
FUNDAMENTA

MATHEMATICAE

226 (2014)

Relative subanalytic sheaves

by

Teresa Monteiro Fernandes and Luca Prelli (Lisboa)

Abstract. Given a real analytic manifold Y , denote by Ysa the associated subanalytic
site. Now consider a product Y = X × S. We construct the endofunctor F 7→ FS on the
category of sheaves on Ysa and study its properties. Roughly speaking, FS is a sheaf
on Xsa × S. As an application, one can now define sheaves of functions on Y which are
tempered or Whitney in the relative sense, that is, only with respect to X.

1. Introduction. Let Y be a real analytic manifold. The subanalytic
sheaf DbtY of tempered distributions defined by Kashiwara–Schapira [10]
takes its origin in Kashiwara’s functor TH (see [5]) as an essential tool to
establish the Riemann–Hilbert correspondence between regular holonomic
D-modules and perverse sheaves.

Let Y = X × S, for some real analytic manifolds X and S. In order to
study relative perversity (see [11]), it appears that a “relative” version of

DbtX×S is required, i.e. a sheaf Dbt,SX×S such that

Γ (U × V ;Dbt,SX×S) ' lim←−
W⊂⊂V

Γ (U ×W ;DbtX×S).

In other words, such a sheaf “forgets” the growth conditions on S.
Let Mod(C(X×S)sa) be the category of subanalytic sheaves on X × S.

The aim of this note is to construct a functor (·)S : Mod(C(X×S)sa) →
Mod(C(X×S)sa) such that, given F ∈ Mod(C(X×S)sa),

(1.1) Γ (U × V ;FS) ' lim←−
W⊂⊂V

Γ (U ×W ;F ),

or, more generally, when F is a bounded complex of subanalytic sheaves and
G (resp. H) is a bounded complex of R-constructible sheaves on X (resp. S),
its derived version (·)RS satisfying

(1.2) RHom(G�H,FRS) ' RHom(CX �H, ρ−1RHom(G� CS , F )),

where ρ : X × S → (X × S)sa is the natural functor of sites.
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Recall that, by the definition of T -space introduced in [10] (cf. also [3]),
the usual subanalytic site (X×S)sa can also be regarded as the site (X×S)T
where T is the family of all relatively compact subanalytic open subsets. If
we let T ′ be the family of finite unions of open relatively compact subsets
of the form U × V , with U subanalytic in X and V subanalytic in S, then
X ×S becomes a T ′-space, and the associated site is the product Xsa×Ssa.
We denote by η the morphism of sites (X × S)sa → Xsa × Ssa, by ρ the
morphism of sites X × S → (X × S)sa and by ρ′ the morphism of sites
X × S → Xsa × Ssa.

In this note, to any T -sheaf F (that is, a sheaf on the site associated
to T , or a subanalytic sheaf) we associate canonically a T ′-sheaf FS,] which
in some way forgets the dependence of F on the subanalytic factor Ssa. We
then define the relative sheaf FS as the inverse image under η of the T ′-sheaf
FS,], thus obtaining a subanalytic sheaf on (X×S)sa. This construction leads
to a left exact functor (·)S from the abelian category of subanalytic sheaves
on X × S into itself. Denoting by (·)RS its right derived functor, we prove
in Proposition 4.7 that (·)RS satisfies, for F ∈ Db(C(X×S)sa), G ∈ Db

R-c(CX)

and H ∈ Db
R-c(CS), natural isomorphisms

ρ−1RHom(G�H,FRS) ' ρ−1RHom(G� ρ!H,F )

' RHom(CX �H, ρ−1RHom(G� CS , F )),

In particular, when G = CX and H = CS we have ρ−1F ' ρ−1FRS '
ρ′−1FRS,].

We then apply our construction to DbtX×S and obtain the subanalytic

sheaf Dbt,SX×S of relative tempered distributions with respect to a projection
f : X×S → S. As the notation suggests, it is a sheaf on the subanalytic site
(X×S)sa, whose sections on open subsets of the form U×V are distributions
which extend to X × V .

The same procedure leads to the subanalytic sheaves C∞,t,SX of relative

tempered C∞-functions and C∞,w,SX of relative Whitney C∞-functions onXsa.
Proposition 4.7 shows that taking inverse images on X × S for the usual
topology, we recover respectively the classical sheaves of distributions and
C∞-functions forgetting the relative growth conditions.

When X and S are complex manifolds, the classical procedure of taking
the Dolbeault complex applies to our constructions, thus allowing us to
define the subanalytic (complexes) Ot,SX×S of relative tempered holomorphic

functions and Ow,S
X×S of relative Whitney holomorphic functions.

As the reader can naturally ask, our method applies only for products
of analytic manifolds (see Remark 5.3). We conjecture that with a weaker
notion of subanalytic site as in [4], a notion of relative sheaf can be given for a
general smooth function but it will not suit the applications we have in mind.
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However, the tools we develop here, besides their own interest, are useful
for understanding the notion of relative perversity introduced in [11].

2. Complements on subanalytic T -sheaves. The results in this sec-
tion rely on the notion of T -topology. For details we refer to [10] and [3]
from which we keep the notations.

Given a topological space X and a family T of open subsets of X, one
says that X is a T -space if T satisfies the following conditions:

(1) T is a basis of the topology of X and ∅ ∈ T ,
(2) T is closed under finite unions and intersections,
(3) each U ∈ T has finitely many T -connected components.

To T one associates a Grothendieck topology in the following way: a family
U = {Ui}i in T is a covering of U ∈ T if it admits a finite subcover. One
denotes by XT the associated site and by ρ : X → XT the natural morphism
of sites. There are well defined functors

(2.1) Mod(CX)
ρ∗ //Mod(CXT ).
ρ−1
oo

Let us consider the category Mod(CX) of sheaves of CX -modules on X,
and denote by K the subcategory whose objects are the sheaves

⊕
i∈I kUi

with I finite and Ui ∈ T for each i. Let F ∈ Mod(CX). Then:

(i) F is T -finite if there exists an epimorphism G� F with G ∈ K.
(ii) F is T -pseudo-coherent if for any morphism ψ : G→ F withG ∈ K,

kerψ is T -finite.
(iii) F is T -coherent if it is both T -finite and T -pseudo-coherent.

Note that (ii) is equivalent to the same condition with “G is T -finite” in-
stead of “G ∈ K”. We denote by Coh(T ) the full subcategory of Mod(CX)
consisting of T -coherent sheaves. Coh(T ) is additive and stable by kernels.

Moreover:

• Let W ∈ T and let CWT ∈ Mod(CXT ) be the constant sheaf on W .
Then ρ∗CW ' CWT .
• The functor ρ∗ is fully faithful. Moreover its restriction to Coh(T ) is

exact.
• A sheaf F ∈ Mod(CXT ) can be seen as a filtrant inductive limit

lim−→i
ρ∗Fi with Fi ∈ Coh(T ).

