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Abstract. We study a certain type of action of categories on categories and on op-
erads. Using the structure of the categories ∆ and Ω governing category and operad
structures, respectively, we define categories which instead encode the structure of a cat-
egory acting on a category, or a category acting on an operad. We prove that the former
has the structure of an elegant Reedy category, whereas the latter has the structure of a
generalized Reedy category. In particular, this approach gives a new way to regard group
actions on categories and on operads.

1. Introduction. The simplicial category ∆ can be found in numerous
contexts, in homotopy theory, category theory, and beyond. In some sense,
the structure of ∆ indexes the structure of a category: [0] indexes objects,
[1] indexes morphisms, [2] indexes composition of morphisms, and so forth.
One picks out this structure in a category by taking the nerve functor,
resulting in a simplicial set. Many of the models for (∞, 1)-categories, such
as Segal categories, complete Segal spaces, and quasi-categories, are given by
simplicial objects of some kind and therefore make use of this formalism to
make sense of categories up to homotopy. While not all simplicial diagrams
give a category structure, the Segal condition allows us to identify those
that do, either strictly or up to homotopy. Using a modified version of the
Segal condition, first introduced by Bousfield [4], the category ∆ also governs
groupoid structures, and in particular the special case of the structure of a
group.

Much more recently, Moerdijk and Weiss have introduced the dendroidal
category Ω which plays the same role for the structure of a colored op-
erad [11]. The objects are finite rooted trees, specifying every kind of com-
position that can take place. Hence, Moerdijk and Weiss were able to un-

2010 Mathematics Subject Classification: Primary 55P48; Secondary 20J99, 22F05, 55U10,
18D50, 18G30, 18G55.
Key words and phrases: Reedy categories, group actions, (∞, 1)-categories, (∞, 1)-operads.

DOI: 10.4064/fm228-3-1 [193] c© Instytut Matematyczny PAN, 2015



194 J. E. Bergner and P. Hackney

derstand (∞, 1)-operads as dendroidal diagrams, and Cisinski and Moerdijk
have successfully been able to compare many different models which arise in
this way [5]–[7]. Again, a Segal condition is necessary to understand which
dendroidal objects can be regarded as some kind of colored operad.

The goal of the present paper is to give diagrams which govern group
actions on categories and group actions on operads. The particular type of
actions we study are called rooted actions (see Section 2). Since the category
∆ is used not only to encode groups, but categories more generally, we
find a category ∆ �∆ encoding rooted actions of categories on categories,
and analogously ∆ � Ω encoding rooted actions of categories on colored
operads. Restricting to the single-object case and imposing the Bousfield–
Segal condition on the part of the diagram giving the acting category gives
the special case of group actions.

Our motivation for this work arose in [2], in which we sought to give a
proof of an alternative perspective on the Cisinski–Moerdijk results in the
case of ordinary single-colored operads, making a comparison to simplicial
operads regarded as algebras over the theory of operads. However, we also
wished to extend this result to have a comparison between the category of
simplicial operads with a simplicial group action (where the acting group
as well as the action can vary through the category) and some category of
Segal-type diagrams over an appropriate category, namely ∆� Ω.

To motivate this construction, let us consider how we think of a group
action on an operad; more details are given in [2, §6]. An action of a group
G on an operad P is simply an action of G on P (n) for each n ≥ 0. We do
not insist upon any compatibility with the structure maps of P , so that we
include the circle action on the framed little disks operad as an example.
As another example, suppose that X is a G-space; then the endomorphism
operad EX has an action of G.

We begin with a method for encoding rooted actions of a category on
another category, which can be restricted to the case of interest, where we
have a group action. The category we obtain is denoted ∆ � ∆. We can
extend this category to the diagram ∆ � Ω which governs rooted actions
of categories on operads, which answers our original question. In [2], we
establish the correct Segal condition to use in this framework and give an
explicit Quillen equivalence between the corresponding model structure and
the one on simplicial operads with a simplicial group action.

After defining these two diagrams of interest, we establish some proper-
ties they possess. In the first case, we show that ∆�∆ is a Reedy category,
and in fact an elegant Reedy category in the sense of [3]. This property will
be useful in future work in that it guarantees that, when we consider the
category of functors from ∆�∆ to the category of simplicial sets, the Reedy
and injective models are the same. We also show elegance for a planar ver-
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sion of ∆�Ω. The category ∆�Ω itself does not admit a Reedy structure,
since objects may possess nontrivial automorphisms, but we show that it is
a generalized Reedy category in the sense of [1].

1.1. The categories ∆ and Ω. The category ∆ consists of the finite
ordered sets [n] = (0 ≤ 1 ≤ · · · ≤ n) and order-preserving maps between
them.

The category Ω, on the other hand, has as objects finite rooted trees. For
any such tree T , one can take the free colored operad on it, where each edge
is assigned a distinct color; we denote this operad by Ω(T ). The morphisms
S → T in Ω are defined to be the operad morphisms Ω(S)→ Ω(T ).

We also have the variation Ωp whose objects are finite planar rooted
trees. While Ω governs symmetric colored operads, Ωp governs nonsymmetric
operads. Further details about these categories and their relationship with
operads can be found in [9].

1.2. Reedy and generalized Reedy categories. In this section, we
briefly recall the definitions of Reedy category [8] and generalized Reedy
category [1]. These two concepts provide a framework for working induc-
tively in diagram categories. If R is a (generalized) Reedy category and M
is any model category, then there is an associated model structure on the
categories of diagrams MR [1], [8], [12].

A wide subcategory of a category C is a subcategory which contains all
objects of C. A Reedy category is a small category R together with two wide
subcategories R+ and R− and a degree function d : Ob(R)→ N such that

• every nonidentity morphism in R+ raises degree,
• every nonidentity morphism in R− lowers degree, and
• every morphism in R factors uniquely as a morphism in R− followed

by a morphism in R+.

In particular, Reedy categories cannot contain any nonidentity automor-
phisms. The generalized Reedy categories of Berger and Moerdijk allow for
such automorphisms. We will write Iso(C) for the wide subcategory consist-
ing of all isomorphisms in the category C. A generalized Reedy structure on
a small category R consists of

• wide subcategories R+ and R−, and
• a degree function d : Ob(R)→ N,

satisfying the following four axioms:

(i) noninvertible morphisms in R+ (resp., R−) raise (resp., lower) the
degree; isomorphisms in R preserve the degree;

(ii) R+ ∩R− = Iso(R);
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(iii) every morphism f of R factors as f = gh with g ∈ R+ and h ∈ R−,
and this factorization is unique up to isomorphism;

(iv) if θf = f for θ ∈ Iso(R) and f ∈ R−, then θ is an identity.

If, moreover, the condition

(iv′) if fθ = f for θ ∈ Iso(R) and f ∈ R+, then θ is an identity

holds, then we call this generalized Reedy structure dualizable.

1.3. Categories acting on sets. For a small category C, we denote
the set of objects by C0 and the set of morphisms by C1. We now define the
notion of a category C acting on a set A analogously to that of a groupoid
acting on a set as found in [10, §5.3]. The data of such an action consists of

• a moment map µ : A→ C0, and
• an action map • : C1 s×µ A→ A.

An action is required to satisfy the following axioms:

• the moment respects the action, in the sense that µ(f • a) = t(f);
• associativity, which is the usual action condition

C1 s×t C1 s×µ A
(id,•)

//

(◦,id)

��

C1 s×µ A

•
��

C1 s×µ A • // A;

• the identity acts trivially: idµ(a) • a = a.

We write such an action as C
•
� A (1). The collection of all such actions

forms a category ActSet, where a morphism

X : C
•
�A→ C′

H
�A′

consists of a functor Xc : C → C′ and a map of sets Xs : A → A′ which
satisfy µXs = Xcµ and Xs(f • a) = Xc(f) HXs(a). In most situations we

are working with a single action •, and just write C �A for C
•
�A.

