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Relatively complete ordered fields
without integer parts

by

Mojtaba Moniri and Jafar S. Eivazloo (Tehran)

Abstract. We prove a convenient equivalent criterion for monotone completeness of
ordered fields of generalized power series [[FG]] with exponents in a totally ordered Abelian
group G and coefficients in an ordered field F . This enables us to provide examples of such
fields (monotone complete or otherwise) with or without integer parts, i.e. discrete subrings
approximating each element within 1. We include a new and more straightforward proof
that [[FG]] is always Scott complete. In contrast, the Puiseux series field with coefficients
in F always has proper dense field extensions.

1. Introduction and preliminaries. A subset C of an ordered field
F is a cut if C < F \ C. A nontrivial cut is a gap whenever it fails to
have a least upper bound in the field. A gap G in F is regular whenever
(∀ε ∈ F>0)(G + ε 6⊆ G). An ordered field F is Scott complete if it does
not have any proper extensions to an ordered field in which it is dense,
equivalently it does not have any regular gaps, equivalently all Cauchy nets
in the field of length equal to its cofinality converge there. It was proved in
[12, Thm. 1] that any ordered field F has a (unique up to an isomorphism of
ordered fields which is identity on F ) Scott completion. It is characterized
by being Scott complete and having F dense in it.

Monotone complete ordered fields were introduced in [6]. They are or-
dered fields with no bounded strictly increasing divergent functions. In such
ordered fields, those nontrivial cuts which do not have a least upper bound
in the field, are also not traversed by strictly increasing nets of length equal
to the cofinality of the field. As implied by [11, Cor. 2.7], there are mono-
tone complete ordered fields of any uncountable cofinality and so there exist
plenty of monotone complete ordered fields not isomorphic to R. On the
other hand, it is clear that there are no monotone complete ordered fields
of countable cofinality except (those isomorphic to) R.
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A discrete subring of an ordered ring with 1 is said to be an integer part
(IP) there if it approximates any element of the ring within 1 (equivalently
within a finite distance). There are ordered fields with no IP’s (see [1]). On
the other hand, it was proved in [9] that every real closed field has an IP.
Our goal here is to show that there are Scott complete and even monotone
complete ordered fields with no IP’s. We will be dealing with ordered fields of
generalized power series. We will show that they are always Scott complete
and prove a convenient monotone completeness criterion for them.

For an ordered field F and ordered Abelian group G, recall that the
ordered field of generalized power series with exponents in G and coefficients
in F is

[[FG]] =
{∑

g∈G
agt

g
∣∣∣ the support {g | ag 6= 0} of

∑

g∈G
agt

g is well ordered
}
.

It is equipped with the natural addition, multiplication, and order defined by
setting

∑
g∈G agt

g > 0 if ag0 > 0, with g0 the minimum of Supp(
∑

g∈G agt
g).

A well known necessary and sufficient condition for [[FG]] to be real
closed is that G be divisible and F be real closed (see [10, 6.10]).

Observe that cf([[FG]]) = cf(G) (where cf denotes cofinality).
The field of Puiseux series with ascending exponents over an ordered

field F is defined to be PF =
⋃
n≥1[[F ( 1

n
Z)]]. Moreover PF is real closed if

and only if F is.
Before getting to the main concern mentioned above regarding being

relatively complete versus having integer parts for ordered fields, we show
in the next section that all Scott complete and certain other ordered fields
always have a proper dense subfield. Fraction fields of integer parts are dense
subfields, but they need not be proper (1).

2. Proper dense subfields in Scott complete and Puiseux
ordered fields

Proposition 2.1. Every Scott complete ordered field can be obtained by
Scott completion of a proper (dense) subfield.

Proof. We first observe the following:

Claim. Every Scott complete ordered field F is uncountable.