• The functors Hom(G, ·) and Hom(G, ·), with G ∈ Coh(T ), commute
with filtrant lim−→.

Finally, recall (cf. [3]) that F ∈ Mod(CXT ) is T -flabby if the restriction
morphism Γ (X;F ) → Γ (W ;F ) is surjective for each W ∈ T . T -flabby
objects are Hom(G, ·)-acyclic for each G ∈ Coh(T ).



82 T. Monteiro Fernandes and L. Prelli

Given a real analytic manifold Y , let Opc(Ysa) (resp. Op(Ysa)) denote the
family of subanalytic relatively compact open subsets in Y (resp. the family
of subanalytic open subsets in Y ). Let Ysa denote the associated subanalytic
site introduced in [10]. Then Ysa is the site YT associated to the family
T = Opc(Ysa) (that is, Y is a T -space and the associated site YT coincides
with Ysa). Accordingly we shall still denote by ρ the natural functor of sites
ρ : Y → Ysa associated to the inclusion Op(Ysa) ⊂ Op(Y ) (without reference
to Y unless otherwise specified), as well as the associated functors ρ∗, ρ

−1, ρ!
introduced in [10] (cf. also [12]).

Let us recall the following facts:

• The functor ρ! is right adjoint to ρ−1. It is fully faithful and exact.
Given F ∈ Mod(CY ), ρ!F is the sheaf associated to the presheaf
Op(Ysa) 3 U 7→ F (U).
• The category ModR-c(CY ) of R-constructible sheaves is ρ∗-acyclic (cf.

[12]).

Suppose now a subfamily T ′ ⊂ Opc(Ysa) is given such that Y is still a
T ′-space.

• Denoting by YT ′ the site associated to the family T ′, we shall also
denote by ρ′ : Y → YT ′ the natural functor of sites. A sheaf F ∈
Mod(CYT ′ ) can be seen as a filtrant inductive limit lim−→i

ρ′∗Fi with

Fi ∈ Coh(T ′).
• We shall denote by η the natural functor of sites Ysa → YT ′ .

One obtains a commutative diagram of sites

(2.2)

Y

ρ′

��

ρ // Ysa

η}}
YT ′

Remark 2.1. One could also consider the site defined by the family of
locally finite unions of elements of T (in the case T = Opc(Ysa) these are all
subanalytic open subsets) and locally finite coverings, and make the same
construction using the family T ′. Since the associated categories of sheaves
are respectively isomorphic to Mod(CYT ) and Mod(CYT ′ ) (see [10, Remark
6.3.6]) we will still denote by YT (resp. YT ′) the associated site.

Let F be a sheaf on YT ′ . We define the (separated) presheaf η†F on Ysa
by setting, for W ∈ Op(Ysa),

η†F (W ) = lim−→
W⊂W ′

F (W ′)

with W ′ ∈ Op(YT ′). Let η−1F be the associated sheaf.
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Lemma 2.1. Let F ' lim−→i
ρ′∗Fi ∈ Mod(CYT ′ ) with Fi ∈ Coh(T ′). Then

η−1F ' lim−→i
ρ∗Fi.

Proof. Since the inverse image functor commutes with lim−→, it is enough

to check that η−1ρ′∗F
′ ' ρ∗F ′ with F ′ ∈ Coh(T ′).

Since (cf. [10, Chapter 6]) Coh(T ′) is an abelian subcategory of Coh(T )
and ρ∗ (resp. ρ′∗) is exact on Coh(T ) (resp. Coh(T ′)), we may restrict our-
selves to the case F ′ = CW , W ∈ T ′.

Let CWT (resp. CWT ′ ) be the constant sheaf on Ysa (resp. YT ′). Then,
by Proposition 6.3.1 of [10] (cf. also [12]),

η−1ρ′∗CW ' η−1CWT ′ ' CWT ' ρ∗CW .
Lemma 2.2. Let F ∈ Mod(CYT ′ ). Then, for any W ∈ Op(YT ′),

Γ (W ; η−1F ) ' Γ (W ;F ).

Proof. We may write F ' lim−→i
ρ′∗Fi with Fi ∈ Coh(T ′), and by Lem-

ma 2.1 we have η−1F ' lim−→i
ρ∗Fi.

Let us first assume that W ∈ Op(YT ′) is relatively compact. Then

Γ (W ; lim−→
i

ρ∗Fi) ' lim−→
i

Γ (W ; ρ∗Fi) ' lim−→
i

Γ (W ;Fi)

' lim−→
i

Γ (W ; ρ′∗Fi) ' Γ
(
W ; lim−→

i

ρ′∗Fi

)
.

Let us now consider an arbitrary W . Then we have W =
⋃
nWn, with

Wn = Un ∩W , where {Un}n∈N belongs to Cov(YT ′) and satisfies Un ⊂⊂
Un+1. Therefore

Γ (W ; lim−→
i

ρ∗Fi) ' lim←−
n

Γ
(
Wn; lim−→

i

ρ∗Fi

)
' lim←−

n

Γ
(
Wn; lim−→

i

ρ′∗Fi

)
' Γ

(
W ; lim−→

i

ρ′∗Fi

)
.

The following two results are straightforward consequences of Lemma 2.2:

Corollary 2.3. The adjunction morphism id → η∗η
−1 is an isomor-

phism. In particular, the functor η−1 : Mod(CYT ′ ) → Mod(CYsa) is fully
faithful.

Corollary 2.4. Let W ∈ T ′ and let CWT (resp. CWT ′ ) be the constant
sheaf on Ysa (resp. YT ′). Then CWT ′ ' η∗CWT .

Let I be the subcategory of Mod(CY ) consisting of all finite sums
⊕

iCWi

with Wi ∈ T ′ connected.

Lemma 2.5. Let F,G ∈ I. Then, given ϕ : F → G, we have kerϕ ∈ I.

Proof. We have F =
⊕l

i=1CWi , G =
⊕k

j=1CW ′j . Let pj , j = 1, . . . , k,

be the projections on factors of G. Then kerϕ is the intersection of the
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ker(pj ◦ ϕ) so that, if each one has the desired form, the same will hold for
their intersection. Therefore it is sufficient to assume k = 1, say G = CW .
A morphism ϕ : F → G is then defined by a sequence v = (v1, . . . , vl), where
vi is the image under ϕ of the section of CWi defined by 1 on Wi, so vi = 0
if Wi 6⊂ W . More precisely, if s = (s1, . . . , sl) is a germ of F in y, we have

ϕ(s1, . . . , sl) =
∑l

i=1 viysi. So, given s = (s1, . . . , sl) ∈ kerϕ, if, for a given i,
we have viysi 6= 0, then s defines a germ of Hi :=

⊕
i′ 6=iCWi′∩Wi in y.