2. Rooted actions. Consider two categories C and D. An rooted action
of C on D is an action of the category C on the set D1 of morphisms of D,
satisfying two additional axioms. We write µ : D1 → C0 for the moment
map and • : C1 s×µ D1 → D1 for the action map. The additional axioms
are that

(2.1) µ(g ◦ g′) = µ(g)

(1) We do not need to include µ in the notation since it can be recovered by examining
(C0 ×A) ∩ domain(•) = (C0 ×A) ∩ (C1 s×µ A) = {(idµ(a), a)} ⊆ C1 ×A.
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for all composable morphisms g, g′ ∈ D1, and

(2.2) s(f • g) = s(g)

for all f ∈ C1, g ∈ D1 with s(f) = µ(g). We note that µ(idt(g)◦g) = µ(idt(g)),
so we could just as well define µ : D0 → C0. The collection of all such actions
forms a category RA, where a morphism X : C � D → C′ � D′ is a pair of
functors Xc : C → C′ and Xd : D → D′ which respect the moment and
action maps.

Remark 2.3. A rooted action of C is distinct from other notions of
action. For instance, in the standard notion of a groupoid acting on a
groupoid, as found in [10, §5.3], the groupoid acts via functors. If we con-
sider a set as a category D with only identity morphisms, then there are no
nontrivial rooted actions of C on D, though there may be many actions of C
on Ob(D).

A fundamental example is the following. We have the category C1,1 which
is the free category on the diagram

1

∗ 0

p

OO

and D1,1, the free category on

y z

w
g
//

p•g
OO

x

p•idx

OO

with µ(w) = ∗, µ(x) = 0, and µ(y) = µ(z) = 1. The action is as specified in
the second diagram (g and idx are the only arrows that may be acted on by
a nonidentity element of C1,1 since they are the only arrows of moment 0).

Suppose that A and B are two other categories together with a rooted
action of A on B. Then given any morphisms a in A and b in B such that
µ(b) = s(a), we obtain a morphism X : C1,1�D1,1 → A�B with Xc(p) = a
and Xd(g) = b. Here we have Xd(p • g) = a • b and Xd(p • idx) = a • idt(b),
and Xc(∗) = µ(s(b)). One sees that

A1 s×µ B1
∼= HomRA(C1,1 �D1,1,A� B).

Thus this example is of supreme importance because it allows us to identify
all pairs of morphisms (a, b) such that a acts on b.

Our goal is to define a category which is the rooted action analogue of ∆,
in the sense that it allows us to form the “nerve” of a rooted action A� B,
where an element of this nerve consists of a string of composable morphisms
in B and a string of composable morphisms in A such that we can act on
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the last morphism in the first list with the first morphism in the second list.
We first describe the object [n � k], which we think of as a formal rooted
action of [n] on [k]. The acting category, Cn,k, has objects

∗0, ∗1, . . . , ∗k−1, 0, 1, . . . , n

and is free with morphisms generated by pi,i+1 : i→ i+ 1; we write

(2.4) pi,i+j : i→ i+ j

for the unique map. The ∗` will merely serve as free targets for the moment
map. There are no nonidentity morphisms involving the ∗`.

The category which is acted on, Dn,k, is the empty category if k = −1.
Otherwise, it is a free category which is built inductively in n. The base case
is to define D0,k = [k]:

0 // 1 // 2 // · · · // k − 1 // k

with

µ(i) =

{ ∗i, 0 ≤ i < k,

0, i = k.

The category D1,k is defined by adding a generating morphism for each
morphism h with target 0, which are the formal actions of p0,1 on h. We
thus have a ladder shape for our generating graph

♥ ♥ ♥ ♥ ♥

0 //

OO

1

OO

// 2

OO

k − 1

OO

// k

OO

with each ♥ a distinct new object satisfying µ(♥) = 1.

Assume that Dn−1,k has been constructed. For each morphism h of
Dn−1,k with µ(h) = n− 1 we attach a new arrow pn−1,n • h satisfying

s(pn−1,n • h) = s(h) and µ(pn−1,n • h) = n

whose target is a new object we call (n, h). In this way we form a category
Dn,k, with µ(g) ≤ n for every morphism g in this category.

Two examples of this construction for low n and k are given in Figures 1
and 2. Note that when we build Dn,k we add an arrow exactly for those h
which are not the source of a nontrivial morphism.

The rooted action of Cn,k on Dn,k is given by

p`,`′ • h = p`′−1,`′ • (· · · • (p`,`+1 • h)).

Definition 2.5. We write [n � k] for the above rooted action of Cn,k
on Dn,k. We define ∆�∆ to be the full subcategory of RA with object set
{[n� k] | n ≥ 0, k ≥ −1}.
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Fig. 1. The categories D0,2, D1,2, and D2,2

Fig. 2. The categories D0,1, D1,1, D2,1, and D3,1

The following proposition is key to understanding maps in ∆�∆.

Proposition 2.6. Suppose that there is a rooted action of A on B. Then
maps

X : [n� k]→ A� B
in RA are in bijection with pairs of functors

α : [n]→ A, β : [k]→ B
satisfying µ(β(k)) = α(0).

Proof. A morphism X in RA determines functors

α : [n]→ Cn,k
Xc

→ A, β : [k]→ Dn,k
Xd

→ B
such that µβ(k) = µXd(k) = Xc(0) = α(0).

On the other hand, suppose we have a pair α and β with µ(β(k)) = α(0).
Extend α to a functor Xc : Cn,k → A, defined on objects by

Xc(i) = α(i), 0 ≤ i ≤ n,
Xc(∗w) = µ(β(w)), 0 ≤ w < k.
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Write Xd
0 for β : [k] = D0,k → B. We have a filtration [k] = D0,k ↪→ D1,k ↪→

· · · ↪→ Dn,k, and we inductively define functors Xd
` : D`,k → B. The functor

Xd
` needs only to be defined on the new arrows p`−1,` • h, and must satisfy

Xd
` (p`−1,` • h) = α(p`−1,`) •Xd

`−1(h).

We define Xd to be Xd
n : Dn,k → B. By construction, the pair (Xc, Xd) is a

map of actions.

Henceforth we always use the notation (α, β) for maps in ∆�∆. For a
map X = (α, β) : [n� k]→ [m� `] we write

(2.7) α̂ := Xc : Cn,k → Cm,`, β̂ := Xd : Dn,k → Dm,`.
We note that a map [n � k] → [m � `] is not simply a pair of maps

[n]→ [m] and [k]→ [`]. The target of these maps should be Cm,` and Dm,`,
respectively. As an example, see Figure 3, where the map α is given by
d0 : [1]→ [2].

Fig. 3. A map [1� 2]→ [2� 1]

We are now at a point where we can begin to talk about the nerve of
a rooted action. Recall that the nerve of a category C is the simplicial set
defined by nerve(C)n = HomCat([n], C), together with the usual structure
maps. The resulting functor nerve : Cat→ Set∆op

is well-known to be fully
faithful. Similarly, there is a functor

nerve : RA → Set∆�∆op
, nerve(A� B)[n�k] = HomRA([n� k],A� B).

Proposition 2.8. The functor nerve : RA → Set∆�∆op
is fully faithful.

Proof. We use two inclusions i1, i2 : ∆ ↪→ ∆�∆ given on objects by

i1([n]) = [n�−1], i2([k]) = [0� k]

and on morphisms by the characterization in Proposition 2.6. Let RA →
Cat×Cat be the functor which is given on objects by A�B 7→ (A,B); then
the diagram

RA nerve //

��

Set∆�∆op

i∗1×i∗2
��

Cat× Cat nerve× nerve
// Set∆op × Set∆op
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commutes. The bottom arrow in this diagram is fully faithful, and since
maps in RA are determined by the underlying functors, the arrow on the
left is faithful. Thus nerve : RA → Set∆�∆op

is faithful as well.

To see that the nerve functor is full, notice that

nerve(A� B)[n�k]
∼= nerve(A)n ×

A0

nerve(B)k

by Proposition 2.6, where the pullback is taken over the maps

µd0 . . . d0︸ ︷︷ ︸
k

: nerve(B)k → nerve(B)0 = B0 → A0,

d1 . . . dn : nerve(A)n → nerve(A)0 = A0.

Thus a map nerve(A � B) → nerve(A′ � B′) is determined by its action at
[n � −1] and [0 � k], where n and k range over the nonnegative integers;
fullness then follows from the above diagram and fullness of the categorical
nerve.

