FUNDAMENTA
MATHEMATICAE
185 (2005)

Large superdecomposable E(R)-algebras
by

Laszlo Fuchs (New Orleans) and Riidiger Gobel (Essen)

In honour of Claus Michael Ringel on the occasion of his 60th birthday

Abstract. For many domains R (including all Dedekind domains of characteristic 0
that are not fields or complete discrete valuation domains) we construct arbitrarily large
superdecomposable R-algebras A that are at the same time F(R)-algebras. Here “superde-
composable” means that A admits no (directly) indecomposable R-algebra summands # 0
and “E(R)-algebra” refers to the property that every R-endomorphism of the R-module A
is multiplication by an element of A.

1. Introduction. Schultz [15] introduced the notion of an E-ring as
a ring R such that the endomorphism ring of its additive group is iso-
morphic to R under the natural map n — n(1), i.e. each endomorphism
acts as multiplication by an element of R. E-rings have been investigated
in several papers: see e.g. Dugas—-Mader—Vinsonhaler [5], Dugas—Gébel [4],
Gobel-Strilngmann [11], proving the existence of arbitrarily large E-rings,
FE-rings whose additive groups are Ni-free abelian groups, etc.

Gobel-Strilngmann [11] discusses E(R)-algebras, i.e. algebras A over a
domain R such that every endomorphism of A as an R-module is multipli-
cation by an element of A. The existence of large E(R)-algebras over many
domains R is established. Fuchs-Lee [7] constructs E(R)-algebras over cer-
tain domains R that are superdecomposable as R-algebras in the sense that
they do not admit any algebra summand that is not a direct product of two
non-zero subalgebras. In Theorem 5.3 we give a common generalization of
these two results by proving the existence of arbitrarily large superdecom-
posable E(R)-algebras that are, in addition, N;-free in the sense that every
countable subset is contained in a free R-submodule.
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Our proof is based on a version of Shelah’s Black Box (see Theorem
3.1 below) which we borrow from Corner—Gobel [3]. (We emphasize that
this principle is provable in ZFC.) Alternatively we could have used the
“Strong Black Box” (see [13]) which has the advantage that some of the
algebraic proofs are simpler, but has the drawback that the possible sizes
of E(R)-algebras are more restricted. We work in an R-algebra F' that is a
completion of a semigroup algebra F' = R[T] where the monoid T is appro-
priately chosen: T is a direct product of two monoids, one of which serves
to guarantee that the R-algebra A to be constructed is superdecomposable,
while the other will be responsible for the E-ring property of A. Our method
follows closely the pattern of Corner—Gobel [3], which allows us to skip those
details of the proofs that are obvious modifications of arguments in [3].

In Theorem 5.4 we prove the abundance of arbitrarily large superde-
composable E(R)-algebras. This, along with the similar result on indecom-
posable E(R)-algebras (cf. Dugas-Mader—Vinsonhaler [5]), shows that—as
far as merely direct decompositions are concerned—F(R)-algebras do not
display any particular behavior.

2. Superdecomposable algebras. Let R denote a commutative do-
main that contains a countable subsemigroup S = {so = 1,81,...,8p,...}
(not containing 0) such that R is Hausdorff in the S-topology (where the
ideals Rgy, (n € w) form a base of neighborhoods of 0 in R), i.e. (.., Rgn =0;
here we have used the notation ¢, = sgs1---s, € S. (Note that the Haus-
dorff property of the S-topology is equivalent to the fact that the localization
Rs of R at S is not a fractional ideal of R.) The symbol R will denote the
completion of R in its S-topology. R is then a dense subalgebra of R.

Let p denote an infinite cardinal; it is viewed as an initial ordinal, so we
can talk about its subsets. We define a monoid 77 whose elements are the
finite subsets of © and multiplication is defined via

o-T=0cUrT

for all o, 7 € T1. The empty set serves as the identity of 77. (This monoid
was inspired by Corner [1].)
Let F' denote the semigroup algebra of 17 over R, i.e.

F =R[T\] = @ Rr;
T€T
this is an R-algebra with identity {0}. The S-topology on F is Hausdorff. The
S-completion Fof Fisan fi—algebra containing F' as a dense R-subalgebra
whose elements x # 0 may be viewed as countable sums x = ZiEw r;7; with
ri € E, 7; € Th, where for every k € w almost all (i.e. all but finitely many)
coefficients r; are divisible by gz.
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By the support [z] of z is meant the set {7; | r; # 0} C T7; this is always
a countable subset, since S was assumed to be countable.

