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Abstract. It is proved that ideal-based forcings with the side condition method of
Todorcevic (1984) add no random reals. By applying Judah–Repický’s preservation the-
orem, it is consistent with the covering number of the null ideal being ℵ1 that there are
no S-spaces, every poset of uniform density ℵ1 adds ℵ1 Cohen reals, there are only five
cofinal types of directed posets of size ℵ1, and so on. This extends the previous work of
Zapletal (2004).

1. Introduction. In the early 1980s Saharon Shelah isolated the notion
of properness for partial orders [8]. In the context of forcing in set theory,
this property might be very useful since it is preserved under countable
support iteration and because no proper poset collapses ω1. In particular,
proper posets enable us to introduce many consistency results which cannot
be forced by ccc forcings. It is worth pointing out that Stevo Todorcevic
has considerably extended this range of applications. In fact, he discovered
the side condition method which is a general tool to add an uncountable
set by means of a proper forcing (e.g. [12]). For example, one can add an
uncountable discrete subset through any given right-separated hereditarily
separable regular space using this technique [14, §8] (see Example 2.3).

Jindřich Zapletal proved that two kinds of forcings (and their iterations)
do not increase the additivity of the null ideal [22]. One of them is of the form
“the specializations of Aronszajn trees”, and the other is a wide collection
of posets equipped with side conditions, the so-called ideal-based forcings
[22]. The forcing mentioned above for introducing an uncountable discrete
subspace to a regular right-separated hereditarily separable space belongs
to this class, and so it is consistent that the additivity of the null ideal is
equal to ℵ1 and there are no S-spaces (here, an S-space is a hereditarily
separable regular space which has a non-Lindelöf subspace). Shelah and
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Zapletal proved that it is consistent that every complete Boolean algebra of
uniform density ℵ1 has a complete Boolean subalgebra which is isomorphic
to Cω1 (1) [10]. Zapletal pointed out that an ideal-based forcing is used to
prove this consistency.

In [6], Judah and Repický gave a general preservation theorem for count-
able support iterations of proper forcings. They defined the notion of a cov-
ering family (explained in §2.2). A poset which preserves any covering family
adds no random reals, and so preservation of covering families guarantees
that its forcing extension does not increase the covering number of the null
ideal. It follows from their general preservation theorem that a countable
support iteration of proper forcings which preserve any covering family adds
no random reals, and they proved that a σ-centered forcing (2) preserves any
covering family (see §2.2). As a corollary, they proved that any countable
support iteration of σ-centered forcings adds no random reals.

In [18, §5.2], the author introduced a subclass of ccc forcings which in-
cludes the specializations of Aronszajn trees, and showed that forcings in
this class do not increase the covering number of the null ideal. This extends
one of the previous results due to Zapletal mentioned above. In this paper,
it is proved that ideal-based forcings preserve any covering family. So, by
combining results due to Judah and Repický mentioned above, any count-
able support iteration of ideal-based forcings adds no random reals. As an
application, it is consistent with the covering number of the null ideal being
ℵ1 that there are no S-spaces, every poset of uniform density ℵ1 adds ℵ1
Cohen reals, etc.

2. Preliminaries

2.1. The ideal-based forcing with the side condition method

Definition 2.1 (Zapletal, [22, §3]). A triple 〈A,v, J〉 is called an ideal-
based triple if

(A) A ⊆ [ω1]
<ℵ0 and v is a transitive relation on A which refines the

set-inclusion such that

• for each a ∈ A and β ∈ ω1, a ∩ β ∈ A and a ∩ β v a, and
• for each a, b ∈ A, if a and b are v-compatible (i.e. there exists
c ∈ A such that a v c and b v c), then a ∪ b is in A and is a
v-upper bound of a and b,

(1) Cℵ1 is the set of finite partial functions from ω1 into {0, 1}, ordered by reverse
inclusion, i.e. for p, q ∈ Cω1 , q ≤Cω1

p iff q ⊇ p.
(2) A subset P of a poset P is called centered if every finite subset of P has a common

extension in P, and a poset is called σ-centered if it is a union of countably many centered
subsets.
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(B) J is a non-principal ideal on ω1 such that

• every J-positive set has a countable J-positive subset, and
• the σ-ideal σJ generated by J is a proper ideal,

(C) for each a ∈ A, there exists a σJ-positive set Z such that for every
β ∈ Z, a ∪ {β} is in A and a v a ∪ {β}, and

(D) for each a ∈ A, there exists an J-large set Y such that for every
β ∈ Y , if (a ∩ β) ∪ {β} is in A and a ∩ β v (a ∩ β) ∪ {β}, then
a ∪ {β} is in A and a v a ∪ {β}.

We will give a typical example of ideal-based triples below. For each
ideal-based triple 〈A,v, J〉, we will define the ideal-based forcing derived
from 〈A,v, J〉, denoted by P(A,v, J). For an ideal-based triple 〈A,v, J〉, we
identify J with its (minimal) fixed base, and let κJ be the successor cardinal
of the least cardinality of a basis of the ideal J. The cardinal κJ is not larger
than (2ℵ1)+, and since J is a non-principal ideal on ω1, we have κJ ≥ ℵ2.
We apply P(A,v, J) to iterate by countable support when κJ is equal to ℵ2.
For an ideal-based triple 〈A,v, J〉, we writeM(A,v, J) for the set of count-
able elementary substructures of the structure 〈H(κJ),∈, /κJ , A,v, J〉 (/κJ
is a well-ordering of H(κJ)). For each M ∈ M(A,v, J), we denote by M
the transitive collapse of M , and by ΨM the transitive collapsing map from
M onto M . This viewpoint is necessary to check that P(A,v, J) has the
ℵ2-properness isomorphism condition (ℵ2-pic for short, which is defined
by Shelah [9, Ch. VIII, §2], see also Definition 3.2 later, [13, §4] and [10,
§3]). The ℵ2-pic is used to guarantee that a countable support iteration of
P(A,v, J) of length ≤ ω2 has the ℵ2-chain condition.

Definition 2.2 (Todorcevic, Zapletal, et al.). For an ideal-based triple
〈A,v, J〉, P(A,v, J) consists of functions p such that

(i) dom(p) is a finite ∈-chain of transitive collapses of members of
M(A,v, J),

(ii) for each t ∈ dom(p), p(t) is a pair 〈ξpt ,N
p
t 〉 such that

• ξpt ∈ ω1,
• N p

t is a finite subset of M(A,v, J) such that the transitive col-
lapse of each member of N p

t is equal to the structure t,

(iii) for each t ∈ dom(p) and t′ ∈ dom(p) ∩ t, ξpt′ ∈ t,
(iv) {ξpt ; t ∈ dom(p)} ∈ A,
(v) for each t ∈ dom(p), t′ ∈ dom(p) ∩ t and M ′ ∈ N p

t′ , there exists
M ∈ N p

t such that M ′ ∈M , and
(vi) for each t ∈ dom(p), ξpt 6∈

⋃
(J∩(

⋃
N p

t )) (hence in particular ξpt 6∈M
for each M ∈ N p

t ),



142 T. Yorioka

and for each q and p in P(A,v, J),

q ≤P(A,v,J) p :⇔ dom(p) ⊆ dom(q) and for each t ∈ dom(p),

N p
t ⊆ N

q
t and {ξpt ; t ∈ dom(p)} v {ξqt; t ∈ dom(q)}.