Definition 2.9. The degree of [n� k] is

d[n� k] = n+ |Ob(Dn,k)|.
Let ∆ �∆+ be the wide subcategory of ∆ �∆ consisting of maps (α, β) :
[n� k]→ [m� `] such that the maps

α : [n]→ Cm,`, β : [k]→ Dm,`
are injective on objects. Finally, let ∆ �∆− be the wide subcategory con-
sisting of maps (α, β) : [n � k] → [m � `] such that α is surjective on the

objects of [m] ⊆ Cm,`, and β̂ : Dn,k → Dm,` is surjective on objects.

Lemma 2.10. Let (α, β) : [n� k]→ [m� `] be a map in ∆�∆.

(1) If all objects of [m] are in the image of α and all objects of [`] are
in the image of β, then (α, β) is in ∆�∆−.

(2) If (α, β) is in ∆�∆−, then all objects of [`] are in the image of β.

(3) If (α, β) is in ∆ � ∆+, then α̂ : Cn,k → Cm,` and β̂ : Dn,k → Dm,`
are injective on objects.

Proof. For (1), we need to show that β̂ : Dn,k → Dm,` is surjective on
objects. We proceed inductively: by assumption all objects of D0,` are in the

image of β. Suppose that all objects of Dx−1,` are in the image of β̂, and

consider the target (x, h) of px−1,x •h. We know by induction that h = β̂(h′)
for some h′. Since all objects of [m] are in the image of α, there is an i such
that α(i− 1) = x− 1 and α(i) = x. Then

px−1,x • h = α(pi−1,i) • β̂(h′) = β̂(pi−1,i • h′),

so (x, h) is in the image of β̂.
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Turning to (2), we first show that ` = β(x) for some 0 ≤ x ≤ k. With the
goal of finding a contradiction, suppose that ` 6= β(x) for all 0 ≤ x ≤ k. Since

(α, β) ∈ ∆�∆−, we already know that ` is in the image of β̂ : Dn,k → Dm,`
and we let

i = min{j | there exists a morphism h with ` = β̂(t(pj−1,j • h))}.

Pick a morphism h with ` = β̂(t(pi−1,i • h)). By construction of [m� `] we
know that µ(`) = 0, so

0 = µ
(
β̂(t(pi−1,i • h))

)
= µ(β̂(pi−1,i • h)) = µ(α(pi−1,i) • β̂(h));

therefore α(pi−1,i) = id0. But then β̂(pi−1,i • h) = α(pi−1,i) • β̂(h) = β̂(h),

so β̂(t(h)) = β̂t(pi−1,i • h) = `. Thus µ(h) = i− 1 < i, hence we must have
i = 1 since i was chosen minimally. But then µ(h) = 0, so t(h) = k and

β̂(t(h)) = `, contrary to our assumption that ` 6= β̂(x) for 0 ≤ x ≤ k.

Likewise, if 1 ≤ j < `, then we know that j is in the image of β̂. But
µ(β̂(pi−1,i • h)) = α(i) 6= ∗j by assumption on α. It follows that j is in the

image of β̂ restricted to D0,k = [k].

Finally, for (3), we make use of two fundamental facts about [n � k],
both of which follow from construction of Dn,k. The first is that if we order
the objects of Cn,k as ∗0 < · · · < ∗k−1 < 0 < · · · < n, then for any nontrivial
morphism h of Dn,k we have µ(s(h)) < µ(t(h)). The second is that if (i, h) =
(i, h′), then h = h′.

Making use of this first fact, since β is injective on objects, we find

α̂(∗0) = µβ(0) < µβ(1) < · · · < α̂(∗k−1) = µ(β(k − 1)) < µ(β(k)) = α(0),

and we already knew that α(0) < · · · < α(n), so α̂ is an increasing function
on objects and thus injective.

By hypothesis, β̂ is injective on the objects of D0,k. Assuming this map
is injective on the objects of Di−1,k, we will show that it is injective on the
objects of Di,k. All of the new objects in this category are of the form (i, h),

and since α̂ is increasing on objects, β̂(pi−1,i•h) has strictly greater moment

than any object in the image of β̂|Di−1,k
. Thus we only need to show that if

β̂(i, h) = β̂(i, h′) then h = h′. But we have

β̂(i, h) = β̂t(pi−1,i • h) = tβ̂(pi−1,i • h) = t(α(pi−1,i) • β̂(h)),

and therefore

t(α(pi−1,i) • β̂(h)) = t(α(pi−1,i) • β̂(h′)),

so (iterated use of) the second fundamental fact tells us that β̂(h) = β̂(h′).

But h and h′ are morphisms in Di−1,k, so h = h′. Thus β̂ is also injective
on Di,k.
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Proposition 2.11. Given a map

(α, β) : [n� k]→ [m� `],

there is a unique decomposition into a map of ∆�∆− followed by a map of
∆�∆+.

Proof. The first case we consider is when β(k) is not one of the objects
0, . . . , ` − 1 in Dm,`. This implies that µ(β(k)) ∈ [m], so α : [n] → Cm,`
actually lands in [m]. Thus we have the factorization

α : [n]� [y] ↪→ [m] ↪→ Cm,`︸ ︷︷ ︸
α+

for some y as given by the Reedy structure on ∆. We let z+1 be the number
of objects in the image of β : [k]→ Dm,`. The full subcategory generated by
these objects must be a linear tree, since [k] is linear and Dm,` is generated
by a tree. Then we have a factorization

β : [k]� [z]
β+

↪→ Dm,`.
Define

α− : [n]� [y] ↪→ Cy,z, β− : [k]� [z] ↪→ Dy,z.
We claim that (α, β) decomposes as

(α+, β+) ◦ (α−, β−) : [n� k]→ [y � z]→ [m� `].

Indeed, µ(β−(k)) = µ(z) = 0 = α−(0) since β− and α− surject onto [z]
and [y]. Furthermore, µ(β+(z)) = µ(β(k)) = α(0) = α+(0). Thus, by Propo-
sition 2.6, (α+, β+) and (α−, β−) are morphisms in ∆�∆.

Notice that any decomposition must be this one. The definition of α+

and α− is forced by the definition of ∆ �∆+ and ∆ �∆−. The definition
of α+ and α− then forces the definition of β+ and β− by (1) and (2) of
Lemma 2.10.

The map (α+, β+) is in ∆ �∆+ by definition of this category. Lemma
2.10(1) implies that (α−, β−) is in ∆�∆−.

We still must consider the case when β(k) is one of the objects 0, . . . , `−1.
Then

α(0) = ∗β(k),

so α factors as [n]→ [0]
α+

→ Cm,`. We also have the factorization

β : [k]� [z] ↪→ [`] ↪→ Dm,`︸ ︷︷ ︸
β+

.

As before, we define α− : [n] → [0] → C0,z and β− : [k] → [z] → D0,z. Thus
we have the factorization

[n� k]� [0� z] ↪→ [m� `]
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since

µ(β+(z)) = µ(β(k)) = ∗β(k) = α(0) = α+(0),

µ(β−(k)) = µ(z) = 0 = α−(0).

The fact that (α±, β±) are in ∆�∆± and that this decomposition is unique
follows as in the previous case.

Recall that the degree of [n� k] is defined to be

d[n� k] = n+ |Ob(Dn,k)|.
Proposition 2.12. If a map (α, β) : [n � k] → [m � `] is in ∆ � ∆+,

then
d[n� k] ≤ d[m� `],

with equality holding if and only if (α, β) is an identity map.

Proof. By Lemma 2.10(3) we know that

|Ob(Dn,k)| ≤ |Ob(Dm,`)|.
Injectivity of α implies that α lands in m whenever n > 0, so

n ≤ m.
This establishes the desired inequality.

We now check that if d[n � k] = d[m � `] then [n � k] = [m � `].
Equality here implies that |Ob(Dn,k)| = |Ob(Dm,`)| and n = m. We know
α̂ : Cn,k → Cm,` is injective on objects by Lemma 2.10(3), so k ≤ ` since
these categories have k+n+1 and `+m+1 = `+n+1 objects, respectively.
If k < `, then there is an element j of [`] with β̂(i, h) = j and i > 0, so
α(i) = µ(j) = ∗j . But the existence of such an element is impossible by
injectivity of α̂. (The only exception is when n = m = 0, in which case there
are no objects (i, h) with i > 0.)

Proposition 2.13. If a map (α, β) : [n � k] → [m � `] is in ∆ � ∆−,
then

d[n� k] ≥ d[m� `],

with equality holding if and only if (α, β) is an isomorphism.

