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Radicals of ideals that are not
the intersection of radical primes
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D. Laksov and M. Rosenlund (Stockholm)

Abstract. Various kinds of radicals of ideals in commutative rings with identity
appear in many parts of algebra and geometry, in particular in connection with the Hilbert
Nullstellensatz, both in the noetherian and the non-noetherian case.

All of these radicals, except the ?-radicals, have the fundamental, and very useful,
property that the radical of an ideal is the intersection of radical primes, that is, primes
that are equal to their own radical. It is easy to verify that when the ring A is noetherian
then the ?-radical R(I) of an ideal is the intersection of ?-radical primes. However, it has
been an open question whether this holds in general. The main purpose of this article is
to give an example of a ring with a ?-radical that is not radical. To our knowledge it is
the first example of a natural radical on a ring such that the radical of each ideal is not
the intersection of radical primes. More generally, we present a method that may be used
to construct more such examples.

The main new idea is to introduce radical operations on the closed sets of topologi-
cal spaces. We can then use the Zariski topology on the spectrum of a ring to translate
algebraic questions into topology. It turns out that the quite intricate algebraic manipu-
lations involved in handling the ?-radical become much more transparent when rephrased
in geometric terms.

Introduction. Various kinds of radicals of ideals in commutative rings
with identity appear in many parts of algebra and geometry (see [B], [BCR],
[BGN], [E], [L1] for material relevant to the present work), in particular in
connection with the Hilbert Nullstellensatz, both in the noetherian and the
non-noetherian case (see [BCR], [K1], [K2], [L2], [R1], [R2]).

All of these radicals, except the ?-radicals, have the fundamental, and
very useful, property that the radical of an ideal is the intersection of radical
primes, that is, primes that are equal to their own radical (see Examples 1.3
and 2.2). The ?-radical of a ring A corresponds to an operation R on ideals
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in the ring that satisfies the following attractive set of axioms (see [BGN]
and [B]):

For all ideals I and J of A:

(1) I ⊆ R(I).
(2) R(R(I)) = R(I).
(3) R(IJ) = R(I ∩ J) = R(I) ∩R(J).

It is easy to verify that when the ring A is noetherian the ?-radical R(I)
of an ideal is the intersection of ?-radical primes. However, it has been an
open question whether this holds in general. The main purpose of this ar-
ticle is to give an example of a ring with a ?-radical that is not radical.
To our knowledge it is the first example of a natural radical on a ring such
that the radical of some ideal is not the intersection of radical primes. More
generally, we present a method that may be used to construct more such
examples.

Since the main purpose of this article is to show that there exist rings
with a ?-radical that contain ?-radical ideals that are not the intersection of
?-radical prime ideals, we have changed the terminology so that a ?-radical
on a ring corresponds to what we call a quasi-radical operation on the ide-
als of the ring, and we call an operation radical when the radical of all
ideals of the ring is the intersection of primes that are equal to their own
radical.

The main new idea is to introduce radical operations on the closed sets
of topological spaces. We can then use the Zariski topology on the spectrum
of a ring to translate algebraic questions into geometry. It turns out that the
quite intricate algebraic manipulations involved in handling the quasi-radical
operations become much more transparent when rephrased in geometric
terms. It is, for example, quite easy to show that the quasi-radical operation
on any topological space that associates to a closed set the closure of its
interior, when applied to the Zariski topology of a ring, gives a quasi-radical
operation on the ring. With this quasi-radical we are able to prove that the
polynomial ring K[t1, t2, . . .] in countably many independent variables over
a field, modulo the ideal generated by the elements ti(ti−1) for i = 1, 2, . . .,
has quasi-radical ideals that are not the intersection of radical primes.

In the correspondence between the ideals of a ring and the closed sets in
the Zariski topology on the spectrum, ideals with the same radical give the
same closed set. It is consequently quite astonishing that it is at all possible
to have a notion of radicals for topological spaces.

