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Dedicated to the memory of Jerry Levine (May 4, 1937 – April 8, 2006)

Abstract. We show that there exist non-trivial piecewise linear (PL) knots with
isolated singularities S

n−2
⊂ S

n, n ≥ 5, whose complements have the homotopy type of
a circle. This is in contrast to the case of smooth, PL locally flat, and topological locally
flat knots, for which it is known that if the complement has the homotopy type of a circle,
then the knot is trivial.

It is well known that if the complement of a smooth, piecewise linear (PL)
locally flat, or topological locally flat knot K ⊂ Sn, K ∼= Sn−2, n ≥ 5, has
the homotopy type of a circle, then K is equivalent to the standard unknot
in the appropriate category (see Stallings [11] for the topological case and
Levine [6] and [8, §23] for the smooth and PL cases). This is also true of
classical knots S1 →֒ S3 (see [10, §4.B]), for which these categories are all
equivalent, and in the topological category for locally flat knots S2 →֒ S4

by Freedman [2, Theorem 6].
By contrast, Freedman and Quinn showed in [3, §11.7] that any classi-

cal knot with Alexander polynomial 1 bounds a topological locally flat D2

in D4 whose complement is a homotopy circle, and by collapsing the bound-
ary, one obtains a singular S2 in S4 with the same property. In the same
dimensions, Boersema and Taylor [1] constructed a specific example of a PL
knot with an isolated singularity whose complement is a homotopy circle. It
follows by taking iterated suspensions that there are non-trivial PL embed-
dings Sn−2 →֒ Sn in all dimensions n ≥ 4 whose complements are homotopy
circles, though this process will lead to increasingly more complicated sin-
gularities. In this note, we construct PL knots for any n ≥ 5 that are locally
flat except at one point and whose complements are homotopy circles.
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To construct the knots with the desired properties, it will suffice to
construct for each n ≥ 5 a PL locally flat disk knot L ⊂ Dn such that
Dn − L ∼h.e. S1 and such that the PL locally flat boundary sphere knot
∂L ⊂ ∂Dn is non-trivial. By a PL locally flat disk knot L ⊂ Dn, we mean
the image of a PL locally flat embedding Dn−2 →֒ Dn such that ∂L ⊂ ∂Dn

is a locally flat sphere knot and int(L) ⊂ int(Dn). This will suffice since, if
such a disk knot exists, we may then adjoin the cone on the boundary pair
(∂Dn, ∂L) to obtain a PL sphere knot K ⊂ Sn that is locally flat except at
the cone point:

K = L ∪∂L c(∂L)

∩ ∩ ∩

Sn = Dn ∪∂Dn c(∂Dn)

It is clear that Sn−K ∼h.e. Dn−L, so if the complement of L is a homotopy
circle then so will be that of K. Furthermore, K will be non-trivial since the
link pair of the cone point will be non-trivially knotted, which is impossible
in the unknot, which is locally flat.

So we construct such a disk knot. The procedure will be based upon that
given by the author in [4] for constructing certain Alexander polynomials
of disk knots, which in turn was a generalization of Levine’s construction of
sphere knots with given Alexander polynomials in [7]. All spaces and maps
will be in the PL category without further explicit mention.

Suppose that n ≥ 5, and let U be the trivial disk knot U ⊂ Dn, i.e.
Dn may be identified with the unit ball in R

n such that U is the intersec-
tion of Dn with the coordinate plane R

n−2 ⊂ R
n. We can assume that U

bounds an embedded (n − 1)-disk V in Dn, that ∂U bounds an (n − 2)-
disk F in ∂Dn, that ∂V = U ∪ F , and that int(V ) ⊂ int(Dn). Embed
an unknotted Sn−3 into ∂Dn = Sn−1 so that it is not linked with ∂U
and does not intersect F (in fact, we may assume that the new Sn−3 and
F are in opposite hemispheres of ∂Dn). We use the standard framing of
the new unknotted Sn−3 to attach an (n − 2)-handle to Dn, obtaining a
space homeomorphic to Sn−2 × D2 and containing V in a trivial neigh-
borhood of some point on the boundary. Let C0 = Sn−2 × D2 − U . Since
π1(D

n − U) ∼= Z, π1(C0) ∼= Z by the Seifert–van Kampen theorem. Let

C̃0 be the infinite cyclic cover of C0 associated with the kernel of the ho-
momorphism π1(C0) = Z → Z determined by linking number with U . Let

X0 = ∂(Sn−2 × D2) − ∂U , and let X̃0 be the infinite cyclic cover of X0

in C̃0.
As in the usual construction of infinite cyclic covers in knot theory (see,

e.g., Rolfsen [10]), we can form C̃0 by a cut and paste procedure: we cut C0

along V to obtain Y0 and then glue a countably infinite number of copies
of Y0 together along the copies of V . Since C0 − V ∼h.e. Sn−2, we have
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H̃n−2(C̃0) = Z[Z] = Z[t, t−1] (where t represents a generator of the group
of covering translations) and all other reduced homology groups are trivial.