Proof. We know that |Ob(Dn,k)| ≥ |Ob(Dm,`)| by definition of ∆�∆−.
Since α (not α̂) surjects onto the objects of [m], we have n ≥ m. Thus we
have established the inequality.

Suppose that the degrees d[n� k] and d[m� `] are equal, whence n = m

and β̂ : Dn,k → Dm,` is a bijection on objects. By Lemma 2.10(2) we have
k ≥ `. Moreover, α(0) = 0, so β(k) = ` since k and ` are the only objects
of moment 0. But then β(i → k) = β(i) → β(k) = `, so β(i) must be in

[`] as well, for all 0 ≤ i ≤ k. We have β̂ injective, hence k ≤ `. We have
established that k = `, and that n = m. Thus [n� k] = [m� `].
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The result of the previous three propositions is the following.

Theorem 2.14. The category ∆�∆ is a (strict) Reedy category.

We use the following characterization of elegance from [3, 3.4]. Let R
be a Reedy category and F : R → SetRop

be the Yoneda functor with
F (r) = Hom(−, r). We say R is elegant if every pair of maps σi : r → ai,
i = 1, 2, in R− extends to a commutative square in R− which is a strong
pushout in R. In other words, there exist τi : ai → b in R− such that
τ1σ1 = τ2σ2 and such that

(2.15)

Fr
σ1 //

σ2
��

Fa1

τ1
��

Fa2
τ2 // Fb

is a pushout square in SetRop
.

Lemma 2.16. The category ∆♦, a skeleton of the category of finite or-
dered sets with objects {[−1] := ∅, [0], [1], . . . }, is an elegant Reedy category.

Proof. The degree function on ∆♦ is given by d[n] = n+ 1. The object
[−1] is initial. The morphisms of the category ∆+

♦ are those of ∆+ together

with all of the maps [−1]→ [n]. The morphisms of ∆−♦ are those of ∆− along
with [−1] → [−1]. Since [−1] → [−1] is the only map with target [−1], the
factorizations follow as in ∆, along with [−1]→ [n] having the factorization
[−1] � [−1] ↪→ [n]. We only need to check the degree conditions for the
new maps [−1]→ [n], and these follow immediately since d[−1] = 0 ≤ n+ 1
= d[n], with equality holding only when n = −1.

Elegance essentially follows from elegance of ∆ (see [3]). The only map
in ∆−♦ which involves [−1] is the identity on [−1], and all other maps are
in ∆. So we merely need to check the property when σ1 = σ2 = id[−1], and
we set b = [−1] so the diagram (2.15) is indeed a pushout diagram.

We now strengthen Lemma 2.10(2).

Lemma 2.17. We have the following:

(1) Using the order ∗0 < ∗1 < · · · < ∗k−1 < 0 < 1 < · · · < n of the
objects of Cn,k, if a→ b is a morphism of Dn,k then µ(a) ≤ µ(b).

(2) If (α, β) : [n � k] → [m � `] is in ∆ �∆−, then every object in the
image of β : [k]→ Dm,` is in [`].

Proof. To prove (1), first observe that if a→ b is an identity or a→ b is
in [k], then the result is immediate. If a→ b is a morphism with b an object
of D0,k = [k], then a is an object of D0,k since there are no generating arrows
(i, h) → j. We proceed by induction on the moment of the map a → b. If
b = (i, h), there is only one generating morphism with target b, s(h)→ (i, h).
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Thus if a → b is not an identity, then it factors as a → s(h) → b, and s(h)
is an object of Di−1,k by construction of D. We already have the result for
i− 1, so µ(a) ≤ µ(s(h)) = i− 1 < i = µ(b).

It remains to prove (2). Since there are arrows

β(0)→ β(1)→ · · · → β(k − 1)→ β(k),

by (1) we have

µβ(0) ≤ µβ(1) ≤ · · · ≤ µβ(k − 1) ≤ µβ(k) = α(0) = 0.

The last equality holds because α surjects onto [m]. Since

µβ(0), . . . , µβ(k) ∈ {∗0, . . . , ∗`−1, 0},
we have β(0), . . . , β(k) ∈ {0, 1, . . . , `}.

Theorem 2.18. The Reedy category ∆�∆ is elegant.

Proof. Suppose that we have maps (αi, βi) : [n�k]→ [mi�`i] in ∆�∆−

for i = 1, 2. By the definition of ∆�∆− and the fact that [n] is connected,
we may consider αi : [n]→ Cmi,`i as a map αi : [n]→ [mi], which is in ∆−.
We thus have a strong pushout square

[n]
α1 //

α2

��

[m1]

δ1
��

[m2]
δ2 // [w]

since ∆ is elegant. We also consider βi : [k] → Dmi,`i as a surjective map
[k] → [`i] by Lemmas 2.10(2) and 2.17(2). Since ∆♦ is an elegant Reedy
category by Lemma 2.16, we have a strong pushout square

[k]
β1
//

β2
��

[`1]

γ1
��

[`2]
γ2
// [x]

in ∆♦.
We claim that (δi, γi) is a morphism in ∆ �∆−, i = 1, 2, and that the

corresponding square is a strong pushout. Since δi(0) = 0 and γi(`i) = x by
surjectivity, we have µ(γi(`i)) = µ(x) = 0 = δi(0). Thus (δi, γi) is a map in
∆�∆ by Proposition 2.6. It is in ∆�∆− by Lemma 2.10(1).

It is now left to show that

(2.19)

F [n� k]
(α1,β1)

//

(α2,β2)
��

F [m1 � `1]

(δ1,γ1)
��

F [m2 � `2]
(δ2,γ2)

// F [w � x]
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is a pushout square in Set∆�∆op
. It is enough to prove that

Hom([y � z], [n� k])
(α1,β1)

//

(α2,β2)
��

Hom([y � z], [m1 � `1])

(δ1,γ1)
��

Hom([y � z], [m2 � `2])
(δ2,γ2)

// Hom([y � z], [w � x])

is a pushout diagram in Set for each object [y � z] in ∆�∆.
We have

(2.20) Hom([y � z], [a� b])

= {σ × τ | σ : [y]→ [a], τ : [z]→ [b], σ(0) = µτ(z)}
⊆ Hom([y], [a])×Hom([z], [b])

and we compute that the pushout should be

(2.21) [Hom([y � z], [m1 � `1])qHom([y � z], [m2 � `2])]/∼
where

(σ1, τ1) ∼ (σ2, τ2) when σ1α1 = σ2α2 and τ1β1 = τ2β2.

This pushout is contained in

(2.22) [Hom([y], [m1])×Hom([z], [`1])qHom([y], [m2])×Hom([z], [`2])]/∼
where σ1 × τ1 ∼ σ2 × τ2 when σ1α1 = σ2α2 and τ1β1 = τ2β2, with the extra
conditions that σi(0) = µτ(z). We see that (2.22) is equal to

Hom([y], [w])×Hom([z], [x]),

and by (2.20) we deduce that

Hom([y � z], [w � x]) ⊆ Hom([y], [w])×Hom([z], [x])

is equal to (2.21). Thus when we evaluate the diagram of presheaves (2.19)
on any object of ∆�∆ we get a pushout, so (2.19) is itself a pushout. Hence
∆�∆ is elegant.

3. Rooted actions on colored operads. Consider a category C and
a colored operad O. Since a colored operad can be equivalently regarded as
a multicategory, its morphisms have any finite number of inputs (including
possibly no inputs) and one output. Using this perspective, we may extend
the definition from the previous section as follows.

Definition 3.1. A rooted action of a category C on a colored operad
O is an action of C on the set Mor(O) of morphisms of O satisfying the
additional axioms:

• if g, g1, . . . , gk are in Mor(O), then µ(γ(g; g1, . . . , gk)) = µ(g), where γ
is the operadic composition;
• s(f • g) = s(g) as ordered lists of colors of O.
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If O is additionally a symmetric colored operad, then for any element σ
of the appropriate symmetric group, we furthermore require that

(3.2) σ∗(f • g) = f • (σ∗g).