Although it is not used in the article, it may illustrate the correspondence
between algebra and topology to give an explicit expression for the quasi-
radical of an ideal I in a ring A that is given by the quasi-radical, on the
spectrum X = Spec(A) with the Zariski topology, that to a closed subset
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associates the closure of its interior. Denote by C(I) the smallest ideal in
A that contains all ideals J with the property that if p is a prime ideal
that does not contain I, then p contains J. Let V(J) = {p : p ⊇ J}. Then,
by definition, C(I) is the smallest ideal containing the ideals J such that
V(J) ⊇ Spec(A) \ V(I). Denote, in any topological space, by Z and Z0 the
closure, respectively the interior, of a set Z. We use the general formula⋂
Z closed, Z⊇X\Y Z = X \ Y , valid for any closed set Y , to obtain

V(C(I)) =
⋂

V(J)⊇X\V(I)

V(J) = X \ V(I).

That is, C(I) gives the set X\V(I). From the general equality X\(X \ Y ) =
Y 0 we obtain

V(CC(I)) = X \ (X \ V(I)) = V(I)0,

so that CC(I) is the quasi-radical of I.

1. Quasi-radicals. In this section we define quasi-radical operations
on ideals of rings and give their main properties (see also [B] and [BGN]).
Proposition 1.4 is also proved in [B].

1.1. Notation. Let A be a commutative ring with unit. For each ideal
I of A we let

√
I = {f ∈ A : fn ∈ I for some positive integer n} be the

usual radical of I.

1.2. Definition. An operation R on the ideals of A is a correspondence
that to every ideal I of A associates an ideal R(I) of A. We say that the
operation R is quasi-radical if it satisfies the following three conditions for
all ideals I and J of A:

(QR1) I ⊆ R(I).
(QR2) R(R(I)) = R(I).
(QR3) R(IJ) = R(I ∩ J) = R(I) ∩R(J).

Let R be a quasi-radical operation on the ring A and let I be an ideal
of A. We call R(I) the quasi-radical of I, and say that I is quasi-radical if
R(I) = I.

1.3. Examples. (1) The usual radical is clearly a quasi-radical operation
on the ideals of A. We shall show in Proposition 1.4 that

√
I ⊆ R(I) for all

quasi-radical operations R. Hence the usual radical is the finest quasi-radical
operation on the ideals.

(2) The coarsest quasi-radical operation is the operation defined by
R(I) = A for all ideals I of A.

(3) (See [BCR], or [R1] and [R2].) Let A be a ring and let M be a subset
that is stable under addition and multiplication and such that f 2 ∈ M for
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all f ∈ A. For all ideals I of A we let

R(I) = {f ∈ A : there exist m ∈ N and g ∈M such that f 2m + g ∈ I}.
Then R is a quasi-radical operation on ideals.

(4) (See [L1].) Let K be a subfield of a field L. Moreover, let t1, t2, . . . be
a countable number of independent variables over K, and let K[t1, t2, . . .] be
the polynomial ring in these variables over K. For each non-negative integer
m let

PK(m) = {p(t1, . . . , tm) : p a homogeneous polynomial with coefficients

in K and if p(k1, . . . , km) = 0 with k1, . . . , km in L then km = 0}.
For each ideal I of a ring A we let

R(I) = {f ∈ A : for some positive integer m there are p ∈ PK(m)

and f1, . . . , fm−1 in A such that p(f1, . . . , fm−1, f) ∈ I}.
Then R defines a quasi-radical operation.

1.4. Proposition. Let R be a quasi-radical operation on the ring A, and
let I and J be ideals of A. Then:

(1) If I ⊆ J then R(I) ⊆ R(J).
(2) R(I) = R(

√
I) =

√
R(I).

Proof. (1) It follows from (QR3) that if I ⊆ J then R(I) = R(I ∩ J) =
R(I) ∩R(J). Hence R(I) ⊆ R(J).

(2) For every f in A it follows from (QR3) that R((f)) = R((f)∩ (f)) =
R((f2)). By induction on n we obtain R((fn)) = R((f)) for all positive
integers n.

Let f ∈
√
R(I). Then fn ∈ R(I) for some positive integer n. Hence it

follows from (1) and (QR2) that R((f)) = R((fn)) ⊆ R(I). Now (QR1)
yields f ∈ R(I). Thus

√
R(I) ⊆ R(I). The opposite inclusion is obvious.

Hence R(I) =
√
R(I).

It follows from (QR1) and the above that
√

I ⊆
√
R(I) = R(I). Hence

(1) and (QR2) show that R(
√

I) ⊆ R(R(I)) = R(I). The opposite inclusion
follows from (1).

