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Structure of inverse limit spaces of

tent maps with finite critical orbit

by

Sonja Štimac (Zagreb)

Abstract. Using methods of symbolic dynamics, we analyze the structure of com-
posants of the inverse limit spaces of tent maps with finite critical orbit. We define certain
symmetric arcs called bridges. They are building blocks of composants. Then we show
that the folding patterns of bridges are characterized by bridge types and prove that there
are finitely many bridge types.

1. Introduction. The one-parameter family of tent maps on the unit
interval is an important family of one-dimensional maps, because it exempli-
fies a variety of dynamical phenomena encountered in more general families
of one-dimensional maps. The observation that inverse limit spaces of one-
dimensional maps appear as attractors in dynamical systems has generated
considerable interest in such spaces. The inverse limit spaces, formed by us-
ing a single tent map for all the bonding maps, provide a one-parameter fam-
ily of models for Hénon and other generalized horseshoe attractors. Various
authors have been interested in the topology of such inverse limit spaces with
an eye to a further understanding of these attractors (for instance, C. Bandt
in [B], M. Barge, K. M. Brucks and B. Diamond in [Ba-Br-D], M. Barge and
W. T. Ingram in [Ba-I], H. Bruin in [Brn1] and [Brn3], W. T. Ingram in [I]
and L. Kailhofer in [K1] and [K2]).

If inverse limit spaces are to be used to classify dynamical systems, then
it is of fundamental importance to be able to determine whether or not two
inverse limit spaces are homeomorphic. Therefore, the understanding of the
structure of such inverse limit spaces is also an interesting and important
task. In 1992, W. T. Ingram conjectured that the inverse limit spaces based
on two tent maps with different slopes are not homeomorphic. This conjec-
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ture has recently received significant attention. Of particular interest is the
simplest case when the tent maps have finite critical orbits. Several authors
have addressed the difficult question of determining when such inverse limit
spaces are homeomorphic (for example, M. Barge and B. Diamond in [Ba-D],
H. Bruin in [Brn2], L. Kailhofer in [K1] and [K2], and S. Štimac in [Š]).

The purpose of this paper is to develop a method for describing the
structure of the inverse limit spaces of a certain family of tent maps. In a
forthcoming paper this method will be used in the classification of inverse
limit spaces of tent maps with finite critical orbits.

For s ∈ (1, 2], let Ts : [0, 1]→ [0, 1] be the tent map with slope s, i.e.

Ts(ξ) =

{
sξ if 0 ≤ ξ ≤ 1/2,

s(1− ξ) if 1/2 ≤ ξ ≤ 1.

Let Ks denote the limit of the inverse sequence consisting of copies of [0, 1]
and tent maps Ts,

Ks = lim←−{[0, 1], Ts}
= {(. . . , ξ−3, ξ−2, ξ−1) ∈ [0, 1]N : ξ−i = Ts(ξ−i−1), i ∈ N}.

Although the notation for the points of Ks may seem somewhat unusual,
it turned out to have practical advantages in our case. Ks is a continuum
(compact connected metric space) which is indecomposable [I]. Since K2 is
known by the name of Knaster continuum (or bucket handle continuum),
we will call Ks the generalized Knaster continua.

Similarly to [Ba-I], one can prove that for s ∈ (
√

2, 2], the continuum Ks

is the union of the continuum lim←−{Js, Ts|Js
} and of the half-line R entwined

in it, so that clR \ R = lim←−{Js, Ts|Js
}, where Js = [T 2

s (1/2), Ts(1/2)] and
Ts|Js

is the core of the tent map Ts.

For s ∈ (1,
√

2], the continuum Ks is the union of a half-line R and of
two continua C1 and C2 such that clR\R = C1∪C2, C1∩C2 is a point, and
C1 and C2 are homeomorphic to the continuum Ks2 . Therefore, to describe
the structure of the continua Ks, s ∈ (1, 2], it is sufficient to describe the
structure of the continua lim←−{Js, Ts|Js

}, s ∈ (
√

2, 2], or analogously, the
continua from the family Cs = lim←−{[0, 1], fs}, s ∈ (

√
2, 2], where fs : [0, 1]→

[0, 1] are the rescaled cores of the tent maps Ts,

fs(ξ) =

{
sξ + 2− s if 0 ≤ ξ ≤ cs,
s(1− ξ) if cs ≤ ξ ≤ 1,

with cs = (s− 1)/s.

A point x ∈ Cs is called an endpoint of Cs if for every pair of subcontinua
A,B of Cs with x ∈ A ∩B, either A ⊆ B or B ⊆ A. The continuum Cs has
N ∈ N endpoints if and only if 0 is a periodic point of fs with period N . The
continuum Cs has infinitely many endpoints if and only if 0 is a recurrent
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but not periodic point of fs. Finally, Cs does not have endpoints if and only
if 0 is not a recurrent point of fs. These results were proved in [Ba-M].

It is well known that the continua Cs are chainable. A chain is a finite
open cover C = {Li}ni=1 of Cs whose links Li and Lj intersect if and only
if |i − j| ≤ 1. A space is said to be chainable if for every ǫ > 0 there is
a chain whose links have diameter less than ǫ. If C and C′ are chains, C is
called finer than C′ if for every link L ∈ C there is a link L′ ∈ C′ containing
L. A link L ∈ C is a turnlink if there exist an adjacent link M ∈ C, a chain
C′ = {L′

i}n
′

i=1 and integers a, b, 1 ≤ a < b ≤ n′, such that
⋃b

i=a L
′
i ⊂ L ∪M ,

(
⋃b

i=a L
′
i)∩L 6= ∅ and L′

a, L
′
b ⊂M \L. In this case we say that C′ turns in L.

The link L is an essential turnlink if every sufficiently fine chain C′ has a
turnlink in L. A point x ∈ Cs is a folding point if for every neighborhood U
of x, every sufficiently fine chain has a turnlink (and therefore, an essential
turnlink) in U .

A folding point x can be either one-sided or two-sided. Assume that C
is a chain and a link L containing x is neither the first nor the last link.
Then x is one-sided if there is a single link M , adjacent to L, such that
every sufficiently fine chain turns in L ∪ M . If M ′ is the other adjacent
link and sufficiently fine chains turn both in L ∪M and L ∪M ′, then x is
a two-sided folding point. An example of a one-sided folding point is the
endpoint of the bucket handle C2. A nice illustration of a two-sided folding
point appears in the inverse limit space C√

2 of the tent map with slope
√

2.
In this case f√2(0) is the fixed point and C√

2 consists of two bucket handles
glued together at their endpoints. The glue point is the unique two-sided
folding point [Ba-I].

If cs is a periodic point of fs with period N , i.e. fN
s (cs) = cs and

f i
s(cs) 6= cs for 0 < i < N , the continuum Cs has N endpoints and these

points are the only folding points of Cs. Every endpoint is a one-sided fold-
ing point. If cs is a strictly preperiodic point of fs, i.e. fM

s (cs) = ξ = fN
s (ξ),

M 6= 0 and f i
s(ξ) 6= ξ, for 0 < i < N , then the continuum Cs has N folding

points which are not endpoints, with the exception of the bucket handle C2

whose only folding point is an endpoint. If ξ is orientation-preserving, then
the corresponding folding point is one-sided. If ξ is orientation-reversing,
the corresponding folding point is two-sided. With the exception of the fold-
ing points, the inverse limit space of a tent map with periodic or strictly
preperiodic critical point is locally homeomorphic to a Cantor set of arcs
[Brn2].

From now on, we will consider continua Cs, s ∈ (
√

2, 2], such that the
corresponding bonding maps fs have finite critical orbits.

In Section 2 we use C. Bandt’s [B] and K. M. Bruck and B. Diamond’s
[Br-D] ideas of representing Cs as the quotient space of the space of two-sided
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allowed sequences of two symbols 0, 1 with respect to a certain equivalence
relation ≈. Then we give properties of the two-sided allowed sequences and
we define an ordering � on every composant. We also define some special
points of Cs, called i-points, and we define and analyze certain arcs in the
composants of Cs, called basic arcs.

In Section 3 we first describe in detail the properties of the folding pat-
terns of composants with one folding point. Then we define certain symmet-
ric arcs in the composants, called p-bridges. Analyzing them we show that
their folding patterns are characterized by a number called the bridge type.
We prove (Theorem 3.20) that there are finitely many bridge types. Using
these folding patterns, we discuss the folding pattern of any composant hav-
ing no folding points. L. Kailhofer gave in [K1] and [K2] many properties of
these patterns of the composant of a particular endpoint of a continuum Cs

with finitely many endpoints. In distinction to the topological methods used
by L. Kailhofer, we systematically apply the methods of symbolic dynamics
and coding.

2. Coding generalized Knaster continua. Let M ∈ Z+, N ∈ N
and s ∈ (

√
2, 2] be such that cs is preperiodic under fs with preperiod M

and period N , i.e., there is ξ ∈ [0, 1] with fM
s (cs) = ξ, fN

s (ξ) = ξ and
f i

s(ξ) 6= ξ for 0 < i < N . This means that the orbit of the point cs, Os(cs) =
{cs, fs(cs) = 1, f2

s (cs) = 0, f3
s (cs), . . . }, has M +N points. Note that when

M = 0, we are in a periodic case, and when M > 2, we are in a strictly
preperiodic case. Let Os(cs) = {0 = ξ0 < ξ1 < · · · < ξM+N−1 = 1}, and let
Ii = [ξi, ξi+1], i ∈ {0, . . . ,M +N −2}. The family of closed subintervals {Ii}
of the interval [0, 1] forms a partition since the interiors of the intervals Ii are

pairwise disjoint. Note that
⋃M+N−2

i=0 Ii = [0, 1]. The map fs is a Markov
map, i.e., it is surjective, C1 and monotone on each of the open intervals
int Ii, and has the following properties:

(1) there exists α > 1 such that |f ′s(x)| ≥ α for each x ∈ int Ii, i ∈
{0, . . . ,M +N − 2},

(2) if fs(int Ii)∩ int Ij 6= ∅, then fs(int Ii) ⊇ int Ij for i, j ∈ {0, . . . ,M +
N − 2}

([P-Y, p. 39]). The map fs is also locally eventually onto (l.e.o.), i.e., for every
interval J ⊂ [0, 1] there exists n ∈ N with fn

s (J) = [0, 1] ([P-Y, p. 40]). The
Markov graph of fs associated with the partition {Ii} is the graph whose
vertices are the intervals of the partition and the edges are the pairs (Ij , Ik)
such that fs(Ij) ⊇ Ik. Such an edge is denoted by Ij → Ik ([M-S, p. 83]).
Note that either Ii ⊆ I0 or Ii ⊆ I1 with I0 = [0, cs] and I1 = [cs, 1].