This is the ℵ2-pic version of forcings with the side condition method
(Zapletal calls them forcings amended ideal-based in [22, §3]). Todorcevic and
others proved that P(A,v, J) in each situation is a proper forcing which has
the ℵ2-pic (e.g. [13, §4] and [10, §3]). Shelah proved that a countable support
iteration of ℵ2-pic forcings of length ≤ ω2 has the ℵ2-chain condition [9, Ch.
VIII, 2.3 Lemma] (see also [13, Lemma 7] and [10, Fact 32]). Therefore a
countable support iteration of ideal-based forcings of length ≤ ω2 does not
collapse any cardinal, over the ground model which satisfies CH. Zapletal
proved that every P(A,v, J) is friendly, which is a sufficient condition for
keeping the additivity of the null ideal small [22]. By clause (C) in Definition
2.1, P(A,v, J) adds an uncountable v-filter on A.

Example 2.3 (Shooting an uncountable discrete subspace into a right-
separated hereditarily separable regular space). The following is in [14, 8.9.
Theorem]. See also [11, Theorem 8 and Corollary 9].

Let (ω1, τ) be a right-separated hereditarily separable regular space,
that is,

• (right-separated) for each ξ ∈ ω1, ξ (which is considered as the set of
ordinals less than ξ) is an open subset of this space (i.e. ξ ∈ τ), and
• (hereditarily separable) every subspace is separable, that is, every sub-

space has a countable dense subset.

For each ξ ∈ ω1, we fix Uξ ∈ τ such that ξ ∈ Uξ and Clτ (Uξ) ⊆ ξ + 1. We
define A := [ω1]

<ℵ0 , for each a, b ∈ A,

a v b :⇔ a ⊆ b and ∀ξ ∈ b \ a ∀η ∈ a (ξ 6∈ Uη)
and

J := {X ⊆ ω1; Clτ (X) is countable}.

Then A satisfies clause (A) in Definition 2.1. By hereditary separability,
J satisfies clause (B). For each a ∈ A, the set [max(a) + 1, ω1) is a σJ-
positive set which witnesses clause (C) for this a. For each a ∈ A, the set
ω1 \

⋃
ξ∈a Clτ (Uξ) is a J-large set which witnesses clause (D) for this a.

Therefore 〈A,v, J〉 is an ideal-based triple.

Let G be an uncountable filter on P(A,v, J). Then we can find an un-
countable subset H of G such that the set{

{ξpt ; t ∈ dom(p)}; p ∈ H
}

forms a ∆-system with root ∆. Then by the definition of v and the fact
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that H is a subset of a v-filter,⋃
p∈H

(
{ξpt ; t ∈ dom(p)} \∆

)
is an uncountable discrete subspace.

Example 2.4 (Forcing the P -ideal dichotomy by finite approximations).
The P -ideal dichotomy was introduced by Todorcevic [16]. To force it, there
are two options: One is forcing by countable approximations [16], and the
other is forcing by finite approximations [13, p. 722] (see also [17, Theorem
20.6] and [7, §5.2]). The latter case used models as side conditions. This may
not fit the form of ideal-based forcings, but it has very similar properties. In
fact, the proof in §§3–4 can be applied to the following forcing P(I). This is
an ℵ2-pic version of the forcing described in [17, Theorem 20.6] and [7, §5.2].
The definition and proofs of the statements about (a non-ℵ2-pic version of)
P(I) are given in [17, Theorem 20.6].

Let S be an uncountable set and I a P -ideal on [S]≤ℵ0 , that is, I is
an ideal whose members are countable subsets of S with the property that
for every A ∈ [I]≤ℵ0 , there exists b ∈ I such that a \ b is finite (we say
that a is almost contained in b, denoted by a ⊆∗ b) for every a ∈ A. The
P -ideal dichotomy is the statement that for every uncountable set S and
every P -ideal I on [S]≤ℵ0 , there exists either an uncountable subset X of S
such that [X]≤ℵ0 ⊆ I, or a countable decomposition S =

⋃
n∈ω Sn such that

each Sn is orthogonal to I, that is, Sn ∩ a is finite for every a ∈ I.
Suppose that S cannot be covered by countably many subsets of S ortho-

gonal to I. Now we assume that S has size ℵ1. If not, the following definition
does not make sense (3). To simplify notation, we assume that S = ω1. Here,
we consider the structure H((2ℵ1)+) equipped with its well-ordering. For a
countable elementary substructure M of H((2ℵ1)+), we write δM := ω1∩M .
The value δt for each transitive collapse t of countable elementary substruc-

tures of H(
(
2ℵ1
)+

) is well-defined. P(I) consists of functions p such that

• dom(p) is a finite ∈-chain of transitive collapses of countable elemen-
tary substructures of H((2ℵ1)+) which contains S and I as members,
• for each t ∈ dom(p), p(t) is a pair 〈bpt, x

p
t,N

p
t 〉 such that

– bpt ∈ I,
– xpt ∈ S \M ,
– N p

t is a finite set of countable elementary substructures ofH((2ℵ1)+)
which contains S and I as members such that the transitive collapse
of each member of N p

t is equal to the structure t,
– bpt ⊆ S ∩ δt, and for every M ∈ N p

t and a ∈ I ∩M , a ⊆∗ bpt,

(3) For a general S, a non-amended version of P(I) is proper, but may not satisfy the
ℵ2-pic.
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• for each t ∈ dom(p) and t′ ∈ dom(p) ∩ t, we have {bpt′ , x
p
t′} ∈ t,

• for each t ∈ dom(p), t′ ∈ dom(p) ∩ t and M ′ ∈ N p
t′ , there exists

M ∈ N p
t such that M ′ ∈M , and

• for each t ∈ dom(p), M ∈ N p
t and Y ∈ P(S)∩M which is orthogonal

to I, we have xpt 6∈ Y ,

and for each p and q in P(I),

q ≤P(I) p :⇔ dom(p) ⊆ dom(q) and for each t ∈ dom(p),

bpt = bqt, N
p
t ⊆ N

q
t and ({xqs : s ∈ dom(q)} \ {xps : s ∈ dom(p)}) ∩ δt ⊆ bpt.