Accordingly, kerϕ ' ⊕li=1Hi.

Therefore, according to the definition of Coh(T ′) and to Lemma 2.5, any
F ∈ Coh(T ′) admits a finite resolution

I• := 0→ I1 → · · · → In → F → 0

consisting of objects belonging to I.

Lemma 2.6. Suppose that, for any U ∈ T ′, CU is ρ′∗-acyclic. Then:

(1) For any F ∈ Coh(T ′), F is ρ′∗-acyclic or, equivalently, ρ∗F is
η∗-acyclic.

(2) Let F ∈ Db(CYT ′ ). Then RΓ (W ; η−1F ) ' RΓ (W ;F ) for each W in
Op(YT ′).

Proof. (1) The equivalence of the two assertions follows from the fact
that Rρ′∗ = Rη∗ ◦ Rρ∗ and R-constructible sheaves (and hence T ′-coherent
sheaves) are ρ∗-acyclic.

Note that the assumption entails that any quotient I1/I2 of elements of
I is ρ′∗-acyclic, so F is ρ′∗-acyclic.

(2) By dévissage, we may reduce to F ∈ Mod(CYT ′ ) and we can write
η−1F ' lim−→i

ρ∗Fi, with Fi ∈ Coh(T ′). There exists (see [8, Corollary 9.6.7])

an inductive system of injective resolutions I•i of Fi. By (1) (resp. [12,
Lemma 2.1.1]), Fi is ρ′∗-acyclic (resp. ρ∗-acyclic), hence ρ′∗I

•
i (resp. ρ∗I

•
i )

is an injective resolution of ρ′∗Fi (resp. ρ∗Fi). Then, with the notations
of [3], lim−→i

ρ′∗I
•
i (resp. lim−→i

ρ∗I
•
i ) is a T ′-flabby (resp. T -flabby) resolution of

lim−→i
ρ′∗Fi (resp. lim−→i

ρ∗Fi) and hence Γ (W ; ·)-acyclic. We have

RΓ
(
W ; lim−→

i

ρ∗Fi

)
' Γ

(
W ; lim−→

i

ρ∗I
•
i

)
' Γ

(
W ; lim−→

i

ρ′∗I
•
i

)
' RΓ

(
W ; lim−→

i

ρ′∗Fi

)
,

where the second isomorphism follows from Lemma 2.2.

The following two results are straightforward consequences of Lemma 2.6:

Corollary 2.7. Under the assumption of Lemma 2.6, the adjunction
morphism id→ Rη∗η

−1 is an isomorphism. In particular, the functor η−1 :
Db(CYT ′ )→ Db(CYsa) is fully faithful.
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Note that Remark 3.1 in the next section provides an example showing
that the converse η−1Rη∗ → id is not in general an isomorphism.

Corollary 2.8. Assume the conditions of Lemma 2.6 hold. Let W ∈ T ′
and let CWT (resp. CWT ′ ) be the constant sheaf on Ysa (resp. YT ′). Then
CWT ′ ' Rη∗CWT .

As a consequence of Lemma 2.1 we obtain:

Corollary 2.9. Assume the conditions of Lemma 2.6 hold. Let
F ∈ Db(Coh(T ′)). Then η−1Rρ′∗F

∼→ Rρ∗F.

Proof. We have the chain of isomorphisms

η−1Rρ′∗F ' η−1ρ′∗F ' ρ∗F ' Rρ∗F,
where the first and the last isomorphisms follow since ρ′∗ and ρ∗ are acyclic on
Coh(T ′), and the second isomorphism comes from the proof of Lemma 2.1.

3. The case of a product. Hereafter we will consider the case where
Y is a product X × S of real analytic manifolds. On X × S it is natural
to consider the family T ′ consisting of all finite unions of open relatively
compact subsets of the form U × V , which makes X × S a T ′-space. The
associated site YT ′ is nothing other than the product of sites Xsa × Ssa. Let
p1 : X × S → X and p2 : X × S → S be the projections.

Note that W ∈ Op(Xsa × Ssa) is a locally finite union of relatively com-
pact subanalytic open subsets of the form U × V with U ∈ Op(Xsa) and
V ∈ Op(Ssa). According to Section 1, we denote by η : (X×S)sa → Xsa×Ssa
the natural functor of sites associated to the inclusion Op(Xsa × Ssa) ↪→
Op((X × S)sa).

We shall need the following result:

Lemma 3.1. Let F,G be objects of Db(Coh(T ′)). Then RHom(F,G) is
an object of Db(Coh(T ′)).

Proof. We may assume that F ' CU and G ' CV for some U, V ∈ T ′.
Moreover, it is sufficient to consider U and V of the form U = U1×W1 and
V = U2 ×W2. Then, as a consequence of Proposition 3.4.4 of [9] we have

RHom(CU ,CV ) ' RHom(CU1 ,CU2) � RHom(CW1 ,CW2).

Since RHom(CU1 ,CU2) and RHom(CW1 ,CW2) are R-constructible com-
plexes respectively on X and S, replacing them by almost free resolutions in
the sense of [9], we conclude that RHom(CU ,CV ) belongs to Db(Coh(T ′)),
and the result follows.

Proposition 3.2. For any U ∈ T ′, CU is ρ′∗-acyclic.

Proof. It is sufficient to consider U = U1 × V1 with U1 ∈ Op(Xsa)
and V1 ∈ Op(Ssa). The sheaf Rjρ′∗CU is associated to the presheaf W 7→
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RjΓ (W ;CU ), so it is sufficient to show that RjΓ (W ;CU ) = 0 for j 6= 0 on a
family of generators W of the topology of (X × S)T ′ . In particular, we may
assume that W ∈ T ′, so W = U ′ × V ′.

We use the notations of [9]. By the triangulation theorem there exist a
simplicial complex (KX , ∆X), a simplicial complex (KS , ∆S), a subanalytic
homeomorphism ψS : |KS |

∼→ S compatible with U1, and a subanalytic
homeomorphism ψS : |KX |

∼→ X compatible with V1 such that U ′ is a finite
union of the images under ψX of open stars of |KX |, and V ′ is a a finite
union of the images under ψS of open stars of |KS |. So we may assume that
U ′ is the image of an open star compatible with U1, and similarly V ′ is the
image of an open star compatible with V1. On the other hand, it is clear by
the assumption on U1 (resp. V1) and by the construction of an open star
with a given center that U ′ \ U1 always contracts to the center of U ′ (resp.
V ′ \ V1 contracts to the center of V ′). Indeed, if the center of U ′ belongs
to U1, then U ′ ⊂ U1. Otherwise, the contraction of U ′ to its center restricts
to a contraction of U ′ \ U1. Consider the distinguished triangle

RΓ (W ;CU1×V1)→ RΓ (W ;CX×S)→ RΓ (W ;CX×S\U1×V1)
+→ .

