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♣-like principles under CH

by

Winfried Just (Athens, OH)

Abstract. Some relatives of the Juhász Club Principle are introduced and studied in
the presence of CH. In particular, it is shown that a slight strengthening of this principle
implies the existence of a Suslin tree in the presence of CH.

Jensen’s♦-principle is an important strengthening of the Continuum Hy-
pothesis that allows for a number of interesting constructions that cannot
be carried out in ZFC + CH alone. Most notably, ♦ implies the existence
of a Suslin tree. In [4], Ostaszewski introduced a weakening of ♦ known
as ♣ that suffices for many of the constructions made possible by ♦. De-
vlin showed that ♣ + CH is equivalent to ♦ (see [4]). However, ♣ does
not imply CH and is thus strictly weaker than ♦ (for an elegant proof,
see [5], page 43). In [3], Juhász introduced a weakening of ♣ that will
be denoted here by ♣J. This principle is not equivalent to ♦ even un-
der CH, and yet it retains some of the combinatorial power of the lat-
ter principle. Here we study some natural modifications of ♣J. In partic-
ular, we show that some of these modifications, while still not equivalent
to ♦ under CH, do imply the existence of a Suslin tree in the presence
of CH.

Throughout this note, let S0 = ω1∩LIM \ {0}. The letter E will denote
stationary subsets of S0, and S(E) will denote the family of all stationary
subsets of E. Instead of S(S0) we will write S. The family of all closed
unbounded subsets of S0 will be denoted by C. A♣(E)-sequence is a sequence
〈sα : α ∈ S0〉 such that sα is a cofinal subset of order type ω for all α ∈ S0,
and for each X ∈ [ω1]ℵ1 there exists α ∈ E with sα ⊂ X. The ♣(E)-
principle asserts the existence of a ♣(E)-sequence. Instead of ♣(S0) we
simply write ♣.
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In order to better delineate where these principles fit in the general
scheme of things, we first introduce a convenient notation for the study of
♦-like principles.

Definition 1. Let G ⊆ P(S0), A ⊆ P(ω1), and let F be a family of
sequences F = 〈Fα : α ∈ S0〉 such that Fα ⊆ P(α) for every α ∈ S0. We say
that F is a ♠(G,A)-sequence if for all A ∈ A there exists G ∈ G such that
A ∩ α ∈ Fα for all α ∈ G. We say that ♠(F ,G,A) holds if there exists a
♠(G,A)-sequence F such that F ∈ F .

Example 1. (1) Let F1 be the family of all sequences F = 〈Fα : α ∈ S0〉
such that Fα ⊆ P(α) and |Fα| = 1 for each α ∈ S0, and let Fℵ0 be the
family of all sequences F = 〈Fα : α ∈ S0〉 such that Fα ⊆ P(α) and
|Fα| = ℵ0 for each α ∈ S0. Then ♠(F1,S,P(ω1)) is the same as the or-
dinary diamond-principle ♦, ♠(Fℵ0 ,S,P(ω1)) is the same as Kunen’s ♦−,
and ♠(Fℵ0 , C,P(ω1)) is the same as ♦∗. Moreover, for a stationary E ⊆ S0,
the principle ♠(F1,S(E),P(ω1)) is the same as ♦(E).

(2) Let E be a stationary subset of S0 and let F♣ be the family of all
sequences F = 〈Fα : α ∈ S0〉 such that for each α ∈ S0 there exists a set
sα ⊆ α such that ot(sα) = ω, sup sα = α, and Fα = {a ⊆ α : sα ⊆ a}. Then
♠(F♣,P(E) \ {∅}, [ω1]ℵ1) is the same as ♣(E).

(3) Let E be a stationary subset of S0, and let F♣w be the family of all
sequences F = 〈Fα : α ∈ S0〉 such that for each α ∈ S0 there exists a set
sα ⊆ α such that ot(sα) = ω, sup sα = α, and Fα = {a ⊆ α : |sα \ a| < ℵ0}.
Then ♠(F♣w ,P(E) \ {∅}, [ω1]ℵ1) is the same as the principle ♣w(E) of [2]
and ♣1 of [1].

