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On the Conley index in Hilbert spaces
in the absence of uniqueness

by

Marek Izydorek (Gdańsk) and Krzysztof P. Rybakowski (Rostock)

Abstract. Consider the ordinary differential equation

(1) ẋ = Lx+K(x)

on an infinite-dimensional Hilbert space E, where L is a bounded linear operator on E
which is assumed to be strongly indefinite and K : E → E is a completely continuous but
not necessarily locally Lipschitzian map. Given any isolating neighborhood N relative to
equation (1) we define a Conley-type index of N . This index is based on Galerkin approx-
imation of equation (1) by finite-dimensional ODEs and extends to the non-Lipschitzian
case the LS-Conley index theory introduced in [9]. This extended LS-Conley index allows
applications to strongly indefinite variational problems ∇Φ(x) = 0 where Φ : E → R is
merely a C1-function.

1. Introduction. Let E be an infinite-dimensional Banach space. Con-
sider the ordinary differential equation

ẋ = f(x) := Lx+K(x)(1)

where L is a bounded linear operator on E which is assumed to be strongly
indefinite and K : E → E is a completely continuous map.

Equations of type (1) are interesting mainly because their equilibria, i.e.
the solutions of the equation

Lx+K(x) = 0(2)

often arise as periodic solutions of Hamiltonian systems or solutions of
strongly indefinite elliptic systems.

If the map K is locally Lipschitzian then (1) generates a local flow πf
on E and one may try to use methods of Conley index theory to obtain ex-
istence and multiplicity results for equilibria of this equation. However, the
two known direct infinite-dimensional versions of the Conley index theory
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are not suitable for this purpose. The infinite-dimensional Conley index the-
ory developed by the second author in [15], though applicable to wide classes
of parabolic and even hyperbolic equations, cannot be applied to equa-
tion (1), the reason being that bounded subsets of E are not necessarily πf -
admissible in the sense of [16]. The second infinite-dimensional Conley index
theory defined in [3] does apply in such cases but gives only trivial index 0.

Recently a very elementary extension of the Conley index to Hilbert
spaces E was proposed in [9], based on finite-dimensional approximations
of (1). The so called LS-Conley index h(πf , N) of an isolating neighborhood
relative to the flow πf is defined as the homotopy type of a certain spectrum.

Although much simpler than the theories developed in [15] and [3], the
LS-Conley index is applicable and can be nontrivial for the flow πf . In fact,
some applications to Hamiltonian systems have been given in [9]–[11].

On the other hand, in many situations occurring in applications to
Hamiltonian or strongly indefinite elliptic systems the right hand side of (1)
has the form

Lx+K(x) = ∇Φ
where Φ : E → R is only a C1-function. In such cases the Cauchy problem
for equation (1) does not necessarily have unique solutions, so (1) does not
generate a flow and the index of [9] cannot be used.

In view of such applications we present in this paper an extension of the
index theory from [9] to the case of equations of type (1) with a merely
continuous right hand side. For every isolating neighborhood N relative to
f we define an index h(f,N) and show that all properties of the LS-Conley
index theory proved in [9] hold in this more general setting. In addition, we
show that the index depends only on the isolated invariant set in question
and not on the choice of its isolating neighborhood.

It should be remarked that whenever the LS-Conley index theory from
[9] is applicable, then so is the theory presented here and the two indices
are the same. This follows from Remark 4.18 below.

The reader interested in a concrete application of the results of this
article to strongly indefinite elliptic systems is referred to the paper [12], in
which, among other things, we give simple proofs of some results obtained
earlier by Angenent and Van der Vorst [1] using a version of Floer homology.

This paper is organized as follows.
In Section 2 we explain some notation and introduce a few basic defini-

tions.
In Section 3 we present an extension of the classical Conley theory to

finite-dimensional ordinary differential equations with a merely continuous
right-hand side and prove various properties of this index.

In Section 4 the extended LS-Conley index is defined and its basic prop-
erties are stated.
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Section 5 contains the proofs of the results from Section 4.
Finally, in Section 6 we show that all the results of the previous sections

carry over to the G-equivariant case. This more refined G-equivariant LS-
Conley index is particularly useful for problems with symmetries.

2. Notation and preliminaries. In this paper we use standard nota-
tion, denoting, in particular, the set of real numbers by R, the set of integers
by Z and the set of positive integers by N. Given sets A, B, C with A ⊂ B
and a function f : B → C we denote by f |A the restriction of f to A. Given
a topological space X and a subset S of X we denote respectively by IntX S,
ClX S and ∂XS the interior , closure and boundary of the set S relative to
the topology of X.

Throughout this paper, unless otherwise specified, (E, ‖·‖) is an arbitrary
Banach space, U an open subset of E and N a closed bounded subset of E
with N ⊂ U . By C we denote the set of all continuous maps from U to E.

For every function f : U → E and S ⊂ U we set
|f |S = sup

x∈S
‖f(x)‖.

Note that |f |S ∈ [0,∞].
Given an arbitrary function x : R → E we denote by ω(x) (resp. α(x))

the set of all a ∈ E for which there is a sequence (tn)n∈N in R such that
tn → ∞ (resp. tn → −∞) and x(tn) → a as n → ∞. It is clear that
ω(x) =

⋂
t∈[0,∞[ ClE x([t,∞[) and α(x) =

⋂
t∈]−∞,0] ClE x(]−∞, t]) so these

sets are closed in E.
Let f ∈C. By a solution of f we mean a differentiable function x : R→E

mapping R into U and such that
ẋ(t) = f(x(t)) for all t ∈ R.

(Note that, in this paper, a solution is what is usually termed a complete or
full solution.) Given S ⊂ U we denote by Sol(f, S) the set of all solutions x
of f with x(R) ⊂ S.

Given f ∈ C and S ⊂ U we say that (f, S) is gradient-like with respect
to ϕ if ϕ is a continuous function from S to R such that:

1. whenever x ∈ Sol(f, S) then the function ϕ ◦ x is nonincreasing;
2. whenever x ∈ Sol(f, S) and the function ϕ ◦ x is constant, then the

function x is constant.

Note that if E is a Hilbert space and f = ∇F , where F : U → R is a
C1-function, then (f, U) is gradient-like with respect to ϕ := −F .

Let us now make the following basic

Definition 2.1. Given f ∈ C and S ⊂ U we define Inv(f, S) to be the
set of all points a ∈ S for which there is an x ∈ Sol(f, S) such that x(0) = a.
The set S is called an invariant set relative to f if Inv(f, S) = S.
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A set M is called an isolating neighborhood relative to f if M is bounded
and closed in E and Inv(f,M) ⊂ IntEM . A set S is called an isolated
invariant set relative to f if there is a set M , bounded and closed in E and
such that S = Inv(f,M) and Inv(f,M) ⊂ IntEM . In this case we say that
M is an isolating neighborhood of S relative to f .

