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Abstract. For many domains R (including all Dedekind domains of characteristic 0
that are not fields or complete discrete valuation domains) we construct arbitrarily large
superdecomposable R-algebras A that are at the same time E(R)-algebras. Here “superde-
composable” means that A admits no (directly) indecomposable R-algebra summands 6= 0
and “E(R)-algebra” refers to the property that every R-endomorphism of the R-module A
is multiplication by an element of A.

1. Introduction. Schultz [15] introduced the notion of an E-ring as
a ring R such that the endomorphism ring of its additive group is iso-
morphic to R under the natural map η 7→ η(1), i.e. each endomorphism
acts as multiplication by an element of R. E-rings have been investigated
in several papers: see e.g. Dugas–Mader–Vinsonhaler [5], Dugas–Göbel [4],
Göbel–Strüngmann [11], proving the existence of arbitrarily large E-rings,
E-rings whose additive groups are ℵ1-free abelian groups, etc.

Göbel–Strüngmann [11] discusses E(R)-algebras, i.e. algebras A over a
domain R such that every endomorphism of A as an R-module is multipli-
cation by an element of A. The existence of large E(R)-algebras over many
domains R is established. Fuchs–Lee [7] constructs E(R)-algebras over cer-
tain domains R that are superdecomposable as R-algebras in the sense that
they do not admit any algebra summand that is not a direct product of two
non-zero subalgebras. In Theorem 5.3 we give a common generalization of
these two results by proving the existence of arbitrarily large superdecom-
posable E(R)-algebras that are, in addition, ℵ1-free in the sense that every
countable subset is contained in a free R-submodule.
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Our proof is based on a version of Shelah’s Black Box (see Theorem
3.1 below) which we borrow from Corner–Göbel [3]. (We emphasize that
this principle is provable in ZFC.) Alternatively we could have used the
“Strong Black Box” (see [13]) which has the advantage that some of the
algebraic proofs are simpler, but has the drawback that the possible sizes

of E(R)-algebras are more restricted. We work in an R-algebra F̂ that is a
completion of a semigroup algebra F = R[T ] where the monoid T is appro-
priately chosen: T is a direct product of two monoids, one of which serves
to guarantee that the R-algebra A to be constructed is superdecomposable,
while the other will be responsible for the E-ring property of A. Our method
follows closely the pattern of Corner–Göbel [3], which allows us to skip those
details of the proofs that are obvious modifications of arguments in [3].

In Theorem 5.4 we prove the abundance of arbitrarily large superde-
composable E(R)-algebras. This, along with the similar result on indecom-
posable E(R)-algebras (cf. Dugas–Mader–Vinsonhaler [5]), shows that—as
far as merely direct decompositions are concerned—E(R)-algebras do not
display any particular behavior.

2. Superdecomposable algebras. Let R denote a commutative do-
main that contains a countable subsemigroup S = {s0 = 1, s1, . . . , sn, . . . }
(not containing 0) such that R is Hausdorff in the S-topology (where the
idealsRqn (n ∈ ω) form a base of neighborhoods of 0 inR), i.e.

⋂
n∈ω Rqn=0;

here we have used the notation qn = s0s1 · · · sn ∈ S. (Note that the Haus-
dorff property of the S-topology is equivalent to the fact that the localization

RS of R at S is not a fractional ideal of R.) The symbol R̂ will denote the

completion of R in its S-topology. R is then a dense subalgebra of R̂.
Let µ denote an infinite cardinal; it is viewed as an initial ordinal, so we

can talk about its subsets. We define a monoid T1 whose elements are the
finite subsets of µ and multiplication is defined via

σ · τ = σ ∪ τ
for all σ, τ ∈ T1. The empty set serves as the identity of T1. (This monoid
was inspired by Corner [1].)

Let F denote the semigroup algebra of T1 over R, i.e.

F = R[T1] =
⊕

τ∈T1

Rτ ;

this is an R-algebra with identity {∅}. The S-topology on F is Hausdorff. The

S-completion F̂ of F is an R̂-algebra containing F as a dense R-subalgebra
whose elements x 6= 0 may be viewed as countable sums x =

∑
i∈ω riτi with

ri ∈ R̂, τi ∈ T1, where for every k ∈ ω almost all (i.e. all but finitely many)
coefficients ri are divisible by qk.
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By the support [x] of x is meant the set {τi | ri 6= 0} ⊆ T1; this is always
a countable subset, since S was assumed to be countable.