(4) Let Ffilt be the family of all sequences F = 〈Fα : α ∈ S0〉 such that
for all α ∈ S0, Fα is a filter on α that consists of cofinal subsets of α. Then
for every E ⊆ S0 we have: ♣(E)⇒ ♣w(E)⇒ ♠(Ffilt,P(E) \ {∅}, [ω1]ℵ1).

It is a historical accident that “official” definitions of ♦-principles take
the form ♠(F ,S(E),A) while definitions of ♣-principles take the form
♠(F ,P(E) \ {∅},A); in all cases of interest to us the two formulations are
equivalent. This well known observation can be formalized in our terminol-
ogy as follows:

Lemma 2. Let F be a family of sequences such that for each 〈Fα : α∈S0〉
∈ F and each α ∈ S0, the family Fα consists of cofinal subsets of α, and if
a ⊆ b ⊆ α, a ∈ Fα, then b ∈ Fα. Let E be a stationary subset of S0. Then
♠(F ,P(E) \ {∅}, [ω1]ℵ1) implies ♠(F ,S(E), [ω1]ℵ1).

A proof of the above lemma will be given in the appendix.

Example 2. The result of Devlin mentioned above can be generalized as
follows: Let E be a stationary subset of S0. Then ♠(Ffilt,P(E)\{∅}, [ω1]ℵ1)
+ CH ⇒ ♦(E). A proof will be given in the appendix.
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Kunen has shown that for E ⊆ S0, the principles ♦−(E) and ♦(E)
are equivalent. In our terminology this means that ♠(F1,S(E),P(ω1)) is
equivalent to ♠(Fℵ0 ,S(E),P(ω1)). It is natural to ask to what extent this
result generalizes to ♣-like principles. Formally, given a family F of S0-
sequences, let us define F (ω) = {〈Hα : α ∈ S〉 : ∃〈Fα,n : α ∈ S0, n ∈ ω〉
∀n ∈ ω ∀α ∈ S0 (〈Fα,n : α ∈ S0〉 ∈ F ∧ Hα =

⋃
n∈ω Fα,n)}. Note that,

in particular, F (ω)
1 = Fℵ0 . The question now is for which F and A the

implication ♠(F (ω),S(E),A)⇒ ♠(F ,S(E),A) holds.

Example 3. (1) ♠(F (ω)
♣ ,S, [ω1]ℵ1) does not imply ♠(F♣,S, [ω1]ℵ1). To

see this, recall that in [1], it is shown that ♣1 (i.e., ♠(F♣w ,S, [ω1]ℵ1)) does
not imply♣. It is easy to see that♠(F♣w ,S, [ω1]ℵ1) implies♠(F (ω)

♣ ,S, [ω1]ℵ1).
(2) Under CH, an analogue of Kunen’s Theorem for ♣-like principles

does hold: Let F ⊆ Ffilt and let E ⊆ S0. Then CH + ♠(F (ω),S(E), [ω1]ℵ1)
implies ♠(F ,S(E), [ω1]ℵ1). A proof of this observation will be given in the
appendix.

(3) A similar observation can be made for ♦∗: Let F ⊆ Ffilt and let
E ⊆ S0. Then CH + ♠(F (ω), C, [ω1]ℵ1) implies ♦∗.

Naturally, the question arises whether Examples 2 and 3(2) have dual
versions for ideals. Unfortunately, as the following examples show, the situ-
ation for ideals is more complex than the situation for filters.

Example 4. (1) Let Fid denote the family of all sequences 〈Fα : α ∈ S0〉
such that, for each α, Fα = I+

α (= {a ⊆ α : a 6∈ Iα}) for some ideal Iα of
subsets of α that contains the ideal Bα of all bounded subsets of α. In
particular, if we define U = 〈B+

α : α ∈ S0〉, then U ∈ Fid and U is a
♠(C, [ω1]ℵ1)-sequence. It follows that ♠(Fid,S, [ω1]ℵ1) is a theorem of ZFC.

(2) Let Fult be the family of all sequences 〈I+
α : α ∈ S0〉 such that for

each α, Iα is a maximal ideal on α that extends Bα. Then Fult ⊂ F . On the
other hand, for each α, I+

α is equal to the dual filter I∗α, and thus Fult ⊂ Ffilt.
Now Example 2 implies that CH + ♠(Fult,S, [ω1]ℵ1) is equivalent to ♦.