Similarly, since ∂(Sn−2 ×D2)−F is a punctured Sn−2 ×S1, H̃∗(X̃0) is Z[Z]
in dimensions n − 2 and 1, and trivial otherwise.

It is also apparent that π∗(C̃0) is trivial for ∗ < n − 2, while π1(X̃0)
is free on a countably infinite number of generators. Thus, since n ≥ 5,
π2(C̃0, X̃0) is also free on a countably infinite number of generators. Mean-
while, for X0 itself, π1(X0) is the free group on two generators: one gen-
erator corresponds to the generator of π1(∂(Sn−2 × D2)) = π1(S

n−2 × S1)
= Z and the other corresponds to the meridian of the unknotted ∂U (this
can be demonstrated by an easy Seifert–van Kampen argument, by consid-
ering ∂U to lie in a ball neighborhood of some point). Let a represent the
generator corresponding to the meridian of ∂U , and let b represent the other
described generator. We note that the generator of π1(C0) ∼= Z is also given
by a, while b is contractible in this larger space.

Consider now the element γ of π1(X0) given by b2aba−1b−1ab−1a−1.
Since b = 1 in π1(C0) and a occurs with total exponent 0 in γ, the im-
age of γ in π1(C0) is trivial, so any representative of γ is the boundary of
a 2-disk Γ in C0. Since n ≥ 5, we can assume that Γ is properly embed-
ded (see [5, Corollary 8.2.1]). Furthermore, γ can be lifted to a closed curve

in X̃0; if we let ci represent the generators of π1(X̃0), then any lift of a
is a path between adjoining lifts of X0 in the cut and paste construction,
and γ lifts to γ̃ = c2

0
c1c

−1

0
c−1

1
∈ π1(X̃0). In the abelianization H1(X̃0), the

image of γ̃ is the same as the image of c0, which is a Z[Z]-module generator

of H1(X̃0).

Let N denote an open regular neighborhood of Γ in C0. We claim that
Sn−2 ×D2 −N is homeomorphic to Dn. In fact, observe that in Sn−2 ×S1,
γ is homotopic to the standard generator b = ∗×S1 of π1(S

n−2 ×S1) (with
an appropriate choice of orientations). Thus, in (Sn−2×D2, Sn−2×S1), the
pair (Γ, γ) is homotopic to the standard generator ∗×D2 of π2(S

n−2 ×D2,
Sn−2 × S1). These homotopies can be realized by ambient isotopies by [5,
Theorem 10.2]. Then it is clear that Sn−2 × D2 − N ∼= Dn−2 × D2 ∼= Dn.

Fixing a homeomorphism Sn−2 × D2 − N → Dn, the image of U is a
new disk knot, which we christen L. We claim that L is no longer trivial but
that its complement is a homotopy circle.

Let C be the complement of an open regular neighborhood of L in Dn

(the disk knot exterior). Thus C is homotopy equivalent to Dn−L. Similarly,
let X be the exterior of ∂L in ∂Dn = Sn−1. We must study the homotopy
and homology of C, X, and their coverings.

Lemma 1. π1(C) = Z.
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Proof. C ∼h.e. Dn − L ∼= (C0 − N) ∪D2
×Sn−3 N . Since π1(C0) ∼= Z and

N ∼= Dn, π1(C) ∼= Z by the Seifert–van Kampen theorem.

Lemma 2. π1(X) ∼= 〈a, b | b2aba−1b−1ab−1a−1〉.

Proof. The effect of the handle subtraction C0 − N on the boundary
X0 is that of a surgery on the embedded curve γ. Since π1(X0) is free on
the generators a and b, the result of the surgery is the given group. (Proof:
The result of the surgery is (X0 − S1 × Dn−2) ∪ D2 × Sn−3, where the S1

represents γ. But since n ≥ 5, π1(X0 −S1 ×Dn−2) ∼= π1(X0). So by Seifert–
van Kampen, π1 of the result of the surgery is π1(X0)/π1(S

1 × Sn−3) ∼=
π1(X0)/Z, where the Z is generated by S1 × ∗ in S1 × Sn−3, which is the
boundary of the neighborhood of γ. But any such curve is homotopic to γ,
which represents b2aba−1b−1ab−1a−1.)

Lemma 3. The Alexander modules H̃∗(C̃), H̃∗(X̃), and H̃∗(C̃, X̃) are

all trivial.