2. Radicals. In this section we define radical operations on the ideals
of a ring (see also [E]; a special case of Theorem 2.5 is given in [B]). We show
that radical operations are quasi-radical, and give a criterion for the converse
to be true. From this criterion it follows that quasi-radical operations in
noetherian rings are radical.
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2.1. Definition. Let R be an operation on the ideals of the ring A. We
denote by Spec(A) the set of prime ideals of A, and define

SpecR(A) = {p ∈ Spec(A) : R(p) = p}.
We say that R is a radical operation on A if there is a subset R of Spec(A)
such that, for all ideals I of A,

(2.1.1) R(I) =
⋂

I⊆p∈R
p.

In particular R(I) = A if there is no prime ideal p in R such that p ⊇ I.
The operation R on the ideals of A given by (2.1.1) is called the radical
operation associated to R.

Let R be a radical operation on the ring A and let I be an ideal of A.
We call R(I) the radical of I, and say that I is radical if R(I) = I.

2.2. Example. (1) The well known characterization of the usual radical
as the intersection of the prime ideals that contain the ideal shows that it
is a radical operation.

(2) Let R be the subset of Spec(A) consisting of the maximal ideals of A,
and let R be the corresponding radical operation. For each ideal I of A the
ideal R(I) is the Jacobson radical of I.

(3) It is shown in [BCR], [R1] and [R2] that the quasi-radical operation
of Example 1.3(3) is radical.

(4) It is shown in [L1] that the quasi-radical operation of Example 1.3(4)
is radical.

2.3. Proposition. Let R be a subset of Spec(A) and let R be the radical
operation associated to R. Then R is quasi-radical.

Moreover , R ⊆ SpecR(A), and for all ideals I of A we have

R(I) =
⋂

I⊆p∈SpecR(A)

p.

Proof. Properties (QR1) and (QR2) are obviously satisfied, as is the
inclusion R ⊆ SpecR(A). Moreover it is clear that when I and J are ideals
of A such that I ⊆ J then R(I) ⊆ R(J). It follows that R(IJ) ⊆ R(I∩ J) ⊆
R(I) ∩R(J).

In order to prove that R satisfies (QR3) it remains to prove that R(IJ) ⊇
R(I)∩R(J). Let f ∈ A\R(IJ). Then there is a prime ideal p in R such that
p ⊇ IJ, but f /∈ p. Then at least one of the ideals I and J is contained in p.
By definition f is not in R(I) or R(J), and thus f 6∈ R(I) ∩ R(J). Hence
R(IJ) ⊇ R(I) ∩R(J).

It remains to prove the last statement of the proposition. Since R ⊆
SpecR(A) we have

⋂
I⊆p∈SpecR(A) p ⊆ ⋂I⊆p∈R p = R(I). To prove the op-

posite inclusion take an f ∈ A \ ⋂I⊆p∈SpecR(A) p. Then there is a prime
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ideal q ∈ SpecR(A) such that q ⊇ I and f /∈ q. It follows from Proposi-
tion 1.4(1) that q = R(q) ⊇ R(I), and in particular f 6∈ R(I). Consequently,
R(I) ⊆ ⋂I⊆q∈SpecR(A) q, which completes the proof.

2.4. Example. LetR be the subset of Spec(A) consisting of the maximal
ideals, and let R be the radical operation associated to R. Then an ideal
I of A is radical if and only if it is the intersection of the maximal ideals
that contain it, that is, if it is equal to its Jacobson radical. Hence the
Jacobson radical is equal to the usual radical if and only if R is also the
radical operation associated to the set Spec(A) of all prime ideals of A.

A different proof of the last part of the following result appears in [B].

2.5. Theorem. Let R be a quasi-radical operation on the ideals of the
ring A. Assume that R satisfies the condition

(QR4) For every family {Iα}α∈I of ideals in A that is totally ordered by
inclusion we have

R
(⋃

α∈I
Iα

)
=
⋃

α∈I
R(Iα).

Then R is a radical operation.
In particular , if A satisfies the ascending chain condition on quasi-radical

ideals, then every quasi-radical operation is radical.

