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Abstract. Let K ⊆ R be the unique attractor of an iterated function system. We
consider the case where K is an interval and study those elements of K with a unique
coding. We prove under mild conditions that the set of points with a unique coding can
be identified with a subshift of finite type. As a consequence, we can show that the set of
points with a unique coding is a graph-directed self-similar set in the sense of Mauldin and
Williams (1988). The theory of Mauldin and Williams then provides a method by which we
can explicitly calculate the Hausdorff dimension of this set. Our algorithm can be applied
generically, and our result generalises the work of Daróczy, Kátai, Kallós, Komornik and
de Vries.

1. Introduction. Let {fj}mj=1 be an iterated function system (IFS) of
similitudes which are defined on R by

fj(x) = rjx+ aj ,

where the similarity ratios satisfy 0 < rj < 1 and the translation parameter
aj is in R. It is well known that there exists a unique non-empty compact
set K ⊂ R such that

(1.1) K =
m⋃
j=1

fj(K).

We call K the self-similar set or attractor for the IFS {fj}mj=1; see [H] for
further details. We refer to the elements of {fj(K)}mj=1 as first-level in-
tervals when K is an interval. An IFS is called homogeneous if all the
similarity ratios rj are equal. For any x ∈ K, there exists a sequence
(in)∞n=1 ∈ {1, . . . ,m}N such that

x = lim
n→∞

fi1 ◦ · · · ◦ fin(0) =
∞⋂
n=1

fi1 ◦ · · · ◦ fin(K).

We call such a sequence a coding of x.
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The attractor K defined by (1.1) may equivalently be defined to be the
set of points in R which admit a coding, i.e., we can define a surjective
projection map between the symbolic space {1, . . . ,m}N and the self-similar
set K by

π((in)∞n=1) := lim
n→∞

fi1 ◦ · · · ◦ fin(0).

An x ∈ K may have many different codings; if (in)∞n=1 is unique then we
call x a univoque point. The set of univoque points is called the univoque set
and we denote it by U{fj}mj=1

, i.e.,

U{fj}mj=1
:=
{
x ∈ K : there exists a unique (in)∞n=1 ∈ {1, . . . ,m}N

satisfying x = lim
n→∞

fi1 ◦ · · · ◦ fin(0)
}
.

Let Ũ{fj}mj=1
:= π−1(U{fj}mj=1

). If there is no risk of confusion, we denote

U{fj}mj=1
and Ũ{fj}mj=1

by U and Ũ respectively. With a little effort, it may

be shown that π is a homeomorphism between the set of unique codings Ũ
and the univoque set U . In this paper we present a general algorithm for
determining the Hausdorff dimension of U when K is an interval. Unless
stated otherwise, in what follows we will always assume that our IFS is such
that K is an interval.

Part of our motivation comes from the study of β-expansions. Given
β > 1 and x ∈

[
0, (dβe − 1)(β − 1)−1

]
there exists a sequence (an)∞n=1 ∈

{0, . . . , dβe − 1}N such that

x =

∞∑
n=1

anβ
−n.

We call such a sequence a β-expansion of x.

Expansions in non-integer bases were pioneered in the papers of Rényi [R]
and Parry [P]. For more information, see [EHJ, DKr, dVK] and the refer-
ences therein.

We can study β-expansions via the IFS

gj(x) =
x+ j

β
, j ∈ {0, . . . , dβe − 1}.

The self-similar set for this IFS is the interval Aβ :=
[
0, (dβe − 1)(β − 1)−1

]
.

For β-expansions, it is clear that any first-level interval gj(Aβ) intersects at
most two other first-level intervals. For any M ∈ N, it is straightforward to
show that

gi1 ◦ · · · ◦ giM (0) =
M∑
n=1

inβ
−n.
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Therefore, limn→∞ gi1 ◦· · ·◦gin(0) = x if and only if (in)∞n=1 is a β-expansion
of x.

Much work has been done on the set of points with a unique β-expansion.
Glendinning and Sidorov [GS] classified those β ∈ (1, 2) for which the Haus-
dorff dimension of the univoque set is positive. However, their approach did
not allow them to calculate the Hausdorff dimension. Their result was later
generalised to arbitrary β > 1 in [KLD]. Daróczy and Kátai [DK] offered an
approach to the problem of calculating the dimension when β ∈ (1, 2), but
they could only calculate the dimension when β is a special purely Parry
number (β is a Parry number if the β-expansion of 1 in base β is eventu-
ally periodic). Making use of similar ideas, Kallós [K1, K2] showed that for
β > 2:

(1) If β ∈ [dβe − 1, (dβe − 1 +
√

(dβe)2 − 2dβe+ 5)], then the Hausdorff
dimension of the univoque set is equal to (log(dβe − 2))(log β)−1.

(2) If β ∈ [(dβe−1 +
√

(dβe)2 − 2dβe+ 5), dβe) and β is a purely Parry
number, Kallós can still find the dimensional result.

Zou, Lu and Li [ZLL] considered the univoque set for a class of homo-
geneous self-similar sets with overlaps. Their motivation was to generalise
Glendinning and Sidorov’s result [GS]. In some cases, they provide an ex-
plicit formula for the dimension of the univoque set. What made the work of
Zou, Lu and Li different to the work of Glendinning and Sidorov, was that
the self-similar sets they considered were of Lebesgue measure zero. Their
approach was similar to Glendinning and Sidorov’s, the crucial technique
being to find a new characterisation of the univoque set.