Remark 2.2. If E is finite-dimensional and f ∈ C is locally Lipschitzian,
then for S and M compact the notions defined in Definition 2.1 coincide
with the corresponding concepts of the classical Conley index theory for the
(local) flow induced by the map f (see [5]). If f is merely continuous then,
due to the lack of uniqueness of solutions, the map f , in general, does not
define a flow on U . The situation is then somewhat similar to the (local)
semiflow case, where, in general, there is no uniqueness (or even existence)
of backward-time solutions. In fact, Definition 2.1 is inspired by the Conley
index theory for semiflows (see [15]).

3. The finite-dimensional case. Throughout this section let E be
finite-dimensional . We assume that the reader is familiar with the classical
Conley index theory for local flows on a locally compact metric space, as
expounded in the monographs [5] or [16].

We will now present an extension of the Conley index theory to the case
of ordinary differential equations on U with a merely continuous right hand
side, analogous to the extension, made by Leray and Schauder, of Brouwer
mapping degree to infinite dimensions.

Several results of this section are known and were obtained by P. Baiti in
his master thesis [2]. However, our proofs are simpler and we also establish
additional important results (e.g. Proposition 3.8). For the (more special)
case of the cohomological Conley index, the results of this section also fol-
low from very general results of Mrozek in [14] for multivalued-differential
equations. Again, the approach taken here is much simpler.

We begin with the following well known result, which follows from the
Arzelà–Ascoli Theorem, and is a special case of Kamke’s Theorem for finite-
dimensional ordinary differential equations:

Proposition 3.1. For every n ∈ N let fn ∈ C and xn ∈ Sol(fn, N). If
f ∈ C and |fn− f |N → 0 as n→∞ then there is a subsequence (xnk)k∈N of
(xn)n∈N and an x ∈ Sol(f,N) such that xnk → x as k → ∞, uniformly on
compact subsets of R.

Remark 3.2. Note that Proposition 3.1 is also a special case of Propo-
sition 4.3, stated and proved below.
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Proposition 3.3. Suppose f ∈ C and N is an isolating neighborhood
relative to f . Then there is an ε > 0 such that whenever g ∈ C and |g− f |N
< ε then N is an isolating neighborhood relative to g.

We denote by ε(f,N) the supremum of all such numbers ε > 0.

Proof. If the proposition is not true then there is a sequence (fn)n∈N in
C with |fn − f |N → 0 as n→∞, and there is a sequence (xn)n∈N such that
xn ∈ Sol(fn, N) and xn(0) ∈ ∂EN for every n ∈ N. Proposition 3.1 implies
that there is a subsequence (xnk)k∈N of (xn)n∈N and an x ∈ Sol(f,N) such
that xnk → x as k →∞, uniformly on compact subsets of R. In particular,
x(0) ∈ ∂EN so Inv(f,N) 6⊂ IntE N , a contradiction.

Remark 3.4. Note that, for f ∈ C, the fact that N is closed and Propo-
sition 3.1 with fn ≡ f imply that Inv(f,N) is closed, i.e. compact.

Note that if g ∈ C is locally Lipschitzian, N is an isolating neighborhood
relative to g and πg is the local flow generated by g then the Conley index
h(g, S) := h(πg, S) of the set S := Inv(g,N) is well defined (see [5] or [16]).
Since the isolating neighborhood N uniquely determines the isolated invari-
ant set S we also write h(g,N) instead of h(g, S). This will not lead to
confusion.

We can now extend the concept of the Conley index to ODEs with
nonunique solutions:

Definition 3.5 (cf. [2]). Suppose f ∈ C and N is an isolating neighbor-
hood relative to f . Set

h(f,N) := h(g,N)

where g ∈ C is an arbitrary locally Lipschitzian map with |g−f |N < ε(f,N).
We call h(f,N) the Conley index of the isolating neighborhood N relative
to f . IfH = (Hq)q∈Z is an arbitrary homology or cohomology theory, then we
call the graded group H(h(f,N)) = (Hq(h(f,N)))q∈Z the (co)homological
Conley index of the isolating neighborhood N relative to f .

The following result shows that this definition is independent of the
choice of g:

Proposition 3.6. If g, g′∈C are locally Lipschitzian maps with |g − f |N
< ε(f,N) and |g′ − f |N < ε(f,N) then

h(g,N) = h(g′, N).

Proof. For θ ∈ [0, 1] set gθ := (1− θ)g + θg′. It follows that gθ is locally
Lipschitzian and |gθ − f |N < ε(f,N) for all θ ∈ [0, 1]. By the continuation
invariance property of the classical Conley index we see that h(gθ, N) is
independent of θ ∈ [0, 1]. This proves the proposition.
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Remark 3.7. The index just defined is also independent of the open
set U with N ⊂ U . In fact, if U1, U2 are open subsets of E with N ⊂ U1∩U2
and f1 : U1 → E, f2 : U2 → E are continuous maps with f1|N = f2|N then
N is an isolating neighborhood relative to f1 if and only if N is an isolating
neighborhood relative to f2. In this case h(f1, N) = h(f2, N). The obvious
proofs of these assertions are left to the reader.

As in the classical case, the index h(f,N) depends only on the isolated
invariant set Inv(f,N):

Proposition 3.8. Suppose that f ∈ C and S is an isolated invariant set
relative to f . If N ′ and N ′′ are two isolating neighborhoods of S relative to
f then

h(f,N ′) = h(f,N ′′).

Proof. Suppose h(f,N ′) 6= h(f,N ′′). Choose a sequence (gn)n∈N of lo-
cally Lipschitzian maps in C such that |gn − f |U → 0 as n → ∞. By the
definition of the Conley index,

h(gn, N ′) 6= h(gn, N ′′) for all n large enough.

Taking a subsequence and exchanging N ′ with N ′′ if necessary, we may
assume that

Inv(gn, N ′) \ Inv(gn, N ′′) 6= ∅ for all n ∈ N.

Therefore for every n ∈ N there is an xn ∈ Sol(gn, N ′) with xn(0) 6∈ IntE N ′′.
An application of Proposition 3.1 yields an x ∈ Sol(f,N ′) with x(0) 6∈
IntE N ′′. Hence Inv(f,N ′) 6= Inv(f,N ′′), a contradiction.

Thus, whenever f ∈ C and S is a compact isolated invariant set relative
to f , then we may define the Conley index h(f, S) of S relative to f as

h(f, S) := h(f,N ′),

where N ′ is any isolating neighborhood of S relative to f . In view of Propo-
sition 3.8 this definition is unambiguous.

The index just defined is nontrivial:

Proposition 3.9 (cf. [2]). If f ∈ C, N is an isolating neighborhood rel-
ative to f and h(f,N) 6= 0, then Inv(f,N) 6= ∅.