Proof. Let I be an ideal in A and let f ∈ A\R(I). In order to prove the
first part of the theorem we show that there is a quasi-radical prime ideal p
in A such that p ⊇ I and f 6∈ p.

Let I be the set of quasi-radical ideals J that contain R(I) but not f . It
follows from (QR4) that for every collection {Jα}α∈I of elements in I that is
totally ordered by inclusion, the idealR(

⋃
α∈I Jα) =

⋃
α∈I R(Iα) =

⋃
α∈I Iα

is an upper bound of I. Hence by Zorn’s Lemma there is a maximal element
p in I.

We show that p is a prime ideal. Let g and h be elements of A \ p.
Assume that gh ∈ p. Since p is maximal in I by assumption, it follows from
(QR2) that f ∈ R(Ag + p) and f ∈ R(Ah+ p). Property (QR3) shows that
R((Ag+p)(Ah+p)) = R(Ag+p)∩R(Ah+p). However, (Ag+p)(Ah+p) ⊆ p
since we have assumed that gh ∈ p, and by Proposition 1.4(1) we obtain
R((Ag + p)(Ah + p)) ⊆ R(p) = p, and hence R(Ag + p) ∩ R(Ah + p) ⊆ p.
In particular, f ∈ p, which contradicts p ∈ I. Hence p is a prime ideal, and
p ⊇ I, f 6∈ p.

To prove the final assertion of the theorem we show that when A sat-
isfies the ascending chain condition for quasi-radical ideals, then (QR4)
holds. By (QR1) and (QR2), we always have R(

⋃
α∈I Iα) ⊇ ⋃α∈I R(Iα)

and
⋃
α∈I Iα ⊆ R(

⋃
α∈I Iα). When A satisfies the ascending chain condition

for quasi-radical ideals there is an element β of I such that
⋃
α∈I R(Iα) =
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R(Iβ). In particular
⋃
α∈I Iα ⊆ R(Iβ), and thus R(

⋃
α∈I Iα) ⊆ RR(Iβ) =

R(Iβ) =
⋃
α∈I R(Iα). Hence (QR4) holds.

2.6. Remark. Condition (QR4) clearly holds for the usual radical. Hence
the well known result, mentioned in Example 2.2(1), that

√
I is the inter-

section of the prime ideals that contain I is a very particular case of Theo-
rem 2.5.

(QR4) holds for all the quasi-radicals of Example 1.3. Hence the asser-
tions of Example 2.2 that all these quasi-radical operations are radical follow
from Theorem 2.5.

2.7. Example. From Proposition 2.3 it follows that a quasi-radical op-
eration on A does not necessarily satisfy (QR4). We shall give an example
showing that even radical operations do not necessarily have this property.

Let A be a local ring with maximal ideal m, and assume that there is
a chain of prime ideals p1 ⊆ p2 ⊆ · · · in A, each properly contained in m,
such that

⋃∞
i=1 pi = m. Let R be the radical operation on A associated to

the set R = {p : p 6= m}. Then R(m) = A, and thus R(
⋃∞
i=1 pi) = A, while⋃∞

i=1R(pi) =
⋃∞
i=1 pi = m.

An example of a ring A with the above properties is the polynomial
ring K[t1, t2, . . .] in the variables t1, t2, . . . over a field K, localized at the
maximal ideal (t1, t2, . . .) with pi = (t1, . . . , ti)K[t1, t2, . . .](t1,t2,...).

3. Quasi-radicals on topological spaces. In this section we introduce
quasi-radical operations on closed subsets of a topological space. We show
that the particular operation that to each closed set associates the closure
of its interior is quasi-radical.

3.1. Notation. Let X be a topological space. For every subset W of X
we denote by W the closure of W in X, and by W 0 the interior of W .

3.2. Definition. Let X be a topological space. An operation Q on the
closed subsets of X is a correspondence that to every closed subset Y of X
associates a closed subset Q(Y ) of X. We write

XQ = {x ∈ X : Q({x}) = {x}}.
The operation Q is quasi-radical if it satisfies the following three conditions
for all closed subsets Y and Z of X:

(QR1) Q(Y ) ⊆ Y .
(QR2) Q(Q(Y )) = Q(Y ).
(QR3) Q(Y ∪ Z) = Q(Y ) ∪Q(Z).