LEMMA 2.1. Every R-algebra A that lies between the R-algebras F =
R[T1] and F constructed above for the infinite cardinal p is superdecompos-
able as an R-algebra.

Proof. Consider a non-zero algebra summand C of A; A=C @ C’. The
C-coordinate of the identity of A is an idempotent element 0 # e € A.

CASE 1. If there is an ordinal o € p not contained in any set in the sup-
port [e], then {a} € F is an idempotent which evidently satisfies e{a} # 0.
It also satisfies e{a} # e, since for any 7 € [e] we have T U o € [e{a}] \ [e].
The elements e{a} and e — e{a} are non-zero orthogonal idempotents in A
with sum e, establishing the decomposability of C into the direct sum of
two R-subalgebras.

Casg 2. If there is no ordinal a as in Case 1, then p = Ro and p = Jle].
Write e = 3 1777 (17 € R) ore=>) 7T E F with r, = 0 for all
7 €T\ [e]. Pick any 19 € [e] with 7, # 0. If e{a} = e, then

ZTT {a}UT) = ZTT

T€T1 T€T)

If a & 79, then the comparison of the coefficients of {a} U7y € T1 on both
sides yields
Tro T+ T{a}urg = T{a}Urp"

Hence r;, = 0, contradicting the choice of 79. Hence e{a} # e for all « € p.

Suppose, by way of contradiction, that e{a} = 0 for all & € u\ [19]. Then
> rer, Tr({a} UT) = 0, where the coefficient of {a} UTg is 77, +7{a3us, = 0.
Thus r{\yur, = —77 for all @ € p\ [70], which is obviously impossible.
Consequently, there is always an « € u such that e{a} # 0 (in addition to
e{a} # e), completing the proof. m

We now construct another superdecomposable R-algebra as follows; we
utilize an idea due to Corner [2].

Let p be an infinite cardinal and T» the monoid with elements («,p)
where a € 4,0 < p € Q, and multiplication is defined via

(,p)(8,q) = (max{a, B}, max{p,q}) ((o,p),(B,q) € Tr).

Let F' denote the semigroup algebra R[T5] and F its S-completion. Now the
element (0,0) € u x Q is the identity of F'. We have again:

LEMMA 2.2. Every R-algebra A between the R-algebras F' = R[T3] and F
just constructed for the infinite cardinal v is a superdecomposable R-algebra.
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Proof. Tt suffices to verify that for every non-zero idempotent e =
Yicr il pi) € F (0 # r; € R, (y,pi) € To) (I is some index set) we
can find an idempotent ¢/ = (a,p) € F such that 0 # e(a,p) # e. If not
all the p; are equal, then choose any p € Q such that p; < p < p; for some
i,7 € I. In this case, ¢/ = (a,p) is as desired for any choice of @ € u. On
the other hand, if all the p; (i € I) are equal and if we can choose an or-
dinal o with o < a < a; for some i,j € I, then ¢ = (a,p;) € F is a
good choice. In the remaining case, the idempotent e must be of the form
e = (8,q) € Ty or e = (8,9) — (B+1,q). Then we can choose ¢ = (3, p)
for any g < p € Q. Consequently, we can always find an idempotent e’ that
establishes superdecomposability. =

It is straightforward to check:

REMARK 2.3. If we replace the monoid 7} (j = 1 or 2) by a monoid 7' =
T; x T', where T" is any monoid, then the preceding lemmas are still valid.

3. The Black Box. We turn our attention to the construction of a
superdecomposable E(R)-algebra between F' and F. For the construction we
shall need a version of Shelah’s Black Box principle. (For a general discussion
of this principle, we refer to Gobel-Trlifaj [12]; for the strong black box see
Eklof-Mekler [6, Chapter XIII].)

Let R, S have the same meaning as in the preceding section. Furthermore,
let k be a cardinal such that |R| < k, and assume in addition that A is a
cardinal satisfying

A=
Then we have cf A > k > Ng; see e.g. Jech [14, p. 28].

