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CH and the Sacks property

by

Sandra Quickert (Bonn and Paris)

Abstract. We show the consistency of CH and the statement “no ccc forcing has the
Sacks property” and derive some consequences for ccc ωω-bounding forcing notions.

In the last few years much progress has been made in studying properties
of ccc posets in connection with partition properties. Many of these results
deal with the Sacks property: recall that a poset P has the Sacks property
if for any real r in the generic extension there is a sequence of finite subsets
of ω, {In}n ∈ V , such that r ∈ ∏n<ω In and |In| ≤ 2n for any n. Notice
that when replacing the function f(n) = 2n by an arbitrary increasing func-
tion we get an equivalent formulation. Jensen deduced in [3] the existence
of ccc posets with the Sacks property from 3. Extracting a more general
statement about ccc forcings, Veličković showed in [10] that it is possible
to have a large continuum and the existence of ccc posets with the Sacks
property. On the other hand, Shelah and Veličković showed independently
that it is consistent that no ccc forcing has the Sacks property; see [6] and
[11]. However, in the models they built the continuum is equal to ℵ2, so
the question arises whether it is consistent with CH that no ccc forcing
has the Sacks property. It turns out that the answer is yes. In this paper
we derive this statement and some consequences for ccc ωω-bounding forc-
ing notions from a combinatorial Ramsey-type principle. This principle is
known to be consistent with CH, as was proved by Abraham and Todorčević
in [1].

The notation we use is standard and might be found in [4] or [2]. If T
is a tree in 2<ω and s ∈ T , then we denote by T [s] the subtree of T with
stem s, i.e. T [s] = {t ∈ T | t v s ∨ s v t}.
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First we introduce some definitions and easy facts which will be used
later. In the following, P always denotes a collection of trees in 2<ω, ordered
by inclusion.

Definition 1. Let T ∈ P , X ⊆ P . Then we call

tr(T,X) = {T ′ ∈ X | T, T ′ are compatible}
the trace of T in X.

X ⊆ P is called large iff for any maximal antichain A there is some
T ∈ X which has a finite trace in A. As we will see later, large sets provide
us with enough witnesses that a forcing notion P is ωω-bounding.

Claim 2. Let X ⊆ P be large, and let A be a maximal antichain. Then

XA = {T ∈ X | tr(T,A) is finite}
is also large.

Proof. Let B be a maximal antichain. Select a maximal antichain B ′

such that any member of B′ is below an element of B and below an element
of A. Since X is large, there is some T ∈ X with a finite trace in B ′. Then
T is clearly in XA and tr(T,B) is finite.

Claim 3. Let P be ccc and ωω-bounding , and let P =
⋃
n<ω Pn be a

countable partition. Then for some n the set Pn is large.

Proof. Assume not. For each n choose An witnessing the nonlargeness of
Pn. By ccc and ωω-boundedness, there is some T ∈ P having a finite trace
in any An. Therefore, T 6∈ Pn for any n, a contradiction.

Now we have all we need to prove the main statement, the consistency
of CH with “no ccc forcing has the Sacks property”. Let (?) be the following
principle:

(?) Let I be a p-ideal on [κ]≤ω where κ ≤ 2ℵ0 . Then exactly one of the
two statements holds:

(a) There is an uncountable X ⊆ κ such that [X]ω ⊆ I.
(b) κ =

⋃
n<ωXn where each Xn is orthogonal to I.

Recall that a set X ⊆ κ is orthogonal to an ideal I provided that the
intersection of X with any element of I is finite.

Theorem 4. Assume the principle (?) holds. Then no ccc forcing has
the Sacks property.

Proof. Assume the principle (?). Furthermore, assume that P is a ccc
forcing notion having the Sacks property. Since it can be derived from (?)
that there are no Suslin trees (see e.g. [1]), P must add a new real (see [6]).
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Fix some P -name ṙ for a new element in 2ω. For any p ∈ P define

Tp = {s ∈ 2<ω | ∃q ≤ p, q 
 s @ ṙ},

the tree of possibilities below p. Let Tree(P ) be the forcing notion consisting
of these Tp, ordered by inclusion. Note that this collection of trees has the
following property: For each tree T and each node s ∈ T there is a subtree
S ⊆ T [s] which belongs to Tree(P ).