3.3. Examples. The identity operation that associates every closed sub-
set of X to itself is clearly a quasi-radical operation on the closed subsets
of X. It is the finest quasi-radical operation on the closed subsets.
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The coarsest operation on the closed subsets of X is the operation Q
defined by Q(Y ) = ∅ for all closed subsets Y of X.

In Proposition 3.6 we shall show that the operation that to every closed
subset associates the closure of its interior is a quasi-radical operation.

3.4. Lemma. Let X be a topological space and let Y and Z be closed sub-
sets such that Z ⊆ Y . For every quasi-radical operation Q on the topological
space X we have Q(Z) ⊆ Q(Y ).

Proof. It follows from (QR3) that if Z ⊆ Y , then Q(Y ) = Q(Y ∪ Z) =
Q(Y ) ∪Q(Z) and hence Q(Z) ⊆ Q(Y ).

3.5. Lemma. Let X be a topological space and let Y and Z be closed
subsets. Then

(1) Y 0 ⊆ Y .
(2) (Y 0)0 = Y 0.
(3) Y 0 ∪ Z0 = (Y ∪ Z)0.

Proof. (1) Clearly Y 0 ⊆ Y , and thus Y 0 ⊆ Y = Y .
(2) We have Y 0 ⊆ Y 0, and Y 0 is open in X. Consequently, Y 0 ⊆ (Y 0)0.

Conversely, it follows from (1) that Y 0 ⊆ Y = Y , and thus (Y 0)0 ⊆ Y 0.
Hence (Y 0)0 = Y 0.

(3) It is clear that Y 0 ∪ Z0 ⊆ (Y ∪ Z)0. Hence Y 0 ∪ Z0 ⊆ (Y ∪ Z)0.
The opposite inclusion follows from (Y ∪ Z)0 ⊆ Y 0 ∪ Z0, which we now

prove. Let x ∈ (Y ∪ Z)0. Then every neighborhood of x contains an open
neighborhood U of x such that U ⊆ Y ∪Z. We shall distinguish three cases:

(i) If U⊆Y ∩Z we have U⊆Y 0∩Z0, and in particular U∩(Y 0∪Z0) 6= ∅.
(ii) If U ∩ (Y \Z) 6= ∅ then U1 = U ∩ (X \Z) = U ∩ (Y \Z) is an open

non-empty subset of U and U1 = U∩(X\Z) ⊆ (Y ∪Z)∩(X\Z) ⊆ Y .
Hence U1 ⊆ Y 0, and we obtain U ∩ (Y 0 ∪ Z0) 6= ∅.

(iii) If U ∩ (Z \ Y ) 6= ∅ we find, as in part (ii), that U ∩ (Y 0 ∪ Z0) 6= ∅.
In all three cases U ∩ (Y 0 ∪ Z0) 6= ∅ and thus every neighborhood of

x intersects Y 0 ∪ Z0. Hence x ∈ Y 0 ∪ Z0, and so (Y ∪ Z)0 ⊆ Y 0 ∪ Z0 as
desired.

3.6. Proposition. Let X be a topological space. For every closed subset
Y of X we let

Q(Y ) = Y 0.

Then Q defines a quasi-radical operation on the closed subsets of X.

Proof. (1) It follows from Lemma 3.5(1) that Q(Y ) = Y 0 ⊆ Y . Hence
(QR1) is fulfilled.

(2) It follows from Lemma 3.5(2) that Q(Q(Y )) = (Y 0)0 = Y 0 = Q(Y ).
Hence (QR2) is fulfilled.
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(3) It follows from Lemma 3.5(3) that Q(Y ∪Z) = (Y ∪ Z)0 = Y 0 ∪ Z0.
We have Y 0 ∪ Z0 = Y 0 ∪ Z0, and thus Q(Y ∪ Z) = Q(Y ) ∪Q(Z). That is,
(QR3) is satisfied.

4. Radicals on topological spaces. In this section we define radical
operations on closed subsets of topological spaces and show that radical
operations are quasi-radical. We give a criterion for topological spaces that
guarantees that the quasi-radical operation that associates to every closed
set the closure of its interior is not radical. Moreover we give an example of
a topological space that satisfies this criterion.