Recently, in the setting of β-expansions, Kong and Li [KL] generalised
Kallós’ results; their approach made use of different techniques which were
based on the admissible blocks introduced by de Vries and Komornik [dVK].
Kong and Li were able to calculate the dimension of the univoque set for β
within certain intervals. These intervals cover almost all β, even some bases
for which Ũ is not a subshift of finite type.

In the papers mentioned above, the approaches given always have two
points in common. The first is that their method depends on finding a
symbolic characterisation of the univoque set via the greedy algorithm. For
general self-similar sets such a characterisation is not possible. The second
point is that in their setup every first-level interval has at most two adjacent
first-level intervals intersecting it. For general self-similar sets, some first-
level intervals may intersect many first-level intervals simultaneously. As
such, their methods do not simply translate over and we have to find a new
approach.

The goal of this paper is to give a general algorithm for calculating
the Hausdorff dimension of the univoque set when the self-similar set is an
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interval. When this algorithm can be implemented, it identifies the univoque
set with a subshift of finite type. With this new symbolic representation,
we can use a directed graph to represent the set Ũ (see for example [LM,
Chapter 2]). We then show that U is a graph-directed self-similar set in the
sense of Mauldin and Williams [MW]. Using the results of [MW] we can
then calculate dimH(U) explicitly. This algorithm can be implemented in a
generic sense that we will properly formalise later.

The structure of the paper is as follows. In Section 2 we describe the
self-similar set via a dynamical system and state Theorem 2.4 which is our
main result. In Section 3 we prove Theorem 2.4 and demonstrate that for
most cases, the hypothesis of Theorem 2.4 is satisfied (Corollary 3.1). In Sec-
tion 4 we restrict to β-expansions and provide an alternative methodology
for determining the subshift of finite type representation of Ũ . In Section 5
we introduce the definition of a graph-directed self-similar set and illustrate
how to calculate the dimension of the univoque set using this tool. In Sec-
tion 6 we give a worked example. Finally in Section 7, we discuss how the
approach given can be extended to higher dimension.

After completion of this paper we were made aware of the work of Bund-
fuss, Krüger and Troubetzkoy [BKT]. They were concerned with iterating
maps on a manifold M and the set of x ∈ M that were never mapped
into some hole. Theorem 2.4 is essentially a consequence of Proposition 4.1
of [BKT]. However, all of our results regarding calculating dimH(U) and the
identification of the univoque set with a graph-directed self-similar set are
completely new.

2. Preliminaries and main results. In this section we describe the
elements of our attractor in terms of a dynamical system. Recall that K =
[a, b] ⊆ R is the attractor of our IFS {fj}mj=1, i.e.,

K =

m⋃
j=1

fj(K).

Define Tj(x) := f−1j (x) = (x − aj)r−1j for each 1 ≤ j ≤ m. We denote the
concatenation Tin◦· · ·◦Ti1(x) by Ti1...in(x). The following lemma provides an
alternative formulation of codings of elements of K in terms of the maps Tj .

Lemma 2.1. Let x ∈ K. Then (in)∞n=1 ∈ {1, . . . ,m}N is a coding for x if
and only if Ti1...in(x) ∈ K for all n ∈ N.

Proof. Assume x ∈ K has a coding (in)∞n=1. By the continuity of the
maps fj the following equation holds for all n ∈ N:

Ti1...in(x) = lim
M→∞

fin+1 ◦ · · · ◦ fiM (0).
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Obviously the right hand side of the above equation is an element of K.
Hence we have deduced the rightward implication.

Now let us assume that (in)∞n=1 is such that Ti1...in(x) ∈ K for all n ∈ N.
Let xn = Ti1...in(x). We observe that

|fi1 ◦ · · · ◦ fin(0)− x| = |fi1 ◦ · · · ◦ fin(0)− fi1 ◦ · · · ◦ fin(xn)| ≤ rn|xn|,

where r = max1≤j≤m rj . By our assumption xn ∈ K, in which case |xn| can
be bounded above by a constant independent of x and n. It follows that
limn→∞ fi1 ◦ · · · ◦ fin(0) = x and (in)∞n=1 is a coding for x.

The dynamical interpretation provided by Lemma 2.1 will make our
proofs and exposition far more succinct. The following proposition is a
straightforward consequence of the lemma.

Proposition 2.2. Let x ∈ K. There exists (in)Nn=1 ∈ {1, . . . ,m}N and
distinct k, l ∈ {1, . . . ,m} satisfying Ti1···iNk(x) ∈ K and Ti1···iN l(x) ∈ K if
and only if x /∈ U.

Let Ij = fj(K); then Ij is precisely the set of points that are mapped
back into K by Tj . The following reformulation of the definition of U is a
consequence of Proposition 2.2:
(2.1)
U = {x ∈ K : @1 ≤ k < l ≤ m and (in)Nn=1 such that Ti1···iN (x) ∈ Ik ∩ Il}.

By Lemma 2.1 we know that every x ∈ K has an infinite sequence of maps
which under finite iteration always map x back into K. What (2.1) states is
that if x ∈ U , then each of these finite iterations always avoids the intersec-
tions of the Ij ’s.

