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Kleinberg sequences and partition cardinals below 5%
by

Benedikt Léowe (Bonn)

Abstract. The author computes the Kleinberg sequences derived from the three
different normal ultrafilters on 531,.

1. Introduction. Eugene Kleinberg linked the theory of partition cardi-
nals to the Axiom of Determinacy AD by showing that the first w41 infinite
cardinals satisfy certain large cardinal properties defined via partition rela-
tions. In fact, his proof did not actually use the Axiom of Determinacy but
some of its consequences.

More generally, Kleinberg showed (for a proof, cf. [K177], or [Sch99] for
a more thorough presentation):

THEOREM 1.1. Let k be a cardinal with the strong partition property and
w be a normal ultrafilter on k. Let k1 := k and knp41 := (kn)®/p. Then

(i) k1 and k2 are measurable,

(i) for all m > 2, cf(ky) = Ko,

(iii) Ky is a Jonsson cardinal, and

(iv) sup{kn : n € w} is a Rowbottom cardinal.

Moreover, if k" /pu = k*t, then kny1 = (kn) T for all n € w.

COROLLARY 1.2. Assume AD. Then for all positive natural numbers n,
N, is a Jonsson cardinal and X, s a Rowbottom cardinal.

Proof. After a brief look at Theorem 1.1 we realize that there is nothing
to show if X1 has the strong partition property and (Rq)™ /u = Ry for some
(the only) normal ultrafilter © on Ry. But the first assertion is a theorem of
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Martin (cf. [Ka94, Theorem 28.12]), the second is a theorem of Solovay (cf.
[K177, Theorem 2.9]). =

At that time, it was unknown whether there are any natural assumptions
(e.g., the Axiom of Determinacy) under which the conditions of Kleinberg’s
Theorem 1.1 are met except for the case mentioned in the proof of Corol-
lary 1.2.

The deep structural results of Jackson’s computation of 6% immediately
provided additional examples for Kleinberg’s theorem under AD: All odd
projective ordinals J%H 41 are starting points for sequences of successive
Joénsson cardinals derived from the w-cofinal normal ultrafilter (cf. Theo-
rem 2.6 and Fact 2.5(vii)).

But Kleinberg’s Theorem 1.1 provides us with even more sequences of
Jénsson cardinals starting from 63, ; since we have as many normal mea-
sures on 83, . ; as we have regular cardinals below it. Where exactly are these
Jénsson and Rowbottom cardinals? Can we compute the cardinality of the
members of these additional Kleinberg sequences?

In this note we shall answer these questions and compute the Kleinberg
sequences derived from the wi-cofinal and the wo-cofinal measures on 5%. An
important ingredient here is the exact knowledge of cofinalities of successor
cardinals between 83 and 82 provided by [JaKhoo.

2. Prerequisites and the Shifting Lemma. To compute the Klein-
berg sequences, we will use a substantial amount of knowledge about the
behaviour of the projective ordinals and of the combinatorial theory below
6% under AD. Nevertheless, we try to keep the paper understandable for
readers with a basic understanding of Determinacy and Large Cardinals by
listing all theorems that we shall use later on in this section.

DEFINITION 2.1. A cardinal s is called a Jonsson cardinal if the parti-
tion relation k — [k]5* holds, i.e., for every partition of [x]<“ into k blocks
there is a set H of order type x with the property that [H]<“ does not meet
all blocks.

A cardinal « is called a Rowbottom cardinal if for all A < k the partition
relation Kk — [n]i‘iwl holds, i.e., for every partition of [k]<“ into A blocks
there is a set H of order type s with the property that [H]<“ meets only
countably many blocks.