In both the symmetric and nonsymmetric cases, we write C
•
�O for such a

rooted action. A map

X : A
•
� P → A′

H
� P ′

consists of a functor Xc : A → A′ and an operad map Xd : P → P ′ which
satisfy Xcµ = µXd and Xd(a • f) = Xc(a)HXd(f), where a is a morphism
of A and f is an operation of P. With such morphisms, we have RAOp,
the category whose objects are rooted actions on symmetric operads, and
RAOpns , the category of rooted actions on nonsymmetric operads.

Example 3.3. We point out a couple of important examples of rooted
actions on operads, where the acting category is a group. Suppose that X is
a G-space. Then the usual endomorphism operad EX admits a rooted action
by G. It is defined for f ∈ EX(n) = Map(X×n, X) by

(g • f)(x1, . . . , xn) = g • (f(x1, . . . , xn)).

In fact, if X is a deformation retract of another space Y , then EY inherits
a rooted action by G. Another example (in the topological setting) is the
framed-little disks operad fD2, which admits a rooted action of the circle
by rotation of the outer disk.

We now imitate the construction of the [n�k] from the previous section.
For each n ≥ 0 and each planar tree S (i.e., object of Ωp) we define an object
[n � S] of RAOpns . Let r = rS be the root of S. First, we define Cn,S as the
free category with object set

{∗e | e ∈ E(S), e 6= r} t {0, 1, . . . , n} ∼= (E(S) tOb[n])/(r ∼ 0)

with morphisms generated by pi,i+1 : i→ i+ 1. As in Section 2, we write

pi,i+j : i→ i+ j

for the unique map when j ≥ 1.

The construction of the operad On,S is made inductively and mirrors the
construction of Dn,k in the previous section. For the base case, we set

O0,S = Ωp(S).

To build On,S from On−1,S , we add new colors and operations as follows.
For each h ∈ Mor(On−1,S) with µ(h) = n − 1, we add a new color (n, h)
along with a new generating morphism pn−1,n • h such that

µ(pn−1,n • h) = n, s(pn−1,n • h) = s(h), t(pn−1,n • h) = (n, h).
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The action is given by

p`,`′ • h = p`′−1,`′ • (· · · • (p`,`+1 • h)).

We refer to such morphisms as the generating morphisms of On,S , and
denote the set of such by gen(n, S). Observe that this set consists of the set
of vertices of S together with one morphism pi−1,i • h with µ(h) = i− 1, for
each 1 ≤ i ≤ n. In particular, the number of these morphisms is

|gen(n, S)| = |V (S) t Col(On,S) \ E(S)|.
Definition 3.4. Let [n�S] be the above rooted action of Cn,S on On,S .

We define the category ∆ � Ωp to be the full subcategory of RAOpns with
object set

{[n� S] | n ≥ 0, S a planar rooted tree} t {[n� ∅]}.
Notice that the color set C = Col(On,S) has a natural partial order ≺.

On O0,S = Ωp(S), this partial order is that of the edges of the tree S, with
the root r the maximal element. The set of minimal elements consists of the
leaves, together with edges attached to vertices with no inputs. The order
on Col(On,S) extends that on Col(On−1,S), with c ≺ (n, h) for every c which
is an input to h, and with (n, h) incomparable to (n, h′) for h 6= h′.

Remark 3.5. One can construct formal rooted actions on the symmetric
operad Ω(S) in much the same way. Aside from beginning with Ω(S) rather
than Ωp(S) at level 0, we must also modify the inductive step. We add a new
color for each orbit class [h] with µ(h) = n−1, together with a corresponding
new morphism pn−1,n •h with t(pn−1,n •h) = (n, [h]). Furthermore, we must
also specify that σ∗(pn−1,n • h) = pn−1,n • (σ∗(h)). Alternatively, we could
simply symmetrize the nonsymmetric operad On,S , with the same result.
We revisit the symmetric case in Section 4.

Proposition 3.6. Suppose that there is a rooted action of a category A
on a (nonsymmetric) operad P. Then a map

X : [n� S]→ A
•
� P

in RAOpns is equivalent to a pair of morphisms

α : [n]→ A, β : Ωp(S)→ P
satisfying µ(β(r)) = α(0).

Proof. The proof follows the one for Proposition 2.6.

Henceforth, when we deal with morphisms in ∆�Ωp, we always write a
map as (α, β) : [n� S]→ [m�R], and correspondingly use the shorthand

(3.7) α̂ := Xc : Cn,S → Cm,R, β̂ := Xd : On,S → Om,R
for the components of the morphism X.
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Definition 3.8. The degree of [n� S] is

(3.9) d[n� S] = n+ |gen(n, S)| = n+ |Col(On,S)|+ |V (S)| − |E(S)|.

Let ∆ � Ω+
p be the wide subcategory of ∆ � Ωp consisting of maps

(α, β) : [n� S]→ [m�R] such that the maps

α : [n]→ Cm,R and β : Ωp(S)→ Om,R
are injective on objects and colors, respectively. Finally, let ∆� Ω−p be the
wide subcategory consisting of maps (α, β) : [n� S]→ [m�R] such that α

is surjective on the objects of [m] ⊆ Cm,R, β̂ : On,S → Om,R is surjective on
colors, and β takes leaves of S to leaves of R.

Lemma 3.10. Let (α, β) : [n� S]→ [m�R] be a map in ∆� Ωp.

(1) If all objects of [m] are in the image of α, all colors of R are in the
image of β, and β takes leaves of S to leaves of R, then (α, β) is in
∆� Ω−p .

(2) If (α, β) is in ∆� Ω−p , then all colors of R are in the image of β.

(3) If (α, β) is in ∆ � Ω+
p , then α̂ : Cn,S → Cm,R and β̂ : On,S → Om,R

are injective on objects and colors, respectively.

Proof. For (1), we need to show that β̂ : On,S → Om,R is surjective on
colors. We proceed inductively: by assumption all colors of O0,R are in the

image of β. Suppose that all colors of Ox−1,R are in the image of β̂, and

consider the target (x, h) of px−1,x •h. We know by induction that h = β̂(h′)
for some h′. Since all objects of [m] are in the image of α, there is an i such
that α(i− 1) = x− 1 and α(i) = x. Then

px−1,x • h = α(pi−1,i) • β̂(h′) = β̂(pi−1,i • h′),

so (x, h) is in the image of β̂.

Turning to (2), we first show, for the root r of R, that r = β(x) for some
x ∈ E(S). Suppose that r 6= β(x) for all x ∈ E(S), which we claim leads
to a contradiction. Since (α, β) ∈ ∆�Ω−p , we already know that r is in the

image of β̂ : On,S → Om,R and we let

i = min{j | there exists a morphism h with r = β̂(t(pj−1,j • h))}.

Pick a morphism h with r = β̂(t(pi−1,i • h)). By construction of [m�R] we
know that µ(r) = 0, so

0 = µ
(
β̂(t(pi−1,i • h))

)
= µ(β̂(pi−1,i • h)) = µ(α(pi−1,i) • β̂(h)),

and hence α(pi−1,i) = id0. But then β̂(pi−1,i • h) = α(pi−1,i) • β̂(h) = β̂(h),

so β̂(t(h)) = β̂t(pi−1,i • h) = r. Thus µ(h) = i − 1 < i, so we must have
i = 1 since i was chosen minimally. But then µ(h) = 0, so t(h) = rS (the
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root of S) and β̂(t(h)) = r, contrary to our assumption that r 6= β̂(x) for
x ∈ E(S).

Likewise, if e ∈ E(R) \ {r}, then we know that e is in the image of β̂.

But µ(β̂(pi−1,i • h)) = α(i) 6= ∗e ∈ Cm,R by assumption on α. It follows that

e is in the image of β̂ restricted to O0,S = Ωp(S).

Finally, for (3), we make use of two fundamental facts about [n�S], both
of which follow from construction of On,S . Note that Ob(Cn,S) = E(S)\{r}t
{0, 1, . . . , n} has a natural partial order ≺ induced from that on E(S) and
these n+ 1 integers. Namely, ∗e ≺ ∗e′ whenever e lies above e′ in the tree S,
i ≺ i′ whenever i < i′, and ∗e ≺ i for all i and all e. The first fundamental
fact is that for any nontrivial morphism h of On,S and c ∈ s(h), we have
µ(c) ≺ µ(t(h)). The second is that if (i, h) = (i, h′), then h = h′.