In what follows we always assume that there are s pairs (ik, jk) ∈
{1, . . . ,m}2 such that Hk := Iik ∩ Ijk 6= ∅ and ik 6= jk. In fact we will always
assume that we are in the case where each Hk := [ak, bk] is a non-trivial
interval and is contained in the interior of K. There is no loss of generality
in making this assumption. If for some [ak, bk] it is true that ak = a or
bk = b, then the conclusion of Theorem 2.4 is still true under an appro-
priately modified hypothesis. The argument required is the same as that
given below except for an additional notational consideration. We may also
assume that the elements of {Hk} are pairwise disjoint and that they are
located from left to right in K. In the dynamical literature these regions Hk

are commonly referred to as switch regions (see for example [DKr]). We give
a simple example to illustrate the above.

Example 2.3. Let [0, 1/(β − 1)] be the attractor of {f0(x) = β−1x,
f1(x) = β−1(x+ 1)}, where 1 < β < 2. Then we define T0(x) = βx, T1(x) =
βx− 1; see Figure 1.
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Fig. 1. The dynamical system for {T0, T1}

From this figure, we know that f0([0, 1/(β − 1)]) ∩ f1([0, 1/(β − 1)]) =
[1/β, 1/β(β− 1)]. For any x ∈ [1/β, 1/β(β− 1)] both T0 and T1 map x into
[0, 1/(β − 1)].

Now we can state our first result. Recall that Ũ is defined to be the set
of symbolic codings of points in U.

Theorem 2.4. For each ak and bk, suppose there exist two finite se-
quences (η1 . . . ηP ) ∈ {1, . . . , m}P , (ω1 . . . ωQ) ∈ {1, . . . , m}Q such that

Tη1...ηP (ak) ∈
s⋃
i=1

(ai, bi),(2.2)

Tω1...ωQ(bk) ∈
s⋃
i=1

(ai, bi).(2.3)

Then Ũ is a subshift of finite type.

3. Proof of Theorem 2.4. The proof is constructive. By our assump-
tions and the continuity of the Tj ’s, we can find δak , δbk > 0 such that

Tη1...ηP (ak − δak , ak) ⊂
s⋃
i=1

(ai, bi), Tω1...ωQ(bk, bk + δbk) ⊂
s⋃
i=1

(ai, bi).

Moreover, we may assume [ak − δak , bk + δbk ] ∩ [aj − δaj , bj + δbj ] = ∅ for
1 ≤ k < j ≤ s. Let δ = min1≤k≤s{δak , δbk} and H =

⋃s
i=1[ai − δ, bi + δ]. By

the monotonicity of the Tj ’s and Proposition 2.2 it is clear that any element
of H is mapped into the switch region, therefore H is in the complement of
the univoque set.
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We partition K via the iterated function system: for any L we have

K =
⋃

(i1,...,iL)∈{1,...,m}L
fi1 ◦ · · · ◦ fiL(K).

We also assume L is sufficiently large such that |fi1 ◦ · · · ◦ fiL(K)| < δ
for all (i1, . . . , iL) ∈ {1, . . . ,m}L. We have a corresponding partition of the
symbolic space {1, . . . , m}N provided by the cylinders of length L. For each
(i1, . . . , iL) ∈ {1, . . . ,m}L let

Ci1...iL = {(xn) ∈ {1, . . . ,m}N : xn = in for 1 ≤ n ≤ L}.
The set {Ci1...iL}(i1,...,iL)∈{1,...,m}L is a partition of {1, . . . ,m}N, and we have
fi1 ◦ · · · ◦ fiL(K) = π(Ci1...iL). Let

F =
{

(i1, . . . , iL) ∈ {1, . . . ,m}L : fi1 ◦ · · · ◦ fiL(K) ∩
s⋃

k=1

Hk 6= ∅
}
,(3.1)

F′ =
⋃

(i1,...,iL)∈F

π(Ci1...iL).(3.2)

By our assumptions on the size of our cylinders the following inclusions hold:
s⋃

k=1

Hk ⊂ F′ ⊂ H.

Using these inclusions it is a straightforward observation that x /∈ U if and
only if there exists (θ1, . . . , θn1) ∈ {1, . . . ,m}n1 such that Tθ1...θn1 (x) ∈ F′.
Showing there exists (θ1, . . . , θn1) ∈ {1, . . . ,m}n1 such that Tθ1...θn1 (x) ∈ F′
if and only if x has a coding containing a block from F is straightfor-
ward. If x /∈ U , then by the above observation there exists (θ1, . . . , θn1) in
{1, . . . ,m}n1 such that Tθ1...θn1 (x) ∈ F′. Therefore, x has a coding containing
a block from F. Going in the opposite direction, suppose that x has a coding
(xn)∞n=1 such that xM+1 . . . xM+L ∈ F for some M ∈ N. Then Tx1...xM (x)
is in F′. However, F′ ⊂ H, and as previously remarked H ⊂ U c, therefore
Tx1...xM (x) /∈ U and x /∈ U . Taking F to be the set of forbidden words

defining a subshift of finite type we see that Ũ is a subshift of finite type.