Proof. Remember that 0 is the homotopy type of any pointed one-point
set. Choose a sequence (gn)n∈N of locally Lipschitzian maps in C such that
|gn−f |U → 0 as n→∞. By the definition of the Conley index, h(gn, N) 6= 0
for all n large enough, so by Conley index theory Inv(gn, N) 6= ∅ for all
such n. An application of Proposition 3.1 now shows that Inv(f,N) 6= ∅.

We also have the following important property:
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Proposition 3.10. If f, f ′ ∈ C, N is an isolating neighborhood relative
to f and |f ′ − f |N < ε(f,N) then

h(f ′, N) = h(f,N).

Proof. Since N is an isolating neighborhood relative to f ′, we know that
ε(f ′, N) is well defined and positive. Choose a locally Lipschitzian map g ∈ C
such that

|g − f ′|N < min(ε(f ′, N), ε(f,N)− |f ′ − f |N).

Then both |g − f ′|N < ε(f ′, N) and |g − f |N < ε(f,N), so h(f ′, N) =
h(g,N) = h(f,N).

As a corollary we obtain the following version of the continuation invari-
ance property:

Corollary 3.11 (cf. [2]). Let (Λ, d) be a metric space and (fλ)λ∈Λ be
a family in C such that the map

Λ×N → E, (λ, x) 7→ fλ(x),

is continuous. Assume that for every λ ∈ Λ the set N is an isolating neigh-
borhood relative to fλ. Then the map λ 7→ h(fλ, N) is locally constant. In
particular , if Λ is connected then the Conley index h(fλ, N) is independent
of λ ∈ Λ.

Proof. Let C(N,E) be the space of all continuous functions from N to
E endowed with the supremum norm. Since N is compact, our hypotheses
imply that the map Φ : Λ → C(N,E), λ 7→ fλ|N , is continuous. Thus, for
every λ0 ∈ Λ there is a δ ∈ ]0,∞[ such that d(λ, λ0) < δ implies |fλ−fλ0 |N <
ε(fλ0 , N), i.e., by Proposition 3.10, h(fλ, N) = h(fλ0 , N). In other words,
the map λ 7→ h(fλ, N) is locally constant.

Finally, the sum formula and the product formula hold for the index:

Proposition 3.12. Let f ∈ C and let N ′, N ′′ ⊂ U be disjoint closed
bounded subsets of E. Then N ′ ∪ N ′′ is an isolating neighborhood relative
to f if and only if N ′ and N ′′ are both isolating neighborhoods relative to f .
In this case

h(f,N ′ ∪N ′′) = h(f,N ′) ∨ h(f,N ′′).

Proof. Approximate f by an appropriate locally Lipschitzian map and
use the sum formula of the classical Conley index theory.

Proposition 3.13. Suppose there is a direct sum decomposition E =
1E ⊕ 2E where 1E and 2E are linear subspaces of E. For i = 1, 2 let iU
be open in iE, iN be closed and bounded in iE with iN ⊂ iU and let if :
iU → iE be a continuous map. Define f := 1f ⊕ 2f : 1U ⊕ 2U → 1E ⊕ 2E,
i.e. f(1x + 2x) = 1f(1x) + 2f(2x) for 1x ∈ 1U and 2x ∈ 2U . Then 1N ⊕ 2N
is an isolating neighborhood relative to f if and only if 1N is an isolating
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neighborhood relative to 1f and 2N is an isolating neighborhood relative to
2f . In this case

h(f, 1N ⊕ 2N) = h(1f, 1N) ∧ h(2f, 2N).

Proof. Approximate 1f and 2f by locally Lipschitzian maps and use the
product formula of the classical Conley index theory.

4. The infinite-dimensional case. In this section we assume that E
is infinite-dimensional.

We will now extend the LS-homotopy index theory from [9] to the case
of ordinary differential equations of the form

ẋ = Lx+K(x)(3)

where L is a bounded linear operator on E satisfying certain assumptions
and K : U → E is a (not necessarily locally Lipschitzian) completely con-
tinuous map.

Although the Cauchy problem for equation (3) is (locally) solvable (cf.
[6, pp. 21–23]), these (local) solutions are not necessarily unique. Therefore
equation (3), in general, does not generate a (local) flow on U , and so the
index defined in [9] cannot be applied in such a case.

On the other hand, as in [9], one can use a Galerkin approximation of
(3) by a sequence of finite-dimensional ordinary differential equations. These
equations have continuous right hand sides and, consequently, one can apply
to them the finite-dimensional Conley index defined in Section 3. Thus a
Conley-type index (of an isolating neighborhood) of (3) can be defined as a
sequence of Conley indices (of the corresponding isolating neighborhoods)
of certain finite-dimensional approximations of (3).

We prove several properties of this index. In particular, we establish a
result (which is new even in the locally Lipschitzian case) stating that the
index depends only on the isolated invariant set in question and not on the
choice of its isolating neighborhood.

The proofs of the statements presented in this section are given in Sec-
tion 5.

Let us make the following convenient

Definition 4.1. The quadruple (L,E−1, E0, E1) is called a trichotomy
on E if the following properties are satisfied:

1. L : E → E is a bounded linear operator.
2. Ej , j = −1, 0, 1, are closed L-invariant subspaces of E with E =

E−1 ⊕ E0 ⊕E1 and E0 is finite-dimensional.
3. For j = −1, 0, 1 let Lj : Ej → Ej be the restriction of L to Ej . Then

there are constants M ∈ [0,∞[ and α ∈ ]0,∞[ such that

‖eL−1t‖L(E−1,E−1) ≤Me−αt for all t ∈ [0,∞[(4)
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and
‖eL1t‖L(E1,E1) ≤Meαt for all t ∈ ]−∞, 0].(5)

The triple (L,E−1, E1) is called a dichotomy on E if the quadruple
(L,E−1, E0, E1) with E0 = {0} is a trichotomy on E.

Now consider the following

Hypothesis 4.2. (L,E−1, E0, E1) is a given trichotomy on E.

If K ∈ C and L is as in Hypothesis 4.2, then we write fK := L|U + K.
Note that fK ∈ C.

We have the following basic result, which is the infinite-dimensional ana-
logue of Proposition 3.1.

Proposition 4.3. Assume Hypothesis 4.2. Let (Kn)n∈N be a sequence
in C such that

⋃
n∈NKn(N) is relatively compact in E. For every n ∈ N set

fn := fKn and let xn ∈ Sol(fn, N). Then there is a subsequence (xnk)k∈N
of (xn)n∈N converging , uniformly on compact subsets of R, to a continuous
map x : R→ E with x(R) ⊂ N .

If , in addition, K ∈ C and Kn → K as n → ∞ uniformly on compact
subsets of N , then x ∈ Sol(f,N) where f := fK .

