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P -sets and minimal right ideals in N∗
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W. R. Brian (New Orleans, LA)

Abstract. Recall that a P -set is a closed setX such that the intersection of countably
many neighborhoods of X is again a neighborhood of X. We show that if t = c then there
is a minimal right ideal of (βN,+) that is also a P -set. We also show that the existence
of such P -sets implies the existence of P -points; in particular, it is consistent with ZFC
that no minimal right ideal is a P -set. As an application of these results, we prove that
it is both consistent with and independent of ZFC that the shift map and its inverse are
(up to isomorphism) the unique chain transitive autohomeomorphisms of N∗.

1. Introduction. The dynamical and algebraic structure of βN and N∗
has played a major part in modern combinatorics and algebra. The minimal
right ideals of βN—or equivalently, its minimal dynamical subsystems—have
a special place in this theory. In this paper we study how these ideals are
embedded in N∗.

Our main result is that it is both consistent with and independent of
ZFC that some minimal right ideal is also a P -set.

In Section 3, we interpret the minimal right ideals of N∗ as the ultrafilters
on a certain partial order. This provides a tool for studying how these ideals
are embedded in N∗, and some of the techniques for analyzing the topology
of N∗ (the set of all ultrafilters on a different partial order, namely P(ω)/fin)
carry over. In this way we are able to prove that if t = c then some minimal
right ideal is also a P -set.

In Section 4, we show that if I is a minimal right ideal and a P -set, then
there is a finite-to-one f : N → N such that βf(I) is a P -point. It follows
that it is consistent to have no minimal right ideal be a P -set. We also show
in this section that, under ZFC, there is a nowhere dense closed right ideal
that is a P -set.
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In Section 5, we give an application of these results by obtaining another
consistency/independence theorem. The shift map, the canonical dynami-
cal structure on N∗ obtained by extending the map n 7→ n + 1 to βN, is
shown to be a chain transitive map. We will prove that it is consistent with
and independent of ZFC that the shift map and its inverse are the only
chain transitive autohomeomorphisms of N∗. The proof of independence will
use the fact that some nowhere dense right ideal is a P -set, together with
Parovichenko’s topological characterization of N∗ under CH.

2. Notation and preliminaries

Ultrafilters. Let (P,≤) be a partial order. A filter on P is a subset F
of P satisfying
• (nontriviality) ∅ 6= F 6= P;
• (upward heredity) if a ∈ F and a ≤ b then b ∈ F ;
• (finite intersection property) if a, b ∈ F then there is some c ∈ F with
c ≤ a and c ≤ b.

An ultrafilter on P is a maximal filter: a filter F such that no set properly
containing F is also a filter. Ultrafilters on the partial order (P(N),⊆) are
perhaps most familiar, and here we will call these simply ultrafilters on N or,
context permitting, ultrafilters. A free (ultra)filter on N is one that extends
the filter of cofinite sets (or equivalently, a filter with empty intersection).

If F satisfies the nontriviality and finite intersection properties, then F
is called a filter base, and {b ∈ P : a ≤ b for some a ∈ F} is a filter, namely
the filter generated by F . A chain in P is a totally ordered subset of P. Note
that every chain is a filter base.

If F satisfies the nontriviality property and is upwards hereditary, then F
is an up-set of P (the up-sets of (P(N),⊆) are often referred to as Furstenberg
families in the dynamical systems literature; the up-sets of P(ω)/fin are often
referred to as semifilters in the set theory literature).

Following convention, if A,B ⊆ N we write A ⊆∗ B whenever A \ B is
finite and we write A =∗ B whenever A ⊆∗ B and B ⊆∗ A; P(ω)/fin is the
set of =∗-equivalence classes of infinite subsets of N, naturally ordered by ⊆∗.
It is a well-studied Boolean algebra, and the ultrafilters on the partial order
P(ω)/fin − {0} comprise the well-known space N∗. From now on, we will
abuse notation in the standard way and write P(ω)/fin to mean the partial
order P(ω)/fin−{0}. We will also sometimes treat subsets of N as elements
of P(ω)/fin, even though the elements of P(ω)/fin are really equivalence
classes.