The conditions in Theorem 2.4 are met for a large class of self-similar
sets, provided that the attractor is an interval. We recall the definition of a
universal coding. A coding (dn)∞n=1 ∈ {1, . . . ,m}N of x is called a universal
coding for x if given any finite block (δ1, . . . , δk) ∈ {1, . . . ,m}k, there exists
j such that dj+i = δi for 1 ≤ i ≤ k. Theorem 1.4 from [B] implies that
Lebesgue almost every x ∈ K has a universal coding. This result implies the
following corollary.

Corollary 3.1. For Lebesgue almost every x ∈ K, there exists a se-
quence (in)Nn=1 and Hk such that Ti1...iN (x) is in the interior of Hk.
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Let Λ ⊂ K be the set of full measure described by Corollary 3.1. It
follows that the hypothesis of Theorem 2.4 fails only when an endpoint of a
Hk is contained in K \ Λ. There are no obvious obstacles to the endpoints
of Hk being members of Λ. Hence we expect the conditions of Theorem 2.4
to be satisfied most of the time. As we will see in Section 4, a stronger
statement holds when we restrict to β-expansions.

Remark 3.2. References [DK, K1, K2, KL] all consider homogeneous
IFS’s. We however allow the similarity ratios to be different. Another ad-
vantage of our method is that we can find the forbidden blocks quickly and
uniformly.

Remark 3.3. The method used in Theorem 2.4 cannot easily be im-
plemented when K is not an interval. The key difficulty is that when we
construct the neighborhoods of ak and bk, their images may not be mapped
into

⋃s
k=1Hk by the same maps that worked for ak and bk.

Remark 3.4. In higher dimensions we can prove an analogous result.
The proof requires a minor modification; the main ideas are outlined in the
final section. For self-affine sets which are simple sets, for instance, rect-
angles, cubes (see the definition of self-affine sets in [F]), our theorem still
holds. However, in this case we do not know whether an analogue of Corol-
lary 3.1 is true.

Using a similar idea to the proof of Theorem 2.4 we give a simple proof
of the following interesting result.

Theorem 3.5. If our attractor K is an interval, then U is closed if and
only if Ũ is a subshift of finite type.

Proof. If Ũ is a subshift of finite type, then Ũ is closed as the forbidden
blocks cannot appear in the limit of sequences of Ũ . Hence U is also closed
due to the fact that U is homeomorphic to Ũ .

Conversely, suppose U is closed, or equivalently U c is open. For each
interval Hk the endpoints ak and bk are in U c. It follows that there exist
δak , δbk > 0 such that (ak − δak , ak) ⊂ U c and (bk, bk + δbk) ⊂ U c. The
remaining proof, i.e., finding the forbidden blocks, is the same as the proof
of Theorem 2.4.

This theorem generalises Komornik and de Vries’ statement; see the
corresponding equivalent statement in [dVK, Theorem 1.8]. Moreover, in
higher dimensions a similar result still holds.

4. β-Expansions case. In this section we restrict to β-expansions and
give an alternative method for determining the subshift of finite type repre-
sentation of Ũ . Firstly, we recall the relevant IFS for studying β-expansions:
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given β > 1 define

gj(x) =
x+ j

β
, j ∈ {0, . . . , dβe − 1}.

The self-similar set for this IFS is the interval Aβ = [0, (dβe − 1)(β − 1)−1].
We now define greedy and lazy expansions.

Definition 4.1. The greedy map G : Aβ → Aβ is defined by

G(x) =

{
βx mod 1, x ∈ [0, 1),

βx− [β], x ∈
[
1, dβe−1β−1

]
.

For any n ≥ 1 and x ∈ Aβ, we define an(x) = [βGn−1(x)], where [y] denotes
the integer part of y ∈ R. We then have

x =
a1(x)

β
+
G(x)

β
=
a1(x)

β
+
a2(x)

β2
+
G2(x)

β2
= · · ·

=

∞∑
n=1

an(x)

βn
.

The sequence (an)∞n=1 ∈ {0, . . . , dβe−1}N generated by G is called the greedy
expansion or greedy coding. The orbit {Gn(x)}∞n=1 is called the greedy orbit
of x.

Similarly, we define the lazy map and the corresponding lazy expansion
as follows.

Definition 4.2. The lazy map L : Aβ → Aβ is defined by

L(x) =

βx, x ∈
[
0, dβe−1β(β−1)

]
,

βx− bj , x ∈
(
dβe−1
β(β−1) +

bj−1
β , dβe−1β(β−1) +

bj
β

]
for bj ∈ {1, . . . , [β]}.

Here bj is an element of our set of digits. By Lemma 2.1, for each x ∈ Aβ we
can generate a β-expansion for x by iterating L. The β-expansion generated
by L is called the lazy expansion of x. The orbit {Ln(x)}∞n=1 is called the
lazy orbit of x.

Given i ∈ {0, . . . , dβe−1} it is a simple calculation to show that gi(Aβ)∩
gj(Aβ) 6= ∅ if and only if j = i − 1, i, i + 1, in which case the non-trivial
switch regions are of the form

Sl =

[
l

β
,
dβe − 1

β(β − 1)
+
l − 1

β

]
for some 1 ≤ l ≤ dβe − 1. We remark that the greedy and lazy maps only
differ on the intervals Sl. Clearly an x ∈ Aβ is a univoque point if and only if
it is never mapped into an interval Sl. This implies the following important
technical result.
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Proposition 4.3. Given x ∈ K, we have x ∈ U if and only if its greedy
and lazy expansions coincide.