The set L = “~\ of all finite sequences ¢ = (v, ..., an—1) (of length n)
with a; € A (the empty sequence is included) is a tree of length w under the
natural ordering: g1 < g9 in L if and only if o1 is an initial segment of po.
Maximal linearly ordered subsets b = {gp < 01 < -+ < g, < ---} of L are
called branches; here the length of g, is n. The set of branches of L will be
denoted by Br(L). Clearly, |Br(L)| = A% = ).

Let Ty be the free commutative monoid generated by the symbols u, for
all o € L. Define the monoid T as

T=Mx To,
where M = T} or M = Ty as constructed above in Section 2 with the choice
p = Ng. Thus the elements of T are of the form 6§ = (7,u), where 7 € M
and v € Tp. The semigroup algebra F' = R[T] = Py RO, its S-completion
F and any R-algebra A in between are superdecomposable by Remark 2.3.

We will distinguish three natural kinds of supports depending on Ty, L
and A respectively.



Large superdecomposable E(R)-algebras 75

Each element 0 # z € F can be expressed uniquely as a sum = =
> icr Ti(Ti,u;) (where I is an indexing set with 1 < [I| < Rg) such that
0+#r € Rand (ri,u;) € T for all i € I. Then [z] = {u; | i € I} C Ty
denotes the support of z. (If we want to emphasize that this is a subset
of Ty, we will say that [z] is the Ty-support of x.) Every element u; € [x] is
the unique product of certain generators u,,, (j < n;). The collection of all
these ;5 (i € I, j < n;) constitutes the L-support [z];, C L of z. Finally,
by the A-support is meant the set [x]y C A of all ordinals used in [z]|r. The
norm of x is defined as ||z|| = sup [z]y.

These notions extend naturally to subsets. If X C Fisasetof cardinality
< kK, then [X] = U, cx[2] is the support of X and [X]r, [X]) are defined
similarly. Observe that the norm of X is a well defined ordinal || X|| =
sup [X]x € A, because cf X > k.

For a subset I of A of size < k, we define

P = @ RO

oeMxI’

as a canonical R-subalgebra, where I’ denotes the submonoid of Tj) generated
by the wu, with finite sequences ¢ = (o, ..., a,) € “7I. Evidently, Py is a
subalgebra of F with support I’ (and L-support “~I) that is an R-free
summand of size < k of F' with free complement. (We often write simply P
rather than Py if there is no need for specifying the index set.) There are A
canonical R-subalgebras of F'.

We also consider order-preserving embeddings

f:“"k— L.

By a trap is meant a triple (f, P, ¢), where f is such an embedding, P is a
canonical R-subalgebra, and ¢ is an R-homomorphism P — P subject to
the following conditions:
(a) [P]r is a subtree of L; thus ¢ € [P]r, implies o € [P]r, for all o < p;
(b) cf [ P]| = w;
(¢) Im f € [P]L;
(d) ||b|| = || P]| for all b € Br(Im f).
In the following theorem we assume that R is a domain such that

(i) R admits a countable semigroup S such that R is Hausdorff in the
S-topology;
(ii) R is torsion-free as an abelian group;
(iii) R is S-cotorsion-free, where by the S-cotorsion-freeness of an R-
module N is meant the property that HomR(ﬁ, N) = 0 (as above
R stands for the S-completion of R).
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Observe that from property (ii) it follows that all the R-subalgebras of
the R-algebra F' are torsion-free as abelian groups.
We can now state:

THEOREM 3.1 (Black Box). Let R be as stated. Given k and X as above,
there exist a limit ordinal \* of cardinality A and a sequence of traps to, =
(fa, Pa, 0a) (v € X*) such that for all a, B € \* we have:

(a) B <o implies || Pgl| < [|Pa;

(b) Br(Im fo) N Br(Im f3) = 0 whenever o # 3;

c) if B+ kN < a, then Br (Im f,) N Br ([Ps]L) = 0;

(d) if X is a subset ofﬁ of cardinality < k and ¢ € End(ﬁ), then there

is an ordinal o € \* such that

X C P X <|Pall,  ¢1Pa= o
Proof. See appendix in Corner—Gébel [3] or Gobel-Trlifaj [12]. m

4. The construction. The method of constructing an E(R)-algebra
A such that ' C A C, F as the union of a continuous ascending chain of
subalgebras A, is described in the next theorem.