4.1. Definition. Let X be a topological space and let Q be an operation
on the closed subsets of X. We say that Q is a radical operation if there is
a subset W of X such that for all closed subsets Y of X we have

Q(Y ) = Y ∩W.

We call Q the radical operation associated to W .

4.2. Lemma. Let X be a topological space and let V,W ⊆ X. Then

V ∩W ∩W = V ∩W.

In particular , for every point x in W , we have

{x} ∩W = {x}.
Proof. We have V ∩W ⊆ V ∩W ∩W , and thus V ∩W ⊆ V ∩W ∩W .

Conversely, the inclusion V ∩W ∩W ⊆ V ∩W gives V ∩W ∩W ⊆ V ∩W
= V ∩W .

4.3. Proposition. Let X be a topological space and let Q be the radical
operation associated to a subset W of X. Then Q is a quasi-radical operation
on closed subsets of X. Moreover , W ⊆ XQ, and for all closed subsets Y of
X we have

Q(Y ) = Y ∩XQ.

Proof. Let Y and Z be closed subsets of X.
(1) We have Q(Y ) = Y ∩W ⊆ Y = Y . Hence (QR1) holds for Q.

(2) It follows from Lemma 4.2 that Q(Q(Y )) = Y ∩W ∩W = Y ∩W =
Q(Y ). Hence (QR2) holds for Q.

(3) We have Q(Y ∪Z) = (Y ∪ Z) ∩W = (Y ∩W ) ∪ (Z ∩W ) = Y ∩W ∪
Z ∩W = Q(Y ) ∪Q(Z). Hence (QR3) holds for Q.

We now prove the last part of the proposition. Let x ∈ W . It follows
from Lemma 4.2 that Q({x}) = {x} ∩W = {x}, and hence x ∈ XQ. Thus
W ⊆ XQ and so Q(Y ) = Y ∩W ⊆ Y ∩XQ. In order to prove the opposite
inclusion let x ∈ Y ∩ XQ. By definition of XQ we have {x} = Q({x}) =
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{x} ∩W ⊆ Y ∩W = Y ∩W . Hence x ∈ Y ∩W and so Y ∩XQ ⊆ Y ∩W =
Q(Y ). Together with the inclusion Q(Y ) ⊆ Y ∩XQ proved above we have
Q(Y ) = Y ∩XQ, as desired.

4.4. Lemma. Let X be a topological space that has the following two
properties:

(i) For all points x ∈ X we have {x}0 = ∅.
(ii) X = X1 ∪X2, where X1 and X2 are open and closed subsets of X

both different from X.

Then the quasi-radical operation Q that associates to a closed set Y the
closure of its interior Y 0 is not radical. More precisely , XQ = {x ∈ X :
Q({x}) = {x}} = ∅, so Xi ∩XQ = ∅, and Q(Xi) = Xi for i = 1, 2.

Proof. By (i), Q({x}) = {x}0 = ∅ for every x ∈ X. Hence XQ = ∅.
Consequently, Proposition 4.3 shows that if Q were a radical operation then
Q(Y ) = Y ∩ ∅ = ∅ for all closed subsets Y ofX. However, (ii) yieldsQ(Xi) =
X0
i = Xi for i = 1, 2.

4.5. Example. We now give an example of a topological space that
satisfies conditions (i) and (ii) of Lemma 4.4. In particular we obtain an
example showing that not all quasi-radical operations on topological spaces
are radical. More precisely, the quasi-radical operation defined in Proposition
3.6 is not always radical.

Let X1 and X2 be two disjoint sets each with infinitely many elements.
It is easily checked that all the subsets of X = X1 ∪ X2 that consist of
all but a finite number of points of one of the sets X, X1 or X2, together
with the empty set, form the open sets of a topology on X. In this topology
conditions (i) and (ii) are clearly fulfilled.

5. Radicals for the Zariski topology. In this section we investigate
quasi-radical and radical operations on the closed sets of the spectrum of a
ring with the Zariski topology. We show that the correspondence between
ideals in the ring and the closed subsets of the spectrum gives a correspon-
dence between quasi-radical and radical operations on the ideals of the ring,
and the quasi-radical and radical operations on the closed subsets of the
spectrum.