Lemma 2.1. Every R-algebra A that lies between the R-algebras F =

R[T1] and F̂ constructed above for the infinite cardinal µ is superdecompos-
able as an R-algebra.

Proof. Consider a non-zero algebra summand C of A; A = C ⊕C ′. The
C-coordinate of the identity of A is an idempotent element 0 6= e ∈ A.

Case 1. If there is an ordinal α ∈ µ not contained in any set in the sup-
port [e], then {α} ∈ F is an idempotent which evidently satisfies e{α} 6= 0.
It also satisfies e{α} 6= e, since for any τ ∈ [e] we have τ ∪ α ∈ [e{α}] \ [e].
The elements e{α} and e− e{α} are non-zero orthogonal idempotents in A
with sum e, establishing the decomposability of C into the direct sum of
two R-subalgebras.

Case 2. If there is no ordinal α as in Case 1, then µ = ℵ0 and µ =
⋃

[e].

Write e =
∑

τ∈[e] rτ τ (rτ ∈ R̂) or e =
∑

τ∈T1
rττ ∈ F̂ with rτ = 0 for all

τ ∈ T1 \ [e]. Pick any τ0 ∈ [e] with rτ0 6= 0. If e{α} = e, then
∑

τ∈T1

rτ ({α} ∪ τ) =
∑

τ∈T1

rττ.

If α 6∈ τ0, then the comparison of the coefficients of {α} ∪ τ0 ∈ T1 on both
sides yields

rτ0 + r{α}∪τ0 = r{α}∪τ0.

Hence rτ0 = 0, contradicting the choice of τ0. Hence e{α} 6= e for all α ∈ µ.
Suppose, by way of contradiction, that e{α} = 0 for all α ∈ µ\ [τ0]. Then∑
τ∈T1

rτ ({α}∪ τ) = 0, where the coefficient of {α}∪ τ0 is rτ0 + r{α}∪τ0 = 0.
Thus r{α}∪τ0 = −rτ0 for all α ∈ µ \ [τ0], which is obviously impossible.
Consequently, there is always an α ∈ µ such that e{α} 6= 0 (in addition to
e{α} 6= e), completing the proof.

We now construct another superdecomposable R-algebra as follows; we
utilize an idea due to Corner [2].

Let µ be an infinite cardinal and T2 the monoid with elements (α, p)
where α ∈ µ, 0 ≤ p ∈ Q, and multiplication is defined via

(α, p)(β, q) = (max{α, β},max{p, q}) ((α, p), (β, q) ∈ T2).

Let F denote the semigroup algebra R[T2] and F̂ its S-completion. Now the
element (0, 0) ∈ µ×Q is the identity of F . We have again:

Lemma 2.2. Every R-algebra A between the R-algebras F = R[T2] and F̂
just constructed for the infinite cardinal µ is a superdecomposable R-algebra.
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Proof. It suffices to verify that for every non-zero idempotent e =∑
i∈I ri(αi, pi) ∈ F̂ (0 6= ri ∈ R̂, (αi, pi) ∈ T2) (I is some index set) we

can find an idempotent e′ = (α, p) ∈ F such that 0 6= e(α, p) 6= e. If not
all the pi are equal, then choose any p ∈ Q such that pi < p < pj for some
i, j ∈ I. In this case, e′ = (α, p) is as desired for any choice of α ∈ µ. On
the other hand, if all the pi (i ∈ I) are equal and if we can choose an or-
dinal α with αi < α < αj for some i, j ∈ I, then e′ = (α, pi) ∈ F is a
good choice. In the remaining case, the idempotent e must be of the form
e = (β, q) ∈ T2 or e = (β, q) − (β + 1, q). Then we can choose e′ = (β, p)
for any q < p ∈ Q. Consequently, we can always find an idempotent e′ that
establishes superdecomposability.