Let Ii0 → Ii1 → · · · → Iik → · · · be a path in the Markov graph (finite
or infinite). To every such path we assign the sequence x0x1 . . . xk . . . (finite
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or infinite) defined by

xj =

{
0, Iij ⊆ I0,

1, Iij ⊆ I1.

We then say that the path and the sequence are associated . A finite or
infinite sequence of zeros and ones is called allowed (with respect to fs) if it is
associated with some path in the Markov graph. If a sequence x0x1 . . . xk . . .
is allowed, then all of its finite parts xj . . . xj+k are allowed.

Lemma 2.1. Let x0x1 . . . xn+M+N−1, n ∈ Z+, be an allowed sequence of

length n + M + N . Then there exist at most two different paths of length

n+1 in the Markov graph of fs with the following property : Any path Ii0 →
Ii1 → · · · → Iin+M+N−1 in the Markov graph of fs associated with the given

sequence starts with one of these two paths of length n + 1. Moreover , if

M = 0 and n = 0, then every path in the Markov graph associated with the

sequence x0x1 . . . xN−1 starts with the same vertex.

Proof. Let Ii0 → Ii1 → · · · → Iin+M+N−1 , Ij0 → Ij1 → · · · → Ijn+M+N−1

and Il0 → Il1 → · · · → Iln+M+N−1
be three paths in the Markov graph,

all associated with x0x1 . . . xn+M+N−1. Let Jk = conv(Iik ∪ Ijk
∪ Ilk), k ∈

{0, . . . , n+M+N−1}, where conv(A) denotes the convex hull of A. Since the
same element xk of the allowed sequence x0x1 . . . xn+M+N−1 is associated
with the vertices Iik , Ijk

and Ilk , the intervals Iik , Ijk
and Ilk all lie either

to the left of cs, or to the right of cs. So, cs /∈ intJk and fs|Jk
is strictly

monotone, for every k ∈ {0, . . . , n + M + N − 1}. Because of that, and
since fs(Iik) ⊇ Iik+1

, fs(Ijk
) ⊇ Ijk+1

and fs(Ilk) ⊇ Ilk+1
, we conclude that

Iik 6= Ijk
6= Ilk 6= Iik implies Iik+1

6= Ijk+1
6= Ilk+1

6= Iik+1
.

Suppose that Iin 6= Ijn 6= Iln 6= Iin . Then Iik 6= Ijk
6= Ilk 6= Iik for

every k ∈ {n, . . . , n+M +N −1}. Without loss of generality we can assume
that in < jn < ln. Let M 6= 0 and Ijk

= [ξjk
, ξjk+1

] for every k ∈ {n, . . . ,
n+M +N − 1}. Then Ijk

⊂ intJk for every k ∈ {n, . . . , n+M +N − 1}.
Since ξjn , ξjn+1 ∈ O(cs), there is m ∈ N, m < M , such that fm

s (ξjn) =

ξa = fN
s (ξa) ∈ O(cs) and fm

s (ξjn+1) = ξb = fN
s (ξb) ∈ O(cs). Without loss of

generality we can assume that ξa < ξb. Since fk
s |[ξa,ξb] is strictly monotone for

every k ∈ {0, . . . , N}, it follows that fN
s ([ξa, ξb]) = [ξa, ξb], which contradicts

fs being l.e.o. Hence, Iik = Ijk
for every k ∈ {0, . . . , n}, or Ijk

= Ilk for every
k ∈ {0, . . . , n}.

Let M = 0, n = 0 and Ilk = ∅ for every k ∈ {0, . . . , N − 1}. Then
fk

s (ξi0+1) ∈ intJk for every k ∈ {0, . . . , N − 1}. Since ξi0+1 ∈ O(cs), there
is K ∈ N, K ≤ N − 1, such that fK

s (ξi0+1) = cs, contrary to cs /∈ intJk for
every k ∈ {0, . . . , N − 1}. Hence, Ii0 = Ij0 .

Let us consider an example in which, for an allowed sequence of length
n+M +N , there are two different paths of length n+ 1 with the property
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that any associated path in the Markov graph starts with one of these two
paths of length n + 1. Let us denote fk

s (cs) by ck for every k ∈ N. Then
c1 = 1 and c2 = 0.

Example 2.2. Let s ∈ [
√

2, 2] be such that the mapping fs is strictly
preperiodic with M = 3, N = 2, c3 < cs and c4 > cs. It is easy to see that
such an s exists (s = 1.69562 . . .). Then O(cs) = {0 < c3 < cs < c4 < 1}
and I0 = [0, c3], I1 = [c3, cs], I2 = [cs, c

4] and I3 = [c4, 1]. The Markov graph
of fs looks like

I0 I1

I2I3
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For the sequence 01010101 of length 8, let Ii0 → · · · → Ii7 be an arbitrary
associated path in the Markov graph. Then the initial part of length 3 can
be either I1 → I3 → I0, or I0 → I2 → I1.

Proposition 2.3. A sequence x0x1x2 . . . ∈ {0, 1}Z+ is allowed if and

only if , for every k ∈ N, k ≥ M + N , the initial part x0x1 . . . xk of length

k + 1 is allowed.

Proof. Let x0x1 . . . ∈ {0, 1}Z+ be such that, for every k ∈ N, k ≥M+N ,
the finite sequence x0 . . . xk is allowed. Therefore, for any n ∈ Z+, the finite
sequence x0 . . . xn+M+N−1 is allowed. By Lemma 2.1, at most two different
initial parts of length n + 1 can start the associated paths in the Markov
graph. Denote them by Ii0 → Ii1 → · · · → Iin and Ij0 → Ij1 → · · · → Ijn .
We want to prove that at least one of these finite paths can be extended to
a path in the Markov graph associated with x0x1 . . . .

Since the finite sequence x0 . . . xn+M+N is allowed, by Lemma 2.1 there
are at most two different initial parts of length n + 2. Denote them by
Il0 → Il1 · · · → Iln+1 and Ik0 → Ik1 · · · → Ikn+1 . If the paths Il0 → · · · → Iln
and Ik0 → · · · → Ikn

are different, then either Il0 → · · · → Iln is the same
as Ii0 → · · · → Iin and Ik0 → · · · → Ikn

is the same as Ij0 → · · · → Ijn , or
Il0 → · · · → Iln is the same as Ij0 → · · · → Ijn and Ik0 → · · · → Ikn

is the
same as Ii0 → · · · → Iin . In that case we can extend both paths.

If Il0 → · · · → Iln is the same as Ik0 → · · · → Ikn
then we cannot extend

both paths. Without loss of generality we can assume that Ii0 → · · · → Iin
is the same as Il0 → · · · → Iln . So, the path which cannot be extended is
Ij0 → · · · → Ijn . In that case we should prove that for every finite sequence
x0 . . . xk+M+N , k > n, every associated path in the Markov graph starts
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with Ii0 → · · · → Iin . By Lemma 2.1, there are at most two different initial
parts of length k + 1. If for one of them, Im0 → · · · → Imk

, the paths
Im0 → · · · → Imn and Ii0 → · · · → Iin are different, then Im0 → · · · → Imn

and Ij0 → · · · → Ijn are the same. Therefore the path Ij0 → · · · → Ijn can
be extended as Ij0 → · · · → Ijn → Imn+1 , contrary to the assumption that
Il0 → · · · → Iln and Ik0 → · · · → Ikn

are the same.

The argument for the opposite implication is trivial.

Lemma 2.4. Let M = 0 and let x0x1 . . . xN+1 be a sequence of length

N +2. If x0 . . . xN and x1 . . . xN+1 are allowed sequences, then the sequence

x0 . . . xN+1 is also allowed.

Proof. Let Ii0 → Ii1 → · · · → IiN be a path in the Markov graph
associated with x0x1 . . . xN and let Ij1 → Ij2 → · · · → IjN+1 be a path
associated with x1 . . . xN+1. Since the sequence x1 . . . xN is allowed and it
is of length N , by Lemma 2.1 every path associated with it starts with the
same vertex. So, Ii1 = Ij1 and there is a path Ii0 → Ij1 → Ij2 → · · · → IjN+1 .
Since the sequence x0x1 . . . xN+1 is associated with the path Ii0 → Ij1 →
Ij2 → · · · → IjN+1 , this sequence is allowed.

There is no analogous statement for the strictly preperiodic case. Let
us consider the Markov graph from Example 2.1. It is easy to see that for
every n ∈ N, the sequences 0(01)n and (01)n00 are allowed. But the sequence
0(01)2n00 is not allowed, for every n ∈ N. Here, for a finite sequence x0 . . . xk,
we write (x0 . . . xk)

n = x0 . . . xk︸ ︷︷ ︸x0 . . . xk︸ ︷︷ ︸
n times

. . . x0 . . . xk︸ ︷︷ ︸.

Proposition 2.5. Let M = 0. A sequence x0x1 . . . ∈ {0, 1}Z+ is allowed

if and only if all of its finite parts of length N + 1 are allowed , i.e., if and

only if , for every j ∈ Z+, the finite sequence xjxj+1 . . . xj+N is allowed.

Proof. This follows by Proposition 2.3 and Lemma 2.4.

Since we will work with several types of sequences, to avoid confusion,
we denote:

• left-infinite sequences by
←

x = (x−i)i∈N = . . . x−3x−2x−1,
• right-infinite sequences by

→

x = (xi)i∈Z+ = x0x1x2 . . . ,
• two-sided infinite sequences by x = (xi)i∈Z = . . . x−2x−1x0x1x2 . . . .

Let x0 . . . xk be a finite sequence and let
→

y = (yi)i∈Z+ and
←

z = (z−i)i∈N. We
set

(x0 . . . xk)
∞ = x0 . . . xk︸ ︷︷ ︸

∞ many times

x0 . . . xk︸ ︷︷ ︸ . . . ,

x0 . . . xk
→

y = x0 . . . xky0y1 . . . ,
←

z
→

y = . . . z−2z−1y0y1 . . . .
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Let X+
s = {→x ∈ {0, 1}Z+ :

→

x is allowed} be the space of all allowed
sequences with respect to fs. The metric d on the space X+

s is given as
follows: For two sequences

→

x = (xi)i∈Z+ and
→

y = (yi)i∈Z+ , let

d(
→

x,
→

y) =

{
0,

→

x =
→

y,

2−k,
→

x 6= →

y,

where k = min{j ∈ Z+ : xj 6= yj} for
→

x 6= →

y . Since the space of all
right-infinite sequences is compact, by Proposition 2.3 one can prove that
the space X+

s is compact. The one-sided shift σ : X+
s → X+

s given by
σ((xi)i∈Z+) = (xi+1)i∈Z+ is continuous.