This simple observation will be a powerful tool: it allows us to give a
lexicographic characterisation of Ũ which will help us determine our subshift
of finite type representation.

Each element of U \ {0, (dβe − 1)(β − 1)−1} is eventually mapped into
[(dβe−1−β)(β−1)−1, 1] by G and L (as by definition the orbits of G and L
coincide for univoque points). Moreover, once inside this interval they are
not mapped out [GS, p. 536]. Therefore, due to the countable stability of
Hausdorff dimension [F, p. 32], to determine the Hausdorff dimension of U ,
we only need to find the Hausdorff dimension of U∩[(dβe−1−β)(β−1)−1, 1].
We denote U∩[(dβe−1−β)(β−1)−1, 1] and π−1(U∩[(dβe−1−β)(β−1)−1, 1])

by Uβ and Ũβ respectively.
Let (αn)∞n=1 be the greedy expansion of 1 and let (εn)∞n=1 = (αn)∞n=1 =

(dβe − 1 − αn)∞n=1. We are interested in giving conditions when Ũβ is a
subshift of finite type. In this paper, we consider only the collection of β
such that the greedy expansion of 1 is infinite. If the greedy expansion of 1

is finite, then Ũβ may not be a subshift of finite type, good examples being
Tribonacci numbers [dVK, Theorems 1.2 and 1.5]. Let σ denote the usual
shift map.

We now introduce the lexicographic ordering on infinite sequences: given
(an)∞n=1, (bn)∞n=1 ∈ {0, . . . , dβe − 1}N we say that (an)∞n=1 < (bn)∞n=1 if there
exists M ∈ N such that (a1, . . . , aM ) = (b1, . . . , bM ) and aM+1 < bM+1.
There also exists a lexicographic ordering on finite sequences, defined in the
obvious way.

Theorem 4.4. If there exists M ∈ N such that (εM+n)∞n=1 > (αn)∞n=1

then Ũβ is a subshift of finite type. More specifically, there exists p > M
such that

Ũβ = {(dn)∞n=1 : (ε1, . . . , εp, (dβe − 1)∞) < σk((dn)∞n=1)

< (α1, . . . , αp, (0)∞) for any k ≥ 0}.
The hypothesis of Theorem 4.4 is in fact equivalent to that of Theo-

rem 2.4. We omit the details of this equivalence, not to hinder our exposition.
The spirit of this proof is similar to the proof of Theorem 2.4. Heuristically
speaking, we are giving an equivalent argument but expressed in the lan-
guage of sequences. When expressed in this language, the proof becomes
more concise and provides a more efficient method for determining the set
of forbidden words.

The following criterion of unique codings is pivotal. In fact, in [DK, K1,
K2, KL], the approach strongly depends on this criterion.
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Theorem 4.5. Let (an)∞n=1 be a coding of x ∈ [(dβe−1−β)(β−1)−1, 1].

Then (an)∞n=1 ∈ Ũβ if and only if

(εn)∞n=1 < σk((an)∞n=1) < (αn)∞n=1 for any k ≥ 0.

This theorem is a corollary of [dVK, Theorem 1.1].

Proof of Theorem 4.4. From Theorem 4.5 we know that

Ũβ = {(an)∞n=1 : (εn)∞n=1 < σk((an)∞n=1) < (αn)∞n=1 for any k ≥ 0}.

Let M be as in the statement of Theorem 4.4. There exists p > M such that

(εM+1, . . . , εp) > (α1, . . . , αp−M ).

Recall (εn) = (αn), thus we equivalently have

(ε1, . . . , εp−M ) > (αM+1, . . . , αp).

We shall prove that Ũβ = U ′β where

U ′β := {(an)∞n=1 : (ε1, . . . , εp, (dβe − 1)∞) < σk((an)∞n=1)

< (α1, . . . , αp, (0)∞) for any k ≥ 0}.

By Theorem 4.5 we have U ′β ⊆ Ũβ, therefore it suffices to prove the opposite
inclusion.

Let (an)∞n=1 ∈ Ũβ and assume that (an)∞n=1 /∈ U ′β. Therefore, we have

σk0((an)∞n=1) ≥ (α1, . . . , αp, (0)∞) or (ε1, . . . , εp, (dβe−1)∞) ≥ σk0((an)∞n=1)
for some k0 ≥ 0. But this is not possible: if, e.g., (ε1, . . . , εp, (dβe − 1)∞) ≥
σk0((an)∞n=1) then (ak0+1, . . . , ak0+p) = (ε1, . . . , εp) since (an)∞n=1 ∈ Ũβ.
Hence,

(ak0+M+1, . . . , ak0+p) = (εM+1, . . . , εp) > (α1, . . . , αp−M ),

which contradicts (an)∞n=1 ∈ Ũβ. The other case is proved similarly. Hence

we may conclude that Ũβ ⊆ U ′β.