5.1. Notation. Let A be a ring and let X = Spec(A) be the collection
of prime ideals of A. In order to distinguish elements in X from the prime
ideals in A we write px for the prime ideal in A corresponding to the element
x in X. For every ideal I in A we write

V(I) = {x ∈ X : px ⊇ I} =
⋃

px⊇I

{x},
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and for every subset W of X we write

I(W ) = {f ∈ A : f ∈ px for all x ∈W} =
⋂

x∈W
px.

5.2. Remark. The sets V(I) for all ideals I in A are the closed subsets
of the Zariski topology on X. Clearly the following properties hold for all
ideals I and J of A, all closed subsets Y and Z of X, and all subsets W of
X (see e.g. [H]):

(1) I(V(I)) =
√

I.
(2) V(I(Y )) = Y .
(3) V(IJ) = V(I ∩ J) = V(I) ∪ V(J) and I(Y ∪ Z) = I(Y ) ∩ I(Z) =√

I(Y )I(Z).
(4) V(px) = {x}, I({x}) = px and I(W ) = I(W ).

5.3. Theorem. Let A be a ring and let X = Spec(A) have the Zariski
topology. Denote by Q a quasi-radical operation on the closed subsets of X.
The operation R on the ideals of A that to an ideal I associates the ideal

R(I) = I(Q(V(I)))

is a quasi-radical operation on the ideals of A. Moreover,

XQ = SpecR(A),

and Q is a radical operation on the closed subsets of X if and only if R is a
radical operation on the ideals of A.

Proof. (1) It follows from (QR1) for Q that R(I) = I(Q(V(I))) ⊇
I(V(I)). Moreover, property (1) of Remark 5.2 implies that I(V(I)) ⊇ I.
Hence R(I) ⊇ I, and so (QR1) holds for R.

(2) It follows from property (2) of Remark 5.2 that

R(R(I)) = I(Q(V(I(Q(V(I)))))) = I(Q(Q(V(I)))).

Moreover, (QR2) for Q yields I(Q(Q(V(I)))) = I(Q(V(I))) = R(I). Hence
(QR2) holds for R.

(3) From property (3) of Remark 5.2 it follows that

R(I ∩ J) = I(Q(V(I ∩ J))) = I(Q(V(IJ))) = R(IJ),

and R(I ∩ J) = I(Q(V(I ∩ J))) = I(Q(V(I) ∪ V(J))). Moreover, (QR3) for
Q and property (3) of Remark 5.2 yield

I(Q(V(I) ∪ V(J))) = I(Q(V(I)) ∪Q(V(J))) = I(Q(V(I))) ∩ I(Q(V(J)))

= R(I) ∩R(J).

Hence (QR3) holds for R. We have thus shown that R is a quasi-radical
operation on the ideals of A.

We now prove the second part of the theorem.
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Let x ∈ XQ, that is, Q({x}) = {x}. We deduce from (4) of Remark 5.2
that Q(V(px)) = {x}, and so R(px) = I(Q(V(px))) = I({x}) = px. Conse-
quently, x ∈ SpecR(A). Thus XQ ⊆ SpecR(A).

Conversely, let x ∈ SpecR(A). It follows from (4) of Remark 5.2 that px =
R(px) = I(Q(V(px))) = I(Q({x})). Consequently, by (4) of Remark 5.2,
{x} = V(px) = V(R(px)) = V(I(Q({x}))) = Q({x}). That is, we have
x ∈ XQ, and so SpecR(A) ⊆ XQ. Thus XQ = SpecR(A). It follows that for
every ideal I of A we have

(5.3.1) I(V(I) ∩XQ) = I(V(I) ∩ SpecR(A)) =
⋂

x∈V(I)∩SpecR(A)

px.