The last result has the following

Corollary 4.4. If K ∈ C is such that K(N) is relatively compact
in E, then Inv(fK , N) is compact. Moreover , whenever x ∈ Sol(fK , N) then
α(x) and ω(x) are nonempty , compact and invariant. Finally , if (fK , N)
is gradient-like with respect to ϕ and Inv(fK , N) is nonempty , then there
exists an a ∈ N with fK(a) = 0.

Remark 4.5. The importance of the above corollary lies in the fact that,
in applications to variational problems, the space E is frequently a Hilbert
space and fK = ∇F for a given C1-function F : U → R. One is interested
in finding critical points of F , i.e. solutions a ∈ U of the equation

fK(a) = 0.(6)

In that case (fK , N) is gradient-like with respect to the function ϕ := −F .
Thus, if Inv(fK , N) 6= ∅ (a property that can often be proved by the Conley
index theory, cf. Proposition 4.12 below) then Corollary 4.4 implies the
existence of a critical point of F contained in N .

Now consider the following additional

Hypothesis 4.6. 1. (P l)l∈N is a sequence of bounded linear operators on
E such that P l → Id as l → ∞, uniformly on compact subsets of E. Here,
Id is the identity map on E.

2. For every l ∈ N the space El := P l(E) is L-invariant. Let Ll : El → El

be the restriction of L to El.
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Given l ∈ N and an arbitrary function v defined on U and such that
v(U) ⊂ El define the function f lv : U ∩ El → El as

f lv(x) := Lx+ v(x) = Llx+ v(x) for all x ∈ U ∩ El.

As a corollary of Proposition 4.3 we obtain

Proposition 4.7. Assume Hypotheses 4.2 and 4.6. Suppose K ∈ C and
N is an isolating neighborhood relative to fK . Let (Kn)n∈N be a sequence in
C such that Kn → K as n→∞ uniformly on compact subsets of N . Assume
also that K(N) and

⋃
n∈NKn(N) are relatively compact in E. Then there

exist an l0 ∈ N and an n0 ∈ N such that for all l ≥ l0, n ≥ n0 and s ∈ [0, 1]
the set N ∩El is an isolating neighborhood relative to f l

P l◦(sK+(1−s)Kn).

Consider the next additional

Hypothesis 4.8. The subspace El is finite-dimensional for all l ∈ N.

We can now make the following basic

Definition 4.9. Assume Hypotheses 4.2, 4.6 and 4.8. Let K ∈ C be
such that the set K(N) is relatively compact in E and N is an isolating
neighborhood relative to fK . Proposition 4.7 with Kn ≡ K implies that
there is an l0 ∈ N such that N ∩El is an isolating neighborhood relative to
f l
P l◦K for all l ≥ l0. Let l0(K,N) be the minimum of all such l0.

Then, by the results of Section 3, the Conley index h(f l
P l◦K , N ∩ El) is

defined for all l ≥ l0(K,N). We define the LS-Conley index h(fK , N) of N
relative to fK to be the sequence (h(fK , N)l)l≥l0(K,N), where

h(fK , N)l := h(f lP l◦K , N ∩ El) for all l ≥ l0(K,N).

If H = (Hq)q∈Z is an arbitrary homology or cohomology theory, then the
sequence

(H(h(fK , N)l))l≥l0(K,N)

of graded groups Hq(h(fK , N)l), q ∈ Z, is called the (co)homological LS-
Conley index of N relative to fK .

Remark 4.10. Note that the obvious analogue of Remark 3.7 is valid in
the present case. We leave its formulation and proof to the reader.

From now on we assume Hypotheses 4.2, 4.6 and 4.8, unless specified
otherwise.

The index just defined depends, in some sense, only on the invariant set
isolated by N . More precisely, we have the following

Proposition 4.11. Let K ∈ C and let N ′, N ′′ ⊂ U be closed bounded
subsets of E such that K(N ′) and K(N ′′) are relatively compact in E. If N ′

and N ′′ are both isolating neighborhoods relative to fK and Inv(fK , N ′) =
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Inv(fK , N ′′) then there is an l1 with l1 ≥ l0(fK , N ′) and l1 ≥ l0(fK , N ′′)
such that

h(fK , N ′)l = h(fK , N ′′)l for all l ≥ l1.

The index is nontrivial in the following sense:

Proposition 4.12. If K ∈ C is such that K(N) is relatively compact in
E and N is an isolating neighborhood relative to fK with Inv(fK , N) = ∅,
then there is an l1 ≥ l0(K,N) such that

h(fK , N)l = 0 for all l ≥ l1.

The index also enjoys a continuation invariance property, which we state
here in the following form:

Proposition 4.13. Let (Λ, d) be a connected metric space and (Kλ)λ∈Λ
be a family in C such that the map

Λ×N → E, (λ, x) 7→ Kλ(x),

is continuous and
⋃
λ∈ΛKλ(N) is relatively compact in E. Assume that

for every λ ∈ Λ the set N is an isolating neighborhood relative to fKλ .
Then the Conley index h(fKλ , N) is independent of λ ∈ Λ in the following
sense: Whenever λ′, λ′′ ∈ Λ then there is an l1 with l1 ≥ l0(Kλ′ , N) and
l1 ≥ l0(Kλ′′ , N) such that

h(fKλ′ , N)l = h(fKλ′′ , N)l for all l ≥ l1.

The sum formula takes the following form:

Proposition 4.14. Let K ∈ C and let N ′, N ′′ ⊂ U be disjoint closed
bounded subsets of E such that K(N ′) and K(N ′′) are relatively compact
in E. Then N ′ ∪N ′′ is an isolating neighborhood relative to fK if and only
if N ′ and N ′′ are both isolating neighborhoods relative to fK . In this case
there is an l1 with l1 ≥ l0(K,N ′) and l1 ≥ l0(K,N ′′) such that

h(fK , N ′ ∪N ′′)l = h(fK , N ′)l ∨ h(fK , N ′′)l for all l ≥ l1.

The product formula takes the following, slightly complicated form:

Proposition 4.15. Suppose there is a direct sum decomposition E =
1E ⊕ 2E where 1E and 2E are closed L-invariant linear subspaces of E. For
i = 1, 2 let iL : iE → iE be the restriction of L to iE and suppose that
there are linear subspaces iEj , j = −1, 0, 1, of iE such that the quadruple
(iL, iE−1,

iE0,
iE1) is a trichotomy on iE. Suppose that , for i = 1, 2, Hypothe-

ses 4.6 and 4.8 hold with E, P l, El, L and Ll replaced by iE, iP l, iEl, iL
and iLl, respectively. For i = 1, 2 let iU be open in iE, iN be closed and
bounded in iE with iN ⊂ iU and let iK : iU → iE be a continuous map
such that iK(iN) is relatively compact in iE. Set if = iL|iU + iK. Define
f := 1f⊕2f : 1U⊕2U → 1E⊕2E, i.e. f(1x+2x) = 1f(1x)+2f(2x) for 1x ∈ 1U
and 2x ∈ 2U . Then 1N ⊕ 2N is an isolating neighborhood relative to f if and
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only if 1N is an isolating neighborhood relative to 1f and 2N is an isolating
neighborhood relative to 2f . In this case there is an l1 with l1 ≥ l0(1K, 1N)
and l1 ≥ l0(2K, 2N) such that

h(f, 1N ⊕ 2N)l = h(1f, 1N)l ∧ h(2f, 2N)l for all l ≥ l1.