For a filter G of P(I), letting

XG := {xpt; p ∈ G and t ∈ dom(p)},

we note that [XG]≤ℵ0 ⊆ I. By identifying a member p ∈ P(I) with the set
{xpt; t ∈ dom(p)} and letting J be the ideal which consists of all subsets of
S orthogonal to I, the triple 〈P(I),≤P(I), J〉 looks like an ideal-based triple
(but we cannot drop information about bpt for each t ∈ dom(p) to force with
the forcing P(I)). In fact, 〈P(I),≤P(I), J〉 has the following properties:

(a) Every subset of any condition of P(I) is also a condition of P(I),
and if conditions p and q of P(I) are compatible, then p ∪ q is their
common extension in P(I).

(b) Clause (B) in Definition 2.1 holds for the ideal J.
(c) Every condition of P can be extended arbitrarily.
(d) For any condition p ∈ P(I), t ∈ dom(p), M ∈ N p

t and a J-positive
subset Z ∈M of S, the set Z ∩

⋂
t′∈dom(p)\t b

p
t′ is not empty.

It follows from these properties that P(I) is proper and satisfies the ℵ2-pic
and, by the similar proof below, one can show that P(I) adds no random
reals.

Here, we should notice that it may be impossible to force the P -ideal di-
chotomy for P -ideals on ω1 by an iteration of length ω2, because a P -ideal is
not necessarily an ℵ1-structure, and hence the classical book-keeping argu-
ments do not work. The P -ideal dichotomy is forced by a countable support
iteration of length a supercompact cardinal with Laver function (as a book-
keeping device), like a forcing of the Proper Forcing Axiom [16, Lemma 7].
However, it is possible to force the P -ideal dichotomy for ℵ1-generated P -
ideals on ω1 with a book-keeping procedure like e.g. the one in [5, §4] (4).

For the other examples, Zapletal pointed out that the following state-
ments can be forced by ideal-based forcings.

(4) Iterations of forcings for ideals on ω1 with ℵ1 generators are studied in [2, §3] (also
in [4, §1.5]). In [4] (and [1]), basics of iterations of ℵ2-pic forcings are also detailed.
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• Classification of transitive relations on ℵ1 (Todorcevic [13, 15]).
• Shooting an uncountable set through a coherent sequence on ω1(Todor-

cevic [14, §8]).
• Making a poset of uniform density ℵ1 add ℵ1 Cohen reals (Shelah and

Zapletal [10]).

The Open Coloring Axiom due to Todorcevic can be forced by the itera-
tion of forcings with the side condition method [14, p. 85 and 8.0. Theorem]
(see also [17, Theorem 11.2] and [7, §5.1]). But it is not known whether
the standard forcing with the side condition method for the Open Coloring
Axiom can be considered as an ideal-based forcing, or whether we have an
ideal-based forcing for the Open Coloring Axiom.

2.2. Judah and Repický’s preservation theorem for adding no
random reals

Definition 2.5 (Judah and Repický [6], [3, §6.3.B]). Let

S :=

{
f ∈ ωP(2<ω); for each n ∈ ω, f(n) ⊆ n2 and

∑
n∈ω

|f(n)|
2n

≤ 1

}
.

For each f ∈ S, write

Of := {x ∈ ω2; ∀n ∈ ω ∃m ≥ n such that x�m ∈ f(m)}.

A subset F of S is called a covering family if

• F is σ-directed, i.e. for any F ∈ [F ]≤ℵ0 , there exists g ∈ F such that
for every f ∈ F ,

∃n ∈ ω ∀m ≥ n
(
f(n) ⊆ g(n)

)
,

• for any x ∈ ω2, there exists f ∈ F such that x ∈ Of .

S is a set of codes of Gδ-null sets, and a covering family is a set of codes
whose decodes cover the set of the reals. The covering number of the null
ideal is equal to the smallest size of a covering family. We note that a forcing
P adds no random reals if and only if (letting V be the ground model)


P “ the family S ∩ V is still a covering family ”.

We say that a forcing P preserves any covering family if for any covering
family F ⊂ S (in the ground model),


P “F is still a covering family ”.

“Preserving any covering family” is somewhat stronger than “adding no
random reals”. Actually, this notion is necessary because there is a two-step
iteration of proper forcings such that neither step adds a random real but
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the iteration does (5). Judah and Repický proved that for any countable
support iteration 〈Pn, Q̇n; n ∈ ω〉 of proper forcings, if no Pn adds random
reals, then Pω adds no random reals [6, Corollary 4(a)]. We note that for
any two-step iteration P ∗ Q̇ of proper forcings, if P adds no random reals
and forces that Q̇ preserves any covering family, then P ∗ Q̇ adds no random
reals. Thus a countable support iteration of proper forcings which preserve
any covering family adds no random reals.

Judah and Repický also proved that σ-centered forcings preserve any
covering family [6, Theorem 5]. Therefore, a countable support iteration of
σ-centered forcings adds no random reals.

The author introduced the property R1,ℵ1 [18, 20] and the rectangle
refining property [19], both stronger than the countable chain condition. In
[18, Theorem 5.4], the author proved that forcings with the property R1,ℵ1
(or the rectangle refining property) add no random reals. It follows from this
proof that forcings with the property R1,ℵ1 preserve any covering family.

3. Proofs of properness and the ℵ2-pic. In this section, we show that
every ideal-based forcing is proper and satisfies the ℵ2-pic. For the proof,
we refer to papers about the side condition method listed in the references.
Since the proof in the next section is fairly self-contained, this section can
be skipped.

Theorem 3.1 (Todorcevic, Zapletal, et al). Every ideal-based forcing
P(A,v, J) is proper.

Proof. Let 〈A,v, J〉 be an ideal-based triple, P := P(A,v, J), θ a large
enough regular cardinal, N a countable elementary submodel of H(θ) which
contains 〈A,v, J〉 and H(κJ) as members, and p ∈ P ∩N . By clause (C) in
Definition 2.1, there exists η in ω1 \

⋃
(J ∩N) such that

{ξpt ; t ∈ dom(p)} ∪ {η} ∈ A.
Define

p+ := p ∪
{〈
H(κJ) ∩N, 〈η, {H(κJ) ∩N}〉

〉}
.

We will show that p+ is an (N,P)-generic condition.