Proof. Let γ̃ be the lift of γ considered above. We can also lift Γ to a

2-disk Γ̃ in C̃0. In fact, we can find a countable number of lifts γ̃i and Γ̃i,
and, since Γ is embedded, the Γ̃i are all disjoint. If Ñi then represent the
lifts of the regular neighborhood N , C̃0 −

∐
i Ñi will be the infinite cyclic

cover of C0 − N ∼= Dn − L.
Now consider X̃0 ∪

∐
i Ñi. Each intersection X̃0 ∩Ni is homotopy equiv-

alent to a translate of γ̃i, which we know represents the Z[Z]-module gen-

erator of H1(X̃0). It thus follows from the Mayer–Vietoris sequence that

H̃∗(X̃0 ∪
∐

i Ñi) is trivial except in dimension n− 2, where it is Z[Z]. Mean-

while, we already know that H̃∗(C̃0) is trivial except in dimension n − 2,

where it is also Z[Z]. Consider the map Hn−2(X̃0 ∪
∐

i Ñi) → H∗(C̃0).
In each module, a Z[Z]-module generator is represented by a choice of
Sn−2 × ∗ ⊂ Sn−2 × S1 ⊂ Sn−2 × D2 that is disjoint from V . Thus this
homology map is an isomorphism, and it follows that H∗(C̃0, X̃0 ∪

∐
i Ñi) is

trivial. But by excision, H∗(C̃0, X̃0 ∪
∐

i Ñi) ∼= H∗(C̃, X̃).

Similarly, it follows from easy homological calculations that H̃∗(X̃) is
trivial. In fact, it can be seen that the construction of X from X0 is by
a surgery, and upon restriction of our construction to its effect on X0, we
obtain the construction of Levine for producing smooth sphere knots with
given Alexander polynomials in [7]. In this case, the Alexander polynomial is

trivial (since γ̃ generates H1(X̃0)), and it follows from Levine’s calculations

that H̃∗(X̃) = 0.

Then H̃∗(C̃) is also trivial, by the long exact sequence of the pair

(C̃, X̃).

Proposition 4. π∗(D
n − L) ∼= π∗(S

1).
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Proof. By Lemma 1, π1(C) = Z. Thus the infinite cyclic cover C̃ is

simply connected, and since we also have H̃∗(C̃) = 0 by Lemma 3, it follows

that πj(C̃) = 0 for all j > 1 by Hurewicz’s theorem. Thus for j > 1,
πj(C) = 0, and π∗(D

n − L) ∼= π∗(C) ∼= π∗(S
1).

Theorem 5. Dn − L is a homotopy circle.

Proof. By the preceding proposition, Dn − L has the same homotopy
groups as a circle. But Dn − L is homotopy equivalent to C, which is hom-
eomorphic to a finite simplicial complex. Since the inclusion i : S1 → C
of a meridian of L induces the isomorphism π1(S

1) → π1(C), we can con-
clude that i is a homotopy equivalence. Thus C ∼h.e. Dn −L is a homotopy
circle.

It only remains to show that L is non-trivial, which will follow once we
show that the group π1(X) of the boundary knot ∂L is not Z.

Lemma 6. The group G = 〈a, b | b2aba−1b−1ab−1a−1〉 is not isomorphic

to Z.

Proof. This lemma can be proven in a variety of ways. The following
elegant demonstration was shown to me by Andrew Casson.

We adjoin an extra generator c, which we immediately set equal to aba−1.
Then

〈a, b | b2aba−1b−1ab−1a−1〉 ∼= 〈a, b, c | b2aba−1b−1ab−1a−1, cab−1a−1〉

∼= 〈a, b, c | b2cb−1c−1, cab−1a−1〉

∼=
〈b, c | b2cb−1c−1〉 ∗ 〈a〉

〈cab−1a−1〉
.

Written this way, G has the form of an HNN extension of the Baumslag–
Solitar group H = 〈b, c | b2cb−1c−1〉, which is isomorphic to the semidirect
product Z[1/2] ⋊ Z. Thus H is a non-abelian subgroup of G, which hence
cannot be Z.

Alternatively, to apply an unnecessarily large hammer, once G is written
as 〈a, b, c | b2aba−1b−1ab−1a−1, cab−1a−1〉, it follows from [9] that G is not
even residually finite.

A third proof would utilize Whitehead’s theorem on one-relator groups
[12].

Remark 7. There is nothing exceptionally special about the group G
we have used in this construction, except that it turned out to be a fairly
tractable example of a group with suitable properties. Any group possess-
ing a two-generator, one-relator presentation with the properties employed
above clearly would be sufficient.
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