It is clear that U ′×V ′ contracts to the product of the centers of U ′ and V ′.
On the other hand, the space (U ′ × V ′) \ (U1 × V1) = (U ′ \ U1) × V ′ ∪
U ′ × (V ′ \ V1) is a union of closed contractible subspaces such that the
contractions coincide on the intersection, hence the space is contractible.
It follows that RΓ (W ;CX×S) ' RΓ (W ;CW ) and RΓ (W ;CX×S\U1×V1) '
RΓ (W \ U1 × V1;CW\U1×V1) are concentrated in degree zero. This implies
that RΓ (W ;CU1×V1) is concentrated in degree zero as well.

In view of Lemma 2.6 we have

Corollary 3.3. For any F ∈ Coh(T ′), F is ρ′∗-acyclic.

Notation. Since every F ∈ Coh(T ′) is ρ′∗-acyclic and ρ′∗ is fully faithful,
we can identify Db(Coh(T ′)) with its image in Db(C(X×S)T ′ ). When there

is no risk of confusion we will write F instead of ρ′∗F , for F ∈ Db(Coh(T ′)).

From Corollary 3.3 we have:

Corollary 3.4. Let F ∈ Db(C(X×S)T ′ ). Then

RΓ (W ; η−1F ) ' RΓ (W ;F ) for each W ∈ Op((X × S)T ′).

In particular id
∼→ Rη∗η

−1.

Remark 3.1. Observe that while id
∼→ Rη∗η

−1, η−1Rη∗
∼→ id does not

hold in general. This can be illustrated with the following example: Let
X = S = R and let B1 be the closed unit ball centered at the origin. It is
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easy to check that

η∗CB1
' lim−→

W⊃B1

ρ′∗CW

with W ∈ T ′. Then

η−1η∗CB1
' η−1 lim−→

W⊃B1

ρ′∗CW ' lim−→
W⊃B1

ρ∗CW 6' CB1
,

where the second isomorphism follows from Lemma 2.1.

Lemma 3.5. Let F ∈ Db(C(X×S)T ′ ) and G ∈ Db(Coh(T ′)). Then

η−1RHom(ρ′∗G,F ) ' RHom(ρ∗G, η
−1F ).

Proof. Let F ∈ Db(C(X×S)T ′ ). By dévissage, we may reduce to the case
F ∈ Mod(C(X×S)T ′ ). So F satisfies F ' lim−→i

ρ′∗Fi with Fi ∈ Coh(T ′) and

we can write η−1F ' lim−→i
ρ∗Fi.

We have

Hjη−1RHom(ρ′∗G,F ) ' Hjη−1RHom
(
ρ′∗G, lim−→

i

ρ′∗Fi

)
' lim−→

i

Hjη−1ρ′∗RHom(G,Fi) ' lim−→
i

Hjρ∗RHom(G,Fi)

' HjRHom
(
ρ∗G, lim−→

i

ρ∗Fi

)
' HjRHom(ρ∗G, η

−1F ),

where the third isomorphism follows by Lemma 3.1 and Corollary 2.9.

We end this section with a result detailing the behavior of ρ∗ and ρ′∗
under tensor product:

Lemma 3.6. Let F ∈ Db
R-c(CX) and G ∈ Db(CS). Then:

(1) p−11 ρ∗F ⊗ p−12 Rρ∗G ' Rρ∗(p−11 F ⊗ p−12 G),
(2) ρ′∗p

−1
1 F ⊗Rρ′∗p−12 G ' Rρ′∗(p−11 F ⊗ p−12 G).

Proof. Let us recall that the restriction of ρ∗ (resp. ρ′∗) to R-constructible
sheaves (resp. T ′-coherent sheaves) is fully faithful, exact and commutes
with RHom, ⊗ and inverse image. We will often use these facts during the
proof of (1) and (2).

(1) We have the chain of isomorphisms

Rρ∗(p
−1
1 F ⊗ p−12 G) ' Rρ∗RHom(p−11 D′F, p−12 G)

' RHom(ρ∗p
−1
1 D′F,Rρ∗p

−1
2 G)

' RHom(p−11 D′ρ∗F, p
−1
2 Rρ∗G)

' p−11 ρ∗F ⊗ p−12 Rρ∗G.

The first isomorphism follows from Proposition 3.4.4 of [9]; the second from
Proposition 2.2.1 of [12]; the third from the fact that p−12 (·)⊗p!2CX×S ' p!2(·)
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(Proposition 2.4.9 of [12]) and that p!2 commutes with Rρ∗ (Proposition 2.4.5
of [12]); and the fourth from Lemma 5.3.9 of [13].

(2) We prove the assertion in several steps. Recall that ρ′ = η ◦ ρ, where
η : (X × S)sa → (X × S)T ′ is the natural functor of sites.

(2a) Let F ∈ Coh(T ′) and G ∈ Mod(CSsa). Then G = lim−→i
ρ∗Gi with

Gi ∈ ModR-c(CS). We have

lim−→
i

p−12 ρ∗G ' lim−→
i

ρ∗p
−1
2 Gi ' lim−→

i

η−1ρ′∗p
−1
2 Gi ' η−1 lim−→

i

ρ′∗p
−1
2 Gi.

The first isomorphism follows from Proposition 1.3.3 of [12], the second
from Corollary 2.9, and the third since inverse images commute with lim−→.

Therefore p−12 G ' η−1G′ with G′ ' lim−→i
ρ′∗p
−1
2 Gi ∈ Mod(C(X×S)T ′ ). We

have

Rη∗(ρ∗F ⊗ η−1G′) ' Rη∗η−1(ρ′∗F ⊗G′) ' ρ′∗F ⊗G′.

The first isomorphism follows since inverse images commute with ⊗ and
ρ∗ ' η−1 ◦ ρ′∗ on Coh(T ′), and the second comes from Proposition 3.2.
Hence Rη∗(ρ∗F ⊗ p−12 G) is concentrated in degree 0.

(2b) Let F ∈ Db(Coh(T ′)) and G ∈ Db(CSsa). We shall prove that

η∗(ρ∗F ⊗ p−12 G) ' η∗ρ∗F ⊗ η∗p−12 G

(here we used the last assertion in (2a) to replace Rη∗ by η∗). By dévissage
we may reduce to F,G concentrated in degree zero. By (2a), we have p−12 G '
η−1G′ ' η−1η∗η

−1G′ ' η−1η∗p
−1
2 G with G′ ∈ Mod(C(X×S)T ′ ) (the second

isomorphism follows from Corollary 3.4). In view of the preceding arguments,
we have the chain of isomorphisms

η∗(ρ∗F ⊗ p−12 G) ' η∗(η−1ρ′∗F ⊗ η−1η∗p−12 G) ' η∗η−1(ρ′∗F ⊗ η∗p−12 G)

' ρ′∗F ⊗ η∗p−12 G ' η∗ρ∗F ⊗ η∗p−12 G.