Since for every path in the Markov graph Ii0 → Ii1 → · · · → Iik → · · ·
there is a point ξ ∈ Ii0 such that fk

s (ξ) ∈ Iik , k ∈ N ([M-S, p. 83]), for every
allowed sequence

→

x there is a point ξ ∈ Ix0 such that fk
s (ξ) ∈ Ixk , k ∈ N.

Similarly to [P-Y, pp. 41–43], one can prove that there exists a continuous
mapping π : X+

s → [0, 1] having the following properties:

(1) π is a semi-conjugacy, i.e., π is surjective and π ◦ σ = fs ◦ π,
(2) points ξ ∈ [0, 1] have exactly one or two pre-images in X+

s , i.e., for
every ξ ∈ [0, 1], the set E(ξ) = {→x ∈ X+

s : π(
→

x) = ξ} has either one
or two elements,

(3) the set of points ξ ∈ [0, 1] such that E(ξ) has more than one element
is equal to the countable set

⋃
i∈Z+

f−i
s {cs}.

The mapping π is given by π(
→

x) =
⋂∞

i=0 f
−i
s (Ixi), where

→

x = (xi)i∈Z+ ∈ X+
s ,

i.e., π(
→

x) corresponds to the only point ξ ∈ [0, 1] such that f i
s(ξ) ∈ Ixi for

i ≥ 0. It is easy to see that E(c1) consists of exactly one sequence. Denote
this sequence by

→

c 1 = c1c2 . . . . Note that
→

c 1 = (c1 . . . cN )∞ in the periodic
case and

→

c 1 = c1 . . . cM−1(cM . . . cM+N−1)
∞ in the strictly preperiodic case.

The two elements of E(cs) are 0
→

c 1 and 1
→

c 1. For every point ξ ∈ [0, 1] such

that there is k ∈ N with fk
s (ξ) = cs and f j

s (ξ) 6= cs for j ∈ N, j < k, the
elements of E(ξ) are x0x1 . . . xk−10

→

c 1 and x0x1 . . . xk−11
→

c 1.

Let us define an equivalence relation ∼ on the space X+
s as follows: Two

sequences
→

x,
→

y ∈ X+
s ,

→

x = (xi)i∈Z+ ,
→

y = (yi)i∈Z+ , are equivalent,
→

x ∼ →y , if
either

→

x =
→

y , or there is k ∈ Z+ such that

(1) xi = yi, 0 ≤ i < k,
(2) |xk − yk| = 1,
(3) σk+1(

→

x) = σk+1(
→

y) =
→

c 1.

The quotient map π̃ : X+
s /∼ → [0, 1] is defined by π̃([

→

x]) = π(
→

x). Note
that

→

x and
→

y are equivalent if and only if π(
→

x) = π(
→

y). In particular, this
implies that π̃ is a homeomorphism. We will often identify X+

s /∼ and [0, 1].
If there is a sequence

→

y ∈ [
→

x] with
→

y 6= →

x, it is unique, and we denote it by
→

x∗ = (x∗i )i∈Z+ . If there is no such
→

y ∈ [
→

x] with
→

y 6= →

x, we put
→

x∗ =
→

x.
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In this way we have, in fact, defined itineraries. The itinerary of a point
ξ ∈ [0, 1] (with respect to fs) is [

→

x] ∈ X+
s /∼ with π(

→

x) = ξ. This definition
is slightly different from the usual ones [Br-D], [C-E], but it turns out to be
very useful. Note that [

→

c 1] is the kneading sequence of the mapping fs.

Lemma 2.6. If M = 0, then
→

c1 = (c1 . . . cN )∞ and in the finite sequence

c1 . . . cN there are an even number of ones.

Proof. For the point 1 ∈ [0, 1], the orbit is given by

Os(1) = {1, 0, f2
s (1), . . . , fN−2

s (1), cs}.
The path in the Markov graph associated with the point 1 is IN−2 →
Ii1 → Ii2 → · · · → IiN−1 → IN−2 and the associated allowed sequence is

(c1 . . . cN )∞. There is ǫ > 0 such that [1−ǫ, 1] ⊂ IN−2, f
N
s ([1−ǫ, 1]) ⊂ IN−2

and f j
s ([1 − ǫ, 1]) ⊂ Iij for every 1 ≤ j ≤ N − 1. Therefore, the first

N + 1 elements of the allowed sequence associated with the point 1 − ǫ
are c1 . . . cNc1. Since fs is increasing on I0 and decreasing on I1, and since
fN

s is order-preserving on [1−ǫ, 1] ⊂ I1, we have Iij ⊂ I1 for an odd number
of Iij , 1 ≤ j ≤ N − 1. Therefore, in the sequence c1 . . . cN there are an even
number of ones.

For a two-sided sequence x = (xi)i∈Z, we denote the right-infinite se-
quence xjxj+1xj+2 . . . , also called a right tail of x, by

→

xj = xjxj+1xj+2 . . . .
A two-sided sequence x ∈ {0, 1}Z is called allowed (with respect to fs) if all
of its right tails

→

xj are allowed. An immediate consequence of Proposition
2.3 is that a two-sided sequence x = (xi)i∈Z is allowed if and only if for
every k ∈ N, k ≥ (M +N − 1)/2, the finite sequence x−k . . . xk is allowed.
Moreover, when M = 0, from Proposition 2.5 it follows that a two-sided
sequence x = (xi)i∈Z is allowed if and only if all of its finite parts of length
N + 1 are allowed, i.e. if and only if, for every j ∈ Z, the finite sequence
xjxj+1 . . . xj+N is allowed.

Let Xs = {x ∈ {0, 1}Z : x is allowed} denote the space of all allowed
two-sided sequences with respect to fs. The metric d on the space Xs is
given as follows: For two sequences x, y ∈ Xs, x = (xi)i∈Z, y = (yi)i∈Z, if
x 6= y, let k = min{|j| : j ∈ Z, xj 6= yj}. Then

d(x, y) =

{
0, x = y,

2−k, x 6= y.

The shift map σ : Xs → Xs given by (σx)i = xi+1 for every i ∈ Z is
a homeomorphism ([P-Y, p. 2]). Let us define an equivalence relation ≈
on the space Xs as follows: Two sequences x, y ∈ Xs, x = (xi)i∈Z, y =
(yi)i∈Z, are equivalent, x ≈ y, if there is k ∈ Z with xi = yi for i < k,
and xkxk+1xk+2 . . . ∼ ykyk+1yk+2 . . . . This enables us to obtain, similarly
to the proof of Proposition 2 in [B], the following assertion, also resembling
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Theorem 2.5 in [Br-D]: There is a homeomorphism h : Xs/≈ → Cs such that

h(σ̃([x])) = f̂s(h([x])) for every [x] ∈ Xs/≈, where σ̃ : Xs/≈ → Xs/≈ is

given by σ̃([x]) = [σx], and f̂s : Cs → Cs is given by f̂s(. . . , ξ−3, ξ−2, ξ−1) =

(. . . , ξ−2, ξ−1, fs(ξ−1)), i.e., the maps σ̃ and f̂s are conjugate. Note that the

maps σ̃ and f̂s are homeomorphisms. We will often identify Cs and Xs/≈.

If there is a sequence y ∈ [x] with y 6= x, it is unique, and we denote
it by x∗ = (x∗i )i∈Z. If there is no such y ∈ [x] with y 6= x, we put x∗ = x.
Let πj : Xs/≈ → [0, 1], j ∈ Z+, be the projection on the jth coordinate,
i.e. πj [x] = π(

→

x−j).

For a two-sided sequence x = (xi)i∈Z, we denote the left-infinite sequence
. . . xj−1xj , also called a left tail of x, by

←

xj = . . . xj−1xj . A left-infinite
sequence

←

x = (x−i)i∈N is allowed if for every k ∈ N, k ≥ M + N , the
finite sequence x−k . . . x−1 is allowed. Moreover, when M = 0, a left-infinite
sequence is allowed if all of its finite parts of length N +1 are allowed. Note
that if x is allowed, then all of its left tails

←

xj are allowed.

Similarly to Proposition 3 in [B] and Corollary 2.10 in [Br-D], the fol-
lowing assertion is obtained: Each left-infinite sequence

←

x = . . . x−2x−1 de-
scribes one composant in Cs, which is the set of two-sided sequences having a
left tail common to

←

x. Two sequences
←

x and
←

y describe the same composant
if and only if they have a common left tail.

Every composant of Cs is arcwise connected. Let
←

a = . . . a−2a−1 and
n ∈ Z+. The set

An
←a = {[x] ∈ Cs : ∃x ∈ [x],

←

x−n =
←

a}
is an arc and we call it a basic arc. For a fixed left-infinite sequence

←

y =
. . . y−2y−1, let C be the corresponding composant of Cs. If An

←v is a basic arc
contained in the composant C, then either

←

v−1 =
←

y−n, or there is k ∈ N
with v−k 6= y−n−k+1 and

←

v−k−1 =
←

y−n−k. In the first case we put k = 0.
Whenever it is clear which sequence

←

y represents the composant containing
the basic arc An

←v , and when k = 0, we write, for simplicity, only An instead
of An

←y
−n

. When k > 0, we write, for simplicity, only An
v instead of An

←v , where

v = v−k . . . v−1, and we understand that
←

v−k−1 =
←

y−n−k.

We now introduce an order structure on the composant C.

Definition 2.7. For n ∈ N, let P (n) = card{i : y−i = 1, 1 ≤ i ≤ n}.
If n = 0, let P (0) = 0. An arc An is called even (respectively odd) if P (n)
is even (respectively odd). An arc An

v , v = v−k . . . v−1, v−k 6= y−n−k, is

called even (respectively odd) if (−1)P (n+k) =
∏k

i=1(−1)v−i (respectively

(−1)P (n+k) 6= ∏k
i=1(−1)v−i).

Definition 2.8. The generalized parity-lexicographical ordering � on C
is defined as follows: For [x], [z] ∈ C, let k = k([x], [z]) = max{i ∈ N :
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x−i 6= y−i or z−i 6= y−i, x = (xi)i∈Z ∈ [x], z = (zi)i∈Z ∈ [z]}. If x−i = y−i

and z−i = y−i for all i ∈ N, x ∈ [x], z ∈ [z], set k = 0. We say that x ≺ z if
either (−1)P (k)x−k < (−1)P (k)z−k, or there exists l ∈ Z, l > −k, such that
xi = zi for −k ≤ i < l and

(−1)P (k)εxl < (−1)P (k)εzl ,

where ε =
∏l−1

i=−k(−1)xi =
∏l−1

i=−k(−1)zi ∈ {−1, 1}. We say that [x] � [z] if
x ≺ z or x = z.