Claim 5. If P has the ccc and the Sacks property , then so does Tree(P ).

Proof. First, observe that whenever Tp ⊥Tree(P ) Tq, then p ⊥P q, there-
fore Tree(P ) must have the ccc.

Now we will prove the Sacks property: let {Ai | i < ω} be a set of
maximal antichains in Tree(P ), and let x ∈ ωω be increasing. We have to
find some tree Tp which is compatible with at most x(i) members of Ai for
any i.

For each Tij ∈ Ai choose pij such that Tij = Tpij . Let Pi ⊇ {pij | j < ω}
be a maximal antichain such that for any p ∈ Pi the tree Tp is contained
in some Tij . Note that this is possible by ωω-boundedness: Assume there
is some p ∈ P such that for any q ≤ p the tree Tq is not contained in any
Tij . Then consider the following name for a real: ṡ(j) = min{n | ṙ�n 6∈ Tij}.
Fix q ≤ p and h ∈ ωω such that q 
 ṡ ≤ h. Then Tq ∩ Tij is finite, which
contradicts the maximality of Ai in Tree(P ).

Now choose an enumeration Pi = {pij | j < ω}. Since P has the Sacks
property, there is some p ∈ P such that for any i, p is compatible with at
most x(i) members of Pi, say {p0, . . . , pm}. Therefore, Tp is covered by the
union of the trees Tpi where i ≤ m. Since each of these trees is included in
one tree of the maximal antichain Ai, we may assume for simplicity that
Tpi is an element of Ai. But then Tp cannot be compatible with any other
tree in Ai, because if we assume some T ⊆ Tp ∩Tq where Tq is incompatible
with any Tpi , then there is some i ≤ m and some s such that the cone T [s]
is included in Tq ∩ Tpi , which is impossible. Hence, Tp is compatible with at
most x(i) members of Ai.

Therefore, it suffices to show the statement for ccc collections of trees
in 2<ω, ordered by inclusion and having the Sacks property. For the rest of
the proof, fix such a forcing notion P .

Now consider the ideal I ⊆ [P ]≤ω consisting of all those X for which
there is a maximal antichain A such that for any T ∈ A the trace of T in X
is finite.

Claim 6. I is a p-ideal.
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Proof. I is clearly an ideal, so it remains to show that for any countable
collection of elements of I there is some member of I which almost contains
any element of this countable collection.

Let {Xi | i < ω} ⊆ I, and let Ai be a maximal antichain witnessing
Xi ∈ I. By ωω-boundedness, select a maximal antichain A consisting of
trees which have finite traces in any Ai. Therefore, A is a common witness
for Xi ∈ I. Fix an enumeration A = {Ti | n < ω}. So, if we set X̃i =
Xi \ {tr(Tj ,Xi) | j ≤ i}, then Y =

⋃
i<ω X̃i fulfills our requirements, since

any T ∈ A has a finite trace in Y .

According to the principle (?) we now have two possibilities:
Assume (a) holds, i.e. there is an uncountable X ⊆ P such that any

countable subset belongs to I. By ccc, 1P cannot force that the intersection
of the generic filter G with X is countable, because if so, the intersection
would be covered by a countable set Y in the ground model and any generic
filter G containing an element of X \ Y would be a counterexample to this
statement. Hence, we can select T ∈ P forcing that the intersection is un-
countable. Again by ccc, choose for i < ω a countable subset Xi ⊆ X such
that

T 
 ∀i ∃T ′ ∈ Xi, T
′ ∈ Ġ.

Since the intersection of X with the generic filter G will be uncountable
whenever T ∈ G, we can choose the Xi in such a way that they are pairwise
disjoint. In particular,

T 
 Ġ ∩
⋃

i<ω

Xi is infinite.

Therefore, any tree below T has an infinite trace in
⋃
i<ωXi, although the

latter set is supposed to be in the ideal by the properties of X, a contra-
diction.