(2c) Let F ∈ Db
R-c(CX) and G ∈ Db(CS). Then

Rη∗Rρ∗(p
−1
1 F ⊗ p−12 G) ' Rη∗(p−11 ρ∗F ⊗ p−12 Rρ∗G)

' η∗ρ∗p−11 F ⊗Rη∗p−12 Rρ∗G

' η∗ρ∗p−11 F ⊗Rη∗Rρ∗p−12 G.

The first isomorphism follows from (1), the second from (2b), and the third
from the fact that p−12 commutes with Rρ∗ (see the proof of (1)).

4. Construction of relative subanalytic sheaves. Let X and S be
two real analytic manifolds. Let F be a sheaf on (X ×S)sa. We shall denote
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by FS,] the sheaf on Xsa × Ssa associated to the presheaf

Op(Xsa × Ssa)→ Mod(C),

U × V 7→ Γ (X × V ; ρ−1ΓU×SF )

' Hom(CU � ρ!CV , F )

' lim←−
W⊂⊂V,W∈Opc(Ssa)

Γ (U ×W ;F ).

We set

(4.1) FS := η−1FS,]

and call it the relative sheaf associated to F . It is a sheaf on (X × S)sa. It
is easy to check that (·)S defines a left exact functor on Mod(C(X×S)sa).

According to Lemma 3.5 we get:

Proposition 4.1. For each G ∈ Db
R-c(CX), H ∈ Db

R-c(CS) and F ∈
Db(C(X×S)sa), we have

η−1RHom(ρ′∗(G�H), FRS,]) ' RHom(ρ∗(G�H), FRS).

The following lemmas are steps to prove Proposition 4.7 below:

Lemma 4.2. Let U ∈ Op(Xsa) and V ∈ Op(Ssa). Then

Γ (U × V ;FS) ' Γ (X × V ; ρ−1ΓU×SF ) ' Hom(CU � ρ!CV , F ).

Proof. The second isomorphism follows by adjunction. Let us prove the
first one. By (2) of Lemma 2.6 it is enough to check that Γ (U × V ;FS,]) =
Γ (X × V ; ρ−1ΓU×SF ).

1) First suppose U × V is relatively compact. Let s ∈ Γ (U × V ;FS,]).
Then s is defined by a finite family si ∈ lim←−Wi⊂⊂Vi

Γ (Ui ×Wi;F ), i ∈ I,

where {Ui} (resp. {Vi}) is a covering of U (resp. V ) in Xsa (resp. Ssa) such
that si = sj on (Ui × Vi) ∩ (Uj × Vj).

By Lemma 3.6 of [2], there exists a refinement {V ′i } of {Vi} in Ssa such

that V ′i ∩ V ⊂ Vi. Now we have the following obvious facts:

(i) if, for a given W ′i ∈ Op(Ssa), W
′
i ⊂⊂ V ′i , then W ′i ⊂⊂ V ,

(ii) if, for a given W ∈ Op(Ssa), W ⊂⊂ V , then V ′i ∩W ⊂⊂ Vi.

This implies that the restriction

lim←−
Wi⊂⊂Vi

Γ (Ui ×Wi;F )→ lim←−
W ′i⊂⊂V ′i

Γ (Ui ×W ′i ;F )

factors through lim←−W⊂⊂V Γ (Ui× (W ∩V ′i );F ). Therefore s|Ui×V ′i extends to
a section of

Γ (X × V ; ρ−1ΓUi×V ′i F ) ' lim←−
W⊂⊂V

Γ (Ui × (W ∩ V ′i );F ).
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Set Uij = Ui ∩ Uj and V ′ij = V ′i ∩ V ′j . The exact sequence⊕
i 6=j∈I

CUij×V ′ij →
⊕
k∈I

CUk×V ′k → CU×V → 0

defines an exact sequence

0→ Γ (X × V ; ρ−1ΓU×V F )→
⊕
k

Γ (X × V ; ρ−1ΓUk×V ′kF )

→
⊕
i 6=j

Γ (X × V ; ρ−1ΓUij×V ′ijF ).

Then the si’s glue to a section of

Γ (X × V ; ρ−1ΓU×V F ) ' Γ (X × V ; ρ−1ΓU×SF )

as required.

2) Suppose U ∈ Op(Xsa) and V ∈ Opc(Ssa). Then U =
⋃
n∈N(U ∩ Un)

where {Un}n∈N belongs to Cov(Xsa) and satisfies Un ⊂⊂ Un+1. Then

Γ (U × V ;FS,]) ' lim←−
n

Γ (Un × V ;FS,]) ' lim←−
n

Γ (X × V ; ρ−1ΓUn×SF )

' Γ
(
X × V ; ρ−1 lim←−

n

ΓUn×SF
)
' Γ (X × V ; ρ−1ΓU×SF ).

3) Now consider the general case. Let s ∈ Γ (U × V ;FS,]). It is defined
by a countable family sn ∈ Γ (U × Vn;FS,]) = Γ (X × Vn; ρ−1ΓU×SF ) where
{Vn}n∈N is a covering of V in Ssa such that Vn∩V ⊂ Vn+1. Then there exists
a refinement {V ′n} of {Vn} in Ssa with Vn−1 ⊂ V ′n∩V ⊂ Vn. Arguing as in 1),

the restriction sn|U×V ′n belongs to Γ (X × V ; ρ−1ΓU×V ′nF ) and sn = sn+1 on
U×V ′n. Hence they glue to s ∈ Γ (X×V ; ρ−1ΓU×V F ) ' Γ (X×V ; ρ−1ΓU×SF )
as required.

With Proposition 6.5.1 of [10] (applied on X and S separately) as a tool
we now prove the following result:

Lemma 4.3. Let G ∈ ModR-c(CX) and H ∈ ModR-c(CS), and let
F ∈ Mod(C(X×S)sa). Then

Hom(G�H,FS) ' Hom(G�ρ!H,F ) ' Hom(CX�H, ρ−1Hom(G�CS , F )).

Proof. The right hand isomorphism follows by adjunction. Let us prove
the left hand isomorphism.

1) Suppose at first that G and H have compact support. By Proposition
6.5.1 of [10] the functor U 7→ Hom(CU � ρ!CV , F ) ' Hom(CU � CV , FS)
extends uniquely to a functor ModcR-c(CX)→ Mod(C). This implies

Hom(G� ρ!CV , F ) ' Hom(G� CV , FS).
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Similarly, the functor V 7→ Hom(G�ρ!CV , F ) ' Hom(G�CV , FS) extends
uniquely to a functor ModcR-c(CS)→ Mod(C). This implies

Hom(G� ρ!H,F ) ' Hom(G�H,FS).

