊆
⋃
i

Bi and ε ∈
⋂
i

F (Bi).

Let k < Cofin(K) be such that εk < η. Since F−1(εk) has at most M
definably connected components, we deduce that F−1(εk) ∩ Bi = ∅ for at
least one i. However, this contradicts εk ∈

⋂
i F (Bi).

We turn to the proof of the second statement of Theorem 7.2.

Lemma 7.17. We may assume that F is proper, m = 1 and F ≥ 0.

Lemma 7.18. We may assume that 0 is a regular value for F .

Proof. Consider the function Fε := F − ε for 0 < ε ∈ K. It follows from
Theorem 6.8 that the set of critical values of F is meager, hence we can
find an infinitesimal sequence (εn)n<Cofin(K) such that εn is a regular value
for F . If we find a bound which works for every Fεn , then by Lemma 7.16,
the same bound will work for F .

By Corollary 6.9, there exists a nonzero ā ∈ Kn such that uā(x̄) := ā · x̄
is a Morse function on V (F ). Once these lemmas are established, note that
every nonempty clopen definable subset C of V (F ) is d-compact, and hence
the function uā has at least one critical point on C; it follows by a standard
argument that the number of definably connected components of V (F ) is
finite, and is bounded by the number of critical points of uā on V (F ), if the
latter is also finite.

Choose an orthogonal basis e1, . . . , en of the orthogonal space to ā, and
write (y1, . . . , yn−1, yn) for the coordinates in the basis (e1, . . . , en, ā). We can
then proceed as in [16, pp. 188–189]: a calculation shows that the critical
points of uā on V (F ) are regular zeros of the map F̃ := (F, ∂F/∂y1, . . .
. . . , ∂F/∂yn−1). Since each ∂F/∂yi is a linear combination of ∂F/∂x1, . . . ,
∂F/∂xn, a bound on |V reg(F̃ )| is given by the first statement in Theorem 7.2.
This concludes the proof.

8. Conclusion. Now we are ready to give necessary and sufficient con-
ditions for a definably complete Baire expansion of a field by C∞ functions
to be o-minimal:

Theorem 8.1. Let K be a definably complete Baire expansion of a field
by a family of C∞ functions. Then K is o-minimal if and only if every quan-
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tifier free K-definable set has finitely many definably connected components
(uniformly in the parameters).

This result, together with Theorem 7.2, gives us immediately the follow-
ing corollary.

Corollary 8.2. Let K be a definably complete Baire expansion of a
field by a family of Pfaffian functions. Then K is o-minimal.

Remark 8.3. We recall that Tarski’s question about the decidability
of the theory of the real exponential field is still open. The best result so
far in this direction is in [15], where the authors give a candidate for an
axiomatization, which is actually complete if Schanuel’s Conjecture is true.
It follows from Corollary 8.2 that if L is the language of ordered rings with
an extra unary function symbol f , then the L-theory axiomatized by the
scheme of definably complete Baire structure together with an axiom stat-
ing that f ′ = f and f(0) = 1, is a recursive and o-minimal subtheory of the
theory of the real exponential field. This subtheory thus provides a reason-
able candidate for an axiomatization of the theory of the real exponential
field. If one could prove that this subtheory is complete, then we would infer
that the theory of the real exponential field is decidable.

Theorem 8.1 is a special case of a more general statement (appearing in
[8]), giving necessary and sufficient conditions for a definably complete Baire
expansion of an o-minimal structure by C∞ functions to be o-minimal. More
precisely, let K be a definably complete Baire structure, K0 be an o-minimal
reduct of K, expanding the field structure, and F be a family of total C∞
functions definable in K. We assume that F is closed under permutation
of variables, contains the coordinate functions (x1, . . . , xn) 7→ xi, and that
if f ∈ F , then (x̄, y) 7→ f(x̄) is also in F . Let K0(F) be the reduct of K
generated by K0 and F . Let G0 be the set of all total continuous functions
definable in K0, and G be the set of functions of the form h ◦ f for some
f : Kn → Km in Fm and some h : Km → K in G0.

Theorem 8.4 ([8, Theorem 6.2]). K0(F) is o-minimal iff, for every
g ∈ G, there exists a natural number N such that, for every affine set A, the
set V (g) ∩A has at most N definably connected components.

However, a direct proof of Theorem 8.1 can be obtained by modifying the
proof of [23, Theorem 1.9], which is the original statement of this result for
expansions of the real field. Wilkie’s proof uses measure-theoretic arguments.
One can show that these arguments can be replaced by def-Baire category
arguments. The reader familiar with [23] can check that Wilkie’s proof goes
through in our context as well, provided that one uses the following facts:
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(1) Every Charbonnel set is in Fσ.
(2) For a Charbonnel set A the following are equivalent: A is meager, A

has empty interior, A is nowhere dense.
(3) Every use of Fubini’s Theorem in [23] can be replaced by the use of

Proposition 5.4.
(4) For Charbonnel sets, being meager is equivalent to being locally mea-

ger (cf. 3.9).
(5) Arguments in [23] involving sequences or topological compactness

can be easily modified using definable compactness.
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