Now assume the following additional

Hypothesis 4.16. For every l large enough there are linear L-invariant
subspaces F l, F l−1 and F l1 of E such that El+1 = F l ⊕ El and the triple
(L|F l , F l−1, F

l
1) is a dichotomy on F l. Let il denote the dimension of F l1.

Remark 4.17. Note that Hypotheses 4.2, 4.6, 4.8 and 4.16 are automat-
ically satisfied in the case of equations considered in [9].

We then have the following result:

Proposition 4.18. Assume that K ∈ C is such that K(N) is relatively
compact in E and N is an isolating neighborhood relative to fK . Then there
is an l1 ≥ l0(K,N) such that

h(fK , N)l+1 = Σil ∧ h(fK , N)l for all l ≥ l1,

where Σi denotes the homotopy type of a pointed i-dimensional sphere.

Remark 4.19. Proposition 4.18 shows that, whenever Hypotheses 4.2,
4.6, 4.8 and 4.16 hold then we can equivalently define the LS-Conley index in
terms of the spectrum concept, as in [9]. In particular, we see that whenever
the index theory from [9] is applicable then so is the theory presented here
and the resulting indices are the same.

5. Proofs of the statements of Section 4. We will now prove the
results stated in Section 4. We will use the following simple and well known
results:

Lemma 5.1. Let X and Y be metric spaces and (fn)n∈N be a sequence
of functions from X to Y . Suppose that f is a continuous function from X
to Y . Then the following conditions are equivalent :

1. fn → f as n→∞, uniformly on compact subsets of X.
2. Whenever a ∈ X and (an)n∈N is a sequence in X with an → a then

fn(an)→ f(a).

Lemma 5.2 (Variation-of-constants formula). Let g : R → E be a con-
tinuous map and y : R→ E be a differentiable map such that

ẏ(t) = Ly(t) + g(t) for all t ∈ R.

Then for all t, r ∈ R,

y(t) = eLry(t− r) +
r�

0

eL(r−s)g(s+ t− r) ds.



Conley index in Hilbert spaces 43

Proof of Proposition 4.3. Since the right hand side of the equation

ẋn(t) = Lxn(t) +Kn(xn(t))

has a bound independent of n ∈ N and t ∈ R, the sequence (xn)n∈N is
uniformly equicontinuous on R. Thus, in order to prove the first part of
the proposition, it is enough, by the Arzelà–Ascoli Theorem, to show that
for every t ∈ R, the set {xn(t) | n ∈ N} is relatively compact in E. For
i = −1, 0, 1 let Qi be the projector of E onto Ei along the direct sum de-
composition of Hypothesis 4.2. We just have to show that for i = −1, 0, 1 the
set {Qi(xn(t)) | n ∈ N} is relatively compact in Ei. For i = 0 this is obvious
since E0 is finite-dimensional. Let i = −1. We use the same argument as
that used in the proofs of Theorem III.4.4 of [16] and Theorem 3.3 of [4]. Let
β be the Kuratowski measure of noncompactness on Ei. Let δ > 0. Then
there is an r = r(δ) ∈ ]0,∞[ such that

Me−αr < δ.

By the variation-of-constants formula we have

Qi(xn(t)) = eLirQi(xn(t− r)) +
r�

0

eLi(r−s)QiKn(xn(s+ t− r)) ds.

There is a compact set Z1 in Ei such that

QiKn(xn(s+ t− r)) ∈ Z1 for all n ∈ N and all s ∈ [0, r].

Let Z2 := {eLi(r−s)v | (s, v) ∈ [0, r] × Z1}. Of course, Z2 is compact in Ei.
Thus

r�

0

eLi(r−s)QiKn(xn(s+ t− r)) ds ∈ rZ3 for all n ∈ N

where Z3 is the closed convex hull of Z2. Notice that the set Z3 is compact
by Mazur’s Theorem so β(rZ3) = 0 and so we obtain

β({Qi(xn(t)) | n ∈ N}) ≤ β({eLirQi(xn(t− r)) | n ∈ N}) + β(rZ3)

≤ 2MCNe
−αr ≤ 2CNδ

where CN := supx∈N ‖x‖ <∞. Since δ > 0 is arbitrary, we obtain

β({Qi(xn(t)) | n ∈ N}) = 0,

which proves our claim. The case i=1 is analogous. This establishes the first
part of the proposition. To prove the second part, note that, by Lemma 5.1,
fKnk ◦ xnk→fK ◦ x as k→∞, uniformly on compact subsets of R.

Proof of Corollary 4.4. By Proposition 4.3 every sequence of solutions
of fK mapping R into N has a subsequence which converges, uniformly on
compact subsets of R, to a solution of fK mapping R into N . This shows
that Inv(fK , N) is compact. Whenever x is a solution of fK then for every
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s ∈ R the function x(·+ s) is also a solution of fK . If, in addition, x maps R
into N and (tn)n∈N is an arbitrary sequence in R then, by Proposition 4.3,
the sequence (x(· + tn))n∈N has a subsequence converging, uniformly on
compact subsets of R, to a solution of fK mapping R into N . This proves
the assertions of the corollary concerning the sets ω(x) and α(x). If (fK , N)
is gradient-like with respect to ϕ and Inv(fK , N) 6= ∅, then there is an
x ∈ Sol(fK , N). Since ϕ is continuous and ϕ ◦ x is nonincreasing we deduce
that ϕ(a) = inft∈[0,∞[ ϕ(x(t)) for all a ∈ ω(x). Since ω(x) is nonempty and
invariant relative to fK there are an a0 ∈ ω(x) and a y ∈ Sol(fK , ω(x)) with
y(0) = a0. It follows that ϕ ◦ y is constant so y is constant. Thus ẏ(t) ≡ 0
and so 0 = ẏ(0) = fK(y(0)) = fK(a0). The corollary is proved.