(5) This is mentioned in [23, p. 114]. Actually, the iteration Cω1 ∗ BV adds a random
real, where BV is the forcing notion in the extension with Cω1 such that conditions of BV
are ones of the random forcing in the ground model. This is because Cω1 ∗ BV is forcing-
equivalent to the product Cω1 ×B, where B is the random forcing. And we note that Cω1

adds no random reals, and BV adds no random reals in the extension V Cω1 with Cω1 . To
see this, let x be a real in the extension with Cω1 ∗ BV . Then there exists α < ω1 such
that x is a real in the extension with Cα ∗ BV which is forcing-equivalent to Cα × B. Let
c be a Cohen real over V Cα in V Cω1 . Then c is Cohen over the extension with Cα × B.
Since a Cohel real makes the set of ground model reals of measure zero, x belongs to the
null set defined with c. So x is not random over V Cω1 .
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Let D ∈ N be an open dense subset of P, and q an extension of p+ in P
such that q ∈ D. By extending each N q

t if necessary, we may assume that

(N) for each t ∈ dom(q) ∩N ,{(
(ΨH(κJ)∩N )−1 ◦ ΨM ′′

)
(M ′); M ′′ ∈ N q

H(κJ)∩N
and M ′ ∈ N q

t ∩M ′′
}
⊆ N q

t .

Since ω1∩M = ω1∩M ′ whenever M and M ′ inM(A,v, J) are isomorphic,
taking these isomorphic copies as above does not interfere with clause (vi) in
Definition 2.2. Let l := |dom(q) \ (dom(q) ∩N)|. By clause (v) in Definition
2.2, it is possible to take an increasing chain 〈Kj ; j < l〉 of members of⋃

t∈dom(q)\(dom(q)∩N)N
q
t such that K0 := H(κJ) ∩ N . Then for each i < l,

〈ξq
Kj

; j < i〉 is in Ki. We define Tl to be the set of σ ∈ lω1 with the following

property: There exists s ∈ D such that

• dom(s) end-extends dom(q) ∩N ,
(H) for each t ∈ dom(q) ∩N , N s

t includes N q
t ∩N as a subset,

• {ξst; t ∈ dom(s)} end-extends {ξqt; t ∈ dom(q) ∩N}, and
• {ξst; t ∈ dom(s) \ (dom(q) ∩N)} = ran(σ).

Then even if q is not in N , since N contains {ξqt,N
q
t ∩N ; t ∈ dom(q) ∩N}

and D as members, Tl is in N ∩H(κJ) = K0. Also 〈ξq
Kj

; j < l〉 is in Tl. By
downward induction on j < l, we define Tj such that

Tj := Tj+1 \
{
σ ∈ Tj+1; {τ(j); τ ∈ Tj+1 and τ�j = σ�j} ∈ J

}
.

We note that the sequence 〈Tj ; j ≤ l〉 is in K0, hence in Ki for each i < l.

We will show that 〈ξq
Kj

; j < l〉 is also in T0. We have observed that

〈ξq
Kj

; j < l〉 is in Tl. Suppose that i < l and 〈ξq
Kj

; j < l〉 ∈ Ti+1. Then by

clause (vi) in Definition 2.2, we have ξq
Ki
6∈
⋃

(J ∩Ki), and also

ξq
Ki
∈
{
τ(i); τ ∈ T ′i+1 and τ�i = 〈ξq

Kj
; j < i〉

}
∈ Ki.

Thus the set {τ(i); τ ∈ Ti+1 and τ�i = 〈ξq
Kj

; j < i〉} is J-positive, and hence

〈ξq
Kj

; j < l〉 ∈ Ti.
Therefore, when we consider T0 as a tree which consists of all initial

segments of members of T0, then T0 has a cofinal branch (of length l), and
each non-terminal node has J-positive many successors in T0. By induction
on ν < l we will take ζν ∈ ω1 ∩N = ω1 ∩K0 such that

• 〈ζµ; µ < ν〉 is an initial segment of some member of T0,
• {ξrt; t ∈ dom(r)} ∪ {ζµ; µ < ν} is in A, and
• {ξrt; t ∈ dom(r)} v {ξrt; t ∈ dom(r)} ∪ {ζµ; µ ≤ ν}.
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Given 〈ζµ; µ < ν〉, by clause (D) in Definition 2.1, there exists a J-large
subset Yν of ω1 such that for each β ∈ Yν , if(

({ξrt; t ∈ dom(r)} ∪ {ζµ; µ < ν}) ∩ β
)
∪ {β} ∈ A

and

({ξrt; t ∈ dom(r)} ∪ {ζµ; µ < ν}) ∩ β
v
(
({ξrt; t ∈ dom(r)} ∪ {ζµ; µ < ν}) ∩ β

)
∪ {β},

then

{ξrt; t ∈ dom(r)} ∪ {ζµ; µ < ν} ∪ {β} ∈ A
and

{ξrt; t ∈ dom(r)} ∪ {ζµ; µ < ν} v {ξrt; t ∈ dom(r)} ∪ {ζµ; µ < ν} ∪ {β}.
By the properties of T0, there exists ζν ∈ Yν such that 〈ζµ; µ ≤ ν〉 is an
initial segment of some member of T0. Since ζν ∈ Yν and

({ξrt; t ∈ dom(r)}∪{ζµ; µ < ν})∩ζν = {ξrt; t ∈ dom(r) ∩N}∪{ζµ; µ < ν},
by the properties of T0 and Yν , and clause (A) in Definition 2.1, we conclude
that

{ξrt; t ∈ dom(r)} ∪ {ζµ; µ ≤ ν} ∈ A
and

{ξrt; t ∈ dom(r)} ∪ {ζµ; µ < ν} v {ξrt; t ∈ dom(r)} ∪ {ζµ; µ ≤ ν},
which finishes the choice of ζν .

We take r ∈ P ∩ K0 which witnesses that 〈ζν ; ν < l〉 ∈ T0. Then r is
in D. We define r+ such that

• dom(r+) := dom(r) ∪ dom(q),

• for each t ∈ dom(r), ξr
+

t := ξrt, and for each t ∈ dom(q) \ dom(r),

ξr
+

t := ξqt, and

• for each t ∈ dom(q) \ dom(r), we have N r+
t := N q

t ; for each
t ∈ dom(r) \ dom(q),

N r+

t := N r
t ∪

{
((ΨM ′′)

−1 ◦ ΨH(κJ)∩N )(M ′);

M ′′ ∈ N q

H(κJ)∩N
& M ′ ∈ N r

t ∩N
}

;

and for each t ∈ dom(r) ∩ dom(q), N r+
t := N r

t ∪N
q
t .

We now check that r+ is a condition of P. First, r+ satisfies clauses (i)–(iii)
in Definition 2.2 by the definition of r+, and clause (iv) by the choice of
〈ζν ; ν < l〉.

To check (v) we only consider the non-trivial case: Let t ∈ dom(r) \
dom(q), t′ ∈ dom(q) ∩ t (then t′ ∈ dom(q) ∩ N) and K ′ ∈ N q

t′ \ N
r
t′ . By
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clause (v) for q, there exists M ′′ ∈ N q

H(κJ)∩N
such that K ′ ∈ M ′′. So by

clause (N), the set

((ΨH(κJ)∩N )−1 ◦ ΨM ′′)(K ′)
is in N q

t′ ∩N . By clause (H) and clause (v) for r, there exists L ∈ N r
t (⊆ N)

such that

((ΨH(κJ)∩N )−1 ◦ ΨM ′′)(K ′) ∈ L.
Then

K ′ ∈ ((ΨM ′′)
−1 ◦ ΨH(κJ)∩N )(L) ∈ N r+

t .