Does Example 3(2) have an analogue for ideals? One could formalize
this question by asking whether for all F ⊆ Fid and E ⊆ S0, in the
presence of CH, the statements CH + ♠(F (ω),S(E), [ω1]ℵ1) and CH +
♠(F ,S(E), [ω1]ℵ1) are equivalent. However, note that for any F ⊆ Fid we
have F (ω) ⊆ Fid, and while the above question may be of some interest, it
does not have quite the same flavor as Example 3(2). The following approach
is closer in spirit to Example 3(2). For a family F of sequences 〈Fα : α ∈ S0〉,
let (ω)F = {〈Hα : α ∈ S0〉 : ∃{F n = 〈Fα,n : α ∈ S0〉 : n ∈ ω} ⊆ F ∀α ∈ S0
(Hα =

⋂
n∈ω Fα,n)}.

Now the question about the dual version of Example 3(2) can be formu-
lated as follows.
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Question 3. Let F ⊆ Fid, E ⊆ S0. Are the principles ♠((ω)F ,S(E),
[ω1]ℵ1) and ♠(F ,S(E), [ω1]ℵ1) equivalent? Is CH + ♠((ω)F ,S(E), [ω1]ℵ1)
equivalent to the statement CH +♠(F ,S(E), [ω1]ℵ1)?

To get a better appreciation of Question 3, let us consider a particularly
interesting instance of it. In [3], Juhász introduced the following weakening
of ♣.

Definition 4. A ♣J-sequence is a sequence 〈skα : α ∈ S0, k ∈ ω〉 such
that:

(a) ∀α ∈ S0, k ∈ ω (skα is a cofinal subset of α of order type ω);
(b) ∀α ∈ S0, k < m < ω (skα ∩ smα = ∅);
(c) ∀X ∈ [ω1]ℵ1 ∃α ∈ S0 ∀k ∈ ω (|skα ∩X| = ℵ0).

We will abbreviate the statement “a ♣J-sequence exists” by ♣J and call it
the Juhász Club Principle.

Remark 5. The original definition of ♣J listed the following additional
requirement: ∀α ∈ S0 (ot(

⋃
k∈ω s

k
α) = ω). This requirement can be safely

dropped for our purposes. To see this, let 〈skα : α ∈ S0, k ∈ ω〉 be a ♣J-
sequence. For each α ∈ S0, fix an increasing sequence (βkα)k∈ω of ordinals
with limit α. Let tkα = skα \ βkα. Then ot(

⋃
k∈ω t

α
k ) = ω, as required in the

original definition.

Definition 6. For α ∈ S0 and an unbounded set s ⊆ α, let J(s) denote
the ideal {a ⊆ α : sup(a ∩ s) < α}. Now let FwJ denote the family of all
sequences 〈J(sα)+ : α ∈ S0〉 such that, for each α, sα is a cofinal subset of
α of order type ω. Instead of ♠(FwJ,S(E), [ω1]ℵ1) we will write ♣wJ(E).

Clearly, FwJ ⊂ Fid. Moreover, it follows from Lemma 2 that ♣J is the
same as ♠((ω)FwJ,S, [ω1]ℵ1). Thus the following question is an instance of
Question 3:

Question 7. Can one show in ZFC or in ZFC + CH that the principles
♣J and ♣wJ are equivalent?

Somewhat surprisingly, at least the CH part of the above question be-
comes much easier if one makes a seemingly very minor change to the defi-
nition of FwJ.

Definition 8. Let E ⊆ S0. A ♣wJ2(E)-sequence is a sequence 〈snα :
α ∈ S0, n ∈ ω〉 such that:

(a) ∀α ∈ S0 ∀n ∈ ω (snα < sn+1
α ∧ sup{snα : n ∈ ω} = α), and

(b) ∀X ∈ [ω1]ℵ1 ({α ∈ E : |{n : {snα, sn+1
α } ⊂ X}| = ℵ0} ∈ S(E)).

We will abbreviate the statement “a ♣wJ2(E)-sequence exists” by ♣wJ2(E).