Proof of Proposition 4.7. If the proposition is not true, then there are
strictly increasing sequences (lk)k∈N and (nk)k∈N in N and a sequence (sk)k∈N
in [0, 1] converging to some s such that, for every k ∈ N, N ∩ E lk is not
an isolating neighborhood relative to f lk

P lk◦(skK+(1−sk)Knk )
. Hence for every

k ∈ N there is a solution xk : R→ Elk of f lk
P lk◦(skK+(1−sk)Knk )

with xk(R) ⊂
N ∩ Elk and xk(0) ∈ ∂Elk (N ∩Elk). Thus xk is differentiable into E and

ẋk(t) = Lxk(t) +K ′k(xk(t)) for all t ∈ R
where K ′k : U → E is defined by K ′k := P lk ◦ (skK + (1− sk)Knk).

We claim that K ′k → K as k →∞, uniformly on compact subsets of N .
By Lemma 5.1 the claim will be proved if we show that whenever ak → a
in N as k → ∞, then K ′k(ak) → K(a) as k → ∞. Now K ′k(ak) = P lk(bk)
where bk := skK(ak) + (1− sk)Knk(ak), k ∈ N. By the assumptions of this
proposition together with Lemma 5.1 we have bk → sK(a) + (1− s)K(a) =
K(a) as k → ∞ so, by Hypothesis 4.6 and Lemma 5.1, we conclude that
P lk(bk)→ K(a) as k →∞. This proves the claim.

We also claim that
⋃
k∈NK

′
k(N) is relatively compact in E. To prove

this it is sufficient to show that every sequence in
⋃
k∈NK

′
k(N) has a subse-

quence which converges in E. Let (am)m∈N be a sequence in
⋃
k∈NK

′
k(N).

Then there are sequences (km)m∈N in N and (bm)m∈N in N such that am =
K ′km(bm), m ∈ N. Thus am = P lkm (skmcm+(1−skm)dm), where cm = K(bm)
and dm = Knkm

(bm), m ∈ N. The assumptions of this proposition imply
that (cm, dm)m∈N has a subsequence, denoted again by (cm, dm)m∈N, which
converges in E × E to some (c, d) ∈ E ×E.

Suppose first that (km)m∈N is bounded. Then, taking subsequences if
necessary, we may assume that km ≡ k for some k ∈ N. Since P lk is contin-
uous we conclude that

am = P lk(skcm + (1− sk)dm)→ P lk(skc+ (1− sk)d)

as m→∞ and the claim is proved in this case.
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Now suppose that (km)m∈N is unbounded. Then we may assume that
km → ∞ as m → ∞. By Hypothesis 4.6 and Lemma 5.1 we thus find that
am → sc+ (1− s)d as m→∞ and the claim is also proved in this case.

Using the above two claims, applying Proposition 4.3 and taking a sub-
sequence if necessary, we may assume that xk → x uniformly on compact
subsets of R, where x ∈ Sol(fK , N). It follows that x(R) ⊂ V := IntE N .
Since xk(0)→ x(0) ∈ V , it follows that xk(0) ∈ V ∩ Elk ⊂ IntElk (N ∩ Elk)
for all k large enough, a contradiction, which proves the proposition.

Proof of Proposition 4.11. In view of Proposition 3.8 it is sufficient to
prove that there is an l1 with l1 ≥ l0(fK , N ′) and l1 ≥ l0(fK , N ′′) such that

Inv(f lP l◦K , N
′ ∩ El) = Inv(f lP l◦K , N

′′ ∩El) for all l ≥ l1.

If this is not true, then we may assume that there is a strictly increasing
sequence (lk)k∈N in N and a sequence (xk)k∈N such that for every k ∈ N we
have xk ∈ Sol(f lk

P lk◦K , N
′ ∩ Elk) with xk(0) 6∈ IntElk (N ′′ ∩Elk).

We claim that K ′k := P lk ◦K → K uniformly on compact subsets in N ′.
In fact, this follows immediately from Lemma 5.1 and Hypothesis 4.6.

We also claim that
⋃
k∈NK

′
k(N

′) is relatively compact in E. To prove
this it is sufficient to show that every sequence in

⋃
k∈NK

′
k(N

′) has a subse-
quence which converges in E. Let (am)m∈N be a sequence in

⋃
k∈NK

′
k(N

′).
Then there are sequences (km)m∈N in N and (bm)m∈N in N ′ such that
am = K ′km(bm), m ∈ N. Thus am = P lkmK(bm), m ∈ N. The assumptions of
this proposition imply that (K(bm))m∈N has a subsequence, denoted again
by (K(bm))m∈N, which converges in E to some c ∈ E.

Suppose first that (km)m∈N is bounded. Then, taking subsequences if
necessary, we may assume that km ≡ k for some k ∈ N. Since P lk is con-
tinuous we conclude that am = P lk(K(bm)) → P lk(c) as m → ∞ and the
claim is proved in this case.

Now suppose that (km)m∈N is unbounded. Then we may assume that
km → ∞ as m → ∞. By Hypothesis 4.6 and Lemma 5.1 we find that
am → c as m→∞ and the claim is also proved in this case.

Using the above two claims together with Proposition 4.3 we may assume
that xk → x as k → ∞, uniformly on compact subsets of R, where x ∈
Sol(fK , N ′). It follows that x(0) ∈ Inv(fK , N ′) = Inv(fK , N ′′) ⊂ IntE N ′′

so xk(0) ∈ IntElk (N ′′ ∩ Elk) for all k large enough, a contradiction. The
proposition is proved.

Proof of Proposition 4.12. In view of Proposition 3.9 it is sufficient to
prove that there is an l1 ≥ l0(fK , N) such that

Inv(f lP l◦K , N ∩El) = ∅ for all l ≥ l1.

If this is not true, then we may assume that there is a strictly increasing
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sequence (lk)k∈N in N and a sequence (xk)k∈N such that for every k ∈ N we
have xk ∈ Sol(f lk

P lk◦K , N ∩E
lk).

Arguing exactly as in the proof of Proposition 4.11 we conclude that
K ′k := P lk ◦K → K uniformly on compact subsets in N and

⋃
k∈NK

′
k(N) is

relatively compact in E. Thus, in view of Proposition 4.3, we may assume
that xk → x as k → ∞, uniformly on compact subsets of R, where x ∈
Sol(fK , N). It follows that Inv(fK , N) 6= ∅, a contradiction.

The following result is an immediate consequence of Proposition 4.7 and
Corollary 3.11:

Proposition 5.3. Suppose K ∈ C and N is an isolating neighborhood
relative to fK . Let (Kn)n∈N be a sequence in C such that Kn → K as
n → ∞ uniformly on compact subsets of N . Assume also that K(N) and⋃
n∈NKn(N) are relatively compact in E. Then there exist an l0 ∈ N and

an n0 ∈ N such that l0 ≥ l0(K,N), l0 ≥ l0(Kn, N) for all n ≥ n0 and

h(fKn , N)l = h(fK , N)l for all n ≥ n0 and l ≥ l0.