To check clause (vi), we only consider the non-trivial case: Let t ∈
dom(r)\dom(q),M ∈ N r+

t \N andX ∈ J∩M ; we will show that ξr
+

t 6∈ X. By

the definition of r+, ξr
+

t = ξrt and there are M ′′ ∈ N q
H(κJ)∩N , M ′ ∈ N r

t ∩N
and X ′ ∈M ′ such that

M = ((ΨM ′′)
−1 ◦ ΨH(κJ)∩N )(M ′),

X = ((ΨM ′′)
−1 ◦ ΨH(κJ)∩N )(X ′).

Since (ΨM ′′)
−1 ◦ΨH(κJ)∩N is an isomorphism from the structure 〈H(κJ)∩N,

A,v, J〉 onto 〈M ′′, A,v, J〉, and X∈J∩M in M ′′, X ′∈J∩M ′ in H(κJ) ∩N ,
we have ξrt 6∈ X ′ in H(κJ)∩N . So since the isomorphism (ΨH(κJ)∩N )−1◦ΨM ′′
does not move ξrt, it follows that ξrt 6∈X in M ′′.aCheck r+∈P

By the choice of 〈ζν ; ν < l〉, r+ is a common extension of r and q.

Definition 3.2 (Shelah [9, Ch. VIII, 2.1 Definition]). A poset P satis-
fies the ℵ2-properness isomorphism condition (ℵ2-pic) if for any large enough
regular cardinal θ, any α, β ∈ ω2 with α < β, any countable elementary sub-
models Nα and Nβ of the structure H(θ) (equipped with its well-ordering)
such that α ∈ Nα, β ∈ Nβ, P ∈ Nα∩Nβ, Nα∩ω2 ⊆ β and Nα∩α = Nβ ∩β,
any p ∈ P∩Nα and any isomorphism π : Nα → Nβ such that π(α) = β and
π�(Nα ∩Nβ) = id, there exists an (Nα,P)-generic extension q of both p and
π(p) in P such that

q 
P “π[ĠP ∩Nα] = ĠP ∩Nβ ”.

Lemma 3.3 (Todorcevic, Zapletal, et al.). Every ideal-based forcing
P(A,v, J) satisfies the ℵ2-pic.

Proof. Suppose that θ is a large enough regular cardinal, α and β are
in ω2 with α < β, Nα and Nβ are countable elementary submodels of the
structure H(θ) (equipped with its well-ordering) such that α ∈ Nα, β ∈ Nβ,
P(A,v, J) ∈ Nα ∩ Nβ, Nα ∩ ω2 ⊆ β and Nα ∩ α = Nβ ∩ β, p ∈ P(A,v, J)
∩ Nα, and π : Nα → Nβ is an isomorphism such that π(α) = β and
π�(Nα ∩Nβ) = id. Then Nα ∩ ω1 = Nβ ∩ ω1 and Nα ∩ P(ω) = Nβ ∩ P(ω).

Thus dom(p) = dom(π(p)) and ξpt = ξ
π(p)
t for each t ∈ dom(p). Let s be the
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transitive collapse of Nα ∩H(κJ) and take η ∈ A \
⋃

(J∩ (Nα ∪Nβ)). Define
a function q with domain dom(p) ∪ {s} by setting q(t) := 〈ξpt ,N

p
t ∪N

π(p)
t 〉

for each t ∈ dom(p), and q(s) := 〈η, {Nα ∩H(κJ), Nβ ∩H(κJ)}〉. Then q is
a common extension of p and π(p). Using the previous argument that r and
q are compatible in P(A,v, J), it follows that

q 
P “π[ĠP ∩Nα] = ĠP ∩Nβ ”.

Shelah proved that, under CH, for any iteration 〈Ṗα, Q̇β; α ≤ ω2, β < ω2〉
with countable support, if for each α < ω2, 
Pα “ Q̇α satisfies the ℵ2-pic ”,
then for each α < ω1, Pα also satisfies the ℵ2-pic and forces CH, and Pω2

satisfies the ℵ2-cc [9, Ch. VIII, 2.4 Lemma and 2.9 Claim] (see also [1, §5.4]).
Therefore, by use of a countable support iteration of ideal-based forcings of
length ω2 with some book-keeping device under CH, it can be forced that
the size of the continuum is ℵ2, there are no S-spaces, there are only five
cofinal types of directed sets of size ℵ1, every poset of uniform density ℵ1
adds ℵ1 Cohen reals, etc.

4. The proof that no random reals are added. The outline of the
following proof is similar to the one of [18, Theorem 5.4] and [21, §3].

Theorem 4.1. Every ideal-based forcing P(A,v, J) preserves any cov-
ering family.

Proof. Let 〈A,v, J〉 be an ideal-based triple, P := P(A,v, J) and F ⊆ S
a covering family. We show that


P “F is still a covering family ”.

Suppose that p ∈ P and ẋ is a P-name for a function in ω2. Let λ be a
regular cardinal such that 〈A,v, J〉 and H(κJ) are members of H(λ), and
define

M(A,v, J)+ :=
{
M+ ∩H(κJ); M+ ≺ H(λ) countable

& {〈A,v, J〉, H(κJ)} ∈M+
}
.

We consider members of M(A,v, J)+ as members of M(A,v, J). Let θ be
a large enough regular cardinal, and N a countable elementary submodel
of H(θ) which contains 〈A,v, J〉, H(κJ), H(λ), F and ẋ as members. We
note that N contains P andM(A,v, J)+ as members. Since F is a covering
family (in particular, is σ-directed) and ω2 ∩ N is countable, there exists
f ∈ F such that

ω2 ∩N ⊆ Of .
By clause (C) in Definition 2.1, there exists ξ0 in ω1 \

⋃
(J ∩N) such that

{ξpt ; t ∈ dom(p)} ∪ {ξ0} ∈ A.
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Define

p+ := p ∪
〈
H(κJ) ∩N, 〈ξ0, {H(κJ) ∩N}〉

〉
.

(As seen in the proof of Theorem 3.1, p+ is an (N,P)-generic condition. We
do not use this fact below.) We will show that

p+ 
P “ ẋ ∈ Of ”,

which finishes the proof.

Suppose that

p+ 6
P “ ẋ ∈ Of ”,

and take q ≤P p
+ and n ∈ ω such that

q 
P “∀m ≥ n (ẋ�m 6∈ f(m)) ”.

By extending each N q
t′ if necessary, we may assume that for each t′ in

dom(q) ∩N , we have

{((ΨH(κJ)∩N )−1 ◦ ΨM )(M ′); M ∈ N q

H(κJ)∩N
and M ′ ∈ N q

t′ ∩M} ⊆ N
q
t′ .