Assume that R is a radical operation on the ideals of A. It follows from
Proposition 2.3 that R(I) =

⋂
x∈V(I)∩SpecR(A) px for all ideals I of A. Hence

we infer from (5.3.1) that R(I) = I(V(I) ∩ XQ). It follows from (4) of
Remark 5.2 that I(V(I)∩XQ) = I(V(I) ∩XQ). Thus I(Q(V(I))) = R(I) =
I(V(I) ∩XQ). From (2) of Remark 5.2 we thus obtain

Q(V(I)) = V(I(Q(V(I)))) = V(R(I)) = V(I(V(I) ∩XQ)) = V(I) ∩XQ

for all ideals I of A. Consequently, the operation Q is radical.
Conversely, assume that Q is radical. It follows from Proposition 4.3 that

Q(V(I)) = V(I) ∩XQ for all ideals I of A. Hence (5.3.1) and property (4)
of Lemma 5.2 show that

R(I) = I(Q(V(I))) = I(V(I) ∩XQ) = I(V(I) ∩XQ) =
⋂

x∈V(I)∩SpecR(A)

px.

Consequently, the operation R is radical, and we have proved the theorem.

5.4. Example. We shall give an example of a ring with a quasi-radical
operation that is not radical.

It follows from Proposition 3.6 and from Theorem 5.3 that for every ring
A we have a quasi-radical operation R on the ideals of A that associates to
an ideal I of A the ideal

(5.4.1) R(I) = I(V(I)0).

If the Zariski topology of Spec(A) satisfies conditions (i) and (ii) of Lem-
ma 4.4 then Lemma 4.4 and Theorem 5.3 show that R is not radical.

We next construct a ring A such that Spec(A) with the Zariski topol-
ogy satisfies conditions (i) and (ii) of Lemma 4.4. Let K[t1, t2, . . .] be the
polynomial ring in the countable number of independent variables t1, t2, . . .
over a field K, and let A be the residue ring of K[t1, t2, . . .] by the ideal I
generated by the elements ti(ti − 1) for i = 1, 2, . . . . We denote by ui the
residue class of ti in A for i = 1, 2, . . . . Every prime ideal in A contains ui
or ui − 1 for each i = 1, 2, . . . . Consequently, every prime ideal is of the
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form (u1−δ1, u2−δ2, . . .), where δi is equal to 0 or 1, and clearly every ideal
of this form is maximal. In particular all points of Spec(A) are closed.

Let f(t1, . . . , tn) be an element of I. Then f(δ1, . . . , δn) = 0 for all
choices of δ1, . . . , δn. Conversely, it is easily shown by induction on n that
if f(δ1, . . . , δn) = 0 for all choices of δ1, . . . , δn then f(t1, . . . , tn) is in I. In
particular, for every f(u1, . . . , un) 6= 0 in A we can find δ1, . . . , δn such that
f(δ1, . . . , δn) 6= 0. Since f(u1, . . . , un) is in (u1 − δ1, u2 − δ2, . . .) if and only
if f(δ1, . . . , δn) = 0 we see that if f(u1, . . . , un) 6= 0 then f(u1, . . . , un) is not
in (u1 − δ1, u2 − δ2, . . .) for any choices of δn+1, δn+2, . . . . Consequently, if
f(u1, . . . , un) 6= 0 then X \ V(f(u1, . . . , un)) contains infinitely many points
of X. It is well known that the open sets X\V(f(u1, . . . , un)) form a basis for
the Zariski topology of X. Hence every non-empty open subset of Spec(A)
contains infinitely many points. In particular, the points of Spec(A) cannot

be open. Since they are closed it follows that {x}0 = {x}0 = ∅, that is,
condition (i) of Lemma 4.4 is satisfied.

To prove that condition (ii) of Lemma 4.4 is also satisfied we observe
that the closed subsets X1 = V(u1) and X2 = V(u1 − 1) of X are disjoint
and X = X1 ∪X2, hence they are also open.

In the ringA with the radical operation (5.4.1) the ideals (u1) and (u1−1)
are both examples of ideals that are quasi-radical, but not the intersection
of radical primes. To see this we note that it follows from the definition of
the quasi-radical operation on A that R(u1) = I(Q(V(u1))) = I(Q(X1)),
and that the last part of Lemma 4.4 shows that Q(X1) = X1. Therefore
R(u1) = I(X1) and thus I(X1) is the intersection of all ideals of the form
(u1, u2−δ2, u3−δ3, . . .). As observed above, this intersection is equal to (u1).
Hence R(u1) = (u1), that is, the ideal (u1) is quasi-radical for the opera-
tion R. However, the ideal (u1) is not the intersection of radical primes,
because, as we have seen, the set of such primes is empty.
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