Proof. Let F be a Scott complete ordered field. If F is Archimedean, then
it is isomorphic to R. So assume that F is non-Archimedean and of count-

(1) For an example, see (3.5) in L. van den Dries, Some model theory and number
theory for models of weak systems of arithmetic, in: L. Pacholski et al. (eds.), Model
Theory of Algebra and Arithmetic, Lecture Notes in Math. 834, Springer, Berlin, 1980,
346–362. On the other hand, when the fraction field of an IP is indeed proper in a real
closed field, this fact may not be that trivial; see, e.g., [8, Theorem 3.4(ii)].
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able cofinality. If there exists a coinitial sequence (αi)i∈N in F>0 such that
(∀i)(∀n)(αi+1 < αni ), then the assignment mapping any sequence (ri)i∈N in
Q to the limit of the Cauchy sequence (

∑
i≤n riαi)n≥0 in F is one-to-one.

Otherwise, there exists an element α ∈ F>0 whose positive integer powers
are coinitial in F>0. Then the assignment mapping any sequence (ri)i∈N in
Q to the limit of the Cauchy sequence (

∑
i≤n riα

i)n≥0 in F is one-to-one.
Therefore F is uncountable, establishing the Claim.

As shown in [3, Lemma 2.3], any uncountable ordered field has a dense
transcendence basis over the rationals. The subfield generated by the ratio-
nals and all but one element of the transcendence basis is a proper dense
subfield.

Below we give a class of ordered fields still with proper dense subfields,
but this time also with proper dense field extensions.

Proposition 2.2. Let F be an ordered field. Then the Puiseux series
field PF over F

(i) has proper dense subfields,
(ii) is not Scott complete.

Proof. (i) Observe that PF contains [[F Z]] and the latter is of cardinality
|F |ℵ0 > ℵ0. So the above-mentioned argument of [3] applies again.

(ii) Let t be the positive F -infinitely small element used to present the
elements of PF . The sequence (

∑
i≤n t

(p2
i+1)/pi)n∈N, where pi is the ith prime,

is a Cauchy sequence in PF which diverges there. This divergence is due to
the fact that the least common multiple of the denominators of the exponents
of the terms forming elements of the sequence tends to infinity with n. The
sequence is Cauchy since the exponents of the leading terms of the far enough
tails of the sequence tend to infinity, and such powers of t are coinitial in
the positive part of the field.

3. Scott complete ordered fields with no integer parts. It was
proved by Kaplansky in [5, Thm. 4] that pseudo-completeness (a notion
stronger than Scott completeness) for valued fields is equivalent to their
maximality. Previously, Krull had already proved that generalized power
series fields with their natural valuation are maximal. So these fields are
pseudo-complete and in particular Scott complete.

Some weaker versions of this fact were later proved again by simpler
methods. It was shown in [7] that Laurent series ordered fields over any
ordered fields are Scott complete. On the other hand, it was proved in [2,
Thm. 1.33] that the ordered Abelian group of generalized power series with
coefficients in R and exponents in an arbitrary totally ordered set is Scott
complete. For an ordered group G and ordered field F , we showed in the
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proceedings paper [8] that if F is Scott complete, then so is [[FG]]. For
convenience, we bring the proof here:

Proposition 3.1 (a stronger result to follow). For any ordered abelian
group G and ordered field F , the generalized power series field [[FG]] is Scott
complete if so is F .

Proof. Let λ be the cofinality of G and consider a strictly decreasing λ-
net (aθ)θ<λ in G<0 which is unbounded below there. Assume F : [[FG]] →
[[FG]] is Cauchy. For each g ∈ G, define fg : λ→ F by

fg(θ) = (F(χ{aθ}))(g) for θ < λ.

Claim 1. For all g ∈ G, the net (fg(θ))θ<λ is convergent in F .