Remark 4.6. Theorem 4.4 implies that when the greedy orbit of 1 falls
into the switch region, then Ũβ is a subshift of finite type. This theorem is a
little weaker than Komornik and de Vries’ statement [dVK, Theorem 1.8].
However, we can find the forbidden blocks more quickly. It is not necessary
to use Theorem 4.5 to find the subshift of finite type, while Komornik and
de Vries’ method depends on it. We have proved in Theorem 2.4 that for
self-similar sets a similar idea still works. Moreover, we have mentioned in
Theorem 3.5 that U is closed if and only if Ũ is a subshift of finite type.
Thus Theorem 2.4 can be interpreted as a generalisation of Komornik and
de Vries’ result to the setting of self-similar sets.
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Remark 4.7. In [K2], Kallós used similar ideas to prove a similar the-
orem. However, the argument in the proof of Theorem 4.4 may not be ap-
plied in other complicated settings, as generally we cannot find a criterion
for unique codings in terms of a symbolic representation.

In the setting of β-expansions, let

A = {β ∈ (1,∞) : the expansion of 1 is unique}.
Schmeling [S] proved the Lebesgue measure of A is zero. In fact he proved
a much stronger result which implies the following corollary.

Corollary 4.8. For almost every β ∈ (1,∞) the hypotheses of Theorem
4.4 are satisfied.

This should be compared with Corollary 3.1. Unlike that result, Corol-
lary 4.8 allows us to conclude that we can apply Theorem 4.4 for a Lebesgue
generic parameter in an appropriate parameter space.

5. Hausdorff dimension of univoque set

5.1. Graph-directed self-similar sets. Before demonstrating how to
calculate the dimension of a univoque set, we introduce the notion of a
graph-directed self-similar set. The terminology we use is taken from [MW].

A graph-directed construction in R consists of the following:

1. A finite union
⋃n
u=1 Ju of bounded closed intervals such that the Ju

are pairwise disjoint.
2. A directed graph G = (V,E) with vertex set V = {1, . . . , n} and edge

set E. Moreover, we assume that for any u ∈ V there is some v ∈ V
such that (u, v) ∈ E.

3. For each edge (u, v) ∈ E there exists a similitude fu,v(x) = ruvx+auv,
where ruv ∈ (0, 1) and auv ∈ R. Moreover, for each u ∈ V the set
{fu,v(Jv) : (u, v) ∈ E} satisfies the strong separation condition, i.e.,⋃

(u,v)∈E

fu,v(Jv) ⊆ Ju,

and the elements of {fu,v(Jv) : (u, v) ∈ E} are pairwise disjoint.

As is the case for self-similar sets, we have the following result.

Theorem 5.1. For each graph-directed construction, there exists a
unique vector of non-empty compact sets (C1, . . . , Cn) such that, for each
u ∈ V , Cu =

⋃
(u,v)∈E fu,v(Cv).

We let K∗ :=
⋃n
u=1Cu and call it the graph-directed self-similar set of

this construction. To each graph-directed construction we can associate a
weighted incidence matrix A. This matrix is defined by A = (ru,v)(u,v)∈V×V ;
for simplicity, we assume that ru,v = 0 if (u, v) /∈ E. For each t ≥ 0 we
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define another adjacency matrix At = (at,u,v)(u,v)∈V×V , where at,u,v = rtu,v.
Let Φ(t) denote the largest non-negative eigenvalue of At. A graph is strongly
connected if for any two vertices u, v ∈ V , there exists a directed path from
u to v. A strongly connected component of G is a subgraph C of G such
that C is strongly connected; let SC(G) be the set of all strongly connected
components of G. Now we state the main result of [MW].

Theorem 5.2. For every graph-directed construction such that G is
strongly connected, the Hausdorff dimension of K∗ is t0, where t0 is uniquely
defined by Φ(t0) = 1.

If the graph-directed construction G is not strongly connected, we still
have a similar result. As is well known, a directed graph G must have a
strongly connected component (see [LM, Section 4.4]). In this case the fol-
lowing theorem makes sense.

Theorem 5.3. If the G in our graph-directed construction is not strongly
connected, let t1 = max{tC : Φ(tC) = 1, C ∈ SC(G)}, where Φ(tC) is the
largest eigenvalue of the adjacency matrix of the strongly connected sub-
graph C. Then dimH(K∗) = t1.

Proof. We can decompose G into several subgraphs which are each
strongly connected. Then the theorem holds due to Theorem 5.2 and the
countable stability of Hausdorff dimension.

5.2. Calculating the dimension of a univoque set. Now we show
how to construct a graph-directed self-similar set using the subshift of finite
type representation of Ũ obtained in Theorem 2.4. As we will see, in this
case, the graph-directed self-similar set K∗ mentioned above will in fact
equal U .

Recall the projection map π : {1, . . . ,m}N → K is defined by

π((in)∞n=1) = lim
n→∞

fi1 ◦ · · · ◦ fin(0).

We use the same notation as in the proof of Theorem 2.4. Let F be the set
of finite forbidden blocks and W = {1, . . . ,m}L \ F. The set of vertices in
our directed graph will be

V =
{

(a1, . . . , aL−1) ∈ {1, . . . ,m}L−1 : there exists aL ∈ {1, . . . ,m}
such that (a1, . . . , aL−1, aL) ∈W

}
.