It is straightforward to check:

Remark 2.3. If we replace the monoid Tj (j = 1 or 2) by a monoid T =
Tj × T ′, where T ′ is any monoid, then the preceding lemmas are still valid.

3. The Black Box. We turn our attention to the construction of a
superdecomposable E(R)-algebra between F and F̂ . For the construction we
shall need a version of Shelah’s Black Box principle. (For a general discussion
of this principle, we refer to Göbel–Trlifaj [12]; for the strong black box see
Eklof–Mekler [6, Chapter XIII].)

Let R,S have the same meaning as in the preceding section. Furthermore,
let κ be a cardinal such that |R| ≤ κ, and assume in addition that λ is a
cardinal satisfying

λκ = λ.

Then we have cf λ > κ ≥ ℵ0; see e.g. Jech [14, p. 28].
The set L = ω>λ of all finite sequences % = (α0, . . . , αn−1) (of length n)

with αi ∈ λ (the empty sequence is included) is a tree of length ω under the
natural ordering: %1 ≤ %2 in L if and only if %1 is an initial segment of %2.
Maximal linearly ordered subsets b = {%0 < %1 < · · · < %n < · · · } of L are
called branches; here the length of %n is n. The set of branches of L will be
denoted by Br(L). Clearly, |Br(L)| = λℵ0 = λ.

Let T0 be the free commutative monoid generated by the symbols u% for
all % ∈ L. Define the monoid T as

T = M × T0,

where M = T1 or M = T2 as constructed above in Section 2 with the choice
µ = ℵ0. Thus the elements of T are of the form θ = (τ, u), where τ ∈ M
and u ∈ T0. The semigroup algebra F = R[T ] =

⊕
θ∈T Rθ, its S-completion

F̂ and any R-algebra A in between are superdecomposable by Remark 2.3.
We will distinguish three natural kinds of supports depending on T0, L

and λ respectively.
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Each element 0 6= x ∈ F̂ can be expressed uniquely as a sum x =∑
i∈I ri(τi, ui) (where I is an indexing set with 1 ≤ |I| ≤ ℵ0) such that

0 6= ri ∈ R̂ and (τi, ui) ∈ T for all i ∈ I. Then [x] = {ui | i ∈ I} ⊆ T0

denotes the support of x. (If we want to emphasize that this is a subset
of T0, we will say that [x] is the T0-support of x.) Every element ui ∈ [x] is
the unique product of certain generators u%ij (j ≤ ni). The collection of all
these %ij (i ∈ I, j ≤ ni) constitutes the L-support [x]L ⊆ L of x. Finally,
by the λ-support is meant the set [x]λ ⊆ λ of all ordinals used in [x]L. The
norm of x is defined as ‖x‖ = sup [x]λ.

These notions extend naturally to subsets. IfX ⊆ F̂ is a set of cardinality
≤ κ, then [X] =

⋃
x∈X [x] is the support of X and [X]L, [X]λ are defined

similarly. Observe that the norm of X is a well defined ordinal ‖X‖ =
sup [X]λ ∈ λ, because cf λ > κ.

For a subset I of λ of size ≤ κ, we define

PI =
⊕

θ∈M×I′
Rθ

as a canonical R-subalgebra, where I ′ denotes the submonoid of T0 generated
by the u% with finite sequences % = (α0, . . . , αn) ∈ ω>I. Evidently, PI is a
subalgebra of F with support I ′ (and L-support ω>I) that is an R-free
summand of size ≤ κ of F with free complement. (We often write simply P
rather than PI if there is no need for specifying the index set.) There are λ
canonical R-subalgebras of F .

We also consider order-preserving embeddings

f : ω>κ→ L.

By a trap is meant a triple (f, P, φ), where f is such an embedding, P is a

canonical R-subalgebra, and φ is an R-homomorphism P → P̂ subject to
the following conditions:

(a) [P ]L is a subtree of L; thus % ∈ [P ]L implies σ ∈ [P ]L for all σ ≤ %;
(b) cf ‖P‖ = ω;
(c) Im f ⊆ [P ]L;
(d) ‖b‖ = ‖P‖ for all b ∈ Br(Im f).