In order to appreciate the strength of ♣wJ2 , consider the following:
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Theorem 9. CH +♣wJ2 implies the existence of a Suslin tree.

Proof. Assume CH and let {aα : α ∈ S0} be an enumeration of all
countable subsets of ω1 such that every element of [ω1]≤ℵ0 is listed cofinally
often. Let 〈snα : α ∈ S0, n ∈ ω〉 be a ♣wJ2-sequence. We will construct
a Suslin tree T = 〈ω1, <T 〉. The αth level of T will be denoted by T (α).
Conversely, for ξ ∈ ω1, L(ξ) will denote the unique α such that ξ ∈ T (α).
Moreover,

⋃
β<α T (β) will be denoted by T(α).

We will construct the T(α)’s in such a way that for each α ∈ S0, the set
of nodes of T(α) is α, and so that T(α) is tall and splitting , i.e., each node
has at least two successors at each higher level.

Suppose T(α) has been constructed. The important step in the construc-
tion of T(α+1) is to decide which cofinal branches of T(α) will be extended
at level T (α); the rest of the construction is routine and will be left to the
reader. For each node ξ ∈ α we need to put one node n(α, ξ) into T (α)
such that ξ <T n(α, ξ). Conversely, T (α) will precisely be the set of nodes
{n(α, ξ) : ξ ∈ α}.

So pick ξ ∈ α. We construct recursively a sequence (ξn)n∈ω as follows:

• ξ0 = ξ;
• if snα < L(ξn), let ξn+1 = ξn;
• if L(ξn) ≤ snα, pick ξn+1 ∈ T (sn+1

α ) in such a way that ξn <T ξn+1 and,
if possible, there exists η ∈ asn+1

α
such that η <T ξn+1.

Finally, put n(α, ξ) on top of the branch of T(α) generated by {ξn : n ∈ ω}.
In order to prove that this construction works it suffices to show that

there is no uncountable maximal antichain in T . Suppose towards a contra-
diction that A is an uncountable maximal antichain in T . Note that the set
CA = {γ : A ∩ γ is maximal in T} is unbounded in ω1. This allows us to
construct a set X = {βη : η < ω1} ⊆ S0 as follows:

• β0 = ω;
• for limit ordinals 0 < δ < ω1, let βδ = sup{βη : η < δ};
• given βη, let βη+1 > βη be such that for some γ ∈ CA with βη < γ <
βη+1 we have aβn+1 = A ∩ γ.

Now let α ∈ S0 be such that for infinitely many n ∈ ω we have snα, s
n+1
α

∈ X. Consider n(α, ξ) ∈ T (α). By construction, there exist (infinitely many)
n ∈ ω with ξ <T ξn <T ξn+1 <T n(α, ξ) and both snα = L(ξn) ∈ X and
sn+1
α = L(ξn+1) ∈ X. Now by the construction of X, asn+1

α
is a subset of

A and is a maximal antichain in T(γ) for some γ with snα < γ < sn+1
α .

Thus it is possible to choose ξn+1 above some element of asn+1
α

, and the
construction rules of T force us to do so. It follows that every element of
T (α) sits above some node of A ∩ α, and thus A cannot be an uncountable
maximal antichain.
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The author of this note does not know whether CH + ♣wJ implies the
existence of a Suslin tree, and in particular, whether ♣wJ and ♣wJ2 are
equivalent, even under CH.

While the definition of♣wJ2 may look somewhat artificial, in the presence
of CH we can find a rather elegant characterization.

Definition 10. Let E ⊆ S′0 (where S′0 is the set of countable limits of
countable limit ordinals). The pseudodiamond ♦p(E) is the following state-
ment: There exists a sequence 〈anα : α ∈ S′0, n ∈ ω〉 such that

(a) ∀α ∈ S′0 ∀n ∈ ω (anα ⊂ α);
(b) ∀α ∈ S′0 ∀n ∈ ω (|(an+1

α \ sup anα)| = ℵ0);
(c) ∀α ∈ S′0 (sup

⋃
n∈ω a

n
α = α);

(d) ∀X ∈ [ω1]ℵ1 ({α ∈ S′0 : |{n ∈ ω : X ∩ sup anα = anα}| = ℵ0} ∈ S(E)).