Let b € Br(L) be a branch in L and F = R[T] the R-algebra as in
Section 3. We associate with the branch b = (g9 < -+ < g, < ---) the
branch element

b= an(l,ugn) e F,
new
where the coefficients ¢,, are elements of S chosen in Section 2.

For an R-subalgebra M C F and an element z € F , the symbol M [z]
will denote the R-subalgebra of F generated by M and x, while stars in
subscripts designate the relatively divisible hull in F', i.e. M[z],/M[z] is the
torsion part of F'/M][z]. For simplicity we write A[g], for (A[g])s.

THEOREM 4.1. For a sequence of traps to = (fo, Pa, ¢a) (¢ € X*) as in
Theorem 3.1, there exist R-subalgebras A, of F, branches a,, € Br(Im f,),
and elements go € F(a € \*) such that

(i) for all B € X*, g3 = bgms + ag for some bg € ﬁg and T3 € R;

(ii) gp € ]35 for each B € \*;

(iii) for all B < a < X*, ggopp & Ag implies gapg & Aa;

(iv) {Aq | @ € X*} is a continuous properly ascending chain of relatively
divisible R-subalgebras of ﬁ, with Ag = F;

(v) A1 = Aglgpl« for all B € X .
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Proof. In the proof we will make use of the following result proved in
Corner—Gobel [3, p. 457, Lemma 3.6] and Dugas—Mader—Vinsonhaler [5, pp.
95-96].

PROPOSITION 4.2. Assume that, for some ordinal o, A, is an R-subal-
gebra ofﬁ satisfying conditions (i)—(v) in Theorem 4.1 for all § < a. Then
there is a branch a € Br(Im f,) such that for any g = ¢ + a with ¢ € P,
satisfying ||l < |la|| and for any B < «, gpdp & Ap implies gsdp & Aalgls-

In order to verify the theorem, in view of the continuity of the chain of
the A,, it suffices to describe the step from « to a + 1. Suppose that the
subalgebras Ag for all 8 < o and the elements gg for all 3 < a have already
been constructed as required. To choose g, and A,+1, we argue as follows.

Proposition 4.2 ensures that we can always find a branch aq € Br(Im f,)
and elements b, € P,, m, € R such that g = baTo +aq € P satisfies the
condition that (iii) holds for this a.. Then we set g, = ¢ with the proviso
that—if possible—g should definitely be selected so as to satisfy g¢, ¢
Aalg]« as well. Once g, has been chosen, it only remains to set Ayy; =
Aqlgals to complete the proof. =

We also observe the following important fact about the R-algebras A,
just constructed.

LEMMA 4.3. The R-algebras A, constructed in the preceding theorem

with the aid of the Black Box are Ni-free, and thus also S-cotorsion-free.
The same holds for their union A = J, .5+ Aa-

Proof. See Dugas—Mader—Vinsonhaler [5] or Gobel-Wallutis [13], where
it is shown that the R-algebras A, are S-cotorsion-free. The same argu-
ment verifies their N;-freeness. Cf. also Gobel-Trlifaj [12]. (The R;-freeness
is due to the freeness of F' and the linear independence of different branch
elements.) m

Let us point out that Gobel-Shelah—Striingmann [10] proves the exis-
tence of Ni-free F-rings of cardinality N.

5. Proof of the main theorem. The R-algebras A constructed above
need not be E(R)-algebras. In order to obtain an F(R)-algebra A, we have
to ensure that there are no unwanted endomorphisms. To this end we have to
show that we can always find an element g, = g with the required properties
that also satisfies g & Aqlg)« provided that ¢, is not multiplication by an
algebra element. This can be accomplished by the Step Lemma below.

Before stating the crucial Step Lemma, we prove a technical result.

LEMMA 5.1. Assume the hypotheses of Proposition 4.2, and write the
ath branch (defined in Proposition 4.2) as ao = (00 < -+ < 0n < --+). Let
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k be a natural number and 0 # x € Ay. Then there exists an element 6 € T
such that for almost all n € w we have

9(1,u§n) € [zak].

Proof. Let x = Z@E[z] rgf with ry € R If z ¢ F, then there exist an
element y € F' and an ordinal § < «a such that z —y € Aglgs] \ Az and
|z —y|| < ||Pgl|. Let the Sth branch be ag = (09 < -+ < 0, < ---). We
conclude that we can choose a u{,n for some integer j > 1 and for large
enough n € w such that 6 = (,u},) € [z] for some 7 € M. It follows that

(T, ugn)(l,ulgl) = (1,ub,uk ) € [zak] for all large enough integers 1.