Given (P,≤) and A ⊆ P, p ∈ P is a (lower) bound for A provided p ≤ a for
every a ∈ A; A is unbounded if it has no bound. Note: “pseudo-intersection”
is often used synonymously with “lower bound” when working with P(ω)/fin.
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Some small cardinals. Much has been written about the “small
cardinal” numbers, of which there are many. Here we define four, three old
and one new (the introduction of a new one can be forgiven, since we will
show in Theorem 3.4 it is really just t in disguise). Our definitions are not
quite standard. This is intentional, to emphasize that our main theorem is
really about a certain partial order Θ. In fact, the proof of our main the-
orem can be viewed as the translation to Θ of a well-known proof done in
P(ω)/fin.

Recall that A ⊆ N is thick if it contains arbitrarily long intervals. Equiva-
lently, A fails to be thick if and only if there is some k such that

⋂
n≤k(A−n)

is empty. The thick sets form an up-set of P(N). If A =∗ B, then A is thick
if and only if B is thick, so the (equivalence classes of) thick sets also form
a natural up-set of P(ω)/fin. Let Θ denote the family of thick sets mod-
ulo =∗, partially ordered by ⊆∗. As with P(ω)/fin, we will sometimes treat
subsets of N as members of Θ. We refer to the (ultra)filters on (Θ,⊆∗) as
Θ-(ultra)filters.

Recall that NN denotes the set of all functions N→ N, and if f, g ∈ NN,
then f <∗ g if and only if {n ∈ N : f(n) 6< g(n)} is finite.

We now define the small cardinals we will need:

• tΘ is the smallest size of an unbounded chain in Θ.
• t is the smallest size of an unbounded chain in P(ω)/fin.
• p is the smallest size of an unbounded filter base in P(ω)/fin.
• b is the smallest size of an unbounded subset of (NN, >∗).

This way, it is easy to see that tΘ is simply the analogue of t in Θ. While
the definition of tΘ is ours, the last three cardinals here are standard, and
we leave it to the reader to verify that these definitions are equivalent to the
usual ones given in [vD] or [Bl2].

Observe that the partial order (NN, >∗) has the property of being a filter.
Using this, b can also be characterized as the smallest size of an unbounded
chain in (NN, >∗) or an unbounded filter base in (NN, >∗) (see also [vD,
Theorem 3.3]). Thus b is also just the analogue of t (or of p) in a different
partial order.

βN and Stone duality. The set of all ultrafilters on N is denoted βN.
As usual, we identify the principal ultrafilter {A ⊆ N : n ∈ A} with n, so
that N ⊆ βN. For each A ⊆ N, A = {p ∈ βN : A ∈ p}, and taking the sets of
this form as the basis for a topology, βN is the Stone–Čech compactification
of N. This is the unique compactification of N with the extension property:
for any compact Hausdorff space K and any map f : N → K, there is a
(unique) continuous extension βf : βN→ K. We write N∗ = βN \ N for the
set of all free ultrafilters on N, and, for every A ⊆ N, A∗ = A ∩ N∗.
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If F is a free (ultra)filter on N, then F restricts to an (ultra)filter on
P(ω)/fin. Conversely, an (ultra)filter on P(ω)/fin gives rise to a unique free
(ultra)filter. In what follows we will freely conflate these two notions. Topo-
logically this makes no difference, as A =∗ B if and only if A∗ = B∗.

If F is a free filter, then F∗ =
⋂
A∈F A

∗ is a nonempty closed subset
of N∗. Conversely, for every closed X ⊆ N∗ there is a unique free filter F
such that F∗ = X, namely F = {A ⊆ N : X ⊆ A∗}. This correspondence,
part of what is called Stone duality, will be used frequently (often implicitly)
in what follows.