Remark 11. Note that if one omits condition (b) in the above defini-
tion, then the resulting principle is equivalent to CH. However, ♦p is much
stronger than that.

Theorem 12. Let E ⊆ S0. The following are equivalent :

(a) ♦p(E).
(b) CH +♣wJ2(E).

Proof. Assume ♦p(E). Then CH holds by Remark 11. Let 〈anα : α ∈ S′0,
n ∈ ω〉 be a sequence that witnesses ♦p(E). Let us construct a sequence
〈snα : α ∈ S0, n ∈ ω〉 as follows: For each α ∈ S ′0 and n ∈ ω, we pick
s2n
α , s

2n+1
α ∈ an+1

α in such a way that sup anα < s2n
α < s2n+1

α ≤ sup an+1
α .

For α ∈ S0 \ S′0 and n ∈ ω, we pick snα so as to satisfy condition (a) of
Definition 8. Clearly, 〈snα : α ∈ S0, n ∈ ω〉 is a ♣wJ2(E)-sequence.

Now assume CH + ♣wJ2(E) holds, and let 〈snα : α ∈ S0, n ∈ ω〉 be
a ♣wJ2(E)-sequence. Fix an enumeration {bα : α ∈ ω1} of all countable
subsets of ω1 such that every element of [ω1]≤ℵ0 gets listed cofinally often.
For α ∈ S′0 \ S′′0 , we define anα in such a way that conditions (a) through (c)
of Definition 10 hold. For α ∈ S ′′0 we proceed as follows: Suppose anα has
been defined and sup anα < snα + ω2. If bsn+1

α
is a subset of sn+1

α such that
|bsn+1

α
\ sup anα| = ℵ0, then let an+1

α = bsn+1
α

. Otherwise, let an+1
α = sup(anα)+

ω. Note that, in either case, sup an+1
α < sn+1

α + ω2.
This construction yields anα’s that satisfy conditions (a)–(c) of Defini-

tion 10. In order to show that condition (d) also holds, let X ∈ [ω1]ℵ1 .
Construct a set C = {cη : η ∈ ω1} ⊆ ω1 as follows:

• c0 = ω;
• cδ = sup{cη : η < δ} for countable limit ordinals δ;
• given cη, let cη+1 be such that bcη+1 ⊂ cη+1, bcη+1 = X ∩ sup bcη+1 , and
|bcη+1 \ (cη + ω2)| = ℵ0.
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Now it suffices to observe that C is closed unbounded, and if α ∈ C ∩
S′′0 ∩ E is such that for infinitely many n ∈ ω, {snα, sn+1

α } ⊂ C, then anα =
X ∩ sup anα for infinitely many n ∈ ω, as desired.

To elucidate the connection between ♣wJ2 and principles ♠(F ,S, [ω1]ℵ1)
for F ⊆ Fid, let us generalize the definition of FwJ.

Definition 13. Let I be an ideal of subsets of ω such that I contains
the ideal Fin of finite subsets of ω. Let s = {sn : n ∈ ω} be a set of ordinals
of order type ω, enumerated in increasing order, and let α = sup(s). Then we
define an ideal J(s, I) on α as follows: J(s, I) = {a ⊆ α : {n : sn ∈ a} ∈ I}.
Moreover, FwJ,I will denote the family of all sequences 〈Fα : α ∈ S0〉 such
that for each α there exists a set sα ⊆ α of order type ω, with sup(sα) = α,
such that Fα = J(sα, I)+.

Remark 14. Note that FwJ is the same as FwJ,Fin. Thus ♣wJ is the
same as ♠(FwJ,Fin,S(E), [ω1]ℵ1) and ♣J is the same as ♠((ω)FwJ,Fin,S(E),
[ω1]ℵ1). Moreover, if I ⊆ I ′, E ⊆ S0, then ♠((ω)FwJ,I′ ,S(E), [ω1]ℵ1) implies
both principles ♠((ω)FwJ,I ,S(E), [ω1]ℵ1) and ♠(FwJ,I′ ,S(E), [ω1]ℵ1), each of
which in turn implies ♠(FwJ,I ,S(E), [ω1]ℵ1).