Assume now (b) holds, i.e. P =
⋃
n<ω Pn such that for each n the inter-

section of Pn with any element of I is finite.
By Claim 3 fix some Pn which is large.

Claim 7. For any maximal antichain A there is some finite FA ⊆ A
such that each T ∈ Pn,A = {T ∈ Pn | tr(T,A) is finite} has an infinite
intersection with

⋃
FA.

Proof. Assume not. Then there is some maximal antichain A and {Ti |
i < ω} ∈ Pn,A such that whenever i 6= j, then tr(Ti, A) ∩ tr(Tj , A) = ∅. In
particular, the Ti are pairwise disjoint. Now take some maximal antichain
B containing all the Ti. Thus, B witnesses {Ti | i < ω} ∈ I, although no
countable subset of Pn is an element of the ideal.



CH and the Sacks property 97

If T is a tree in 2<ω, then we define the growth function gT of T as
follows:

gT (n) = min{m | |T ∩ 2m| > n}.
We will use Claim 7 to construct an unbounded family of trees, i.e. a family
F such that {gT | T ∈ F} is unbounded in ωω.

For each increasing x ∈ ωω choose a maximal antichain Ax consisting
of trees T where gT > x. Note that this is possible by the Sacks property.
By Claim 7, we can choose finite sets Fx ⊆ Ax such that

⋃
Fx intersects

every tree in Pn,Ax. Then an easy argument shows that F = {⋃Fx | x ∈
ωω increasing} is an unbounded family of trees: Assume there is a g ∈ ωω
which bounds the family F . Then define h by h(i) = i · g(i). Clearly, the
growth function gH with H =

⋃
Fh is not bounded by g, which contradicts

the choice of g.
Since F is an unbounded family of trees, we find some k such that

{gS(k) | S ∈ F} is infinite. We define by recursion:

• s0 ⊆ 2 such that for any l there is some S ∈ F where S ∩ 2 = s0 and
gS(k) ≥ l.
• sj ⊆ 2j+1 end-extending sj−1 such that for any l there is some S ∈ F

with S ∩ 2j+1 = sj and gS(k) ≥ l.
Therefore,

⋃
j<ω sj is a tree with at most k branches, say [

⋃
j<ω sj ] =

{r0, . . . , rm}. For each j select Sxj ∈ F such that Sxj ∩ 2j = sj , and let
A be a maximal antichain consisting of trees which have finite traces in
each Axj . Thus,

⋃
j<ω sj hits each T ∈ Pn,A infinitely many times, i.e. each

T ∈ Pn,A has at least one of the ri as a branch. However, by Claim 2 we
know that Pn,A is large, so this is not possible: take a maximal antichain B
consisting of trees T where [T ]∩{r0, . . . , rm} = ∅. Now select some T ′ ∈ Pn,A
having a finite trace in B. Then T ′ cannot have any ri as a branch, since it
is covered by finitely many elements of B, and therefore each branch of T ′

must be a branch of one of the trees in the cover. Therefore, T ′ contradicts
the properties of almost all sn.

Thus, none of these cases is possible, and no ccc forcing can have the
Sacks property. This finishes the proof of Theorem 4.

When assuming CH, the principle (?) just deals with subsets of ω1,
and this particular instance of (?) was shown to be consistent with CH
by Abraham and Todorčević [1]. Hence:

Corollary 8. CH is consistent with the statement “no ccc forcing has
the Sacks property”.

Todorčević [9] also showed that the principle (?) extended to any p-ideal
on countable subsets of an arbitrary set is a consequence of PFA. Thus:
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Corollary 9. Assume PFA holds. Then no ccc forcing has the Sacks
property.

Observe that we needed the Sacks property only in the last part, the
rest was done just by ωω-boundedness. Moreover, the fact that we deal
with trees was only used in part (b). For the first part, we could have
defined the trace of a condition p in a set X ⊆ P by tr(p,X) = {q ∈ X |
q is compatible with p} and just have dealt with the order given by the
poset P . Since any antichain belongs to the ideal defined above, we can
record the following

Corollary 10. Assume the principle (?) holds. Then any ccc ωω-
bounding forcing notion P satisfies the σ-finite chain condition, i.e. P can
be written as P =

⋃
n<ω Pn where each Pn contains only finite antichains.