Since ω1∩M = ω1∩M ′ whenever M and M ′ inM(A,v, J) are isomorphic,
taking these isomorphic copies as above does not interfere with clause (vi)
in Definition 2.2.

Here, for each finite ∈-chain σ, let min(σ) denote the ∈-minimal element
of σ. For each k ∈ ω, define Sk to be the set of v ∈ k2 with the follow-
ing property: There are γ ∈ ω1 and M ∈ M(A,v, J)+ containing ẋ and
{ξqt′ ,N

q
t′ ∩N ; t′ ∈ dom(q) ∩N} such that for every r ∈ P, if

• dom(r) end-extends dom(q) ∩N ,
• {ξrt; t ∈ dom(r)} end-extends {ξqt′ ; t

′ ∈ dom(q) ∩N},
(•) there exists K ∈ N r

min(dom(r)\(dom(q)∩N)) with M ∈ K such that for

each t′ ∈ dom(q) ∩N ,

{((ΨK)−1 ◦ ΨM ′′)(M ′); M ′′ ∈ N r
K

and M ′ ∈ N r
t′ ∩M ′′} ⊆ N r

t′

and N r
t′ ∩K = N q

t′ ∩N , and
• r 
P “ ẋ�k 6= v ”,

then

ξrmin(dom(r)\(dom(q)∩N)) ≤ γ.

In general, q may not be a member of N , but the sequence 〈Sk; k ∈ ω〉
belongs to the model N . Since {v�k; v ∈ Sk+1} is a subset of Sk for each
k ∈ ω, the set

⋃
k∈ω Sk forms a subtree of (2<ω,⊆). The key point of the

proof is the following claim.

Claim 4.2. For each k ∈ ω, Sk is not empty.
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We will show this claim later. From this claim, the set
⋃
k∈ω Sk forms an

infinite tree, therefore by the elementarity of N , there exists u ∈ ω2∩N such
that u�k ∈ Sk for every k ∈ ω. Since u ∈ ω2 ∩N ⊆ Of , there exists m ≥ n
such that u�m ∈ f(m). Since u�m ∈ Sm in N , there are γ ∈ ω1 ∩ N and
M ∈ M(A,v, J)+ ∩ N which witness that u�m ∈ Sm. Since dom(q) end-
extends dom(q) ∩N , {ξqt; t ∈ dom(q)} end-extends {ξqt′ ; t

′ ∈ dom(q) ∩N},
ξqmin(dom(q)\(dom(q)∩N)) ≥ ω1 ∩N > γ,

and q and H(κJ) ∩N satisfies condition (•), it follows that

q 6
P “ ẋ�m 6= u�m ”.

So there is r ≤P q such that

r 
P “ ẋ�m = u�m ”.

Then

r 
P “ ẋ�m = u�m ∈ f(m) ”,

which is a contradiction.

Therefore it suffices to prove Claim 4.2. The rest of the proof is devoted
to doing that. The following argument is based on a proof of the properness
of P(A,v, J). Let k ∈ ω and suppose that Sk is empty.

Subclaim 4.3. For any v ∈ k2 \ Sk, γ ∈ ω1 and M ∈ M(A,v, J)+

which contains ẋ and {ξqt′ ,N
q
t′ ∩N ; t′ ∈ dom(q) ∩N}, there are l ∈ ω and

T ⊆ lω1 such that

• for each σ ∈ T , σ(0) > γ,
• for each σ ∈ T and j < l, the set {τ(j); τ ∈ T and τ�j = σ�j} is

countable J-positive, and
• for each σ ∈ T , there exists s ∈ P such that

– dom(s) end-extends dom(q) ∩N ,
– {ξst; t ∈ dom(s)} end-extends {ξqt′ ; t

′ ∈ dom(q) ∩N},
– {ξst; t ∈ dom(s) \ (dom(q) ∩N)} = ran(σ),
– there exists K ∈ N s

min(dom(s)\(dom(q)∩N)) with M ∈ K such that for

each t′ ∈ dom(q) ∩N ,

{((ΨK)−1 ◦ ΨM ′′)(M ′); M ′′ ∈ N s
K

and M ′ ∈ N s
t′ ∩M ′′} ⊆ N s

t′

and N s
t′ ∩K = N q

t′ ∩N , and
– s 
P “ ẋ�k 6= v ”.

Proof of Subclaim 4.3. Let v∈k2\Sk, γ∈ω1, and take M ∈M(A,v, J)+

which contains ẋ and {ξqt′ ,N
q
t′ ∩N ; t′ ∈ dom(q) ∩N} as members. Let M+

be a countable elementary submodel of H(λ) which contains 〈A,v, J〉 and
H(κJ) as members such that M = M+ ∩H(κJ). We note that M+ contains
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P as a member. Then by the assumption that v 6∈ Sk, there are r ∈ P and
K0 such that

• dom(r) end-extends dom(q) ∩N ,
• {ξrt; t ∈ dom(r)} end-extends {ξqt′ ; t

′ ∈ dom(q) ∩N},
• M ∈ K0 ∈ N r

min(dom(r)\(dom(q)∩N)), and for each t′ ∈ dom(q) ∩N ,

{((ΨK0)−1 ◦ ΨM ′′)(M ′); M ′′ ∈ N r
K0

and M ′ ∈ N r
t′ ∩M ′′} ⊆ N r

t′

and N r
t′ ∩K0 = N q

t′ ∩N ,
• r 
P “ ẋ�k 6= v ”, and
• ξrmin(dom(r)\(dom(q)∩N)) > γ.

Let l := |dom(r)\ (dom(q)∩N)|. By clause (v) in Definition 2.2, it is possible
to take an increasing chain〈Kj ; j < l〉of members of

⋃
t∈dom(r)\(dom(q)∩N)N r

t,

where K0 is the one already chosen. Then 〈ξr
Kj

; j < i〉 is in Ki for each i < l.

We define T ′l to be the set of σ ∈ lω1 with the following property: There
exists s ∈ P such that

• dom(s) end-extends dom(q) ∩N ,
• {ξst; t ∈ dom(s)} end-extends {ξqt′ ; t

′ ∈ dom(q) ∩N},
• {ξst; t ∈ dom(s) \ (dom(q) ∩N)} = ran(σ),
• there exists K ∈ N s

min(dom(s)\(dom(q)∩N)) with M ∈ K such that for

each t′ ∈ dom(q) ∩N ,

{((ΨK)−1 ◦ ΨM ′′)(M ′); M ′′ ∈ N s
K

and M ′ ∈ N s
t′ ∩M ′′} ⊆ N s

t′

and N s
t′ ∩K = N q

t′ ∩N , and
• s 
P “ ẋ�k 6= v ”.