2) Let us consider the general case. Let {Un}n∈N (resp. {Vn}n∈N be a
covering of Xsa (resp. Ssa) such that Un ⊂⊂ Un+1 (resp. Vn ⊂⊂ Vn+1) for
each n. We have

Hom(G�H,FS) ' lim←−
n

Hom(GUn�HVn , F
S) ' lim←−

n

Hom(GUn�ρ!(HVn), F )

' lim←−
n

Hom(GUn�(ρ!H)Vn , F )

' lim←−
n

Γ (Un×Vn;Hom(G�ρ!H,F ))

' Γ (X×S;Hom(G�ρ!H,F )) ' Hom(G�ρ!H,F ).

The second isomorphism follows from 1). To prove the third one we re-
mark that the morphism (ρ!H)Vn → (ρ!H)Vn+1 factors through ρ!(HVn+1) '
lim−→W⊂⊂Vn+1

(ρ!H)W . The desired isomorphism then follows by passing to

the limit over n ∈ N.

We shall now prepare the steps to the main result of this note, Proposi-
tion 4.7 below. Recall (cf. [3]) that F ∈ Mod(C(Xsa×Ssa)) is T ′-flabby if the
restriction morphism Γ (X×S;F )→ Γ (W ;F ) is surjective for each W ∈ T ′.
T ′-flabby objects are Hom(G, ·)-acyclic for each G ∈ Coh(T ′).

Lemma 4.4. Let F ∈ Mod(C(X×S)sa) be injective. Then FS,] is T ′-flabby.

Proof. Let W =
⋃n
i=1(Ui × Vi) with Ui ∈ Opc(Xsa) and Vi ∈ Opc(Ssa).

For i ∈ {1, . . . , n}, set

Ki = lim−→
W1⊂⊂V1

· · · lim−→
Wi⊂⊂Vi

ρ∗C(U1×W1)∪···∪(Ui×Wi).

1) We first prove that Γ
(
W ;FS

)
' Hom(Kn, F ). We argue by induction

on n. For n = 1 the result follows from Lemma 4.2.

n− 1⇒ n: Set K ′n−1 = Kn−1 ⊗ (CUn � ρ!CVn). We have

K ′n−1

' lim−→
W1⊂⊂V1
Wn⊂⊂Vn

· · · lim−→
Wn−1⊂⊂Vn−1
Wn⊂⊂Vn

ρ∗C((U1∩Un)×(W1∩Wn))∪···∪((Un−1∩Un)×(Wn−1∩Wn))

' lim−→
W ′1⊂⊂V1∩Vn

· · · lim−→
W ′n−1⊂⊂Vn−1∩Vn

ρ∗C((U1∩Un)×W ′1)∪···∪((Un−1∩Un)×W ′n−1)
.

We have an exact sequence

0→ K ′n−1 → Kn−1 ⊕ (CUn � ρ!CVn)→ Kn → 0.
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Applying the functor Hom(·, F ) and using the induction hypothesis for K ′n−1
and Kn−1 we obtain

Γ
(n−1⋃
i=1

((Ui ∩ Un)× (Vi ∩ Vn));FS
)
' Hom(K ′n−1, F ),

Γ
(n−1⋃
i=1

(Ui × Vi);FS
)
' Hom(Kn−1, F ).

Hence Γ
(⋃n

i=1(Ui × Vi);FS
)
' Hom(Kn, F ), as required.

2) Consider the monomorphism 0→ Kn → CX�CS . Since F is injective,
we obtain a surjection

Hom(CX � CS , F )→ Hom(Kn, F )→ 0,

and the result follows.

Corollary 4.5. Let G ∈ Db
R-c(CX) and H ∈ Db

R-c(CS), and suppose
F ∈ Mod(C(X×S)sa) is injective. Then FS is Hom(G�H, ·)-acyclic.

Proof. First note that, F being injective, we have FRS,] ' FS,] and
FRS ' FS . By Propositions 4.1 and 3.2,

RHom(G�H,FS) ' RΓ (X × S; RHom(G�H,FS))

' RΓ (X × S; η−1RHom(G�H,FS,]))

' RΓ (X × S; RHom(G�H,FS,]))

' RHom(G�H,FS,]).

Lemma 4.4 implies that FS,] is Hom(G � H, ·)-acyclic and the result fol-
lows.

Lemma 4.6. Let G ∈ Db
R-c(CX), H ∈ Db

R-c(CS), and F ∈ Db(C(X×S)sa).
Then

RHom(G�H,FRS) ' RHom(G� ρ!H,F )

' RHom(CX �H, ρ−1RHom(G� CS , F )).

Proof. The second isomorphism follows by adjunction. Let us prove the
first one.

By Corollary 4.5, (·)S sends injective objects of Mod(C(X×S)sa) to
Hom(G�H, ·)-acyclic objects, for G ∈ ModR-c(CX) and H ∈ ModR-c(CS).

Therefore, we may reduce to F injective and G,H concentrated in de-
gree 0. Then the result follows from Lemma 4.3.

Observe that if K ∈ Mod(C(X×S)sa) then ρ−1K
∼← ρ−1η−1η∗K. Indeed,

for each y ∈ X × S,

(ρ−1K)y ' lim−→
U×V 3y

K(U × V ) ' (ρ−1η−1η∗K)y

with U ∈ Op(Xsa) and V ∈ Op(Ssa).
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Proposition 4.7. Let F ∈ Db(C(X×S)sa) and G ∈ Db
R-c(CX), and let

H ∈ Db
R-c(CS). Then

ρ−1RHom(G�H,FRS) ' ρ−1RHom(G� ρ!H,F )

' RHom(CX �H, ρ−1RHom(G� CS , F )).

In particular, when G = CX and H = CS we have ρ−1F ' ρ−1FRS '
ρ′−1FRS,].

Proof. The second isomorphism follows by adjunction. Let us prove the
first one.

1) Let us first suppose that F,G,H are concentrated in degree zero.
Hence, by the remark above, to any morphism

η∗Hom(G� ρ!H,F )→ η∗Hom(G�H,FS)

one associates a morphism

ρ−1Hom(G� ρ!H,F )→ ρ−1Hom(G�H,FS).

Note that the natural morphism ρ!(HV ) → (ρ!H)V induces a mor-
phism Hom(GU � (ρ!H)V , F )→ Hom(GU � ρ!(HV ), F ), hence a morphism
ψ : η∗Hom(G � ρ!H,F ) → η∗Hom(G �H,FS), which defines a morphism
ρ−1Hom(G� ρ!H,F )→ ρ−1Hom(G�H,FS).