We make use of this first fact. The map β strictly preserves the partial
order since it is injective on objects. Furthermore, µ preserves the partial
order. So if e ≺ e′ in E(S) then α̂(∗e) = µβ(e) ≺ µβ(e′) = α̂(∗e′). We
already knew that α(i) ≺ α(i′) for i < i′. Finally, for e 6= r, we have
α̂(∗e) = µβ(e) ≺ µβ(r) = α(0), so we see that α̂ strictly preserves this
partial order, hence is injective.

By assumption we know that β̂ is injective on the colors of O0,k. Assume
this map is injective on the colors of Oi−1,k; we will show that it is injective
on the colors of Oi,k. All of the new objects in this category are of the form

(i, h), and since α̂ strictly preserves the partial order on objects, β̂(pi−1,i •h)

has strictly greater moment than any object in the image of β̂|Oi−1,k
. Thus

we only need to show that if β̂(i, h) = β̂(i, h′) then h = h′. But we have

β̂(i, h) = β̂t(pi−1,i • h) = tβ̂(pi−1,i • h) = t(α(pi−1,i) • β̂(h)),

and therefore

t(α(pi−1,i) • β̂(h)) = t(α(pi−1,i) • β̂(h′)),

so (iterated use of) the second fundamental fact tells us that β̂(h) = β̂(h′).

But h and h′ are morphisms in Oi−1,k, so h = h′. Thus β̂ is also injective
on Oi,k.

Proposition 3.11. Given a map X = (α, β) : [n�S]→ [m�R] there is
a unique decomposition into a map of ∆�Ω−p followed by a map of ∆�Ω+

p .

Proof. We begin by proving the special case when β(r) is not in

[E(R) \ {r}] ⊆ Col(Om,R).

Then µ(β(r)) ∈ [m], so α : [n]→ Cm,R factors through the inclusion [m] ↪→
Cm,R. We then have
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α : [n]� [y] ↪→ [m] ↪→ Cm,R︸ ︷︷ ︸
α+

from the Reedy factorization of [n]→ [m] in ∆. By Lemma 3.12 below, the
map of operads β : Ωp(S)→ Om,R factors into a map which is surjective on
objects followed by a map that is injective on objects:

Ωp(S)� Ωp(T ) ↪→ Om,R︸ ︷︷ ︸
β+

for some tree T .

We define

α− : [n]� [y] ↪→ Cy,T , β− : Ωp(S)� Ωp(T ) ↪→ Oy,T .

We claim that (α, β) decomposes as

(α+, β+) ◦ (α−, β−) : [n� S]→ [y � T ]→ [m�R].

Indeed, µ(β−(rS)) = µ(rT ) = 0 = α−(0) since β− and α− arise from maps
which are surjective on colors of Ωp(T ) and [y]. Furthermore, µ(β+(rT )) =
µ(β(rS)) = α(0) = α+(0). Thus, by Proposition 3.6, (α+, β+) and (α−, β−)
are morphisms in ∆� Ωp.

Notice that this decomposition is unique. The definition of α+ and α−

is forced by the definition of ∆� Ω+
p and ∆� Ω−p , which in turn forces the

definition of β+ and β− by Lemma 3.10(1), (2).

The map (α+, β+) is in ∆ � Ω+
p by definition of this category. Lemma

3.10(1) implies that (α−, β−) is in ∆� Ω−p .

It remains to consider the case when β(rS) is in E(R) \ {rR}. Then

α(0) = β(rS) ∈ Cn,R,

so α factors as [n]→ [0]
α+

→ Cm,R. We also have the factorization

β : Ωp(S)� Ωp(T ) ↪→ Ωp(R) ↪→ Om,R︸ ︷︷ ︸
β+

from the Reedy structure on Ωp. As before, we define α− : [n] → [0] →
C0,R and β− : Ωp(S) → Ωp(T ) → O0,T . Thus we have the factoriza-
tion

[n� S]� [0� T ] ↪→ [m�R]

since

µ(β+(rT )) = µ(β(rS)) = α(0) = α+(0), µ(β−(rS)) = µ(rT ) = 0 = α−(0).

To show that these maps are in ∆ � Ω±p , and that this decomposition is
unique, we can use an argument as in the previous case.
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Lemma 3.12. Suppose that β : Ωp(S)→ Om,R is a map of operads. Then
there is a tree T and a decomposition

Ωp(S)� Ωp(T ) ↪→ Om,R
which is the unique factorization of the operad homomorphism β into a map
which is surjective on colors followed by a map which is injective on col-
ors.

Specifically, notice that the first map is a composition of degeneracies,
and hence leaves of S are mapped to leaves of T .

Proof. We say that a color c′ in Om,R lies over a color c if c′ is one of
the inputs of a nontrivial morphism whose output is c. Fix a color c0 in
Om,R. We want to define a tree T0 whose root is c0 and whose edges are the
colors lying over c0. Let the set of edges E(T0) ⊆ Col(Om,R) be the set of
all colors lying over c0, together with c0 itself. The set of vertices V (T0) is
given as follows. If e ∈ E(T0) and e ∈ E(R) then we include in V (T0) the
vertex v ∈ V (R) which has e as its output, provided this exists; moreover,
if e ∈ E(T0) and e is the output for a vertex v in R which has no inputs, we
also include v in V (T0). If (i, h) ∈ E(T0), then we include pi−1,i •h in V (T0).
These two sets determine a graph T0. We define the input and output edges
of a vertex v ∈ V (R) ∩ V (T0) to be the input and output edges from the
original graph R, whereas the input and output of pi−1,i • h are s(h) and
(i, h), respectively.

We claim that T0 is a tree with root c0. There is a partial order on
Col(Om,R) given by c ≺ c′ precisely when c lies above c′, and the induced
partial order on E(T0) ⊆ Col(Om,R) has a unique maximal element c0.
Hence, T0 is a tree.

Finally, if e is any edge of S, then β(e) lies above β(r). So the map
Ωp(S)→ Om,R factors as

Ωp(S)→ Ωp(T0) ↪→ Om,R.

By [9, 2.2.2], we have a factorization of this first map as a composition of
degeneracy maps followed by a composition of face maps

Ωp(S)� Ωp(T ) ↪→ Ωp(T0),

from which we get the factorization in the statement.

Proposition 3.13. If a map (α, β) : [n � S] → [m � R] is in ∆ � Ω+
p ,

then

d[n� S] ≤ d[m�R]

with equality holding if and only if (α, β) is an isomorphism.
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Proof. In the diagram

(3.14)

gen(n, S)

t
��

##

gen(m,R)

t
��

Col(On,S)
β̂

// Col(Om,R)

Col(On,S) \ leaves of S

OO

// Col(Om,R) \ leaves of R

cc

OO

the rightmost curved arrow takes a color c to the unique generating mor-
phism which has c as its target. The target map t is an injection, as is β̂ by
Lemma 3.10(3). Since leaves are not the target of any nontrivial morphism,
they are never the target for a generating morphism. In our construction
of Oi,S , we saw that every color we added was a target for some nontrivial
morphism. Thus every color which is not the target of a nontrivial morphism
is in O0,S = Ωp(S). Thus if c is a nonleaf in On,S , there is a nontrivial mor-

phism h with t(h) = c. If β̂(c) = `, then β̂(h) = id`, so h has a single input c′

and β̂(c′) = `, which cannot happen by injectivity of β̂ on colors. Therefore,
we have established the existence of the bottom map in this diagram.

Every map in (3.14) is an injection, and the curved maps are bijections.
It is immediate that |gen(n, S)| ≤ |gen(m,R)|. Injectivity of α implies that α
has image m whenever n > 0, so n ≤ m, establishing the desired inequality.

We now check that if d[n � S] = d[m � R], then [n � S] = [m � R].
Equality here means that |gen(n, S)| = |gen(m,R)| and n = m. We know α̂ :
Cn,S → Cm,R is injective on objects by Lemma 3.10(3), so it gives a bijection
[n]→ [m] (2). We now know that gen(n, S)→ gen(m,R) is a bijection, and
we will show that each edge of R is in the image of β : Ωp(S) → Om,R. If

e ∈ E(R) is not a leaf, then e = β̂t(h) = tβ̂(h) for some h ∈ gen(n, S). Then

α̂µ(h) = µ(e) =

{
e, e 6= r,

0, e = r.