We note that T ′l is in M+ ∩H(κJ) = M ⊆ K0 and 〈ξr
Kj

; j < l〉 is in T ′l .

By downward induction on j < l, we define

T ′j := T ′j+1 \
{
σ ∈ T ′j+1; {τ(j); τ ∈ T ′j+1 and τ�j = σ�j} ∈ J

}
.

We note that the sequence 〈T ′j ; j ≤ l〉 is in K0, hence in Kj for each j < l.

We will show that 〈ξr
Kj

; j < l〉 is also in T ′0. We have observed that

〈ξr
Kj

; j < l〉 ∈ T ′l . Suppose that i < l and 〈ξr
Kj

; j < l〉 ∈ T ′i+1. Then by

clause (vi) in Definition 2.2, we have ξr
Ki
6∈
⋃

(J ∩Ki), and also

ξr
Ki
∈ {τ(i); τ ∈ T ′i+1 and τ�i = 〈ξr

Kj
; j < i〉} ∈ Ki.

Therefore the set {τ(i); τ ∈ T ′i+1 and τ�i = 〈ξr
Kj

; j < i〉} is J-positive, and

hence 〈ξr
Kj

; j < l〉 ∈ T ′i .



154 T. Yorioka

Next, since the set {σ(0); σ ∈ T ′0} is J-positive, by clause (B) in Defini-
tion 2.1, we can take its countable J-positive subset E∅0 . We define

T ′′0 := {σ ∈ T ′0; σ(0) ∈ E∅0}.

By induction on j < l − 1, we build a set {Eσ�(j+1)
j+1 ; σ ∈ T ′′j } of countable

J-positive sets and T ′′j+1 such that for each σ ∈ T ′′j ,

E
σ�(j+1)
j+1 ⊆ {τ(j + 1); τ ∈ T ′′j and τ�(j + 1) = σ�(j + 1)}

and
T ′′j+1 := {σ ∈ T ′j ; σ(j + 1) ∈ Eσ�(j+1)

j+1 }.
Then T ′′l−1 is as desired. aSubclaim 4.3

Let {vi; i < 2k} enumerate the set k2, and denote M−1 := H(κJ) ∩ N .
By the assumption that Sk = ∅, we have vi 6∈ Sk for every i < 2k. Using
the subclaim, by induction on i < 2k − 1, we take li ∈ ω, Ti ⊆ liω1 and
Mi ∈M(A,v, J)+ such that:

• for each σ ∈ Ti, σ(0) > ω1 ∩Mi−1,
• for each σ ∈ Ti and j < li, the set {τ(j); τ ∈ Ti and τ�j = σ�j} is

countable J-positive (hence Ti is a countable subset of liω1),
•
{
Ti,Mi−1, {ξqt′ ,N

q
t′ ∩N ; t′ ∈ dom(q) ∩N}

}
∈Mi, and

• for each σ ∈ Ti, there exists s ∈ P ∩Mi such that

– dom(s) end-extends dom(q) ∩N ,
– {ξst; t ∈ dom(s)} end-extends {ξqt′ ; t

′ ∈ dom(q) ∩N},
– {ξst; t ∈ dom(s) \ (dom(q) ∩N)} = ran(σ),
– there exists K ∈ N s

min(dom(s)\(dom(q)∩N)) with Mi−1 ∈ K such that

for each t′ ∈ dom(q) ∩N ,

{((ΨK)−1 ◦ ΨK′′)(K ′); K ′′ ∈ N s
K

and K ′ ∈ N s
t′ ∩K ′′} ⊆ N s

t′

and N s
t′ ∩K = N q

t′ ∩N , and
– s 
P “ ẋ�k 6= vi ”.

By the subclaim again, we can take r+
2k−1 ∈ P such that

• dom(r+
2k−1) end-extends dom(q) ∩N ,

• {ξ
(r+

2k−1
)

t ; t ∈ dom(r+
2k−1)} end-extends {ξqt′ ; t

′ ∈ dom(q) ∩N},

(•) there exists K ∈ N
(r+

2k−1
)

min(dom(r+
2k−1

)\(dom(q)∩N))
with M2k−2 ∈ K such

that for each t′ ∈ dom(q) ∩N ,

{((ΨK)−1 ◦ ΨM ′′)(M ′); M ′′ ∈ N
(r+

2k−1
)

K
& M ′ ∈ N

(r+
2k−1

)

t′ ∩M ′′} ⊆ N
(r+

2k−1
)

t′

and N
(r+

2k−1
)

t′ ∩K = N q
t′ ∩N ,
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• r+
2k−1 
P “ ẋ�k 6= v2k−1 ”, and

• ξ
(r+

2k−1
)

min(dom(r+
2k−1

)\(dom(q)∩N))
> ω1 ∩M2k−2.

By downward induction on i < 2k − 1, we will take ri ∈ P ∩Mi and r+i ∈ P
such that

• dom(ri) end-extends dom(q) ∩N ,
• {ξrit ; t ∈ dom(ri)} end-extends {ξqt′ ; t

′ ∈ dom(q) ∩N},
• |dom(ri) \ (dom(q) ∩N)| = li,
• 〈ξri

Ki
j

; j < li〉 ∈ Ti,

(•) there exists

K ∈ N ri
min(dom(ri)\(dom(q)∩N)) with Mi−1 ∈ K

such that for each t′ ∈ dom(q) ∩N ,

{((ΨK)−1 ◦ ΨM ′′)(M ′); M ′′ ∈ N ri
K

and M ′ ∈ N ri
t′ ∩M

′′} ⊆ N ri
t′

and N ri
t′ ∩K = N q

t′ ∩N ,
• ri 
P “ ẋ�k 6= vi ”, and
• r+i is a common extension of ri and r+i+1 in P such that

dom(r+i ) = dom(ri) ∪ dom(r+i+1)

(then it follows that {ξ(r
+
i )

t ; t ∈ dom(r+i )} = {ξrit ; t ∈ dom(ri)} ∪

{ξ(r
+
i+1)

t ; t ∈ dom(r+i+1)}) and for each t′ ∈ dom(q) ∩N ,

N (r+i )

t′ =
⋃

i≤j<2k−1

N rj
t′ ∪N

(r+
2k−1

)

t′ .

This finishes the proof because then r+0 is a common extension of the con-
ditions r+

2k−1 and ri for every i < 2k − 1, and hence

r+0 
P “ ẋ�k 6∈ k2 ”,

which is a contradiction.