Let us check on the fibers that the latter is an isomorphism. Let y ∈
X × S, then

(ρ−1Hom(G� ρ!H,F ))y ' lim−→
U×V 3y

Hom(GU � (ρ!H)V , F )

' lim−→
U×V 3y

lim←−
W⊂⊂V

Hom(GU � (ρ!H)W , F )

' lim−→
U×V 3y

Hom(GU � ρ!(HV ), F )

' (ρ−1Hom(G�H,FS))y

with U ∈ Op(Xsa) and V,W ∈ Op(Ssa).

2) Suppose now that F is injective and that G,H are concentrated in
degree 0. Let U ∈ Op(Xsa) and V ∈ Op(Ssa). The complex

RΓ (U × V ; RHom(G�H,FS)) ' RHom(GU �HV , F
S)

is concentrated in degree 0 by Corollary 4.5. Hence FS is RHom(G�H, ·)-
acyclic.

3) Let G ∈ Db
R-c(CX) and H ∈ Db

R-c(CS). Let F ∈ Db(C(X×S)sa) and let
I• be a complex of injective objects quasi-isomorphic to F . Then
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ρ−1RHom(G� ρ!H,F ) ' ρ−1Hom(G� ρ!H, I
•) ' ρ−1Hom(G�H, (I•)S)

' ρ−1RHom(G�H,FRS),

where the second isomorphism follows from 1) and the third one from 2).

We end this section with the following result on the acyclicity for the
functor (·)S , which will be needed later:

Proposition 4.8. Suppose that F ∈ Mod(ρ!C∞X×S) is Γ (W ; ·)-acyclic
for each W ∈ Op((X ×S)sa). Then for each U ∈ Op(Xsa) and V ∈ Op(Ssa)
we have RkΓ (U × V ;FRS,]) = RkΓ (U × V ;FRS) = 0 if k 6= 0.

Proof. By Lemma 4.6 we have RΓ (U × V ;FRS,]) ' RΓ (U × V ;FRS) '
RΓ (X × V ; ρ−1RΓU×SF ). As F is Γ (W ; ·)-acyclic for W ∈ Op((X × S)sa),
the complex RΓU×SF is concentrated in degree zero. Since F is a ρ!C∞X×S-

module, ρ−1ΓU×SF is a C∞X×S-module, hence is c-soft and Γ (X × V ; ·)-
acyclic. This shows the result.

Corollary 4.9. Suppose that F ∈ Mod(ρ!C∞X×S) is Γ (W ; ·)-acyclic for

each W ∈ Op((X × S)sa). Then F is (·)S,]-acyclic and (·)S-acyclic.

Proof. As (·)RS ' η−1 ◦ (·)RS,], it is enough to show that HkFRS,] = 0
if k 6= 0. It is enough to prove that RkΓ (W ;FRS,]) = 0 if k 6= 0 on a basis
for the topology of (X×S)T ′ . Since the products U ×V with U ∈ Op(Xsa),
V ∈ Op(Ssa) form a basis, the result follows from Proposition 4.8.

5. The sheaves C∞,t,SX×S , Dbt,SX×S, C
∞,w,S
X×S , Ot,SX×S and Ow,S

X×S. Let X and
S be real analytic manifolds. The construction given by (4.1) allows us to
introduce the following sheaves:

C∞,t,SX×S := (C∞,tX×S)S as the relative sheaf associated to C∞,tX×S ,

Dbt,SX×S := (DbtX×S)S as the relative sheaf associated to DbtX×S ,

C∞,w,SX×S := (C∞,wX×S)S as the relative sheaf associated to C∞,wX×S .

We then derive from Lemma 4.2:

Proposition 5.1. Let U ∈ Op(Xsa) and V ∈ Op(Ssa). Then

Γ (U × V ; C∞,t,SX×S ) ' Γ (X × V ; ρ−1ΓU×SC∞,tX×S)(1)

' Γ (X × V ; THom(CU×S , C∞X×S)),

Γ (U × V ;Dbt,SX×S) ' Γ (X × V ; ρ−1ΓU×SDbtX×S)(2)

' Γ (X × V ; THom(CU×S ,DbX×S)),

Γ (U × V ; C∞,w,SX×S ) ' Γ (X × V ; ρ−1ΓU×SC∞,wX×S)(3)

' Γ (X × V ;H0D′CU � CS
w
⊗ C∞X×S).
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We can now state:

Proposition 5.2.

(i) Suppose that F = DbtX×S , C
∞,t
X×S , C

∞,w
X×S. Then F is (·)S,]-acyclic and

hence (·)S-acyclic. Moreover Dbt,SX×S and C∞,t,SX×S are Γ (U × V ; ·)-
acyclic for each U ∈ Op(Xsa) and V ∈ Op(Ssa).

(ii) C∞,w,SX×S is Γ (U × V ; ·)-acyclic for each U ∈ Op(Xsa) locally cohomo-
logically trivial and V ∈ Op(Ssa).

Applying Proposition 4.7 and [10, Proposition 7.2.6] we conclude:

Proposition 5.3. Let G ∈ Db
R-c(CX) and H ∈ Db

R-c(CS). Then

ρ−1RHom(G�H, C∞,t,SX×S ) ' ρ−1RHom(G�ρ!H, C∞,tX×S)(1)

' RHom(CX�H,THom(G�CS , C∞X×S)),

ρ−1RHom(G�H,Dbt,SX×S) ' ρ−1RHom(G�ρ!H,DbtX×S)(2)

' RHom(CX�H,THom(G�CS ,DbX×S)),

ρ−1RHom(G�H, C∞,w,SX×S ) ' ρ−1RHom(G�ρ!H, C∞,wX×S)(3)

' RHom(CX�H,D′G�CS
w
⊗C∞X×S).

In particular, when G = CX and H = CS we have ρ−1C∞,t,SX×S ' C∞X×S,

ρ−1Dbt,SX×S ' DbX×S and ρ−1C∞,w,SX×S ' C∞X×S.

Lemma 5.4. There is a natural action of ρ!DX×S on Dbt,SX×S, C∞,t,SX×S and

C∞,w,SX×S .

Proof. The proof being similar in the three cases, we just consider the
first case. By Proposition 3.2.1 of [12], it is enough to check that the presheaf

η†Dbt,S,]X×S(W ) = lim−→
W⊂W ′

Dbt,S,]X×S(W ′)

with W ′ ∈ Op(Xsa × Ssa), is a presheaf over the presheaf of rings W 7→
Γ (W ;DX×S). Setting W ′ = U × V , by Lemma 2.1 we have

Γ (U × V ;Dbt,S,]X×S) = Γ (U × V ;DbtX×V ).