Note that the ordering depends on the left-infinite sequence
←

y chosen.
The choice of another representative of this particular composant would lead
either to the same, or to the opposite ordering. If C is a composant without
endpoints, then there exists an order-preserving bijection φ between the real
line, endowed with its natural order, and C, endowed with the ordering �.
If C has one endpoint, then there exists an order-preserving bijection ψ
between the half-line, endowed with its natural order, and C, endowed with
the ordering �. Therefore, the ordering � on the composant C is natural.
Note that φ and ψ are continuous, but their inverses are not.

In order to describe the structure of composants, let us define some
special points.

Definition 2.9. A point [x] ∈ Cs is called an identification point or
briefly an i-point if there is m ∈ Z+ with

→

x−m+1 =
→

c 1. Let [x] ∈ Cs be an i-
point with x 6= x∗. The level of [x] is defined by L[x] = m if |x−m−x∗−m| = 1.
If x = x∗, let L[x] =∞.

The meaning of the i-points and their levels is visible from the following:

Let
←

a = (a−i)i∈N and
←

b = (b−i)i∈N,
←

a 6=
←

b , be allowed sequences. For
n ∈ N, let An

←a and An
←

b
be the basic arcs. If there is [x] ∈ An

←a ∩ An
←

b
, then

←

x−n =
←

a and
←

x∗
−n =

←

b . Hence, [x] is an i-point, and there is m ≥ n with
x−i = x∗−i = an−i−1 for i > m, |x−m−x∗−m| = 1 and

→

x−m+1 =
→

x∗
−m+1 =

→

c 1,
implying that L[x] = m. Also, if [y] ∈ An

←a is an i-point with L[y] > n, then
[y] ∈ ∂An

←a . Therefore, the basic arcs An
←a and An

←

b
are neighboring if and only

if there is k ≥ n with:

• a−i = b−i for i > k,
• |a−k − b−k| = 1,
• a−k+i = b−k+i = ci for 1 ≤ i ≤ k − 1.

Note that if An
←a has boundary points [x] and [y] with L[x] = l and

L[y] = k, then πn−1|An
←a

is an injection and πn−1(A
n
←a ) = {πn−1[x] : [x] ∈ An

←a }
is a closed interval with boundary points cl−n+1 and ck−n+1. Let An

←

b
be

another basic arc. Let {[x0] ≺ · · · ≺ [xi]} be the ordered set of all i-points
of An

←a , and {[u0] ≺ · · · ≺ [uj ]} be the ordered set of all i-points of An
←

b
. If
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πn−1(∂A
n
←a ) = πn−1(∂A

n
←

b
), then i = j and either L[xm] = L[um] for every

m ∈ {1, . . . , j − 1} if An
←a and An

←

b
have the same parity, or L[xm] = L[uj−m]

for every m ∈ {1, . . . , j − 1} if they have different parity. For every k ∈
{0, . . . , n − 1}, the arc An

←a is a union of arcs Ak
w, i.e. An

←a =
⋃

w A
k
w, where

w is a finite sequence of length n − k such that
←

aw is allowed. Since fs

is l.e.o. and π ◦ σ = fs ◦ π, for every arc A there is m ∈ Z+ such that
σ̃m(A) = {σ̃m[x] : [x] ∈ A} contains at least one i-point.

Let us prove some additional important properties of basic arcs.

Proposition 2.10. Let
←

a = (a−i)i∈N be an allowed sequence, n ∈ N,
and let An

←a be the associated basic arc. Then, for every i-point [y] ∈ intAn
←a ,

there are points [x], [z] ∈ An
←a , [x] ≺ [y] ≺ [z], such that , for every point

[u] ∈ An
←a , [x] � [u] ≺ [y], there is a point [v] ∈ An

←a , [y] ≺ [v] � [z], such that

[
→

u−l+1] = [
→

v−l+1], where l = L[y].

We say that the arc An
←a is [y]-symmetric between [x] and [z]. If either

[x] ∈ ∂An
←a or [z] ∈ ∂An

←a , we say that the arc An
←a is [y]-symmetric.

Proof. Let An
←a be a basic arc, [y] ∈ intAn

←a and L[y] = l. Then l < n and

[y] ∈ intAl+1
←y
−l−1
⊆ intAn

←a . Let J = πl(A
l+1
←y
−l−1

) ⊆ [0, 1]. Then cs ∈ intJ . The

map fs is symmetric on the closed interval [0, b], where 0 6= b ∈ f−1
s (fs(0)),

with the point cs as the center of symmetry. Therefore, there is a closed
interval L ⊆ J such that fs is symmetric on L. Let A = π−1

l (L) ∩ Al+1
←y
−l−1

.

Then A = {[x] ∈ Al+1
←y
−l−1

: π̃[
→

x−l] ∈ L} and for every point [u] ∈ A, [
→

u−l] ≺
[0
→

c 1], there is a point [v] ∈ A, [0
→

c 1] ≺ [
→

v−l], such that [
→

u−l+1] = [
→

v−l+1].
Therefore, [x], [z] ∈ ∂A. If [y] is such that l = max{k ∈ Z+ : L[x] = k,
[x] ∈ intAn

←a }, then either [x] ∈ ∂An
←a or [z] ∈ ∂An

←a .

Note that, if the basic arc An
←a contains an i-point [y] such that L[y] =

n− 1, then An
←a is [y]-symmetric. If An

←a is [y]-symmetric and [x] ∈ ∂An
←a then

in a periodic case [z] is an i-point, and in a strictly preperiodic case [z] is
not an i-point.

Every basic arc contains finitely many i-points for which the following
direct consequence of the previous proposition is valid:

Corollary 2.11. Let {[x0] ≺ [x1] ≺ · · · ≺ [xm]} be the set of all i-points

of the basic arc An
←a . Let k ∈ {1, . . . ,m−1} and j ∈ N, j ≤ min{k,m−k}, be

such that An
←a is [xk]-symmetric between [xk−j ] and [xk+j ]. Then L[xk−i] =

L[xk+i] for every i ∈ {1, . . . , j − 1}.
Corollary 2.12. Let An

←a and An
←

b
be two neighboring arcs, let {[x0] ≺

[x1] ≺ · · · ≺ [xm]} be their i-points and let k ∈ {1, . . . ,m − 1} be such

that [xk] = An
←a ∩ An

←

b
. Let j = min{k,m− k}. Then for every [u], [xk−j] �
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[u] ≺ [xk], there is [v], [xk] ≺ [v] � [xk+j ], such that [
→

u−n+1] = [
→

v−n+1]. In

particular , L[xk−i] = L[xk+i] for every i ∈ N, i ≤ j − 1.

We say that the neighboring arcs An
←a and An

←

b
are [xk]-symmetric. If

k = m− k, we say that the arcs An
←a and An

←

b
are n-symmetric.

Proof. Since [xk] = An
←a ∩An

←

b
, we have l = L[xk] ≥ n, An

←a ∩An
←

b
⊆ Al+1

←x k
−l−1

and the statement is a direct consequence of Proposition 2.10.

Example 2.13. Let M = 0 and N = 3. There is only one mapping
fs with periodic extreme points of period three. For this mapping X+

s =
{(xi)i∈Z+ : xjxj+1 6= 00, ∀j ∈ Z+}, its kneading sequence is

→

c 1 = (101)∞

and the equivalence relation is given by 0(101)∞ ∼ 1(101)∞ = (110)∞.
The corresponding continuum is Cs. For the two-sided sequence x =
. . . x−2x−1.x0x1 . . . = . . . 10110111.0(110)∞, the point [x] of the continuum
Cs is an i-point, x∗ = . . . 10110101.0(110)∞ and L[x] = 2. From now on,
we will write the point [x] as . . . 1011011

01.0(110)∞, since this notation is
simple and it provides all the information concerning the i-point [x], both
representatives and the level.

Let the sequence
←

y = . . . 10110110 represent the composant C of Cs.
Let

←

a = . . . 101111 and n = 3. Then the arc A3
←a = {[x] ∈ Cs : ∃x ∈ [x],

←

x−3 =
←

a} is contained in C and it is even. All allowed finite sequences w of
length 3 are 011 ≺ 010 ≺ 110 ≺ 111 ≺ 101, and for every w, the sequence
←

aw is allowed. Therefore, the i-points contained in A3
←a are as follows:

[u] = . . . 10110
1101.(101)∞ ≺ . . . 10111101.10(101)∞

≺ . . . 1011110
11.(011)∞ ≺ . . . 10111111.01(101)∞

≺ . . . 10111111
0 .(101)∞ ≺ . . . 101111

010.(110)∞ = [v],

and ∂(A3
←a ) = {[u], [v]}. Since L[u] = 4 and L[v] = 3, we have π2(A

3
←a ) =

[c4−3+1, c3−3+1] = [c2, c1] = [0, 1]. Neighboring arcs of the arc A3
←a are A3

←u
and A3

←v with
←

u = . . . 101101 and
←

v = . . . 101110.

3. Structure of the composants. In order to distinguish the com-
posants of the continuum Cs with folding points from those without folding
points, let us first determine the folding points of Cs.

The ω-limit set of ξ ∈ [0, 1] is the set of accumulation points of the
orbit of ξ, i.e., ω(ξ) = {ζ ∈ [0, 1] : ∃ a sequence ni → ∞ with fni

s (ξ) = ζ}
([M-S, p. 555]). Note that because Os(cs) is finite, ω(cs) is the periodic
orbit which cs belongs to or is eventually mapped to. Therefore, the folding
points of Cs are cj = [cj ], j ∈ N, j ≥ M , where cj = (ci)i∈Z is such that
ckN . . . ckN+N−1 = cj . . . cj+N−1 for every k ∈ Z (cf. [Brn2]). Note that
cj+iN = cj for every i ∈ Z+. Therefore, Cs has N folding points and N
different composants containing one folding point each. If cs is periodic,
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these points are actually the endpoints of Cs. Note that endpoints of Cs are
i-points, L(cj) = ∞ for every j ∈ {0, . . . , N − 1}, and these are the only
i-points in Cs with this property.