The last result clearly implies the following

Proposition 5.4. Let (Λ, d) be a metric space and (Kλ)λ∈Λ be a family
in C such that the map

Λ×N → E, (λ, x) 7→ Kλ(x),

is continuous and
⋃
λ∈ΛKλ(N) is relatively compact in E. Assume that for

every λ ∈ Λ the set N is an isolating neighborhood relative to fKλ . Then, for
every λ0 ∈ Λ there is a δ ∈ ]0,∞[ and an l1 ∈ N such that l1 ≥ l0(fKλ , N)
and

h(fKλ , N)l = h(fKλ0
, N)l

for all λ with d(λ, λ0) < δ and l ≥ l1.

Proof of Proposition 4.13. Of course we may assume that Λ is nonempty.
Let λ0 ∈ Λ. Define Λ0 to be the set of all λ ∈ Λ for which there is an l1 such
that l1 ≥ l0(fKλ , N), l1 ≥ l0(fKλ0

, N) and

h(fKλ , N)l = h(fKλ0
, N)l for all l ≥ l1.

Proposition 5.4 implies that Λ0 is both open and closed in Λ. Since λ0 ∈ Λ0
it follows that Λ0 = Λ. This proves the proposition.

Proof of Proposition 4.14. The assertion follows easily from Proposi-
tion 3.12.

Proof of Proposition 4.15. The assertion follows easily from Proposi-
tion 3.13.

Proof of Proposition 4.18. We need the following lemma:
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Lemma 5.5. There is an l1 such that N ∩El+1 is an isolating neighbor-
hood relative to f l+1

sP l◦K+(1−s)P l+1◦K for all l ≥ l1.

Proof. In fact, if the lemma is not true, then there are a strictly increas-
ing sequence (lk)k∈N and a sequence (sk)k∈N in [0, 1] converging to some
s such that, for every k ∈ N, N ∩ Elk+1 is not an isolating neighborhood
relative to f lk+1

skP
lk◦K+(1−sk)P lk+1◦K . Hence for every k ∈ N there is a solution

xk : R → Elk+1 of f lk+1
skP

lk◦K+(1−sk)P lk+1◦K with xk(R) ⊂ N ∩ Elk+1 and

xk(0) ∈ ∂Elk+1(N ∩ Elk+1). Thus xk is differentiable into E and

ẋk(t) = Lxk(t) +K ′k(xk(t)) for all t ∈ R
where K ′k : U → E is defined by K ′k := skP

lk ◦K + (1− sk)P lk+1 ◦K.
We claim that K ′k → K as k →∞, uniformly on compact subsets of N . It

is sufficient to show that whenever ak → a in N as k →∞, then K ′k(ak)→
K(a) as k → ∞. Now K ′k(ak) = skP

lk(K(ak)) + (1 − sk)P lk+1(K(ak)).
By the continuity of K, Lemma 5.1 and Hypothesis 4.6 we conclude that
K ′k(ak) → sK(a) + (1 − s)K(a) = K(a) as k → ∞. This proves the claim.
We also claim that

⋃
k∈NK

′
k(N) is relatively compact in E. It is sufficient to

show that every sequence in
⋃
k∈NK

′
k(N) has a subsequence which converges

in E. Let (am)m∈N be a sequence in
⋃
k∈NK

′
k(N). Then there are sequences

(km)m∈N in N and (bm)m∈N in N such that am = K ′km(bm), m ∈ N. Thus
am = skmP

lkm (K(bm)) + (1− skm)P lkm+1(K(bm)).
The assumptions of this proposition imply that (K(bm))m∈N has a subse-

quence, denoted again by (K(bm))m∈N, which converges in E to some c ∈ E.
Suppose first that (km)m∈N is bounded. Then, taking subsequences if

necessary, we may assume that km ≡ k for some k ∈ N. Since P lk is contin-
uous we conclude that

am = skP
lk(K(bm)) + (1− sk)P lk+1(K(bm))→ skP

lk(c) + (1− sk)P lk+1(c)

as m→∞ and the claim is proved in this case.
Now suppose that (km)m∈N is unbounded. Then we may assume that

km → ∞ as m → ∞. By Hypothesis 4.6 and Lemma 5.1 we deduce that
am → sc+ (1− s)c = c as m→∞ and the claim is also proved in this case.

Using the above two claims, applying Proposition 4.3 and taking a subse-
quence if necessary, we may assume that xk → x uniformly on compact sub-
sets of R, where x ∈ Sol(fK , N). It follows that x(R) ⊂ V := IntE N . Since
xk(0)→ x(0) ∈ V , it follows that xk(0) ∈ V ∩ Elk+1 ⊂ IntElk+1(N ∩Elk+1)
for all k large enough, a contradiction, which proves the lemma.

Lemma 5.5 and Corollary 3.11 imply that

h(f l+1
P l+1◦K , N ∩E

l+1) = h(f l+1
P l◦K , N ∩E

l+1) for all l ≥ l1.(7)
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We may choose l1 larger if necessary, to ensure that Hypothesis 4.16 is
satisfied for l ≥ l1. Let l ≥ l1. Note that, by Hypothesis 4.16,

h(L|F l , {0}) = Σil(8)
and

Inv(f l+1
P l◦K , N ∩ E

l+1) = S := Inv(f lP l◦K , N ∩ El).(9)

We may thus choose an open ball U ′ at zero in F l, a closed ball B ⊂ U ′ at
zero in F l, an open set U ′′ ⊂ U ∩ El in El and an isolating neighborhood
N ′′ ⊂ U ′′ of S relative to f l

P l◦K such thatB⊕N ′′ is an isolating neighborhood
of S relative to f l+1

P l◦K . Hence, by Proposition 3.8,

h(f l+1
P l◦K , N ∩ E

l+1) = h(f l+1
P l◦K , S) = h(f l+1

P l◦K , B ⊕N
′′).(10)

Write x = y + z where x ∈ El+1, y ∈ F l and z ∈ El. For θ ∈ [0, 1] define
gθ : U ′ ⊕U ′′ → El+1 by gθ(y+ z) = L(y+ z) + P lK(θy + z). It follows that
for all θ ∈ [0, 1], B ⊕ N ′′ is an isolating neighborhood of S relative to gθ.
Thus, by Remark 3.7 and Corollary 3.11, we obtain

h(f l+1
P l◦K , B ⊕N

′′) = h(g1, B ⊕N ′′) = h(g0, B ⊕N ′′).(11)

Now (8) and the product formula of Proposition 3.13 imply that

h(g0, B ⊕N ′′) = h(L|F l, {0}) ∧ h(f lP l◦K , N
′′)(12)

= Σil ∧ h(f lP l◦K , N ∩ El).
Formulas (7), (10), (11) and (12) yield

h(f l+1
P l+1◦K , N ∩E

l+1) = Σil ∧ h(f lP l◦K , N ∩El).
The proposition is proved.