We may assume that W ∈ Opc((X × S)sa). Thus we can cover W by
finitely many open subsets {Ui × Vi}, {U ′i × V ′i } with Ui × Vi, U

′
i × V ′i ∈

Opc(Xsa × Ssa) sufficiently small and such that U ′i × V ′i ⊂⊂ Ui × Vi. Given
P ∈ Γ (W ;DX×S), for a convenient covering {Ui×Vi} as above, P is defined

on
⋃
i Ui × Vi. We then deduce the action of P on lim−→W⊂W ′ Γ (W ′;Dbt,S,]X×S)

as the image of the gluing of the actions on each Γ (U ′i × V ′i ;DbtX×V ′i
).
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Now assume that X and S are complex manifolds and consider the pro-
jection f : X × S → S. Denote as usual by X × S the complex conjugate
manifold. Identifying the underlying real analytic manifold XR × SR with
the diagonal of (X × S)× (X × S), we have:

Lemma 5.5. ρ∗f
−1OS (resp. ρ′∗f

−1OS) acts on Dbt,SX×S, C∞,tX×S and Cw,SX×S
(resp. on Dbt,S,]X×S, C∞,t,S,sharpX×S and Cw,S,]X×S).

Proof. To prove the action of ρ∗f
−1OS it is sufficient to check that

ρ∗f
−1OS(W ) acts on Dbt,SX×S(W ) on a basis for the topology of (X × S)sa.

Since every relatively compact subanalytic open subset of X × S can be
covered by open cells (cf. [15]), we may suppose that W is an open cell such
that f |W : W → f(W ) is the restriction of a composition of projections
fj : Rj × f(W ) → Rj−1 × f(W ) and the fibers of f intersected with W
are contractible or empty. In this case we have ρ∗f

−1OS(W ) = OS(f(W )),

and OS(f(W )) acts on Dbt,SX×S(W ), since Dbt,SX×S(W ) has no growth con-

ditions on the boundary of f−1(f(W )). The proof for C∞,tX×S and Cw,SX×S is
similar.

Similarly, to prove the action of ρ′∗f
−1OS it is sufficient to check that

ρ′∗f
−1OS(U × V ) ' OS(V ) acts on Dbt,SX×S(U × V ) where U ∈ Op(Ysa)

is assumed to be contractible and V ∈ Op(Ssa). Since Dbt,SX×S(U × V ) '
lim←−W⊂⊂V,W∈Opc(Ssa)

Γ (U ×W ;DbtX×S), the statement is clear.

The construction given by (4.1) allows us to introduce the following
objects of Db(C(X×S)sa):

• Ot,SX×S := (OtX×S)RS , the relative sheaf associated to OtX×S , that is,

Ot,SX×S ' (RHomρ!DX×S
(ρ!OX×S ,DbtX×S))RS

' (RHomρ!DX×S
(ρ!OX×S , C

∞,t
X×S))RS ,

• Ow,S
X×S := (Ow

X×S)RS , the relative sheaf associated to Ow
X×S , that is,

Ow,S
X×S ' (RHomρ!DX×S

(ρ!OX×S , C
∞,w
X×S))RS .

The exactness of ρ! together with Proposition 5.2 yield:

Proposition 5.6. In Db(C(X×S)sa) we have

Ot,SX×S ' RHomρ!DX×S
(ρ!OX×S ,Dbt,SX×S) ' RHomρ!DX×S

(ρ!OX×S , C
∞,t,S
X×S ),

Ow,S
X×S ' RHomρ!DX×S

(ρ!OX×S , C
∞,w,S
X×S ).
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Proposition 4.7 together with [10, Proposition 7.3.2] entail:

Proposition 5.7. Let G ∈ Db
R-c(CX) and H ∈ Db

R-c(CS). Then

(1) ρ−1RHom(G�H,Ot,SX×S) ' ρ−1RHom(G� ρ!H,OtX×S)

' RHom(CX �H,THom(G� CS ,OX×S)),

(2) ρ−1RHom(G�H,Ow,S
X×S) ' ρ−1RHom(G� ρ!H,Ow

X×S)

' RHom(CX �H,D′G� CS
w
⊗OX×S).

In particular, when G = CX and H = CS we have ρ−1Ot,SX×S ' OX×S and

ρ−1Ow,S
X×S ' OX×S.

As a consequence of Lemma 4.6 together with the results in [1] we obtain

the following characterization of the sections of Ot,SX×S :

Proposition 5.8. Assume that U (resp. V ) is a subanalytic Stein open

subset of the Stein manifold X (resp. S). Then RΓ (U×V ;Ot,SX×S) is concen-

trated in degree zero and Γ (U×V ;Ot,SX×S) is the set of holomorphic functions
on U × V which are tempered on X × V .

Example 5.1. Let U = {z ∈ C : =z > 0}, let V be open subanalytic
in C and let g(s) be a holomorphic function on V . Then, after choosing a

determination of log z on U , zg(s) defines a section of Γ (U × V ;Ot,SC×C).

Recall that any distribution on Rn is, just as any hyperfunction, the
boundary value of some holomorphic function on Ω ∩ {(z1, . . . , zn) ∈ Cn :
=zi 6= 0}, with moderate growth with respect to Rn, for some Stein open
neighborhood Ω of Rn in Cn. For a precise notion of boundary value and
classical hyperfunction theory we refer to the foundational work [14]. By
Proposition 5.1(2) we deduce the following example:

Example 5.2. Let U = R>0 with a coordinate x, let V be a subanalytic
open set in R and let a(s) be any continuous function on V . Let f ∈ Γ (Ω \
V ;OC), where Ω is an open neighborhood of V in C, be such that a is the
boundary value vb(f) of f as a hyperfunction. Then xa+ := vb(zf ), with

arg z ∈ ]0, 2π[, is a section of Γ (U × V ;Dbt,SR×R).

Remark 5.3. As the reader can naturally ask, our method applies only
for products of analytic manifolds, i.e, for a projection, since the crucial trick
we used here is that the allowed coverings are formed by products of open
subanalytic sets and products are not kept by change of coordinates. So, if
we want to treat the case of a general smooth f : X → S, we have to consider
on X a topology with adapted coverings which are fewer than those of the
subanalytic topology. This can be illustrated with X = R2 = R × R with
coordinates (x, y), S = R and f : X → S the second projection. Consider
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U = ]0, 1[× ]−1, 1[ and the open covering

U1 = U ∩ {y < x}, U2 = ]0, 1[× ]0, 1[

(so U1 is not a product of intervals). Consider the relative tempered dis-
tributions s1 = 0 on U1 and s2 = χ{y=2x} exp(1/y) on U2 (χA denotes the
characteristic function of A). Then s1 = s2 = 0 on U1 ∩U2, hence they glue
to a distribution on U which is not relative tempered.

Hence, if we want to realize relative tempered distributions with respect
to a smooth function as a sheaf on a site, we must avoid such kind of
coverings. We conjecture, however, that with a weaker notion of subanalytic
site as in [4] a notion of relative sheaf can be given for a general smooth
function.
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