Jénsson and Rowbottom cardinals are large cardinals in the sense that
their existence implies the consistency of ZFC (and much more). They are
not, however, large in the usual sense. They do not even have to be regular
cardinals; in fact, all of the Jonssons and Rowbottoms appearing in this
paper have cofinality w.
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This is not just a feature of choiceless set theory: In the Piikry (ZFC)-
model obtained by generically adding a cofinal w-sequence to a measurable
cardinal, the former measurable cardinal is a Rowbottom cardinal of cofinal-
ity w. For particular instances of the question “Is N) Rowbottom?” where
A is of cofinality w, the consistency strength of a positive answer differs
depending on whether or not you demand that the Axiom of Choice AC
holds (cf. [Koe88] and [ApKoex]).

A reader interested in the basic theory of Jonsson and Rowbottom car-
dinals is referred to [Ka94, §7 & §8].

DEFINITION 2.2. A cardinal k is said to have the strong partition prop-
erty if the partition relation k — (k)" holds, i.e., if for every partition of
[]" into two blocks there is a homogeneous set of order type k.

Note that the strong partition property cannot hold for any cardinal if
we assume AC: by a result of Erdés and Rado (cf. [Ka94, Proposition 7.1]) no
partition relation can have infinite exponents if the Axiom of Choice holds.

That the strong partition property of x really is a property with as-
tonishing consequences for the combinatorial theory of x (or, to put it in
Jim Henle’s words, that it is “one of the most powerful partition properties
known to man” [He79, p. 151]), can be seen in the next result of Kleinberg;
a proof can be found in [Ka94, Theorem 28.10 & Exercise 28.11]:

THEOREM 2.3. Let x be a cardinal with the strong partition property
and X < k a regular cardinal. Then C., the filter generated by the A-closed
unbounded sets in k, is a normal ultrafilter on k. We call C} the A-cofinal
filter or measure.

In addition, if k is not weakly Mahlo, then these are the only normal
ultrafilters on k.

The reader was already informally introduced to Kleinberg sequences in
Theorem 1.1. Now we fix our notation:

DEFINITION 2.4. Let s be a cardinal with the strong partition property
and p a normal measure on x. We then define a sequence of well-ordered
structures (k1 : n < w) as follows:

o i} ==k,

o kb= (kh)"/p, and

o kly:=sup{kh :n € w}.

This sequence is called the Kleinberg sequence derived from .

As already mentioned in Theorem 1.1, all elements of a Kleinberg se-
quence are Jénsson cardinals, and k,, is a Rowbottom cardinal.
We define the projective ordinals by

6 := sup{¢ : £ is the length of a prewellordering of w* in Al}.
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Even before Jackson’s results, a couple of things were known about the
projective ordinals under AD:

FactT 2.5. Let n be a natural number. Assume AD. Then:

(i) (Kunen-Martin 1971) 63, 5 = (63,.1)",
(ii) (Kechris 1974) &3, is the cardinal successor of a cardinal of co-
finality w,
(111) (Martin—Kunen 1971) all 8} are measurable,
(iv) (Martin—Kunen 1971) 83 = Ny, 83 = Ry 11, and 8} = Ry 42,
(v) (Martin, Paris 1971) 61 — (61)%, and for all o < 8}, the relation
— (84) holds,
(vi) (Martin 1971) for all a <w; the partition relation 83, 1 — (83,,1)"
holds,

(vii) (Kunen 1971) the w-cofinal measure Cyy s a normal measure on
1 gp (sl \6h w et
Ogng1 With (82,41) Q"Jrl/c‘géwrl

(viii) (Martin—-Jackson 1980) (631,)‘5§/C;J11 = Ny241 and (631,)55/%"12 =
3 3
RNy,wi1, and these two cardinals are measurable.

|
= 03,49, and

Proof. A proof of all parts except for the last can be found in [Ke78].
Fact 2.5 comprises Theorems 3.12, 3.10, 5.1, §6, Theorem 12.1, Corollary
13.4, Theorems 11.2, 14.3 of [Ke78]. The last assertion is part of [Ja99b,
Chapter 7]. =

Since the values of 6%, 6%, 5%, and cﬁ were known, the next open question
was the value of d3. This was the content of the First Victoria Delfino
Problem (cf. [KeMo78]), and was solved by Steve Jackson who computed &1
to be R we | (cf. [Ja88] and [Ja99b]):

THEOREM 2.6. Assume AD. Let E be the function recursively defined by
E(0) =1 and E(n+1) = wP™. Then for every n € w,
5%n+1 = NE(2n+1)+17
and all odd projective ordinals have the strong partition property.
This computation gave rise to a detailed analysis of the cardinals between
631, and 6% that will be used in this note.