6. The equivariant case. In this section we will show that the Conley-
type index theories constructed in Sections 3 and 4 carry over to the G-
equivariant case.

Assume to this end that G is a given compact topological group acting
on E by transformations which are isometries with respect to the norm ‖ ·‖.
Given S ⊂ E we write GS := {gx | g ∈ G, x ∈ S}.

Unless otherwise specified we will assume that the set U is G-invariant.
We denote by CG the subset of C consisting of the G-equivariant maps.

We will need the following approximation result:

Proposition 6.1. For every f ∈ CG and every ε ∈ ]0,∞[ there is a
locally Lipschitzian map f̂ ∈ CG with

|f̂ − f |U < ε.

Proof. It is known that there is a locally Lipschitzian map fε ∈ C such
that

|fε − f |U < ε.
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(Cf., e.g., [6, Lemma 1.1, p. 5].) Let µ be the normalized right-invariant
Haar measure on G. Define the map f̂ : U → E by

f̂(x) :=
�

G

g−1fε(gx) dµ(g) for all x ∈ U .

It is clear that f̂ is well defined, G-equivariant and |f̂ − f |U < ε. We only
have to show that f̂ is locally Lipschitzian. In fact, we claim that for every
x there is an open neighborhood Vx of x such that fε|GVx is Lipschitzian.
This claim together with the definition of f̂ immediately implies that f̂ |Vx
is Lipschitzian (with the same Lipschitz constant).

If the claim is not true then for some x ∈ U there are sequences (yn)n∈N,
(zn)n∈N in U with yn → x, zn → x as n → ∞ and there are sequences
(gn)n∈N and (hn)n∈N in G such that

‖fε(gnyn)− fε(hnzn)‖ ≥ n‖gnyn − hnzn‖ for every n ∈ N.(13)

Since in a compact space every net has a convergent subnet (cf. e.g. [7] or
[13]) we thus obtain the existence of a directed set (D,≺) and a function
d 7→ nd from D to N with limd∈D nd = ∞ such that limd∈D gnd = g and
limd∈D hnd = h for some g and h ∈ G. It follows that limd∈D gndynd = gx
and limd∈D hndznd = hx. If gx = hx then (13) contradicts the fact that fε
is Lipschitzian in a neighborhood of gx. If gx 6= hx, then (13) implies that
‖fε(gx)− fε(hx)‖ =∞, again a contradiction.

Suppose that E is finite-dimensional .
Note that if f ∈ CG is locally Lipschitzian, N is a G-invariant isolating

neighborhood relative to f and πf is the local flow generated by f then the
G-equivariant Conley index hG(f, S) := hG(πf , S) of the set S := Inv(f,N)
is well defined (see Floer’s fundamental paper [8]). Since the isolating neigh-
borhood N uniquely determines the isolated invariant set S we also write
hG(f,N) instead of hG(f, S). This will not lead to confusion.

We can now extend the concept of the G-equivariant Conley index to
ODEs with nonunique solutions:

Definition 6.2. Suppose f ∈ CG and N is a G-invariant isolating neigh-
borhood relative to f . Set

hG(f,N) := hG(f̂ , N)

where f̂ ∈ CG is an arbitrary locally Lipschitzian map with |f̂ − f |N <

ε(f,N). The existence of f̂ follows from Proposition 6.1. We call hG(f,N)
the G-equivariant Conley index of the isolating neighborhood N relative to f .
If H = (Hq)q∈Z is an arbitrary G-equivariant homology or cohomology the-
ory, then we call the graded group H(hG(f,N)) = (Hq(hG(f,N)))q∈Z the
G-equivariant (co)homological Conley index of the isolating neighborhood N
relative to f .
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The analogues of all results of Section 3 (obtained by replacing h(·, ·)
by hG(·, ·) and assuming that all sets (resp. maps) involved are G-invariant
(resp. G-equivariant)) hold with analogous proofs. In particular, the index
hG(f,N) does not depend on the choice of the locally Lipschitzian map
f̂ ∈ CG with |f̂ − f |N < ε(f,N) and hG(f,N) only depends on the set
S = Inv(f,N) and not on the choice of a G-invariant isolating neighborhood
of S. Thus, for every G-invariant isolated invariant set relative to f we can
define the G-equivariant Conley index hG(f, S) of S relative to f by setting

hG(f, S) := hG(f,N ′)

where N ′ is an arbitrary G-invariant isolating neighborhood of S relative
to f .

It further follows that the index just defined is nontrivial and enjoys the
continuation invariance property.

Finally, the sum and product formulas continue to hold.

Now suppose that E is infinite-dimensional .
Consider the following

Hypothesis 6.3.

1. Hypotheses 4.2, 4.6 and 4.8 are satisfied.
2. The sets Ej , j = −1, 0, 1, are G-invariant.
3. The maps L and P l, l ∈ N, are G-equivariant.

We can now make the equivariant version of Definition 4.9:

Definition 6.4. Assume Hypothesis 6.3. Let K ∈ CG be such that
K(N) is relatively compact in E and N is a G-invariant isolating neigh-
borhood relative to fK .

The G-equivariant LS-Conley index hG(fK , N) of N relative to fK is
the sequence (hG(fK , N)l)l≥l0(K,N), where

hG(fK , N)l := hG(f lP l◦K , N ∩ El) for all l ≥ l0(K,N).

If H = (Hq)q∈Z is an arbitrary G-equivariant homology or cohomology the-
ory, then the sequence

(H(hG(fK , N)l))l≥l0(K,N)

of graded groups Hq(hG(fK , N)l), q ∈ Z, is called the G-equivariant (co)-
homological LS-Conley index of N relative to fK .

Under Hypothesis 6.3 one can now easily prove the analogues of Re-
mark 4.10 and Propositions 4.11–4.15 obtained by replacing h(·, ·) by hG(·, ·)
and assuming that all sets (resp. maps) involved are G-invariant (resp. G-
equivariant).

Now consider the additional
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Hypothesis 6.5.

1. Hypothesis 4.16 is satisfied.
2. For all l large enough the set F l is G-invariant.

Note that Hypotheses 6.3 and 6.5 are automatically satisfied in the case
of equations considered by the first author in the paper [11].

We now obtain the following analogue of Proposition 4.18:

Proposition 6.6. Assume Hypotheses 6.3 and 6.5. Let K ∈ CG be such
that K(N) is relatively compact in E and N is a G-invariant isolating neigh-
borhood relative to fK . Then there is an l1 ≥ l0(K,N) such that

hG(fK , N)l+1 = Σil
G ∧ hG(fK , N)l for all l ≥ l1.

Here, Σil
G is the one-point compactification of the representation F l1.

Proof. Note that, by simple arguments,

hG(L|F l, {0}) = Σil
G

and thus the proof of Proposition 4.18 carries over (mutatis mutandis) to
the present equivariant case.
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