We now define our edges. For any two vertices u, v ∈ V , u = (u1, . . . , uL−1),
v = (v1, . . . , vL−1), we draw an edge from u to v, and label this edge (u, v),
if (u2, . . . , uL−1) = (v1, . . . , vL−2) and (u1, . . . , uL−1, vL−1) ∈ W . Here we
should note that the vertices u, v which are from V are blocks, while in the
definition of a graph-directed construction, u and v refer to integers.
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Now we have defined our edges and hence we have constructed a directed
graph G = (V,E). If there exists a vertex u ∈ V for which there is no v ∈ V
satisfying (u, v) ∈ E, then we remove u from our vertex set. Removing this
u does not change any of the results above, so without loss of generality we
may assume that for every u ∈ V there exists v ∈ V for which (u, v) is an
allowable edge. This verifies item 2 in the above definition of a graph-directed
construction.

Before showing that items 1 and 3 are satisfied, we recall an impor-
tant result from [LM]. We define an infinite path in our graph G to be a
sequence ((un, vn))∞n=1 ∈ EN such that vn = un+1 for all n ∈ N, where
un = un1 · · ·unL−1 Define

XG := {(yn)∞n=1 ∈ {1, . . . ,m}N : there exists an infinite path

((un, vn))∞n=1 ∈ EN such that yn = un1 for all n ∈ N}.
Theorem 2.3.2 of [LM] states the following.

Theorem 5.4. Let G be the directed graph as constructed above. Then
Ũ = XG.

We define

Ku := {x = π((dn)∞n=1) : di = ui for 1 ≤ i ≤ L− 1 and (dn)∞n=1 ∈ Ũ},
Ju := conv(Ku).

Here u = (u1, . . . , uL−1) ∈ V and conv(·) denotes convex hull.

Lemma 5.5. Let u, v ∈ V and u 6= v. Then Ju ∩ Jv = ∅.
Proof. Since Ju and Jv are the convex hulls of Ku and Kv respectively,

they are both intervals. We assume that Ju = [c, d] and Jv = [e, f ]. As Ku is
compact, the endpoints of Ju are elements of Ku. Similarly, e, f ∈ Kv. Now
we prove that [c, d] ∩ [e, f ] = ∅.

If [c, d] and [e, f ] intersect in a point then this point must be an endpoint.
Without loss of generality assume d = e; then d ∈ Ku∩Kv. However,Ku ⊂ U
and we have a contradiction as u 6= v.

Now let us assume Ju and Jv intersect in an interval. Without loss of
generality, we assume that c < e < d. Since e is a univoque point in Kv,
we know by Proposition 2.2 that there exists a unique sequence of Tj ’s of
length L−1 that map e into K. As e ∈ Kv this sequence of transformations
must be Tv1...vL−1 . By our assumption c < e < d, therefore by the mono-
tonicity of the maps Tj , we have Tu1···uL−1(c) < Tu1···uL−1(e) < Tu1···uL−1(d).
Both Tu1···uL−1(c), Tu1···uL−1(d) are in K, but as K is an interval this implies
Tu1···uL−1(e) ∈ K, a contradiction.

By Lemma 5.5 we can take {Ju}u∈V to be the set of bounded closed
intervals required in item 1 of the definition of a graph-directed construction.
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It remains to prove item 3. First of all we define our similitudes: given an
edge (u, v) ∈ E we define fuv(x) = ru1x+ au1 . The following lemma proves
that item 3 is indeed satisfied.

Lemma 5.6. Fix u ∈ V. Then⋃
(u,v)∈E

fuv(Jv) ⊆ Ju

and fuv(Jv) ∩ fuv′(Jv′) = ∅ for all distinct pairs of edges.

Proof. For the first statement, it is sufficient to prove⋃
(u,v)∈E

fuv(Kv) ⊆ Ku.

Suppose (u, v) ∈ E and x = fuv(y) where y ∈ Kv. Let (yn)∞n=1 ∈ Ũ be
the unique coding of y. By Theorem 5.4 we know that (yn)∞n=1 ∈ XG. Let
(xn)∞n=1 be such that x1 = u1 and xi = yi−1 for i ≥ 2. Then (xn)∞n=1 is
a coding of x. Since (u, v) ∈ E we have (u2, . . . , uL−1) = (v1, . . . , vL−2).
Moreover, as (u, v) ∈ E and (yn)∞n=1 ∈ XG, we see that (xn)∞n=1 ∈ XG.

Using Theorem 5.4 again we know that (xn)∞n=1 ∈ Ũ , which combined with
the observation (x1, . . . , xL−1) = (u1, . . . , uL−1) implies x ∈ Ku.

The second statement is an immediate consequence of Lemma 5.5 and
the fact that our similitudes are bijections from R to R that do not depend
on v.

We have verified all of the criteria for a graph-directed construction and
may therefore conclude that Theorem 5.1 holds. We now show that for our
graph construction, K∗ = U. We begin by proving that the Ku’s are precisely
the Cu’s in Theorem 5.1.

Lemma 5.7. For each u ∈ V we have Ku =
⋃

(u,v)∈E fuv(Kv).

Proof. Let x ∈ Ku and (xn)∞n=1 be the unique coding for x. Then xn = un
for 1 ≤ n ≤ L− 1. Let

v = (v1, . . . , vL−1) = (x2, . . . , xL) = (u2, . . . , uL−1, xL).