Firstly, we are interested in the structure of composants of folding points.
Since σ̃ : Cs → Cs is a homeomorphism which permutes composants of
folding points, it is sufficient to describe the structure of the composant of
the folding point cK such that K ≥ M and K = k2N for some k ∈ Z+.
From now on, we denote it by C. In [K1] and [K2], L. Kailhofer described
some properties of the composant of the endpoint c = [c0] = [cN ], and
in this section there are some objects and results similar to those in [K1]
and [K2]. From now on, let a representative of the composant C be the
sequence

←

cK = (c−i)i∈N with c−iN−N−1 . . . c−iN−1 = c−N+K−1 . . . cK−1 for
every i ∈ Z+. Then the ordering � on C is unique. It is easy to see that, for
every j ∈ N, the map σ̃jK : C → C is an order-preserving homeomorphism.
In the periodic case, by Lemma 2.6, for every j ∈ N, the map σ̃jN : C → C
is an order-preserving homeomorphism. Also, for the periodic case,

→

c 0 =
→

cN

and, for simplicity, we will often write only
→

c instead of
→

c 0. From now on,
let K = N in the periodic case.

In order to describe the structure of the composant C, let us sort the
i-points of C in the following way: For every p ∈ Z+ the i-point [x] ∈ C is
called a p-point if there is m ∈ Z+ with [

→

x−pK−m+1] = [
→

c 1]. A p-point [x]
has p-level Lp[x] = m if |x−pK−m − x∗−pK−m| = 1. For every p,m ∈ Z+,

Ep,m = {[x] ∈ C : |x−pK−m − x∗−pK−m| = 1}
is the set of all p-points of level m, and Ep =

⋃∞
m=0Ep,m∪{cK} is the set of

all p-points of C. Set Lp(c
K) = ∞ for every p ∈ Z+. Note that Ep+1 ⊂ Ep

and cK ∈ Ep for every p ∈ Z+. Since in the strictly preperiodic case, there
is an order-preserving bijection from (Z,≤) to (Ep,�) such that 0 ∈ Z is
mapped to cK ∈ Ep, from now on, the points of Ep will be indexed by Z.

Let p ∈ Z+. Let C+ = {[x] ∈ C : [x0] � [x]} and E+
p = {[x0], [x1], . . . }.

Note that [x0] = cK . In the periodic case C = C+ and there is an order-
preserving bijection from (Z+,≤) to (Ep,�). Therefore, the points of Ep will
be indexed by Z+ and we can put Ep = E+

p . The sequence Lp[x
0], Lp[x

1], . . .
is called the folding pattern of the composant C. Let q ∈ Z+, q > p, and
E+

q = {[y0], [y1], . . . }. Since σ̃(q−p)K is an order-preserving homeomorphism

of C, it is easy to see that, for every i ∈ Z+, one has σ̃(q−p)K([xi]) = [yi]
and Lp[x

i] = Lq[y
i]. Therefore, the folding pattern of the composant C does

not depend on p. A similar sequence is also defined in [Brn3].

Example 3.1. Periodic case. Let fs be the mapping with the periodic
kneading sequence

→

c 1 = (101)∞ as in Example 2.13 and let Cs be the corre-
sponding continuum. Then Cs has three endpoints: c = . . . 110110.(110)∞,
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E0 L0 L1

c = . . . 110110.(110)∞ ∞ ∞

[x1] = . . . 11011 0
1
.(101)∞ 1

[x2] = . . . 110111. 1
0
(101)∞ 0

[x3] = . . . 1101 1
0
1.(011)∞ 2

[x4] = . . . 110101. 0
1
(101)∞ 0

[x5] = . . . 11 0
1
101.(101)∞ 4 1

[x6] = . . . 111101. 1
0
(101)∞ 0

[x7] = . . . 1111 0
1
1.(011)∞ 2

[x8] = . . . 111111. 0
1
(101)∞ 0

[x9] = . . . 11111 1
0
.(101)∞ 1

[x10] = . . . 111 1
0
10.(110)∞ 3 0

[x11] = . . . 11101 0
1
.(101)∞ 1

[x12] = . . . 111011. 1
0
(101)∞ 0

[x13] = . . . 1 1
0
1011.(011)∞ 5 2

[x14] = . . . 101011. 0
1
(101)∞ 0

[x15] = . . . 10101 1
0
.(101)∞ 1

[x16] = . . . 101 0
1
10.(110)∞ 3 0

. . . . . . . . .

Fig. 1. Composant C and its p-points

c1 = . . . 101101.(101)∞ and c2 = . . . 011011.(011)∞. Denote the composant
of the endpoint c by C. The 0-points of C, i.e., the points of the set E0, are
shown in Figure 1. Since Ep ⊂ E0 for every p ∈ N, we can say that “all”
p-points are shown in the figure.

Strictly preperiodic case. Let now fs be the mapping with the strictly
preperiodic kneading sequence

→

c 1 = 10(01)∞ as in Example 2.2 and let Cs

be the corresponding continuum. Then Cs has two folding points: c3 = (01)∞

and c4 = (10)∞. Denote the composant of the folding point c4 by C. The
0-points of C, i.e., the points of the set E0, are shown in Figure 2. Since
Ep ⊂ E0 for every p ∈ N, we can say that, as in the periodic case, “all”
p-points are shown.

Now, we give some basic properties of the folding pattern of the com-
posant C. Let [xn] ∈ E+

p and Lp[x
n] = iK + k for some i ∈ N and k ∈ Z+,

k < K. Then, for every j ∈ Z+, j < i, there is [xm] ∈ E+
p , [xm] ≺ [xn], such

that Lp[x
m] = jK + k. This holds because, for every j ∈ Z+, j < i, and

E+
p+i−j = {[z0], [z1], . . . } ⊂ E+

p , there is m ∈ N, m < n, with [xn] = [zm]
and Lp[x

m] = Lp+i−j[z
m] = Lp+i−j[x

n] = jK + k. Also, let p, q, k ∈ Z+

and let arcs A,B ⊂ C+ be such that there are no i-points [x] ∈ intA and
[y] ∈ intB with Lp[x] > k and Lq[y] > k. Let πpK+k(A) = πqK+k(B) and let
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E0 L0 L1

c4 = . . . 10101010.(10)∞ ∞ ∞

[x1] = . . . 1010101 0
1
.10(01)∞ 1

[x2] = . . . 10101011. 1
0
10(01)∞ 0

[x3] = . . . 101010 1
0
1.0(01)∞ 2

[x4] = . . . 101 0
1
1001.(01)∞ 5 1

[x5] = . . . 101110 0
1
1.0(01)∞ 2

[x6] = . . . 10111011. 0
1
10(01)∞ 0

[x7] = . . . 1011101 1
0
.10(01)∞ 1

[x8] = . . . 10111010. 1
0
10(01)∞ 0

[x9] = . . . 10111 0
1
10.(01)∞ 3

[x10] = . . . 10111110. 0
1
10(01)∞ 0

[x11] = . . . 1011111 0
1
.10(01)∞ 1

[x12] = . . . 10111111. 1
0
10(01)∞ 0

[x13] = . . . 101111 1
0
1.0(01)∞ 2

[x14] = . . . 10111101. 0
1
10(01)∞ 0

[x15] = . . . 1011110 1
0
.10(01)∞ 1

[x16] = . . . 1011 1
0
100.(10)∞ 4 0

. . . . . . . . .

Fig. 2. Composant C and its p-points

E+
p ∩ intA = {[x0] ≺ · · · ≺ [xn]} and E+

q ∩ intB = {[y0] ≺ · · · ≺ [ym]}. Then

m = n and either Lp[x
i] = Lq[y

i] for every 0 ≤ i ≤ n, or Lp[x
i] = Lq[y

n−i]

for every 0 ≤ i ≤ n. This holds because there are
←

a and
←

b such that

A ⊆ ApK+k+1
←a and B ⊆ AqK+k+1

←

b
.

Lemma 3.2. Let p ∈ Z+. Let [xn] ∈ E+
p be such that [xn] 6= cK and

Lp[x
n] 6= 0. Let i, j ∈ N be the smallest with Lp[x

n+i] > Lp[x
n] and Lp[x

n−j]
> Lp[x

n]. Then the arc between the points [xn−j] and [xn+i] is [xn]-sym-

metric and Lp[x
n−k] = Lp[x

n+k] for every k, 0 < k < min{i, j}.
Proof. The arc between the points [xn−j] and [xn+i] is the basic arc

ApK+l+1
←x n
−pK−l−1

, where l = Lp[x
n]. By Proposition 2.10 this arc is [xn]-symmetric

and Lp[x
n−k] = Lp[x

n+k] for every k, 0 < k < min{i, j}.
Remark 3.3. In the periodic case one also has

Lp[x
n+i]− Lp[x

n] 6= 0 (modN) and Lp[x
n−j ]− Lp[x

n] 6= 0 (modN).

Lemma 3.4 (Periodic case). Let p ∈ Z+ and [x], [y] ∈ Ep, [x] 6= [y]. If

there is k ∈ Z+ such that Lp[y] = Lp[x]+kN , then there is [z] ∈ Ep between

[x] and [y] such that Lp[z] > Lp[x]. Moreover , if k 6= 0, then there is [z] ∈ Ep

between [x] and [y] such that 0 < Lp[z]− Lp[x] < N .
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Proof. Since [x], [y] ∈ C, there is j ∈ N such that, for any u ∈ [x]
and v ∈ [y], one has

←

u−jN =
←

c =
←

v−jN . Let m = max{i ∈ N : u−i 6=
v−i, ∀u ∈ [x], ∀v ∈ [y]}. Since [

→

x−pN ] = [
→

y−pN ], we have m > pN . Since
←

x−m−1 =
←

y−m−1 and |xm − ym| = 1, the basic arcs Am
←x−m

and Am
←y
−m

are

neighboring. Note that [x] ∈ Am
←x−m

and [y] ∈ Am
←y
−m

. Let [z] ∈ Am
←x−m
∩Am

←y
−m

.

Then
←

z−m−1 =
←

x−m−1 and [
→

zm] = [
→

c ], and thus, [z] ∈ Ep. From m > pN it
follows that Lp[z] > Lp[x].

Suppose k 6= 0. Let Lp[x] = l and Lp[y] = l + kN . Then [
→

y−(p+k)N−l]
= [

→

c ] and [
→

x−pN−l] = [
→

y−pN−l] = [
→

c ]. Since [
→

x−(p+1)N−l] 6= [
→

c ], there is
a smallest m, l < m < l + N , such that for any u ∈ [x] and v ∈ [y]

one has u−pN−m 6= v−pN−m. The basic arcs ApN+m
←x−pN−m

and ApN+m
←z −pN−m

with
←

z−pN−m−1 =
←

x−pN−m−1 and |x−pN−m − z−pN−m| = 1 are neighboring.

Then, for [z] ∈ ApN+m
←x−pN−m

∩ApN+m
←z−pN−m

, it follows that 0 < Lp[z]−Lp[x] < N .