Proof. Fix g ∈ G and ε ∈ F>0. By the Cauchy condition for F , there
exists θ0 < λ such that for all α, β ∈ [[FG]] with α, β ≥ χ{aθ0}, we have
|F(α)−F(β)| < εχ{g}. This shows that |F(α)(g)−F(β)(g)| < ε. Therefore
for all θ1, θ2 ≥ θ0,

|fg(θ1)− fg(θ2)| = |(F(χ{aθ1}))(g)− (F(χ{aθ2}))(g)| < ε,

since χ{aθ1}, χ{aθ2} ≥ χ{aθ0}. Hence the net (fg(θ))θ<λ is Cauchy in F and
so convergent there, since F is Scott complete.

Let γ : G→ F be defined by γ(g) = lim(fg(θ))θ<λ.

Claim 2. (∀η < λ)(∃θ0 < λ)(∀θ ≥ θ0)(∀g ∈ G<−aη)(F(χ{aθ})(g) =
γ(g)).

Proof. For any ε = χ{−aη} with η < λ, there exists θ0 < λ such that for
all θ1, θ2 < λ with θ1, θ2 ≥ θ0, we have

|F(χ{aθ1})− F(χ{aθ2})| < χ{−aη}.

This shows that for all θ1, θ2 ≥ θ0 and g < −aη, we have

(F(χ{aθ1}))(g) = (F(χ{aθ2}))(g) = γ(g).

Therefore, for all θ ≥ θ0 and g ∈ G<−aη , we have F(χ{aθ})(g) = γ(g).

Claim 3. γ ∈ [[FG]].

Proof. It suffices to show that the support of γ is well ordered. For all
g ∈ G, there exists η < λ such that g < −aη. Let θ0 be as in Claim 2. As g
cannot be the initial term of any infinite strictly decreasing sequence in the
support of F(χ{aθ0}), Claim 2 shows that the same holds for the support
of γ.

Claim 4. The function F on [[FG]] tends to γ at infinity.

Proof. It is enough, by the Cauchy criterion for F , to apply F on those
f ’s in [[FG]] that are of the form χ{aθ} for θ < λ, and let θ tend to λ. The
result is then immediate from Claim 2.
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The above claims give the result.

Improving upon this, here we prove Scott completeness of [[FG]] for
arbitrary ordered fields by a more straightforward method compared to the
one mentioned at the beginning of this section:

Theorem 3.2. For every Abelian (totally) ordered nonzero group H and
every ordered field F , the generalized power series field [[FH ]] is Scott com-
plete.

Proof. Assume for a contradiction that G is a regular gap in [[FH ]]. Let
K be the Scott completion of F . Let G′ denote the downward closure of G
in [[KH ]].

Claim 1. We still have G′ regular in [[KH ]].

Proof. Fix an arbitrary ε ∈ [[KH ]]>0. By the cofinality of [[FH ]] in
[[KH ]], there exists δ ∈ [[FH ]]>0 such that δ < ε. Now since the gap G is
regular in [[FH ]], there exist x ∈ G ⊆ G′ and y ∈ [[FH ]] \ G ⊆ [[KH ]] \ G′
such that y − x < δ < ε. This takes care of Claim 1.

By Proposition 3.1, [[KH ]] is Scott complete. So there exists α ∈ [[KH ]]
such that α = supG′. We can write α = β + ath0 + γ, where h0 is the least
exponent in H such that α(h0) = a 6∈ F (it exists since G was assumed
to be a gap in [[FH ]] and so not all coefficients of terms of α could belong
to F ), and β and γ denote the higher and lower terms of α respectively. The
contradiction we are looking for is obtained from:

Claim 2. If h1 > h0, then for all x ∈ G and y ∈ [[FH ]] \ G, we have
y − x ≥ th1 .

Proof. If x ∈ G, y ∈ [[FH ]] \ G, and y − x < th1 , then for all h < h1
we have x(h) = y(h) = α(h). So x(h0) = y(h0) = α(h0) = a, which is a
contradiction, since x, y ∈ [[FH ]].

Proposition 3.3. For any ordered field F and totally ordered Abelian
group G, the generalized power series field [[FG]] has an integer part if and
only if F does.