The main tool of our computation will be the following theorem, which
is an elaboration of the proof of the “moreover” part in Theorem 1.1:

ULTRAPOWER SHIFTING LEMMA 2.7. Let k = Ry < A = R, 3, and let
[ be a k-complete ultrafilter on k. Let v be such that k%/p = X.. Suppose
that for all cardinals v such that k < v < X the following holds:

(i) either v is a successor and cf(v) > K,
(ii) or v is a limit and cf(v) < k.

Then A% /p < R, 3.
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Proof. The proof proceeds by induction on 8. The case 8 = 0 is just the
definition of ~.

For the successor step suppose that A = R, 341 and that (Ry45)"/p <
N, g. Pick any n € \*/u. Let f : kK — X be a function representing 7, so
n = [f]u- Since cf(A) > k, we know that ran(f) is bounded in A, say by
n* < A. Hence n € (n*)*/p.

But Card((n*)"/u) = Card(Card(n*)"/u) < X1 by the induction hy-
pothesis. Thus every ordinal in A*/p has cardinality < N, 3, and conse-
quently, A"/p <Nyygyq.

Now we look at the limit step, where x is a limit ordinal and for all 8 < x

we have (Na44)"/p < Rypg. We show that (Ray)"/1 = Upe, (Ratg)”/p.
This shows the claim, since

Card (| (Rars)"/1) < sup{Card((Nas)"/1) : B < x}
B<x

IN

sup{Ry45: B < X} = Nypy

As the backward inclusion is clear, we proceed to the other direction. Take
n € (Rayy)®/p and a function f : k — Noyy with [f], = 7. Let (Bs :
0 < cf(x)) be a partition of R, into sets of cardinality Card(Bj) < Noq4y
none of which is cofinal in R, (e.g., the intervals determined by a cofinal
sequence of length cf(x)).

Now define Fs := (f~1)"Bs. Then (Fj: 6§ < cf(x)) is a disjoint partition
of K into less than k sets (by assumption on cf(x)), hence by k-completeness
there is a dg such that Fj, € p.

But Bs, was not cofinal in X, so we can set By := sup(Bj,)+1 < Royy,
and define fo(§) := min(f(§),B0). Let 1 < x be the unique ordinal such
that Card(8p) = Na4p,. Then fy : K — Royg,41 and [fo], = [f]u, hence
n € Navp41)"/p =

Note that the assumption of k-completeness is only used in the limit
step. Consequently, if we strengthen assumption (ii) to “v is a limit and
cf(v) < n” for some n < k, we can weaken the completeness assumption to
n-completeness. This is particularly interesting in the case n = wy, because
wi-completeness of any measure is a consequence of “All sets of reals are
Lebesgue measurable” (and thus of AD). So, in the base theory ZF + AD,
we do not have to make any completeness assumptions if the limit cardi-
nals occurring in the applications of the Ultrapower Shifting Lemma have
cofinality w.

3. Computations of the Kleinberg sequences. By Theorem 2.3, we
have exactly three normal ultrafilters po := Cji, p1 1= C;’f, and po = C;Jf
3 3 3

on 6%, corresponding to the three regular cardinals Ng, N1, and Rg below 631,.
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Using the fact that 6% has the strong partition property by Theorem 2.6 and
Kleinberg’s Theorem 1.1, we obtain three Kleinberg sequences (kh’ : n < w),
(ki i n < w), and (kh? :n < w).

The first of these is completely known—it is derived from the w-cofinal
filter on 3 and thus satisfies the “moreover” part of Theorem 1.1 by Fact
2.5(vii). Therefore we have s}’ = R, for all n < w.