Remark 3.5. The corresponding statement for the strictly preperiodic
case is the following: Let p ∈ Z+ and [x], [y] ∈ E+

p , [x] 6= [y]. If Lp[x] = Lp[y],
then there is [z] ∈ E+

p between [x] and [y] such that Lp[z] > Lp[x]. Roughly
speaking we can say that in the strictly preperiodic case Lemma 3.4 holds
for k = 0. The proof is similar to that in the periodic case.

Let [xi], [xj ], [xk] ∈ Ep. If |i− j| < |i−k|, the p-point [xi] is closer to the
p-point [xj ] than to the p-point [xk].

Lemma 3.6 (Periodic case). Let p ∈ Z+, n ∈ N and [xn] ∈ Ep. Let

[xm] be the p-point closest to the point [xn] such that Lp[x
m] > Lp[x

n]. If

either Lp[x
n] > Lp[x

m] (modN), or Lp[x
n] > N , then Lp[x

2n−m] = Lp[x
m]

(modN) and 0 < Lp[x
n]− Lp[x

2n−m] < N .

Proof. Let Lp[x
n] = rN + l, for some r, l ∈ Z+, l < N . Let i ∈ N

be the smallest number such that Lp[x
n+i] > rN + l, and let j ∈ N

be the smallest number such that Lp[x
n−j] > rN + l. The arc A be-

tween [xn−j ] and [xn+i] is the basic arc A
(p+r)N+l+1
←x n
−(p+r)N−l−1

. Suppose that

j ≤ i. Then m = n − j and Lp[x
m] = k (modN). Let Lp[x

m] > Lp[x
n].

From Lemma 3.2 it follows that the arc A is [xn]-symmetric. Therefore,
there is [z] ∈ A, [xn] ≺ [z], such that

←

z−(p+r)N−l−1 =
←

xn
−(p+r)N−l−1,

[
→

z−(p+r)N−l+1] = [
→

xm
−(p+r)N−l+1] and z−(p+r)N−l 6= xm

−(p+r)N−l. Since [xm] ∈
Ep, Lp[x

m] > Lp[x
n] and k < l (respectively Lp[x

n] > N), we see that
[z] ∈ Ep, rN < Lp[z] ≤ rN + l (respectively rN −N + l < Lp[z] ≤ rN + l)
and Lp[z] = k (modN). Hence, [z] = [xn+j ] = [x2n−m]. From Lemma
3.4 it follows that Lp[x

n] > Lp[x
2n−m] and thus i 6= j. Lemma 3.2 yields

Lp[z] 6= rN + l−N and 0 < Lp[x
n]− Lp[x

2n−m] < N . In the case i < j the
proof is analogous.
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Corollary 3.7 (Periodic case). Let p ∈ Z+ and [xn], [xm] ∈ Ep,
|m − n| ≥ 2. If there is k ∈ Z+ such that Lp[x

m] = Lp[x
n] + kN and ,

for every i ∈ Z+ and n < j < m, Lp[x
j ] 6= Lp[x

n] + iN , then n+m is even

and , for l = max{Lp[x
j ] : n < j < m}, one has Lp[x

n] < l = Lp[x
(n+m)/2].

Moreover , if k 6= 0, then l < Lp[x
n] +N .

Proof. From Lemma 3.4 it follows that Lp[x
n] < l and there is a unique

j, n < j < m, with Lp[x
j ] = l. The condition j − n < m− j is not possible,

because from Lp[x
n] < l and from Lemma 3.2 it follows that Lp[x

2j−n] =
Lp[x

n], which contradicts the assumptions of the corollary. Suppose that
j − n > m − j. If Lp[x

m] < l, then Lp[x
2j−m] = Lp[x

m], which contradicts
the assumptions of the corollary again. If Lp[x

m] > l, the conditions of
Lemma 3.6 are satisfied, since l > Lp[x

n]. Hence, Lp[x
2j−m] = Lp[x

n] + iN
for some i ∈ Z+, which again contradicts the assumptions of the corollary.
Therefore, n+m is even and j = (n+m)/2. Now, if k 6= 0, it follows from
Lemma 3.6 that l < Lp[x

n] +N .

Remark 3.8. In the strictly preperiodic case, Corollary 3.7 holds for
k = 0. The proof is similar to that in the periodic case.

Lemma 3.9 (Periodic case). Let p ∈ Z+. Let [x], [y] ∈ Ep be such that

Lp[x] = iN + k, Lp[y] = jN + k + 1, i, j, k ∈ Z+, k < N , and there is

no [w] ∈ Ep between [x] and [y] satisfying Lp[w] ≥ min{i, j}N + k and

either Lp[w] = k (modN) or Lp[w] = k + 1 (modN). Then, for any n <
min{i, j}N + k, there is [z] ∈ Ep between [x] and [y], such that Lp[z] = n.

Proof. It is sufficient to prove the statement for n = min{i, j}N + k− 1.
Let m = min{i, j}. Without loss of generality we can suppose that [x] ≺ [y].

First, let us show that there is no [w] ∈ Ep, [x] ≺ [w] ≺ [y], such that
Lp[w] > mN + k. Because of Lemma 3.2, there is no [w] ∈ Ep, [x] ≺ [w] ≺
[y], such that Lp[w] > max{Lp[x], Lp[y]}. Suppose that Lp[x] < Lp[y] and
there is [w] ∈ Ep such that Lp[x] < Lp[w] < Lp[y]. By Lemma 3.2, the
point [w] is closer to [y] than to [x]. By Lemma 3.6, one concludes that
Lp[w] < k, which contradicts the assumption that Lp[x] < Lp[w]. Under
the assumption that Lp[y] < Lp[w] < Lp[x], the conclusion can be obtained
analogously. Therefore, for every [w] ∈ Ep, [x] ≺ [w] ≺ [y], one concludes
that Lp[w] < mN + k. Hence, {[→v ] :

→

v =
→

w−pN−mN−k+1, [x] � [w] � [y]}
is homeomorphic to a closed interval. Since [

→

x−pN−mN−k+1] = [
→

c 1] and
[
→

y−pN−mN−k+1] = [
→

c 2], this closed interval is [0, 1] and there is [z] ∈ Ep,
[x] ≺ [z] ≺ [y], such that Lp[z] = mN + k − 1.

Remark 3.10. In the strictly preperiodic case, Lemma 3.9 holds for
i = j = 0. The proof is similar to that in the periodic case.

An arc A of the composant C such that ∂A ∈ Ep and A ∩ Ep =

{[y0], . . . , [yn]} is called p-symmetric if [
→

y0
−pN ] = [

→

yn
−pN ] and Lp[y

i] =
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E0 L0 L1

c = . . . 110110.(110)∞ ∞ ∞

[x1] = . . . 11011 0
1
.(101)∞ 1

[x2] = . . . 110111. 1
0
(101)∞ 0

[x3] = . . . 1101 1
0
1.(011)∞ 2

[x4] = . . .110101.0
1
(101)∞ 0

[x5] = . . .110

1
101.(101)∞ 4 1

[x6] = . . .111101.1
0
(101)∞ 0

[x7] = . . . 1111 0
1
1.(011)∞ 2

[x8] = . . .111111.0
1
(101)∞ 0

[x9] = . . .111111

0
.(101)∞ 1

[x10] = . . .1111

0
10.(110)∞ 3 0

[x11] = . . .111010

1
.(101)∞ 1

[x12] = . . .111011.1
0
(101)∞ 0

[x13] = . . . 1 1
0
1011.(011)∞ 5 2

[x14] = . . . 101011. 0
1
(101)∞ 0

[x15] = . . . 10101 1
0
.(101)∞ 1

[x16] = . . . 101 0
1
10.(110)∞ 3 0

. . . . . . . . .

Fig. 3. Composant C and its p-bridges

Lp[y
n−i] for every 0 < i < n. Every q-symmetric arc is also p-symmetric

for every 0 ≤ p ≤ q. Note that if A is a p-symmetric arc of C and A ∩Ep =
{[x0], . . . , [xn]}, then by Lemma 3.4, n is even. The p-point [xn/2] is called
the center of A, it is denoted by [χA], and Lp[χ

A] = max{Lp[x] : [x] ∈
Ep∩ intA}. Therefore, the centers of the p-symmetric arcs of the composant
C are the “turning points” of C. In order to describe the folding pattern
of C, let us define some special arcs.

Definition 3.11. Let p ∈ Z+. An arc B of the composant C is called a
p-bridge if ∂B ⊂ Ep, Lp[x] = 0 for every [x] ∈ ∂B, and Lp[x] 6= 0 for every
[x] ∈ intB.

In Figure 3 some 0-bridges of C from Example 3.1, the periodic case,
are marked. From Corollary 3.7 and Lemma 3.2 it is easy to see that every
p-bridge is p-symmetric.

For p ∈ Z+, let B be a p-bridge of C. Let B ∩ Ep = {[x0], . . . , [xn]}.
For q ≤ p, let B ∩ Eq = {[z0], . . . , [zm]}. We will call the finite sequence
Lq[z

1], . . . , Lq[z
m−1] the q-folding pattern of the p-bridge B. Let k ∈ {1, . . .

. . . , n−1} be such that Lp[x
i] 6= Lp[x

k] for every i ∈ {1, . . . , k−1}. Then, by
Lemma 3.2, one has Lp[x

i] < Lp[x
k] for every i ∈ {1, . . . , k− 1}. For q ∈ Z+
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let D be a q-bridge of C. Let D ∩Eq = {[y0], . . . , [ym]}. If Lp[χ
B] = Lq[χ

D]
= l, then l = max{Lp[x] : [x] ∈ Ep ∩ intB} = max{Lq[x] : [x] ∈ Eq ∩ intD},
[
→

χB
−pN−l] = [

→

c ] = [
→

χD
−qN−l] and πpN+l(B) = πqN+l(D). Therefore, m = n

and Lp[x
i] = Lq[y

i] for every 0 < i < n. Hence, Lp[χ
B] determines the

q-folding pattern of the p-bridge B for all q ≤ p. Consequently, it is natural
to ask which kinds of p-bridges with respect to the p-levels of their centers
exist.

Lemma 3.12. Let p ∈ Z+ and n ∈ N. There is a p-bridge B ⊂ C such

that Lp[χ
B] = n if and only if cs ∈ fn

s ([0, cs]).