In the following theorem we assume that R is a domain such that

(i) R admits a countable semigroup S such that R is Hausdorff in the
S-topology;

(ii) R is torsion-free as an abelian group;
(iii) R is S-cotorsion-free, where by the S-cotorsion-freeness of an R-

module N is meant the property that HomR(R̂,N) = 0 (as above

R̂ stands for the S-completion of R).



76 L. Fuchs and R. Göbel

Observe that from property (ii) it follows that all the R-subalgebras of

the R-algebra F̂ are torsion-free as abelian groups.
We can now state:

Theorem 3.1 (Black Box). Let R be as stated. Given κ and λ as above,
there exist a limit ordinal λ∗ of cardinality λ and a sequence of traps tα =
(fα, Pα, φα) (α ∈ λ∗) such that for all α, β ∈ λ∗ we have:

(a) β < α implies ‖Pβ‖ ≤ ‖Pα‖;
(b) Br(Im fα) ∩ Br(Im fβ) = ∅ whenever α 6= β;

(c) if β + κℵ0 ≤ α, then Br (Im fα) ∩ Br ([Pβ]L) = ∅;
(d) if X is a subset of F̂ of cardinality ≤ κ and φ ∈ End(F̂ ), then there

is an ordinal α ∈ λ∗ such that

X ⊆ P̂α, ‖X‖ < ‖Pα‖, φ�Pα = φα.

Proof. See appendix in Corner–Göbel [3] or Göbel–Trlifaj [12].

4. The construction. The method of constructing an E(R)-algebra

A such that F ⊆ A ⊆∗ F̂ as the union of a continuous ascending chain of
subalgebras Aα is described in the next theorem.

Let b ∈ Br(L) be a branch in L and F = R[T ] the R-algebra as in
Section 3. We associate with the branch b = (%0 < · · · < %n < · · · ) the
branch element

b̃ =
∑

n∈ω
qn(1, u%n) ∈ F̂ ,

where the coefficients qn are elements of S chosen in Section 2.

For an R-subalgebra M ⊆ F̂ and an element x ∈ F̂ , the symbol M [x]

will denote the R-subalgebra of F̂ generated by M and x, while stars in

subscripts designate the relatively divisible hull in F̂ , i.e. M [x]∗/M [x] is the

torsion part of F̂ /M [x]. For simplicity we write A[g]∗ for (A[g])∗.

Theorem 4.1. For a sequence of traps tα = (fα, Pα, φα) (α ∈ λ∗) as in

Theorem 3.1, there exist R-subalgebras Aα of F̂ , branches aα ∈ Br(Im fα),

and elements gα ∈ F̂ (α ∈ λ∗) such that

(i) for all β ∈ λ∗, gβ = bβπβ + ãβ for some bβ ∈ P̂β and πβ ∈ R̂;

(ii) gβ ∈ P̂β for each β ∈ λ∗;
(iii) for all β < α < λ∗, gβφβ 6∈ Aβ implies gβφβ 6∈ Aα;
(iv) {Aα | α ∈ λ∗} is a continuous properly ascending chain of relatively

divisible R-subalgebras of F̂ , with A0 = F ;
(v) Aβ+1 = Aβ[gβ]∗ for all β ∈ λ∗.
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Proof. In the proof we will make use of the following result proved in
Corner–Göbel [3, p. 457, Lemma 3.6] and Dugas–Mader–Vinsonhaler [5, pp.
95–96].

Proposition 4.2. Assume that , for some ordinal α, Aα is an R-subal-

gebra of F̂ satisfying conditions (i)–(v) in Theorem 4.1 for all β < α. Then

there is a branch a ∈ Br(Im fα) such that for any g = c + ã with c ∈ P̂α
satisfying ‖c‖ < ‖a‖ and for any β < α, gβφβ 6∈ Aβ implies gβφβ 6∈ Aα[g]∗.

In order to verify the theorem, in view of the continuity of the chain of
the Aα, it suffices to describe the step from α to α + 1. Suppose that the
subalgebras Aβ for all β ≤ α and the elements gβ for all β < α have already
been constructed as required. To choose gα and Aα+1, we argue as follows.