If 0 # x € F, then [z] is a non-empty finite subset of T. As above, we
can choose (7,u) € [z] (T € M, u € Tpy) such that (7,u)(1,uf) = (t,uuk)) €
[zak]. Thus either § = (7,u},) or § = (7,u) satisfies the requirements, and

the lemma follows. =

LEMMA 5.2 (Step Lemma). For an o € X*, let the trap to, = (fa, Pa, ¢a)
be given by the Black Box 3.1, and let A, C F and a, € Br(Im f,) be as in
Theorem 4.1. If ¢ : P, — An is not multiplication by an element of Ag,
then there exist elements b € P, and w € R such that the following holds
either for y = ao or for y = wb+ aq.

(i) Al = Aalyl« is an S-relatively divisible R-subalgebra ofﬁ that is
Ni-free as an R-module;

(i) Yoo & Apyr-

Proof. Before entering into the proof, we observe that A/, ; will be S-
cotorsion-free in view of (i) and the S-cotorsion-freeness of R.

(i) is an immediate consequence of Lemma 4.3.

The branch element a,, related to a, belongs to ﬁa. Suppose that y = aq
is not a good choice, that is, dndaq € Aq[@a)s. This means that there are
k,n € wand r; € Ay (i < n) such that

(1) Qkaa¢a = Zrlafx
i<n

First let n < 1. Since ¢, was assumed not to be multiplication by any
element of A,, neither is qpoo, thus qrdo € A.. Consequently, we have
P, (qrda — 1) # 0, and so there exists an element b of P such that

0 7é b(Qk¢o¢ - Tl) = ka¢a - b7’1 € Aoz-

From Lemma 4.3 it follows that A, is S-cotorsion-free, therefore for some
7 € R we have

(2) T(qebpa — br1) & Aa.
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Suppose that y = a,+7b also satisfies yop € Ay[y]«. Then qrydo = qraada+
qmbde =10 + T100 + QTG = 1o + 71y + (@TbPe — r17h), whence
T(qrebda — 110) € Aalyls.
There are n' € w, k <l <w, and t; € A, (i <n’) such that
QY = Y tiy'.
i<n/
Using (1) we obtain
~ ~ ; ql ~
QI"Tb¢oz = Qly¢a - QZaa¢a = Z ti(aa + 7Tb)Z - (TO + Tlaa)-
i<n qk
Since [wb] C [b], [gmbda] C [bda] and {(1,ul, )|n € w} C [a}], from Lemma
5.1 we deduce that n’ =1 and ¢; = (q;/qx)r1. Therefore,
ql7Tb¢a =19 — ﬂ’I"() + ﬂ’I"17'l‘b,
dk dk
and so a ¢
1 !
— 7T<qkb¢a — le) =tg——17Tp € Aa,
dk dk
where q;/qr € S. Hence mw(qxbpo — r1b) € A,, contradicting (2). This means
that y = mb + a, satisfies (i) and (ii).
Now suppose n > 1 in (1). We may assume that r, # 0, and therefore
0 # nr, € A, by the torsion-freeness of A,. There is m € R satisfying
(3) Tonry, € Ag.
Set y =aq + 7 (ie. b =1eRCPC Aa), and suppose that yoo € An[y]«.
Thus qy¢a = Y ;e tiy' for some n’ € w, k <l <w, and t; € A, (i <n').
Using (1) we obtain
~ i q ~q
TP = QYo — Ulaba = P _ Ly’ — —= > _ Tilly,.
o qr
i<n i<n
Comparing the supports again, we deduce n’ = n, t, = (q;/qx)rn, th—1 +
tnmn = (q1/qx)rn—1, and so
a TR = a Tp1 — tn_1 € Ag.
qk dk
We conclude that r,mn € A,, in contradiction to (3). Consequently, either
Y = Qg Or Y = aq + 7 satisfies Yoo, & Anly]s. »

We are now ready to prove our main result:
THEOREM 5.3. Assume R is a domain satisfying conditions (1)—(iii) of

Section 3, and k, A are cardinals such that |R| < k and \* = X. Then there
exists a superdecomposable Ry -free E(R)-algebra A of cardinality X.
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Proof. Define A as the union of the well-ordered ascending chain of al-
gebras A, as stated in Theorem 4.1. Then A is evidently of cardinality A, is
superdecomposable by Lemma 2.2 and Remark 2.3, and is Ny-free by Lemma
4.3. It only remains to show that A is an E(R)-algebra.