Proof. If I is an integer part of F , then [[FG
<0

]] + I is an integer part
for [[FG]].

In the other direction, assume I0 is an integer part of [[FG]]. Then
I1 = I0∩[[FG

≥0
]] is an integer part of the ring [[FG

≥0
]]. Note that [[FG

>0
]] is a

maximal ideal of [[FG
≥0

]] and the residue field [[FG
≥0

]]/[[FG
>0

]] (equipped
with the natural order induced from the one on [[FG≥0

]] by just identi-
fying F -infinitely close elements) is isomorphic to F . One can see that
I1/[[FG

>0
]] (in which all residue classes are singletons) is an integer part

of [[FG
≥0

]]/[[FG
>0

]], which therefore has a counterpart in F .
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Example 3.4. The Laurent series ordered field [[QZ]] with rational co-
efficients is Scott complete and has an integer part.

By [12, Thm. 2], F is dense in RC(F ) if and only if its Scott completion
is real closed. Therefore, no proper dense subfield of the ordered field in the
next result is dense in its real closure (since Z is not divisible).

Corollary 3.5. There exist Scott complete ordered fields without inte-
ger parts.

Proof. Let B be the ordered field constructed in [1] which has no integer
parts. Then [[BZ]] is such an ordered field.

4. A monotone completeness criterion

Theorem 4.1 (monotone completeness criterion for generalized power
series). For every ordered field F and nontrivial (totally) ordered Abelian
group G, [[FG]] is monotone complete if and only if G does not contain any
bounded strictly monotone nets of length cf(G) and F does not contain any
strictly monotone nets of length cf(G) (no matter whether bounded or not).

Proof. Let cf(G) = λ. Then, as mentioned before, cf([[FG]]) = λ as well.
“Only if”. Assume for a contradiction that (gi)i<λ is a bounded strictly

decreasing net in G and so (tgi)i<λ is a bounded strictly increasing net in
[[FG]]. Since [[FG]] is monotone complete, the latter must converge there.
But this cannot happen since in generalized power series fields, terms of
convergent nets have their leading terms (as well as other ones, something
nonexisting in our case) fixed deep enough in the net.

Next suppose, again for a contradiction, that (ai)i<λ is a strictly increas-
ing net in F . Then as the strictly increasing net (ai)i<λ is bounded in [[FG]]
and by the monotone completeness assumption, limi<λ(ai) would exist in
[[FG]]. But this cannot happen since no net of elements in F converges in
[[FG]] unless it is eventually stabilized (as the latter has F -infinitesimals).

“If”. Suppose (σi)i<λ is a bounded strictly increasing net in [[FG]]. We
show that it converges there. For every i < λ, there exists an ordinal ηi ≤ λ
such that the support of σi equals (gi,j)j<ηi , a strictly increasing net which is
bounded below, but not necessarily above. The reason that ηi ≤ λ for every
i is that otherwise the strictly increasing λ-net (gi,j)j<λ would be bounded
above by any of the chopped off tail terms, contradicting the assumption
on G. Next we can assume, without loss of generality, that ηi = λ for every
i < λ. The reason is that we can add to each σi an F -infinitesimal element
of [[FG]] whose support is unbounded above in G (obviously the original net
converges if and only if the latter does).

For each i, j < λ, let σi(gi,j) = ai,j .