Proposition 4.2 ensures that we can always find a branch aα ∈ Br(Im fα)

and elements bα ∈ Pα, πα ∈ R̂ such that g = bαπα + ãα ∈ P̂α satisfies the
condition that (iii) holds for this α. Then we set gα = g with the proviso
that—if possible—g should definitely be selected so as to satisfy gφα 6∈
Aα[g]∗ as well. Once gα has been chosen, it only remains to set Aα+1 =
Aα[gα]∗ to complete the proof.

We also observe the following important fact about the R-algebras Aα
just constructed.

Lemma 4.3. The R-algebras Aα constructed in the preceding theorem
with the aid of the Black Box are ℵ1-free, and thus also S-cotorsion-free.
The same holds for their union A =

⋃
α<λ∗ Aα.

Proof. See Dugas–Mader–Vinsonhaler [5] or Göbel–Wallutis [13], where
it is shown that the R-algebras Aα are S-cotorsion-free. The same argu-
ment verifies their ℵ1-freeness. Cf. also Göbel–Trlifaj [12]. (The ℵ1-freeness
is due to the freeness of F and the linear independence of different branch
elements.)

Let us point out that Göbel–Shelah–Strüngmann [10] proves the exis-
tence of ℵ1-free E-rings of cardinality ℵ1.

5. Proof of the main theorem. The R-algebras A constructed above
need not be E(R)-algebras. In order to obtain an E(R)-algebra A, we have
to ensure that there are no unwanted endomorphisms. To this end we have to
show that we can always find an element gα = g with the required properties
that also satisfies gφα 6∈ Aα[g]∗ provided that φα is not multiplication by an
algebra element. This can be accomplished by the Step Lemma below.

Before stating the crucial Step Lemma, we prove a technical result.

Lemma 5.1. Assume the hypotheses of Proposition 4.2, and write the
αth branch (defined in Proposition 4.2) as aα = (%0 < · · · < %n < · · ·). Let



78 L. Fuchs and R. Göbel

k be a natural number and 0 6= x ∈ Aα. Then there exists an element θ ∈ T
such that for almost all n ∈ ω we have

θ(1, uk%n) ∈ [xãkα].

Proof. Let x =
∑

θ∈[x] rθθ with rθ ∈ R̂. If x 6∈ F , then there exist an

element y ∈ F and an ordinal β < α such that x − y ∈ Aβ [gβ] \ Aβ and
‖x − y‖ ≤ ‖Pβ‖. Let the βth branch be aβ = (σ0 < · · · < σn < · · · ). We

conclude that we can choose a ujσn for some integer j ≥ 1 and for large

enough n ∈ ω such that θ = (τ, ujσn) ∈ [x] for some τ ∈ M . It follows that

(τ, ujσn)(1, uk%l) = (τ, ujσnu
k
%l

) ∈ [xãkα] for all large enough integers l.
If 0 6= x ∈ F , then [x] is a non-empty finite subset of T . As above, we

can choose (τ, u) ∈ [x] (τ ∈M, u ∈ T0) such that (τ, u)(1, uk%l) = (τ, uuk%l) ∈
[xãkα]. Thus either θ = (τ, ujσn) or θ = (τ, u) satisfies the requirements, and
the lemma follows.

Lemma 5.2 (Step Lemma). For an α ∈ λ∗, let the trap tα = (fα, Pα, φα)

be given by the Black Box 3.1, and let Aα ⊆ F̂ and aα ∈ Br(Im fα) be as in
Theorem 4.1. If φα : Pα → Aα is not multiplication by an element of Aα,

then there exist elements b ∈ Pα and π ∈ R̂ such that the following holds
either for y = ãα or for y = πb+ ãα.

(i) A′α+1 = Aα[y]∗ is an S-relatively divisible R-subalgebra of F̂ that is
ℵ1-free as an R-module;

(ii) yφα 6∈ A′α+1.

Proof. Before entering into the proof, we observe that A′α+1 will be S-
cotorsion-free in view of (i) and the S-cotorsion-freeness of R.

(i) is an immediate consequence of Lemma 4.3.