Combining this with the fact that α gives a bijection [n] → [m], we have

0 ⊀ µ(h), so t(h) ∈ E(S). Thus e = β̂(t(h)) is the image of an edge in S.

In our construction ofOi,S , we saw that every color we added was a target
for some nontrivial morphism. Thus every color which is not the target of a
nontrivial morphism is in O0,S = Ωp(S). Let e ∈ E(R) be a leaf. Then e is

an input for a unique generating morphism h of Ωp(R), and h = β̂((̃h)) for

some unique h̃ ∈ gen(n, S). Since 0 ≺ µ(h) = α̂(µ(h̃)), we must have 0 ⊀ µh̃

(2) The only exception is possibly when n = m = 0, in which case the result reduces
to that in Ωp.
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as well, so h̃ ∈ Mor(Ωp(S)). Letting ẽ be the color in the source of h̃ which

maps to e, we see that e = β̂(ẽ) where ẽ ∈ E(S).
Thus every edge of R is in the image of β : Ωp(S)→ Om,R. If e ∈ E(S)

then 0 ⊀ α̂µ(e) = µβ̂(e) by injectivity of α̂, so β factors as Ωp(S) →
Ωp(R) → Om,R where the first map is bijective on edges. Returning to
formula (3.9), we have

|Col(On,S)|+ |V (S)| − |E(S)| = |gen(n, S)| = |gen(m,R)|
= |Col(Om,R)|+ |V (R)| − |E(R)|,

whence
|Col(On,S)|+ |V (S)| = |Col(Om,R)|+ |V (R)|.

If we can show that |Col(On,S)| = |Col(Om,R)|, then it will follow that
Ωp(S)→ Ωp(R) is an isomorphism by the corresponding fact in Ωp since we
will have |V (S)| = |V (R)|. We know that

|Col(On,S) \ leaves of S| = |gen(n, S)| = |gen(m,R)|
= |Col(Om,R) \ leaves of R|,

so we need only see that there is a bijection between the leaves of S and R.
But we already know that each leaf of R is the image of a leaf of S. If a leaf
e of S maps to a nonleaf t(h) of R, then there is a generating morphism h̃

with β̂(h̃) = h, so t(h̃) = e by injectivity. Thus leaves of S map to leaves
of R, and this map is surjective; it is injective by Lemma 3.10(3).

Thus we have shown that |Col(On,S)| = |Col(Om,R)|, and it follows that
|V (S)| = |V (R)|, so S = R.

Proposition 3.15. If a map (α, β) : [n � k] → [m � `] is in ∆ � Ω−p ,
then

d[n� k] ≥ d[m� `]

with equality holding if and only if (α, β) is an isomorphism.

Proof. We first show that each leaf ` of R is the image of a leaf in S. Let
c be a minimal element in β̂−1(`) (under the partial ordering ≺; we know

this set is nonempty since β̂ is surjective on objects). If c is not a leaf, then
c = t(h) for some nontrivial morphism h, and we see that

` = β̂(c) = tβ̂(h),

so β̂(h) = id` and we have s(h)
β̂7→ `, contradicting minimality. Thus c must

be a leaf.
Furthermore, we know that each leaf of S maps to a leaf of R under β̂.

We wish to establish a bijection between the leaves of S and the leaves
of R. Suppose that β̂(`1) = β̂(`2) for two distinct leaves in S and let h

be the morphism which is the composition of all vertices in S. Then β̂(h)
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is a morphism which has the same color for two different inputs, which is
impossible. Thus β̂ induces a bijection of leaves.

Now we observe that

E(S) ∼= V (S) t leaves of S

since all nonleaf edges are the output of a single vertex. Thus we have
|V (S)| − |E(S)| = |V (R)| − |E(R)|, which we combine with the fact (from
the definition of ∆� Ω−p ) that

|Col(On,S)| ≥ |Col(Om,R)|
to see that |gen(n, S)| ≥ |gen(m,R)| as in (3.9).

Since α (not α̂) surjects onto the objects of [m], we have n ≥ m, which
establishes the inequality d[n� S] ≥ d[m�R].

Suppose that the degrees d[n�S] and d[m�R] are equal, whence n = m

and β̂ : On,S → Om,R is a bijection on objects. By Lemma 3.10(2) we know
that every color of R is in the image of β. We have α(0) = 0, so β(rS) = rR
since r is the only object of Om,R of moment 0. Now if e is any other edge
of S, then there is a morphism h in Ωp(S) with e ∈ s(h) and t(h) = rS .
Then β(h) lies in Ωp(R), so β(e) must lie in Ωp(R) as well. Thus we have

β : Ωp(S) → Ωp(R) a surjection on edges; but β̂ was a bijection on edges,
so this is an isomorphism. Therefore [n� S] = [m�R].

Propositions 3.11, 3.13, and 3.15 now imply the following result.

Theorem 3.16. The category ∆� Ωp is a (strict) Reedy category.

Let Ωp,♦ be the full subcategory of the category of nonsymmetric colored
operads with

Ob(Ωp,♦) = {∅} tOb(Ωp),

where ∅ is the operad with empty color set and no morphisms. Define a
degree function on this category by

d(∅) = 0, d(Ωp(S)) = |V (S)|+ 1.

Noting that ∅ is initial, we also define wide subcategories

Ω+
p,♦ = Ω+

p t {∅ → A | A ∈ Ob(Ωp,♦)}, Ω−p,♦ = Ω−p t {id∅}.

We should be explicit that maps in Ω−p are those which are surjective on
edges and take leaves to leaves. It is implicit in [1] that maps in Ω−p must
weakly decrease degree, but surjectivity on edges alone is not enough to
guarantee this assumption, as we see in Figure 4.

Lemma 3.17. With the degree function and direct and inverse subcate-
gories as above, Ωp,♦ is an elegant Reedy category.

Proof. The object of ∅ is the target of a single map, namely the identity
on ∅. Thus decompositions follow as in Ωp, and ∅ → A uniquely decomposes
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Fig. 4. A map which is surjective on edges, but increases degree

as ∅ −→ ∅ +→ A. Compatibility of the direct and inverse categories with the
degree function essentially follows from the same fact for Ωp. Thus Ωp,♦ is
a Reedy category.

We now turn to elegance. In the pushout constructed in (the planar
version of) [9, 2.3.3], all maps are in Ω−p . This pushout is a strong pushout

by (the planar version of) [9, 3.1.6]. The only map in Ω−p,♦ involving ∅ is the

identity on ∅, and

∅ //

��

∅

��

∅ // ∅
is a strong pushout. Elegance follows from [3, 3.4].

Recall the partial order on

Ob(Cn,S) = {∗e | e is a nonroot edge of S} t {0, 1, . . . , n}
given by ∗e ≺ ∗e′ whenever e lies above e′ in S, i ≺ i′ whenever i < i′, and
∗e ≺ i for all i and all nonroot edges e.

Lemma 3.18. We have the following:

(1) If f : (. . . , a, . . . )→ b is a morphism of On,S, then µ(a) � µ(b).
(2) If (α, β) : [n � S] → [m � R] is in ∆ � Ω−p , then every color in the

image of β : Ωp(S)→ Om,R is in Ωp(R).

Proof. To prove (1), first notice that if f is an identity, the result is
immediate. If f is in Ωp(S), the statement follows by definition of ≺. If b is
an object of O0,S = Ωp(S), then a is an object of O0,S since there are no
generating morphisms g with (i, h) ∈ s(g) and t(g) = b.

For the remaining cases, we proceed by induction on the moment of the
map f . If b = (i, h), there is only one generating morphism with target b,
s(h) → (i, h). Thus if f is not an identity, then f = γ(s(h) → b; f1, . . . , fj)
for some fw in Oi−1,S , and a ∈ s(fw0) for some w0. By the inductive hy-
pothesis, we have µ(a) � µ(t(fw0)) � i− 1 ≺ i = µ(b).

For (2), if e is any edge of S, there is a morphism (. . . , e, . . . ) → rS , so
we have a morphism (. . . , β(e), . . . )→ β(rS) in Om,R. But then

µ(β(e)) � µ(β(rS)) = α(0) = 0

by (1), Proposition 3.6, and surjectivity of α onto [m]. Since µ(β(e)) � 0 for
all edges e, we have β(e) ∈ E(R) for all e.
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Theorem 3.19. The Reedy category ∆� Ωp is elegant.