Claim. (∀j < λ)(∃i < λ)(∀I ≥ i)(∀l ≤ j)(gI,l = gi,l ∧ aI,l = ai,l).
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Proof. We use induction on ordinals κ < λ. Suppose κ < λ is such
that (∀j < κ)(∃i < λ)(∀I ≥ i)(∀l ≤ j)(gI,l = gi,l ∧ aI,l = ai,l). We show
that there exists i < λ such that for all I ≥ i, we have gI,κ = gi,κ and
aI,κ = ai,κ. As λ is a regular cardinal, there exists η < λ such that (∀I ≥
η)(∀l < κ)(gI,l = gη,l ∧ aI,l = aη,l). So the net (gi,κ)η≤i<λ is decreasing
(since (σi)η≤i<λ is increasing). It is also bounded below by, say, gη,0. Now
if (gi,κ)η≤i<λ did not get stabilized, then a strictly decreasing subnet which
is bounded below (of length λ, by regularity again) could be extracted from
it, which would contradict the assumption on G. So there exists ζ < λ,
which we assume without loss of generality to be greater than η, such that
(∀I ≥ ζ)(gI,κ = gζ,κ). This also shows that (aI,κ)ζ≤I<λ is increasing. Now by
the assumption on F , it must eventually stabilize (use a similar reasoning
to that for the g’s). So for some i ≥ ζ, we have (∀I ≥ i)(aI,κ = ai,κ) (in
addition to gI,κ = gi,κ). This finishes the Claim.

Let σ =
∑

j<λ aij ,jt
gij ,j , where for each j < λ, ij is a witness ordinal

for the existential quantifier in the Claim above. Note that (∀j1, j2 < λ)
(j1 < j2 ⇒ gij1 ,j1 ≤ gij2 ,j1 < gij2 ,j2) and so (gij ,j)j<λ is strictly increasing.
Hence σ ∈ [[FG]]. We show that limi<λ σi = σ. By our assumption on G,
the strictly increasing net (gij ,j)j<λ cannot be bounded above there. So for
any given ε = tg ∈ [[FG]]>0, there exists j < λ such that gij ,j > g. For all
i > ij , by the Claim above, we have |σi − σ| < t

gij ,j < ε.

The two ordered fields above are not monotone complete as the coefficient
fields Q and B (like any other ordered field) have strictly increasing nets
of length cf(Z) = ω. If we replace the ordered group of exponents there by
a direct lexicographically ordered sum of continuum many copies of Z, the
resulting power series fields will still be monotone incomplete. In these cases,
the group of exponents has bounded strictly increasing nets like (gλ)λ<c with
gλ(α) = 1 if α < λ and gλ(α) = 0 otherwise. We provide monotone complete
[[FG]]’s with or without integer parts in our last section below.

5. Monotone complete ordered fields with no IP’s. To get mono-
tone complete ordered fields of generalized power series, we will still take the
coefficient field of countable cofinality, namely Q and the Boughattas field
B (to have or not have an IP, respectively). Regarding the ordered group of
exponents, we first recall the notion of an integer set in ordered fields, due
to Keisler, which appeared in [11]. They are subsets uniquely approximating
from below each element of the field within 1.

Corollary 5.1. There exist monotone complete ordered fields without
integer parts.

Proof. Once again, let B be the ordered field constructed in [1] which
has no integer parts. As mentioned before, [11, Cor. 2.7] shows that there
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are monotone complete ordered fields of any uncountable cofinality. Let F
be a monotone complete ordered field of an uncountable cofinality λ large
enough so that B does not have any strictly increasing nets of length λ. It
was shown in [11] that every ordered field has an additive subgroup which is
an integer set for that field. Suppose that G is an integer set and an additive
subgroup of F . Note that G does not contain any bounded strictly monotone
nets of length λ. The reason is that since F is monotone complete, such nets
would converge in F and so would be Cauchy in the discrete set G, which
is impossible. We conclude that [[BG]] is monotone complete and has no
integer parts.

Note that [[QG]] (with the same G) is also monotone complete (but this
one does have an IP).

Alternatively, the hyper-real field R∗ (see, e.g., [4] for an introduction)
can be taken monotone complete; see [6]. The corresponding discretely or-
dered ring Z∗ is an integer part for R∗. Now consider Z∗ as a totally ordered
(additive) Abelian group. By the monotone completeness criterion, [[QZ∗ ]]
is monotone complete (and obviously has an integer part). Once again, let
B be the ordered field constructed in [1] which has no integer parts and is of
countable cofinality. Then [[BZ

∗
]] is monotone complete and has no integer

parts.
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