This is very close to the statement that any ccc ωω-bounding forcing
notion is σ-linked. And indeed, restricting the posets to Suslin forcings and
using another partition principle one can show in ZFC:

Theorem 11. If P is a ccc ωω-bounding Suslin forcing , then Tree(P ) is
a ccc ωω-bounding and σ-linked Suslin forcing.

This is a small hint that the famous question of von Neumann [5] whether
random real forcing is minimal among the ccc ωω-bounding Suslin forcings,
or even is the only such forcing notion example, might be answered affirma-
tively.

The dichotomy we will now use in order to show Theorem 11 is due to
Solecki [8]:

Theorem 12. Let A be an analytic set and F be a family of closed sets.
Then either A is countably coverable by elements of F , or there is a Gδ-set
G ⊆ A such that whenever B is a basic open set having no empty intersection
with G, then G ∩B is not countably coverable by elements of F .

Proof of Theorem 11. Let P be an ωω-bounding ccc Suslin forcing. It is
well known that P adds a real (see e.g. [7]), therefore we can fix a name ṙ for
a new element of 2ω. Let Tree(P ) be as defined above, and fix the following
family of closed sets:

F = {F | ∀T ∈ F ∀T ′ ∈ F, T ∩ T ′ is infinite}.
Claim 13. Tree(P ) is countably coverable by sets from F .

Proof. On 2<ω, we fix the following well-ordering: s ≤? t iff |s| < |t| or
|s| = |t| and s(|s| − 1) ≤ t(|s| − 1). If τ : 2n → 2 for some n, then we denote
basic open sets by Nτ = {T ∈ Tree(P ) | ∀s ∈ dom(τ), τ(s) = 1 iff s ∈ T}.
A node s ∈ 2<ω is called an end-node of τ if s ∈ 2n and τ(s) = 1.

Assume the claim is false, and fix a Gδ-set G ⊆ Tree(P ), G =
⋂
l<ω Gl

with Gl open, such that for any basic open set Nτ which has nonempty
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intersection with G this intersection G ∩ Nτ is not countably coverable. In
particular, G contains two trees whose intersection is finite. Therefore, we
find τ0, τ1 such that Nτk ∩G is nonempty and lies inside G0, and moreover,
no end-node of τ0 end-extends any end-node in τ1 and conversely. Hence,
Nτ0 ∩Nτ1 = ∅. Now assume that τsak is defined for s <? t. Since Nτt ∩G is
not countably coverable, we find τta0, τta1 extending τt such that Nτtak ∩G
is nonempty, included in G|t|, and furthermore, as before, no end-node of
τta0 end-extends any end-node in τta1 and vice versa.

Hence, if x ∈ 2ω, then
⋂
tvxNτ(t) contains a unique element Tx ∈ G, and

moreover, if x1 6= x2, then Tx1 ∩Tx2 has finite height, a contradiction to the
ccc.

With the aid of Claim 13 we finish the proof of Theorem 11 as follows:
Fix Tree(P ) =

⋃
n<ω Pn such that each Pn ∈ F . We may assume that each

Pn is maximal, i.e. whenever T 6∈ Pn, there is T ′ ∈ Pn having a finite
intersection with T . For each Pn choose a maximal linked subset Xn. It
remains to show that

⋃
n<ωXn = Tree(P ). So, assume not, and choose a

witness T ∈ Tree(P ). Since T is not added to any Xn, we can select for each
n some Tn ∈ Xn incompatible with T . Now consider a name ẋ for a real
such that

T 
 ẋ(n) = m iff ṙ�m ∈ Tn ∧ ṙ�m+ 1 6∈ Tn.
By ωω-boundedness there is some T ′ ≤ T and some f ∈ ωω such that
T ′ 
 ẋ ≤ f . In particular, Tn ∩ T ′ is finite for any n. However, this is not
possible since T ′ ∈ Pn for some n, so T ′ ∩ Tn must be infinite.
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