If subsets of ω are identified with their characteristic functions, then P(ω)
can be treated as the topological space ω{0, 1} with the product topology,
and it makes sense to talk about subsets of P(ω) (e.g., ideals) of the first
Baire category.

Here is an important example: For x ⊆ ω, define the upper density of x
by d(x) = lim supn∈ω |x ∩ n|/n. Then the ideal I1 = {x ⊂ ω : d(x) = 0} is an
ideal on ω, called the ideal of density 0 sets. The following characterization,
due to S. A. Jalali-Naini and M. Talagrand [6], implies that I1 is of the first
Baire category.

Fact 15. Let I ⊆ P(ω) be an ideal on ω such that Fin ⊆ I. Then I is
of the first Baire category if and only if there exists a sequence (zn)n∈ω of
pairwise disjoint finite subsets of ω such that for all x ∈ I the set {n ∈ ω :
zn ⊆ x} is finite.

It is not true, even under CH, that for any two proper ideals I, I ′ the
principles ♠(FwJ,I ,S, [ω1]ℵ1) and ♠(FwJ,I′ ,S, [ω1]ℵ1) are equivalent. In par-
ticular, if I is maximal, then ♠(FwJ,Fin,S, [ω1]ℵ1) and ♠(FwJ,I ,S, [ω1]ℵ1) are
not equivalent. However, it seems possible that such equivalences may hold
for many, or even all, ideals of the first Baire category.

Theorem 16. Let E ⊆ S0, and let I be an ideal on ω of the first Baire
category such that Fin ⊆ I. Then ♦p(E) implies ♠((ω)FwJ,I ,S(E), [ω1]ℵ1).

Proof. Let 〈anα : α ∈ S′0, n ∈ ω〉 be a sequence that witnesses ♦p(E),
let I be an ideal as in the assumptions, and let (zn)n∈ω be a sequence as in
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Fact 15 for I. Now construct recursively skα with skα < sk+1
α for α ∈ S0, k ∈ ω

such that for all α ∈ S′0, n ∈ ω, and k ∈ zn we have skα ∈ an+1
α \ sup anα. This

is possible by point (b) of Definition 10.
The verification that the resulting sequence 〈skα : α ∈ S0, k ∈ ω〉 wit-

nesses ♠((ω)FwJ,I ,S(E), [ω1]ℵ1) is routine.

Note that Remark 14 and Theorem 16 give the following.

Corollary 17. ♦p implies ♣J.

Let us conclude this note by showing that, similarly to the well known
result of [3] for ♣J , the principle♣wJ2 holds in any model obtained by adding
a single Cohen real.

Theorem 18. Let V be a model of (a sufficiently large fragment of )
ZFC, and let P be a forcing notion for adding a single Cohen real. Then
V P � ♣wJ2 .

Proof. In V , for each α ∈ S0, fix a bijection fα : ω → α. Since all
countable forcing notions are equivalent, we may assume that P = <ωω
is the set of all functions from finite ordinals into ω, partially ordered by
reverse inclusion. Let g : ω → ω be such that {g�n : n ∈ ω} is a V -generic
ultrafilter in P, and let ġ be a P-name for g. We can identify V P with V [g].

In V [g] we define, for each α ∈ S0, a sequence 〈`α(n) : n ∈ ω〉 as follows:

• `α(0) = 0;
• `α(n+ 1) = min{` : fα(g(`)) > fα(g(`α(n)))}.

We let snα = fα(g(`α(n))) for all n ∈ ω. A simple genericity argument shows
that `α(n) is well defined for all n ∈ ω and that the sequence (snα)n∈ω is
increasing and cofinal in α.

Now suppose X ∈ V [g] and V [g] � X ∈ [ω1]ℵ1 . If Ẋ is a P-name for X,
then X =

⋃
n∈ω{ξ : g�n 
 ξ̌ ∈ Ẋ}, and hence there exists an uncountable

set Y ⊆ X such that Y ∈ V . Consider α ∈ S0 such that sup(Y ∩ α) = α. It
is easy to see that for all p ∈ P and m ∈ ω,

p 1 ¬∃n > m ({ṡnα, ṡn+1
α } ⊂ Y̌ ),

and it follows that

P 
 |{n ∈ ω : {ṡnα, ṡn+1
α } ⊂ Y̌ }| = ℵ0.