Proof. Let B be a p-bridge such that Lp[χ
B ] = n. Then

←

x−pN−n−1 =
←

χB
−pN−n−1 for every [x] ∈ B, and |y−pN−n − z−pN−n| = 1 for [y], [z] ∈ ∂B,

[y] 6= [z]. Without loss of generality we can suppose that y−pN−n = 0. Since
[y] ∈ ∂B, we have [

→

y−pN ] = [
→

c ], and thus, σ̃n[
→

y−pN−n] = [
→

c ]. Therefore,
there is ξ ∈ [0, cs] such that fn

s (ξ) = cs.
Let

←

a be the sequence which describes the composant C such that
←

a
→

c 1

and
←

a
→

c 2 are allowed. Then the basic arc ApN+n+1
←a contains a point [z] such

that [
→

z−pN−n] = [
→

c ]. Let cs ∈ fn
s ([0, cs]). Then there is a p-point [x] ∈

ApN+n+1
←a with x−pN−n = 0, Lp[x] = 0, and there is no point [u] ∈ ApN+n+1

←a ,
[x] ≺ [u] ≺ [z], with u−pN−n = 0, Lp[u] = 0. By Proposition 2.10, the

basic arc ApN+n+1
←a is [z]-symmetric and there is [y] ∈ ApN+n+1

←a such that
y−pN−n = 1 and [

→

y−pN−n+1] = [
→

x−pN−n+1]. Then the arc between the

p-points [x] and [y] is the required p-bridge B, [χB] = [z] and Lp[χ
B ] = n.

Corollary 3.13. Let p ∈ Z+. If c3 ≤ cs, then for every n ∈ N, there is

a p-bridge B ⊂ C such that Lp[χ
B] = n.

Proof. If c3 ≤ cs, then cs ∈ fs([0, cs]) = [c3, c1] and f2
s ([0, cs]) = I.

Lemma 3.14. Let p ∈ Z+. For every n ∈ N, there is a p-bridge B ⊂ C
such that Lp[χ

B] = 2n.

Proof. If c3 ≤ cs the statement follows from Corollary 3.13. Let c3 > cs.
Then c4 ≥ cs. If this were not valid, i.e., c4 < cs, then fs((0, cs)) = (c3, 1)
and fs((c

3, 1)) = (0, c4) ⊂ (0, cs), contradicting the assumption that fs is
l.e.o. Therefore [0, cs] ⊆ f2

s ([0, cs]) = [0, c4]. We deduce, by induction, that

[0, cs] ⊆ f
2(n−1)
s ([0, cs]) ⊆ f2n

s ([0, cs]) for every n ∈ N, and the statement
follows from Lemma 3.12.

Lemma 3.15. Let p ∈ Z+ and m = min{i ∈ N : f2i+1
s (cs) ∈ [0, cs]}.

There is a p-bridge B ⊂ C such that Lp[χ
B] = 2n− 1 if and only if n ≥ m.

Proof. Let us first show that there is j ∈ N with f2j+1
s (cs) ∈ [0, cs]. If

c3 ≤ cs then j = 1. Let c3 > cs. Then c4 > cs. Let us show that c3 < c4.
Assume that, on the contrary, c4 < c3. Since fs|[cs,1] is strictly decreasing,
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one obtains fs(c
4) = c5 > c4 = fs(c

3). From s > 1 it follows that c3 − c4 <
c5 − c4, implying c3 < c5. But then fs([0, c

4]) = [c3, 1] and f2i+1
s ([0, c4]) =

[c3, 1] for every i ∈ N, which is impossible, because fs is l.e.o. Therefore,
c3 < c4 and c4 > c5. From c4 − c3 < c4 − c5, it follows that c3 > c5. If
c5 > cs, then c4 < c6. Hence, for every i ∈ N, cs < c2i+1 implies

(1) c2i+3 < c2i+1 ≤ c3 < c4 ≤ c2i+2 .

Since fs is l.e.o., there is j ∈ N such that f2j+1
s (cs) ∈ [0, cs].

Let m ∈ N be the smallest such that f2m+1
s (cs) ∈ [0, cs]. If m = 1 the

statement of the lemma follows from Corollary 3.13. Let m > 1. Since for
every n ∈ N, [0, cs] ⊆ f2n

s ([0, cs]), one concludes that [c3, 1] ⊆ f2n+1
s ([0, cs]).

Hence, it follows by (1) that f2n−1
s ([0, cs]) = [c2n+1, 1] for every n < m.

Therefore, cs /∈ f2n+1
s ([0, cs]) for every n < m, and cs ∈ f2n+1

s ([0, cs]) for
every n ≥ m. Now, the statement follows from Lemma 3.12.

Corollary 3.16. Let p ∈ Z+. For every n ∈ N, n ≥M +N − 2, there

is a p-bridge B ⊂ C such that Lp[χ
B ] = n. Also, for every j ∈ {M, . . . ,M +

N − 1}, there is a p-bridge B ⊂ C such that
→

χB
−pN =

→

c j .

Corollary 3.17 (Periodic case). Let p ∈ Z+ and let [x], [y] ∈ Ep be

such that Lp[x] = iN + k, Lp[y] = jN + k + 1, i, j, k ∈ Z+, k < N .

Then for every n < min{i, j}N + k, there is [z] ∈ Ep between [x] and

[y] such that Lp[z] = n. Furthermore, either there is a p-bridge B between

[x] and [y] such that Lp[χ
B] = n, or there is no p-bridge whose center has

p-level n.

Proof. It is sufficient to prove the statement for n = min{i, j}N + k− 1.
Let m = min{i, j}. Without loss of generality we can assume that [x] ≺ [y].
Let [u] be the p-point closest to [y] such that [u] ≺ [y], Lp[u] ≥ mN + k
and Lp[u] = k (modN). Let [v] be the p-point closest to [u] such that
[u] ≺ [v], Lp[v] ≥ mN + k + 1 and Lp[v] = k + 1 (modN). We assert that
at least one of the inequalities Lp[u] ≥ mN + k, Lp[v] ≥ mN + k + 1 is an
equality. Suppose not, i.e. Lp[u] ≥ (m + 1)N + k and Lp[v] ≥ (m + 1)N +
k + 1. Then, by Lemma 3.9, there is [z] ∈ Ep, [u] ≺ [z] ≺ [v], such that
Lp[z] = mN +k+1, contradicting the choice of [v]. Now the first statement
follows from Lemma 3.9, and the second from the proof of Lemma 3.12 with
←

a =
←

w−pN−mN−k for some [u] ≺ [w] ≺ [v].

Remark 3.18. In the strictly preperiodic case, Corollary 3.17 holds for
i = j = 0. The proof is similar to that in the periodic case.

Let p ∈ Z+, let B ⊂ C be a p-bridge and B ∩ Ep = {[x0], . . . , [xn]}. Let

T (B) = min{Lp[χ
A] : A is a p-bridge, A ∩ Ep = {[u0], . . . , [un]}, [

→

ui
−pN ] =

[
→

xi
−pN ], 0 ≤ i ≤ n}. Let q ∈ Z+, let D ⊂ C be a q-bridge and D ∩ Eq =
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{[y0], . . . , [ym]}. If T (B) = T (D), then there are a p-bridge B1 ⊂ C and a q-
bridge D1 ⊂ C with Lp[χ

B1 ] = Lq[χ
D1 ]. Hence, m = n and [

→

xi
−pN ] = [

→

y i
−qN ]

for every 0 ≤ i ≤ n. Therefore, we will call the number T (B) the type of the
p-bridge B. Moreover, the following lemma is valid.

Lemma 3.19. Let p, q ∈ Z+. Let B ⊂ C be a p-bridge and D ⊂ C
be a q-bridge. Let B ∩ Ep = {[x0], . . . , [xn]}, D ∩ Eq = {[y0], . . . , [ym]}. If

T (B) = T (D), then m = n and Lp[x
i] = Lq[y

i] for every 0 ≤ i ≤ n, i 6= n/2.

Proof. Since T (B) = T (D), we have m = n. Without loss of generality
we can assume that Lp[χ

B] = T (B). Let [yk] be the first q-point of D such

that Lq[y
k] ≥ T (B) and [

→

yk
−qN ] = [

→

χD
−qN ]. Such a k exists since [χD] satisfies

these conditions. Since [
→

xk
−pK ] = [

→

yk
−qK ] and Lp[x

k] < T (B), there is j1 ∈ N
with Lq[y

k] = Lp[x
k] + j1K. Let Dk be the arc between the points [y0] and

[yk]. Let us first show that

(2)
←

y−qN−T (B) =
←

z−qN−T (B)

for any two points [y], [z] ∈ intDk. If k = 1, then D1 is a basic arc and the
statement holds. Let k > 1, and let l ∈ N be the largest number such that
Lq[y

l] = max{Lq[y
i] : 0 < i < k}. If Lq[y

l] ≥ T (B), since [
→

xl
−pK ] = [

→

y l
−qK ]

and Lp[x
l] < T (B), there is j2 ∈ N with Lq[y

l] = Lp[x
l] + j2K. Then

card{[y] ∈ Eq : [yl] ≺ [y] ≺ [yk]} > card{[x] ∈ Ep : [xl] ≺ [x] ≺ [xk]}, which
is impossible because m = n. Therefore, (2) holds. Since Lp[χ

B] ≥ Lp[x
i]

for every 0 < i < n,
←

x−pN−T (B)−1 =
←

χB
−pN−T (B)−1 for every [x] ∈ intB.

Let B1 be the arc between the points [x0] and [xn/2]. Since every p-bridge is
p-symmetric, it follows from (2) that πqN+T (B)(Dk) = πpN+T (B)(B1). Hence,

Lp[x
i] = Lq[y

i] for every 0 < i < n, i 6= n/2.

Theorem 3.20. There are finitely many bridge types.

Proof. Suppose that, on the contrary, there are infinitely many bridge
types. Since for every [x] ∈ Ep one has

→

x−pK ∈ {→c i : i ∈ {0, . . . ,M+N−1}},
it follows that for every i ∈ N there exists a p-bridge Bi which contains a
p-point [xmi ], [xmi ] 6= [χBi

], such that Lp[x
mi ] = ni = max{Lp[x] : [x] ∈

Bi ∩ Ep, [x] 6= [χBi

]} and the sequence (ni)i∈N is strictly increasing. Also,
for every such p-bridge Bi, there exists a p-bridge A with the following
properties:

(a) the p-bridge A contains only three p-points and Lp[χ
A] = n for some

n ∈ N (both neighboring p-points of [χA] have p-level 0),
(b) σ̃ni(A) = Ani ⊂ Bi,
(c) [xmi ] ∈ ∂Ani .

Note that Lp[x
mi ] = ni and n = Lp[χ

Bi

] − ni (in the periodic case n 6= jN
for every j ∈ N). Fix some p-bridge Bl ∈ (Bi)i∈N and the corresponding
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p-bridge A. We will study the arcs Ai = σ̃i(A), i ≤ nl. By (a) and (b), one
has cn+1 = c1 (otherwise A1 contains p-points of p-levels 1 and 0 implying
Anl * Bl). Note that the only properties of n we used are the following:

(i) n is the p-level of a p-point both of whose neighboring p-points have
p-level 0,

(ii) there is a p-bridge A whose center has p-level n, such that σ̃kl(A) =
Akl ⊂ Bl for some kl ∈ N.