By Fact 2.5(viii), we know the values of kh' = R,.041 and x5 = Ry 1.
So we are left with computing the higher values of k4' and x}>2.

This is made possible by the exact computations of cofinalities below 6%
by Jackson and Khafizov in [JaKhoo]:

THEOREM 3.1. Suppose 5% < Ngp1 < 5%. Let @ = wP' + ... 4+ wP, where
w¥ > B > ...> B, be the normal form for a. Then:

o if B, =0, then cf(Rot1) = 8} = Nyio,
o if By, >0, and is a successor ordinal, then cf(Ro41) = Ry24+1, and
o if By, >0, and is a limit ordinal, then cf(Rqt1) = Npwt1.

We now come to the main result of this note:

THEOREM 3.2. Assume AD and the above notation. Let n > 1. Then

M1 B2
Kn' = Nypt1 and kn” = Nyj e (n_1)41-

Proof. Both statements are proved by induction. The case n = 1 is Fact
2.5(viii) as mentioned above.

1
We start with the sequence (k},': n €w). By definition, 1, ; = (s}’ )53/C;’11,
3
and by induction hypothesis we know that k' = Run1 = Ryi14w(no1)41-

Looking at the Ultrapower Shifting Lemma 2.7 with o = w4+ 1, g =
w-(n—1)+1,andy=w-2+1, we get

1
“ZL = (K%1)53/C;é1 < Nw~2+1+w~(n—1)+1 = Nw-(n—i—l)—l—l-

By Theorem 1.1, we know that cf(x}" ;) = Ny.211. But between £},' and
N (n+1)41, there is, according to Theorem 3.1, exactly one cardinal with
cofinality R,.o11, and this is N,,.(,41)41 itself. So w1} | = Ny, (p1)41-

The case we works exactly the same way: We apply the Ultrapower Shift-
ing Lemma 2.7, this time witha=w+ 1, f=w* -n+1, and v = w* + 1,
and then check using Theorem 3.1 that there is only one possibility left. m

Note that Theorem 3.2 together with the proof of Lemma 2.7 also gives
some information about th? lengths of several other ultrapowers: for in-
stance, suppose that (R,.2)% /C(‘;Jl1 < W,.3. In this case, by the proof of Lem-

3
ma 2.7, k5" cannot be R,,.341, contradicting Theorem 3.2. Hence (Nw.g)(% /C;’f
3
= Nw-S-
Now we are prepared to harvest the fruits of our work:
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COROLLARY 3.3. Assume AD. Then the cardinals Nynt1 and Vet
are Jonsson for every n € w. Furthermore, the cardinals N 2 and R, ., are
Rowbottom.

Proof. Immediate from Theorems 3.2 and 1.1. =

4. Other cardinals below and beyond 6%. There are many more
cardinals between 8 and 83 than the ones we managed to reach with the
three Kleinberg sequences. There is nothing known about large cardinal
properties of these cardinals. For example, nothing is known about R0,
which, incidentally, is the first infinite cardinal of which we do not know
whether it has any large cardinal properties under AD. The results in this
paper might shed some light on the limit cardinals, though: N3, the first
limit cardinal without known large cardinal properties, is the ultrapower
of a Rowbottom cardinal with a normal ultrafilter according to the remark
after Theorem 3.2. This fact might prove to be useful for a more thorough
investigation of N,.3 and comparable cardinals.

Even more interesting seems the glance beyond 8%. Jackson [Ja99a] lists
the seven measurable cardinals between 8; and % as: 51 =N .« 19y Nww i

Ny o1y Rgewopr, R gt 1, R w2 and R o These cardinals are

+1°
the ultrapowers of d; with the seven normal ultrafilters on 83, hence they
are the second cardinals in the seven Kleinberg sequences derived from these
filters. To apply Lemma 2.7 to these sequences and compute the Jonsson
cardinals between 651) and 6% only one piece of information is missing: the

analysis of cofinalities corresponding to Theorem 3.1.
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