Thus
P 
 “〈ṡnα : α ∈ S0, n ∈ ω〉 is a ♣wJ2-sequence.”

Since adding a single Cohen real to a model where ♦ fails does not make
♦ true, we get the following.

Corollary 19. The pseudodiamond principle ♦p is strictly weaker than
♦ and strictly stronger than CH.
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Appendix. For completeness, we include proofs of some of the examples
presented earlier in this paper. These proofs are based on the standard
arguments of the classical theorems generalized by these examples.

Proof of Lemma 2. Let E,F be as in the assumption, and suppose 〈Fα :
α ∈ S0〉 ∈ F witnesses that ♠(F ,P(E) \ {∅}, [ω1]ℵ1) holds. Now suppose
towards a contradiction that X ∈ [ω1]ℵ1 is such that the set N = {α ∈ E :
X ∩α ∈ Fα} is nonstationary. Let C ∈ C be such that C ∩N = ∅. Let Y be
an uncountable subset of X such that for all ξ0, ξ1 ∈ Y with ξ0 < ξ1 there
exists γ ∈ C such that ξ0 < γ < ξ1. Then Y ∩ α is bounded in α and hence
Y ∩ α 6∈ Fα for all α ∈ E \ C. But if α ∈ E ∩ C, then Y ∩ α ⊆ X ∩ α 6∈ Fα,
and by the monotonicity assumption on Fα, again we have Y ∩ α 6∈ Fα.
Thus the set {α ∈ E : Y ∩ α ∈ Fα} is empty, which contradicts the choice
of 〈Fα : α ∈ S0〉.

Proof of Example 2. Assume CH, let E be a stationary subset of S0, and
let F = 〈Fα : α ∈ S0〉 ∈ Ffilt be a sequence witnessing ♠(Ffilt,P(E) \ {∅},
[ω1]ℵ1). By Lemma 2, we may assume that F witnesses ♠(Ffilt,S(E),
[ω1]ℵ1). For a filter F of subsets of a set A and an indexed family X = {xa :
a ∈ A} we define lim infF X = {y : {a : y ∈ xa} ∈ F}. Let 〈aα : α < ω1〉 be
an enumeration of all countable subsets of ω1 such that every a ∈ [ω1]≤ℵ0 is
listed cofinally often. For α ∈ S0 we define bα = lim infFα{aβ : β < α}.

The following claim completes the argument.

Claim 20. 〈bα : α ∈ S0〉 is a ♦(E)-sequence.

Proof. Let A ⊆ ω1 and let C ∈ C. We need to show that there exists
α ∈ E ∩ C such that A ∩ α = bα. Recursively construct an increasing
transfinite sequence 〈δβ : β < ω1〉 of countable ordinals such that for all
β < ω1 we have:

(i) aδβ+1 = A ∩ δβ, and
(ii) there exists γ ∈ C with δβ < γ < δβ+1.

The set B = {δβ+1 : β < ω1} can be considered a code for the set A. By
the choice of F , there exists α ∈ E such that B ∩ α ∈ Fα. Then B ∩ α is
cofinal in α, and (ii) implies that α ∈ C. From (i) and the definition of bα
it follows that bα ∩ δβ = A ∩ δβ for all δβ < α. Since B is cofinal in α, the
latter implies that bα = A ∩ α, which concludes the proof of the claim and
hence of Example 2.

Proof of Example 3(2). Assume CH and let E, F be as in the as-
sumptions. It suffices to show that ♠(F (ω),S(E), [ω1]ℵ1) implies ♦−(E).
Let {Fn : n ∈ ω} = 〈Fα,n : α ∈ S0, n ∈ ω〉 be sequences that witness

♠(F (ω)
filt ,S(E), [ω1]ℵ1). Let 〈aα : α < ω1〉 be an enumeration of all count-

able subsets of ω1 such that every a ∈ [ω1]≤ℵ0 is listed cofinally often. For
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α ∈ S0 we define bα = {lim infFα,n{aβ : β < α} : n ∈ ω}. The proof
that 〈bα : α ∈ S0〉 is a ♦−(E)-sequence proceeds exactly as the proof of
Claim 20.
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