By Theorem 5.4 we have (xn)∞n=1 ∈ XG. Therefore v ∈ V and (u, v) ∈ E.
Let y ∈ K have coding (xn+1)

∞
n=1 ∈ XG; by Theorem 5.4 we know that

(xn+1)
∞
n=1 ∈ Ũ . As (x2, . . . , xL) = (v1, . . . , vL−1) we can deduce that y ∈ Kv.

As fuv(y) = x we have shown that Ku ⊆
⋃

(u,v)∈E fuv(Kv). The inverse
inclusion is proved in Lemma 5.6.

By the uniqueness part of Theorem 5.1 we may conclude from Lemma
5.7 that the set

⋃n
u=1Cu in the statement equals

⋃
u∈V Ku. The fact that

U =
⋃
u∈V Ku is immediate from the definition of Ku. Hence U = K∗ and is

the graph-directed self-similar set for our construction. Therefore, Theorems
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5.2 and 5.3 apply and we use them to calculate the Hausdorff dimension of U .
We include an explicit calculation in Section 6.

Now we give a final remark to finish this section. In [KL], Kong and Li
proved the following interesting result.

Theorem 5.8. There exist intervals for which the function mapping β
to the Hausdorff dimension of the univoque set is strictly decreasing.

This result is somewhat counterintuitive. As β gets larger, the corre-
sponding switch regions shrink. Therefore, one might expect that the set of
points whose orbits avoid the switch regions, i.e. the univoque set, would be
larger. However, Theorem 5.8 shows that in terms of Hausdorff dimension
this is not always the case.

A similar idea to the proof of Theorem 2.4 allows us to recover Theo-
rem 5.8 quickly. We only give an outline of this argument. A straightfor-
ward manipulation of the formulas given in Theorems 5.2 and 5.3 yields
dimH(Uβ) = log λ/log β, where λ is the largest eigenvalue of the transition
matrix defining our subshift of finite type. Using similar ideas to those given
in the proof of Theorem 2.4, we can show that if β satisfies the hypothesis
of that theorem, then the hypothesis is also satisfied for β′ sufficiently close
to β. Moreover, a more delicate argument implies that for β′ sufficiently
close to β, the set of forbidden words for β′ equals the set of forbidden
words for β. In other words, the subshift of finite type defining the uni-
voque set for β′ equals the subshift of finite type defining the univoque set
for β. The assertion that dimH(Uβ) is decreasing on some sufficiently small
interval containing β now follows from the formula stated above.

6. An example. In this section, we give an example to show how to
calculate the dimension of a univoque set.

Example 6.1. Let
[
0, 1

β−1
]

be the self-similar set with IFS {f0(x),

f1(x)} where

f0(x) =
x

β
, f1(x) =

x+ 1

β
.

Let β∗ be the unique β ∈ (1, 2) satisfing the equation (111(00001)∞)β = 1.
In this case β∗ ≈ 1.84. We now calculate dimH(Uβ∗).

The greedy expansion of 1 in this base is (αn)∞n=1 = (111(00001)∞). We
observe that (ε4, ε5, ε6, ε7) > (α1, α2, α3, α4), so by Theorem 4.4 we deduce

that Ũ is given by a subshift of finite type. Moreover, in the statement of
Theorem 4.4 we can take p = 7. We now construct the relevant directed
graph. In this case our set W is

W = {(a1, . . . , a7) : (0001111) < (a1, . . . , a7) < (1110000)};
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moreover the set of vertices equals

V = {(a1, . . . , a6) : (000111) < (a1, . . . , a6) < (111000)}.
We now construct the edge set in accordance with the construction given in
Section 5.2. In total there are 26 vertices:

v1 = (001001), v2 = (001010), v3 = (001011), v4 = (001100),

v5 = (001101), v6 = (010010), v7 = (010011), v8 = (010100),

v9 = (010101), v10 = (010110), v11 = (011001), v12 = (011010),

v13 = (011011), v14 = (100100), v15 = (100101), v16 = (100110),

v17 = (101001), v18 = (101010), v19 = (101011), v20 = (101100),

v21 = (101101), v22 = (110010), v23 = (110011), v24 = (110100),

v25 = (110101), v26 = (110110).

We now follow Mauldin and William’s approach and construct a 26 × 26
matrix (Ai,j), where Ai,j = 1/(β∗)t if there is an edge from vertex vi to vj ,
otherwise Ai,j = 0. A computer calculation then yields dimH(Uβ∗) ≈ 0.79.

7. Final remark. We mentioned in Remark 3.4 that the main idea of
Theorem 2.4 is still effective in higher dimensions. To conclude we give a
brief outline of the argument required.

First of all assume that our attractor K ⊂ Rd is some sufficiently nice set,
i.e. a rectangle, cube, or polyhedron. In this case the switch regions are also
nice sets. We assume that every point on the boundary of the switch regions
is mapped into the interior of a switch region. An analogue of Corollary
3.1 holds in higher dimensions, and so we expect this assumption to hold
generically. As a consequence of this construction we can enlarge the switch
region and not change the univoque set. A similar argument to that given
in the proof of Theorem 2.4 shows that if we enlarge the switch region in a
very careful manner, the points that never map into the switch region are
precisely those whose codings avoid a finite set of forbidden words. Therefore
the set of codings of univoque points is a subshift of finite type.
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