The branch element ãα related to aα belongs to P̂α. Suppose that y = ãα
is not a good choice, that is, ãαφα ∈ Aα[ãα]∗. This means that there are
k, n ∈ ω and ri ∈ Aα (i ≤ n) such that

(1) qkãαφα =
∑

i≤n
riã

i
α.

First let n ≤ 1. Since φα was assumed not to be multiplication by any
element of Aα, neither is qkφα, thus qkφα 6∈ Aα. Consequently, we have
Pα(qkφα − r1) 6= 0, and so there exists an element b of P such that

0 6= b(qkφα − r1) = qkbφα − br1 ∈ Aα.
From Lemma 4.3 it follows that Aα is S-cotorsion-free, therefore for some

π ∈ R̂ we have

(2) π(qkbφα − br1) 6∈ Aα.
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Suppose that y = ãα+πb also satisfies yφ ∈ Aα[y]∗. Then qkyφα = qkãαφα+
qkπbφα = r0 + r1ãα + qkπbφα = r0 + r1y + (qkπbφα − r1πb), whence

π(qkbφα − r1b) ∈ Aα[y]∗.

There are n′ ∈ ω, k ≤ l < ω, and ti ∈ Aα (i ≤ n′) such that

qlyφα =
∑

i≤n′
tiy

i.

Using (1) we obtain

qlπbφα = qlyφα − qlãαφα =
∑

i≤n′
ti(ãα + πb)i − ql

qk
(r0 + r1ãα).

Since [πb] ⊆ [b], [qlπbφα] ⊆ [bφα] and {(1, ui%n) |n ∈ ω} ⊆ [ãiα], from Lemma
5.1 we deduce that n′ = 1 and t1 = (ql/qk)r1. Therefore,

qlπbφα = t0 −
ql
qk
r0 +

ql
qk
r1πb,

and so
ql
qk
π(qkbφα − r1b) = t0 −

ql
qk
r0 ∈ Aα,

where ql/qk ∈ S. Hence π(qkbφα − r1b) ∈ Aα, contradicting (2). This means
that y = πb+ ãα satisfies (i) and (ii).

Now suppose n > 1 in (1). We may assume that rn 6= 0, and therefore

0 6= nrn ∈ Aα by the torsion-freeness of Aα. There is π ∈ R̂ satisfying

(3) π · nrn 6∈ Aα.
Set y = ãα + π (i.e. b = 1 ∈ R ⊆ P ⊆ Aα), and suppose that yφα ∈ Aα[y]∗.
Thus qlyφα =

∑
i≤n′ tiy

i for some n′ ∈ ω, k ≤ l < ω, and ti ∈ Aα (i ≤ n′).
Using (1) we obtain

qlπφα = qlyφα − qlãαφα =
∑

i≤n′
tiy

i − ql
qk

∑

i≤n
riã

i
α.

Comparing the supports again, we deduce n′ = n, tn = (ql/qk)rn, tn−1 +
tnπn = (ql/qk)rn−1, and so

ql
qk
rnπn =

ql
qk
rn−1 − tn−1 ∈ Aα.

We conclude that rnπn ∈ Aα, in contradiction to (3). Consequently, either
y = ãα or y = ãα + π satisfies yφα 6∈ Aα[y]∗.

We are now ready to prove our main result:

Theorem 5.3. Assume R is a domain satisfying conditions (i)–(iii) of
Section 3, and κ, λ are cardinals such that |R| ≤ κ and λκ = λ. Then there
exists a superdecomposable ℵ1-free E(R)-algebra A of cardinality λ.
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Proof. Define A as the union of the well-ordered ascending chain of al-
gebras Aα as stated in Theorem 4.1. Then A is evidently of cardinality λ, is
superdecomposable by Lemma 2.2 and Remark 2.3, and is ℵ1-free by Lemma
4.3. It only remains to show that A is an E(R)-algebra.

Multiplications by elements of A are evidently R-endomorphisms, so A
may be viewed as a subring of its endomorphism ring. Suppose that φ is
an R-endomorphism of A that is not multiplication by an element of A.
It is clear that there must exist a canonical submodule P ⊂ F such that
φ�P : P → P̂ also is not multiplication by an element in A.