Proof. Suppose that we have maps (αi, βi) : [n � S] → [mi � Ri] in
∆ � Ω−p for i = 1, 2. By the definition of ∆ � Ω−p and the fact that [n] is
connected, we may consider αi : [n] → Cmi,Ri as a map αi : [n] → [mi],
which is in ∆−. We thus have a strong pushout square

[n]
α1 //

α2

��

[m1]

δ1
��

[m2]
δ2 // [w]

since ∆ is elegant. We also consider βi : Ωp(S)→ Omi,Ri as a map Ωp(S)→
Ωp(Ri), which is surjective on colors by Lemmas 3.10(2) and 3.18(2). Since
Ωp,♦ is an elegant Reedy category by Lemma 3.17, we have a strong pushout
square

Ωp(S)
β1
//

β2
��

Ωp(R1)

γ1

��

Ωp(R2)
γ2
// Ωp(T )

in Ωp,♦.

We need to show that (δi, γi) is a morphism in ∆ � Ω−p , i = 1, 2, and
that the corresponding square is a strong pushout. Since δi(0) = 0 and
γi(rRi) = rT by surjectivity, we have µ(γi(rRi)) = µ(rT ) = 0 = δi(0).
Thus (δi, γi) is a map in ∆ � Ωp by Proposition 3.6. It is in ∆ � Ω−p by
Lemma 3.10(1).

It is now left to show that the square

(3.20)

F [n� S]
(α1,β1)

//

(α2,β2)

��

F [m1 �R1]

(δ1,γ1)

��

F [m2 �R2]
(δ2,γ2)

// F [w � T ]

is a pushout square in Set∆�Ωop
p . It is enough to show that

Hom([y � V ], [n� S])
(α1,β1)

//

(α2,β2)

��

Hom([y � V ], [m1 �R1])

(δ1,γ1)

��

Hom([y � V ], [m2 �R2])
(δ2,γ2)

// Hom([y � V ], [w � T ])

is a pushout diagram in Set for each object [y � V ] in ∆� Ωp.
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We have

(3.21) Hom([y � V ], [a�B])

= {σ × τ | σ : [y]→ [a], τ : Ωp(V )→ Ωp(B), σ(0) = µτ(rV )}
⊆ Hom([y], [a])×Hom(Ωp(V ),Ωp(B))

and we compute that the pushout should be

(3.22)
[
Hom([y � V ], [m1 �R1])qHom([y � V ], [m2 �R2])

]
/∼

where
(σ1, τ1) ∼ (σ2, τ2) when σ1α1 = σ2α2 and τ1β1 = τ2β2.

However, this pushout is contained in

(3.23)
( ∐
i=1,2

Hom([y], [mi])×Hom(Ωp(V ),Ωp(Ri))
)
/∼

where σ1 × τ1 ∼ σ2 × τ2 when σ1α1 = σ2α2 and τ1β1 = τ2β2, with the extra
conditions being that σi(0) = µτ(rV ). We see that (3.23) is equal to

Hom([y], [w])×Hom(Ωp(V ),Ωp(T ))

and by (3.21) we deduce that

Hom([y � V ], [w � T ]) ⊆ Hom([y], [w])×Hom(Ωp(V ),Ωp(T ))

is equal to (3.22). Thus when we evaluate the diagram of presheaves (3.20)
on any object of ∆ � Ωp, we get a pushout, so (3.20) is itself a pushout.
Hence ∆� Ωp is elegant.

4. Symmetric operads and nonplanar trees. In this section we
extend the category ∆ � Ωp to a category ∆ � Ω, which controls rooted
actions of categories on symmetric operads. Of key importance is the ad-
junction Σ : Operadns � Operad : U between nonsymmetric operads
and symmetric operads. The left adjoint Σ is the symmetrization func-
tor where ΣO has the same set of colors as O, and (ΣO)(c1, . . . , cn; c) =∐
σ∈Σn

O(cσ(1), . . . , cσ(n); c). We can use Σ to describe the left adjoint to the

forgetful functor U : RAOp → RAOpns . Consider a rooted action C �O of a
category C on a nonsymmetric operad O, and suppose that f is a morphism
of C and g is in O so that f • g is defined. Let σ be a permutation, and
define (as required by (3.2)) f • (σ∗g) := σ∗(f • g). This data gives a rooted
action C � ΣO, and we call this assignment Σ : RAOpns → RAOp, which one
can check is left adjoint to the forgetful functor U . We obtain the following
result from adjointness and Proposition 3.6.

Proposition 4.1. Suppose that there is a rooted action of a category A
on a symmetric operad P. Then a map

X : Σ[n� S]→ A
•
� P
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in RAOp is equivalent to a pair of morphisms

α : [n]→ A, β : Ω(S)→ P
satisfying µ(β(r)) = α(0).

We thus define ∆�Ω as the full subcategory of RAOp whose objects are
Σ[n� S]. As in Section 2, we can define a nerve functor

nerve : RAOp → Set∆�Ωop
,

nerve(A� P)Σ[n�S] = HomRAOp(Σ[n� S],A� P).

Proposition 4.2. The functor nerve : RAOp → Set∆�Ωop
is fully faith-

ful.

Proof. The proof is a slight modification of Proposition 2.8, using the
fact that the dendroidal nerve functor

Operad→ SetΩop

is fully faithful [11].

We could use the methods from Section 3 to show that ∆ � Ω is a
generalized Reedy category, but it is more efficient to utilize the notion
of a crossed group as described in [1, §2]. A crossed group G on a small
category R is a functor Rop → Set together with, for each object r of R,
a group structure on Gr and left Gr-actions on the hom-sets HomR(s, r)
satisfying certain compatibility conditions. For any small category R and
crossed R-group G, the total category RG is the category with the same
objects as R, and with morphisms r → s the pairs (α, g) where α : r → s
belongs to R and g ∈ Gr. Composition of (α, g) : s→ t and (β, h) : r → s is
defined as (α, g) ◦ (β, h) = (α · g∗(β), β∗(g) · h). Finally, if R is a generalized
Reedy category, we say that G is compatible with the generalized Reedy
structure if

(1) the G-action respects R+ and R− (i.e. if α : r → s belongs to R±
and g ∈ Gs then g∗(α) : r → s belongs to R±), and

(2) if α : r → s belongs to R− and g ∈ Gs is such that α∗(g) = er and
g∗(α) = α, then g = es.

As a key example, there is a crossed group G on Ωp such that the total
category ΩpG is equivalent to Ω. Let G be this crossed group on Ωp as
in [1, 2.8]. We will use this crossed group in what follows, so, as a technical
point, we take Ω to have objects the planar trees, so that Ωp is a wide
subcategory of Ω and Ω = ΩpG.

Suppose that we have a morphism (α, β) : Σ[n�S]→ Σ[m�R] of ∆�Ω.
The morphism β : Ω(S)→ ΣOm,R decomposes as

Ω(S)� Ω(T )
Σf
↪→ ΣOm,R
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using the argument of Lemma 3.12, where f : Ωp(T ) → Om,R is a map of
nonsymmetric operads and Ω(S)� Ω(T ) is a map in Ω−; this decomposition
is unique. Furthermore, there is a unique factorization

Ω(S)
∼=→ Ω(S)

Σg
� Ω(T )

as in [9, §2.3.2], where g : Ωp(S)→ Ωp(T ) is a planar map and Ω(S)→ Ω(S)
is in GS . This decomposition of β gives a unique decomposition

Σ[n� S]
∼=→ Σ[n� S]

Σh−→ Σ[m�R]

where h : [n� S]→ [m�R] is in ∆�Ωp and the first map comes from the
action of GS .

Theorem 4.3. The category ∆�Ω admits the structure of a generalized
Reedy category extending the Reedy structure on ∆� Ωp.

Proof. We just indicated a unique factorization of morphisms in ∆�Ω,
which shows that ∆ � Ω is the total category of the crossed group G on
∆ � Ωp by [1, 2.5]. Moreover, this crossed group is compatible with the
Reedy structure on ∆�Ωp, so ∆�Ω inherits a generalized Reedy structure
extending that on ∆� Ωp by [1, 2.10].
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