Suppose that we have built r+j for each j with i < j < 2k; we will find

ri and r+i . To do so, we will take ζiν ∈ ω1 by induction on ν < li so that

• 〈ζiµ; µ ≤ ν〉 is an initial segment of some member of Ti,

•
⋃
i<j<2k{ξ

(r+j )

t ; t ∈ dom(r+j )} ∪ {ζiµ; µ ≤ ν} is in A, and

•
⋃
i<j<2k{ξ

(r+j )

t ; t ∈ dom(r+j )} v
⋃
i<j<2k{ξ

(r+j )

t ; t ∈ dom(r+j )} ∪
{ζiµ; µ ≤ ν}.
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Given 〈ζiµ;µ < ν〉, by clause (D) in Definition 2.1, there exists a J-large

subset Y i
ν of ω1 such that for each β ∈ Y i

ν , if(( ⋃
i<j<2k

{ξ
(r+j )

t ; t ∈ dom(r+j )} ∪ {ζiµ; µ < ν}
)
∩ β
)
∪ {β} ∈ A

and( ⋃
i<j<2k

{ξ
(r+j )

t ; t ∈ dom(r+j )} ∪ {ζiµ; µ < ν}
)
∩ β

v
(( ⋃

i<j<2k

{ξ
(r+j )

t ; t ∈ dom(r+j )} ∪ {ζiµ; µ < ν}
)
∩ β
)
∪ {β},

then ⋃
i<j<2k

{ξ
(r+j )

t ; t ∈ dom(rj)} ∪ {ζiµ; µ < ν} ∪ {β} ∈ A

and ⋃
i<j<2k

{ξ
(r+j )

t ; t ∈ dom(r+j )} ∪ {ζiµ; µ < ν}

v
⋃

i<j<2k

{ξ
(r+j )

t ; t ∈ dom(r+j )} ∪ {ζiµ; µ < ν} ∪ {β}.

By the properties of Ti, there exists ζiν ∈ Y i
ν such that 〈ζiµ; µ ≤ ν〉 is an

initial segment of some member of Ti. Since ζiν ∈ Y i
ν and( ⋃

i<j<2k

{ξ
(r+j )

t ; t ∈ dom(r+j )} ∪ {ζiµ; µ < ν}
)
∩ ζiν

= {ξqt′ ; t
′ ∈ dom(q ∩N)} ∪ {ζiµ; µ < ν},

by the properties of Y i
ν and clause (A) in Definition 2.1, we conclude that

the set ⋃
i<j<2k

{ξ
(r+j )

t ; t ∈ dom(r+j )} ∪ {ζiµ; µ ≤ ν}

is in A and⋃
i<j<2k

{ξ
(r+j )

t ; t ∈ dom(r+j )} ∪ {ζiµ; µ < ν}

v
⋃

i<j<2k

{ξ
(r+j )

t ; t ∈ dom(r+j )} ∪ {ζiµ; µ ≤ ν},

which finishes the choice of ζiν .
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We take ri ∈ P ∩Mi which witnesses that 〈ξiν ; ν < li〉 ∈ Ti. Let Ki+1 in

N (r+i+1)

min(dom(r+i+1)\(dom(q)∩N))
witness condition (•) for r+i+1. We define r+i such

that

• dom(r+i ) := dom(ri) ∪ dom(r+i+1),

• – for each t ∈ dom(r+i+1) \ dom(ri), ξ
(r+i )
t := ξ

(r+i+1)
t , and

– for each t ∈ dom(ri), ξ
(r+i )
t := ξrit , and

• – for each t ∈ dom(r+i+1) \ dom(ri), N
(r+i )
t := N (r+i+1)

t ,

– for each t ∈ dom(ri) \ dom(r+i+1),

N (r+i )
t := N ri

t

∪
{

((ΨM ′′)
−1 ◦ ΨKi+1)(M ′);M ′′ ∈ N (r+i+1)

Ki+1
& M ′ ∈ N ri

t ∩Ki+1

}
,

– for each t ∈ dom(ri) ∩ dom(r+i+1) (then t ∈ dom(q) ∩N),

N (r+i )
t := N ri

t ∪N
(r+i+1)
t .

By the choice of 〈ζiν ; ν < l〉, if r+i is a condition of P, then r+i is a common
extension of ri and r+i+1. So it suffices to prove that r+i is a condition of P.

Now, r+i satisfies clauses (i)–(iii) in Definition 2.2 by the definition of r+i ,
and clause (iv) by the choice of 〈ζiν ; ν < l〉.

(The rest of the proof is similar to the one of Theorem 3.1.) To check
clause (v) in Definition 2.2, we only consider the non-trivial case: We let
t ∈ dom(ri) \ dom(r+i+1), t

′ ∈ dom(r+i+1) ∩ t (then t′ ∈ dom(q) ∩ N) and

K ′ ∈ N (r+i+1)

t′ \N ri
t′ . Then t ∈Mi ⊆ Ki+1. By clause (v) for r+i+1, there exists

M ′′ ∈ N (r+i+1)

Ki+1
such that K ′ ∈M ′′. By clause (•), the set

((ΨKi+1)−1 ◦ ΨM ′′)(K ′)

is in N (r+i+1)

t′ ∩Ki+1 = N q
t′ ∩N which is included in N ri

t′ ∩N . By clause (v)
for ri, there exists L ∈ N ri

t such that

((ΨKi+1)−1 ◦ ΨM ′′)(K ′) ∈ L.

Since ri ∈Mi ⊆ Ki+1, L is in N ri
t ∩Ki+1. Hence by the definition of r+i ,

K ′ ∈ ((ΨM ′′)
−1 ◦ ΨKi+1)(L) ∈ N (r+i )

t .

To check clause (vi) in Definition 2.2, we only consider the non-trivial

case: Let t ∈ dom(ri) \ dom(r+i+1), M ∈ N
(r+i )
t \N and X ∈ J ∩M ; we will

show that ξ
(r+i )
t 6∈ X. Then by the definition of r+i , we have ξ

(r+i )
t = ξrit and
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there are M ′′ ∈ N (r+i+1)

Ki+1
, M ′ ∈ N ri

t ∩Ki+1 and X ′ ∈M ′ such that

M = ((ΨM ′′)
−1 ◦ ΨKi+1)(M ′), X = ((ΨM ′′)

−1 ◦ ΨKi+1)(X ′).

Since (ΨM ′′)
−1 ◦ ΨKi+1 is an isomorphism from 〈H(κJ) ∩N,A,v, J〉 onto

〈M ′′, A,v, J〉, and since X ∈ J∩M and M ′′, X ′ ∈ J∩M ′ in H(κJ)∩N , we

have ξ
(r+i )
t 6∈ X ′ in H(κJ)∩N . So by the fact that (ΨKi+1)−1 ◦ΨM ′′ does not

move ξ
(r+i )
t , we have ξ

(r+i )
t 6∈ X in M ′′.

Therefore, by the previous work in §§2–3, a countable support iteration
of ideal-based forcings adds no random reals. Therefore we conclude that it
is consistent with the covering number of the null ideal being ℵ1 that there
are no S-spaces, every poset of uniform density ℵ1 adds ℵ1 Cohen reals, etc.
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