Suppose that we have proved that there exists j ∈ N such that, for every n
which satisfies (i) and (ii), one has ci = cn+i for every i < j. Suppose that
cj 6= cn+j. Thus, cn+j+1 = cj+1 = c1 (otherwise Aj+1 contains p-points of
p-levels 1 and 0 implying Anl * Bl). Since j satisfies (i) and (ii), one has
cj+i = ci for every i < j. Therefore, ckj+i = ci for every i < j and for every k
such that (k+1)j < nl. Since the sequence (ni)i∈N is strictly increasing, this
implies that

→

c1 = 10c3 . . . cj−1 ∗→y for some
→

y , where ∗ denotes the ∗-product
defined in [C-E, p. 72]. Hence it follows that there is a closed interval J with

f j
s (J) ⊂ J ([C-E, pp. 72–73]), which is impossible since fs is l.e.o. Therefore,
ci = cn+i for every i. Then, in the strictly preperiodic case, the preperiod
of [

→

c 1] would be less than M , contrary to assumption. In the periodic case,
since n 6= jN for every j ∈ N, this contradicts the assumption that N is the
period of [

→

c 1]. The contradictions established in the last two sentences show
that it cannot be the case that ci = cn+i for every i. Hence, the sequence
(ni)i∈N cannot be strictly increasing. The derived contradiction implies that
there are finitely many bridge types.

We will now consider relations between different bridges of the com-
posant C. For two p-bridges B1, B2 ⊂ C, we say that B1 ≺ B2 if for every
[x] ∈ B1 and every [y] ∈ B2, one has [x] � [y]. Let B ⊂ C be a p-bridge and
B ∩ Ep−1 = {[x0], . . . , [xn]}. The arc between [x0] and [χB] will be denoted
by A2, and the arc between [χB] and [xn] by A1. The arcs A1 and A2 will be
called the (p−1)-semibridges. Note that Lp−1[x

i] = Lp−1[x
n−i] for every i ∈

{0, . . . , n/2}. We say that the (p−1)-semibridges A1 and A2 have the semi-

type sT (A1) = sT (A2) = T (B). Let A be an arc such that ∂A ⊂ Ep−1 and
let A ∩ Ep−1 = {[y0], . . . , [ym]}. If m = n/2 and either Lp−1[y

i] = Lp−1[x
i]

for every i ∈ {0, . . . , n/2 − 1} and [
→

y m
−(p−1)K ] = [

→

χB
−(p−1)K ], or Lp−1[y

i] =

Lp−1[x
n/2+i] for every i ∈ {1, . . . , n/2} and [

→

y0
−(p−1)K ] = [

→

χB
−(p−1)K ], then

the arc A is a (p− 1)-semibridge with semitype sT (A) = T (B).

In the strictly preperiodic case we defined K = 2kN for some k ∈ N. Let
k be the smallest such that, for every p ∈ Z+, all p-bridges whose centers
have p-level iK, i ∈ N, have the same type, K, and every p-bridge which is
not of type K does not contain any p-point of p-level K. By Theorem 3.20
such a k exists. Note that in the periodic case, K = N as before.
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Let D be a p-bridge and D ∩ Ep−1 = {[x0], . . . , [xn]}. Then Lp[x
0] = 0,

Lp−1[x
0] = K, and [x0] is the center of a (p − 1)-bridge of type K. Let

i ∈ N be the smallest with Lp−1[x
i] = 0, and let j < n be the largest

with Lp−1[x
j ] = 0. Let A1

D be the arc between [x0] and [xi], and A2
D the

arc between [xj ] and [xn]. Then sT (A1
D) = sT (A2

D) = K. The arc A1
D

will be called the first (p − 1)-semibridge of the p-bridge D, and A2
D the

last (p − 1)-semibridge of D. Between [xi] and [xj ] there is one or more
(p− 1)-bridges. The ordered set of the first and the last (p− 1)-semibridges
and all (p − 1)-bridges contained in the p-bridge B is called the structure

of B, denoted by S(B). Note that in the periodic case the first and last
(p− 1)-semibridges are symmetric, but in the strictly preperiodic case they
are not. Let p, q ∈ Z+. Let B be a p-bridge of C and let D be a q-bridge
of C. Let S(B) = (A1

B , B1, . . . , Bn, A
2
B) and S(D) = (A1

D, D1, . . . , Dm, A
2
D).

Then T (B) = T (D) if and only if m = n and T (Bi) = T (Di) for every
1 ≤ i ≤ n.

Lemma 3.21. Let p ∈ Z+. Let B ⊂ C be a p-bridge, B ∩ Ep = {[x0], . . .
. . . , [xn]} and S(B) = (A1

B , B1, . . . , Bm, A
2
B). Let A be the arc between [x0]

and [x1]. Then {[→x−pK ] : [x] ∈ A} = {[→x−pK ] : [x] ∈ B} and A1
B ⊂ A.

Proof. Suppose that {[→x−pK ] : [x] ∈ A} 6= {[→x−pK ] : [x] ∈ B}. Let

m = min{i ∈ N : i < n, [
→

x1
−pK ] ≺ [

→

xi
−pK ]}. Let j ∈ N, j < m, be such that

Lp[x
j ] ≥ Lp[x

i] for every i ∈ N, i < m. The point [xj ] is closer to [xm] than

to [x0]. Hence, for the point [x2j−m] one has [
→

x1
−pK ] ≺ [

→

x2j−m
−pK ], contrary to

the choice of [xm].
Suppose that [

→

c ] /∈ int(σK{[→x−pK ] : [x] ∈ A}). Then [
→

c ] /∈ int(σK{[→x−pK ] :
[x] ∈ B}) = int{[→x−(p−1)K ] : [x] ∈ B}. Therefore, B is a (p − 1)-bridge.

Let B ∩ Ep−1 = {[y0], . . . , [yl]} and let A1 be the arc between [y0] and
[y1]. Then {[→x−pK ] : [x] ∈ A} = {[→x−(p−1)K ] : [x] ∈ A1}, and thus,

{[→x−pK ] : [x] ∈ A} = σK{[→x−pK ] : [x] ∈ A}. Since {[→x−pK ] : [x] ∈ A} 6= I,
this contradicts the fact that fs is l.e.o.

Let p ∈ Z+ and Ep = {. . . , [x−1], [x0], [x1], . . . } with [x0] = cK . Let
i ∈ N be the smallest with Lp[x

i] = 0, and let j ∈ N be the smallest
with Lp[x

−j ] = 0. Let F+
p be the arc between cK and [xi], and F−

p the

arc between [x−j] and cK . Then either sT (F+
p ) = K, or sT (F−

p ) = K.
Without loss of generality we can assume that sT (F+

p ) = K. The arc F+
p

will be called the first p-semibridge of the composant C. Note that if k ∈ Z+

and [x] ∈ Ep are such that Lp[x] = kN , then for every i ∈ {0, . . . , k − 1}
and for any two (p + i)-semibridges Bi and Di which contain [x], one has
sT (Bi) = sT (Di) = K. For two (p + k)-bridges Bk and Dk which contain
[x] one has T (Bk) 6= T (Dk), i.e. the composant C does not contain two
consecutive p-bridges of the same type.
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Finally, we are interested in the folding patterns of the composants with-
out folding point of the continuum Cs. Denote by C ′ any composant of Cs

without folding point. Let us sort the i-points of C ′ analogously to the way
we have sorted the i-points of C: For every p ∈ Z+, the i-point [x′] ∈ C ′ is
called a p-point if there is m ∈ Z+ with [

→

x′−pK−m] = [
→

c ]. The p-point [x′]
has p-level Lp[x

′] = m if |x′−pK−m − x′∗−pK−m| = 1. For any p,m ∈ Z+ the
set

E′
p,m = {[x′] ∈ C ′ : |x′−pK−m − x′∗−pK−m| = 1}

is the set of all p-points of level m, and E′
p =

⋃∞
m=0E

′
p,m is the set of all

p-points of the composant C ′. Note that E′
p+1 ⊂ E′

p for every p ∈ Z+.
We define, analogously to the case of C, p-bridges of the composant C ′,
p-semibridges of C ′ and their folding patterns.

For an arbitrarily large k ∈ N, we can find a p-point [x′] ∈ E′
p such

that Lp[x
′] = kN . For this point there is an order-preserving bijection from

(Z,≤) to (E′
p,�) such that 0 ∈ Z is mapped to [x′] ∈ E′

p. The points from E′
p

are indexed by Z and [x′0] = [x′]. For the point [x′0] and for the (p+ k− 1)-
semibridges A′

1 and A′
2 which contain [x′0] one has T (A′

1) = T (A′
2) = K.

Hence, the q-folding pattern of A′
1 (and of A′

2) is the same as the q-folding
pattern of the first q-semibridge Fq of the composant C, for every q < p+k.

On the other hand, let B′ be a p-bridge of the composant C ′ which
contains [x′]. For every q ≤ p, the q-folding pattern of B′ is determined
by Lp[χ

B′ ] and is equal to the q-folding pattern of some p-bridge D of the

composant C with Lp[χ
D] = Lp[χ

B′ ]. Note that B′ is contained in the
(p+ i)-bridge B′

i for every i ∈ N. Since q < p+ i, we can extend the q-folding
pattern of B′ to the q-folding pattern of B′

i, which is determined by Lp[χ
B′i ],

and we can inductively build the folding pattern to the left and to the right
of the point [x′].

Acknowledgements. I would like to thank Sibe Mardešić for detailed
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[Br-D] K. M. Brucks and B. Diamond, A symbolic representation of inverse limit

spaces for a class of unimodal maps, In: Continua. With the Houston Problem
Book, H. Cook et al. (eds.), Lecture Notes in Pure and Appl. Math. 170,
Dekker, New York, 1995, 207–226.

[Brn1] H. Bruin, Planar embeddings of inverse limit spaces of unimodal maps, Topo-
logy Appl. 96 (1999), 191–208.

[Brn2] —, Inverse limit spaces of post-critically finite tent maps, Fund. Math. 165
(2000), 125–138.

[Brn3] —, Asymptotic arc-components of unimodal inverse limit spaces, Topology
Appl. 152 (2005), 182–200.

[C-E] P. Collet and J.-P. Eckmann, Iterated Maps on the Interval as Dynamical

Systems, Progr. Phys. 1, Birkhäuser, Basel, 1980.
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