Multiplications by elements of A are evidently R-endomorphisms, so A
may be viewed as a subring of its endomorphism ring. Suppose that ¢ is
an R-endomorphism of A that is not multiplication by an element of A.
It is clear that there must exist a canonical submodule P C F such that
oIP: P — P also is not multiplication by an element in A.

We appeal to the Black Box to argue that there is a trap tq, = (fa, Pas Pa)
such that P C P,. Manifestly, ¢[P, = ¢, cannot be multiplication by
any element of A. By virtue of the Step Lemma, there exists an element
g, =V + Gy (V' € P,, @ € R) that satisfies ¢/,¢a & Aa[g,]. Because of
the existence of such a ¢, the proof of Theorem 4.1 indicates that g, had to
be chosen so as to satisfy gon¢a & Aalda] = Aa+1. But then from condition
(iii) in the same theorem we conclude that go¢ = gada & A as well. Thus
¢ cannot be an endomorphism of A, and as a consequence, A is indeed an
E(R)-algebra. =

Moreover, we can establish the existence of a fully rigid family of 2*
superdecomposable Ri-free E(R)-algebras of size .

THEOREM 5.4. The algebra A constructed in Theorem 5.3 contains su-
perdecomposable X -free E(R)-subalgebras Ax for every X C X such that for
all X, Y C X we have

(i) X CY implies Ax C Ay;

(ii) Homp(Ax,Ay) = Ay if X CY and 0 otherwise.

Proof. In order to find a family of E(R)-algebras satisfying conditions
(1) and (ii), we change the definition of a trap and replace ¢, in Theorem 3.1

by ta = (fas Pas ®as€a), where &, € A. Condition (d) of Theorem 3.1 now
reads:

(d%) If X is a subset of F of cardinality < k, £ € A and ¢ € End(F),
then there is an ordinal o € A\* such that

X C Py [IX|<Pal, ¢1Py=a, &=Ean

Recall from Theorem 5.3 that A = F[gy : @ € A*],. If X C A, then set
X*={ae X | & € X} C )\, and define
Ax = Flgo:a € X*]. C A
The same proof as above shows that Ax is a superdecomposable Ni-free

E(R)-algebra. It is evident that Ax C Ay whenever X C Y. If XY C A\
are arbitrary subsets, then the argument in Corner—Gobel (3, p. 462, (4)]
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shows that Homp(Ax, Ay) # 0 implies X C Y, and in this case, (ii) holds
true. m

6. Remarks. It is easy to characterize all Dedekind domains R that
satisfy conditions (i)-(iii) of Section 3.

Evidently, R has to be of characteristic 0 and not a field. One can choose
the monoid S generated by the (finite number of) generators of a maximal
ideal of R. In order to exclude the case when R is not S-cotorsion-free, it
suffices to assume that R is not a complete discrete valuation domain. Thus,

COROLLARY 6.1. There exist arbitrarily large N1 -free superdecomposable
E(R)-algebras over a Dedekind domain R that is not a field or a complete
discrete valuation domain, and has characteristic 0. m

The choice of R = Z leads us to the existence of large superdecomposable
N;-free E-rings.

Next assume that R is a Matlis domain (i.e. its field of quotients, @, as
an R-module, is of projective dimension 1). If R # @, then R contains a
countable multiplicative monoid S such that R is Hausdorff in the S-topology
(cf. Fuchs—Salce [8, Lemma 4.3, p. 139]). Consequently,

COROLLARY 6.2. There exist arbitrarily large superdecomposable E(R)-
algebras over a Matlis domain R of characteristic O that is not a field and
is not complete in any metrizable linear topology. =

Observe that every domain .S of characteristic 0 embeds in a ring R sat-
isfying conditions (i)—(iii) mentioned above. In fact, we can choose the poly-
nomial ring R = S[z] with an indeterminate x and S = {1, z,...,z",... }.

)

It is worth pointing out that if the ring R is of cardinality < 2%0, then
for its cotorsion-freeness it suffices to check that it is reduced (see Gobel-
May [9]).
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