We appeal to the Black Box to argue that there is a trap tα = (fα, Pα, φα)
such that P ⊆ Pα. Manifestly, φ�Pα = φα cannot be multiplication by
any element of A. By virtue of the Step Lemma, there exists an element

g′α = b′π′ + ãα (b′ ∈ Pα, π′ ∈ R̂) that satisfies g′αφα 6∈ Aα[g′α]. Because of
the existence of such a g′, the proof of Theorem 4.1 indicates that gα had to
be chosen so as to satisfy gαφα 6∈ Aα[gα] = Aα+1. But then from condition
(iii) in the same theorem we conclude that gαφ = gαφα 6∈ A as well. Thus
φ cannot be an endomorphism of A, and as a consequence, A is indeed an
E(R)-algebra.

Moreover, we can establish the existence of a fully rigid family of 2λ

superdecomposable ℵ1-free E(R)-algebras of size λ.

Theorem 5.4. The algebra A constructed in Theorem 5.3 contains su-
perdecomposable ℵ1-free E(R)-subalgebras AX for every X ⊆ λ such that for
all X,Y ⊆ λ we have

(i) X ⊆ Y implies AX ⊆ AY ;
(ii) HomR(AX , AY ) = AY if X ⊆ Y and 0 otherwise.

Proof. In order to find a family of E(R)-algebras satisfying conditions
(i) and (ii), we change the definition of a trap and replace tα in Theorem 3.1
by tα = (fα, Pα, φα, ξα), where ξα ∈ λ. Condition (d) of Theorem 3.1 now
reads:

(d*) If X is a subset of F̂ of cardinality ≤ κ, ξ ∈ λ and φ ∈ End(F̂ ),
then there is an ordinal α ∈ λ∗ such that

X ⊆ P̂α, ‖X‖ < ‖Pα‖, φ�Pα = φα, ξ = ξα.

Recall from Theorem 5.3 that A = F [gα : α ∈ λ∗]∗. If X ⊆ λ, then set
X∗ = {α ∈ λ∗ | ξα ∈ X} ⊆ λ∗, and define

AX = F [gα : α ∈ X∗]∗ ⊆ A.
The same proof as above shows that AX is a superdecomposable ℵ1-free
E(R)-algebra. It is evident that AX ⊆ AY whenever X ⊆ Y . If X,Y ⊆ λ
are arbitrary subsets, then the argument in Corner–Göbel [3, p. 462, (4)]
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shows that HomR(AX , AY ) 6= 0 implies X ⊆ Y , and in this case, (ii) holds
true.

6. Remarks. It is easy to characterize all Dedekind domains R that
satisfy conditions (i)–(iii) of Section 3.

Evidently, R has to be of characteristic 0 and not a field. One can choose
the monoid S generated by the (finite number of) generators of a maximal
ideal of R. In order to exclude the case when R is not S-cotorsion-free, it
suffices to assume that R is not a complete discrete valuation domain. Thus,

Corollary 6.1. There exist arbitrarily large ℵ1-free superdecomposable
E(R)-algebras over a Dedekind domain R that is not a field or a complete
discrete valuation domain, and has characteristic 0.

The choice of R = Z leads us to the existence of large superdecomposable
ℵ1-free E-rings.

Next assume that R is a Matlis domain (i.e. its field of quotients, Q, as
an R-module, is of projective dimension 1). If R 6= Q, then R contains a
countable multiplicative monoid S such that R is Hausdorff in the S-topology
(cf. Fuchs–Salce [8, Lemma 4.3, p. 139]). Consequently,

Corollary 6.2. There exist arbitrarily large superdecomposable E(R)-
algebras over a Matlis domain R of characteristic 0 that is not a field and
is not complete in any metrizable linear topology.

Observe that every domain S of characteristic 0 embeds in a ring R sat-
isfying conditions (i)–(iii) mentioned above. In fact, we can choose the poly-
nomial ring R = S[x] with an indeterminate x and S = {1, x, . . . , xn, . . . }.

It is worth pointing out that if the ring R is of cardinality < 2ℵ0 , then
for its cotorsion-freeness it suffices to check that it is reduced (see Göbel–
May [9]).
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