A closed subset X of N∗ is a P -set if, for any countable collection A of
open sets containing X, X is in the interior of

⋂
A. If X = {x} is a P -set,

then x is called a P -point. If F is a filter such that F∗ is a P -set, we say
that F is a P -filter. By Stone duality, F is a P -filter if and only if every
countable subset of F has a lower bound in F .

Dynamics and algebra. A dynamical system is a pair (X, f), where
X is a compact Hausdorff space and f : X → X is continuous. For our
purposes, X will usually be βN or N∗.

For each p ∈ N∗, define σ(p) to be the unique ultrafilter generated by
{A+1 : A ∈ p}. This is the shift map on βN, and whenever we speak of βN
as a dynamical system it is understood that we are talking about the shift
map. The shift map is the unique continuous extension to βN of the map on
N given by n 7→ n+ 1.

If 〈xn : n ∈ N〉 is a countable sequence of points in any compact Hausdorff
space and if p ∈ βN, we define p-limn∈N xn to be the unique element of⋂
A∈p {xn : n ∈ A}. Then, for any p, q ∈ βN, define p+ q = q-limn∈N σ

n(p).
Some authors (see, e.g., [Be]), define + differently on βN:

p+ q =
{
A ⊆ N : {n ∈ N : (A− n) ∈ p} ∈ q

}
.

This definition is equivalent to the one we give here (the equivalence is well
known; see [Bl1] for some discussion). Warning: some authors, including some
that we cite below, exchange the roles of p and q in this definition.

The map q 7→ p+ q (with p fixed) is continuous, but the map p 7→ p+ q
(with q fixed) is not. This makes βN a left-topological semigroup. Its right
ideals are those I ⊆ βN such that I + βN ⊆ I. A minimal right ideal is a
right ideal that does not properly contain any other right ideal.

For any dynamical system (X, f), Y is a subsystem of X provided that
Y is closed and f(Y ) ⊆ Y . A subsystem is minimal if it does not properly
contain any other subsystems.

A simple application of Zorn’s Lemma shows that every subsystem of βN
contains a minimal subsystem, and every right ideal contains a minimal right
ideal. In βN, these are related by the following:
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Proposition 2.1. X is a subsystem of (βN, σ) if and only if it is a
closed right ideal of (βN,+); and X is a minimal subsystem if and only if X
is a minimal right ideal.

Proof. See, e.g., [Be, Theorem 2.1].

3. Θ-ultrafilters. The following two lemmas make the connection be-
tween Θ-ultrafilters and minimal right ideals. These lemmas are hinted at
in Theorem 2.9(c) of [BHM], which states that if A ⊆ N then A∗ contains a
right ideal of N∗ if and only if A is thick.

Lemma 3.1. Let F be a free filter. Then σ(F∗) ⊆ F∗ if and only if for
every A ∈ F , A − 1 ∈ F . Further, F∗ = σ(F∗) if and only if, in addition,
A+ 1 ∈ F for every A ∈ F .

Proof. The “only if” directions of both claims follow easily from Stone
duality and the continuity of σ−1 and σ:

σ−1(F∗) = σ−1
( ⋂
A∈F

A∗
)
=
⋂
A∈F

σ−1(A∗) =
⋂
A∈F

(A− 1)∗,

σ(F∗) = σ
( ⋂
A∈F

A∗
)
=
⋂
A∈F

σ(A∗) =
⋂
A∈F

(A+ 1)∗.

We can then use these equalities to prove the “if” direction of these claims:
if A− 1 ∈ F for every A ∈ F then

σ−1(F∗) =
⋂
A∈F

(A− 1)∗ ⊇
⋂
A∈F

A∗ = F∗,

which implies σ(F∗) ⊆ F∗. If also A− 1 ∈ F for every A ∈ F then

σ(F∗) =
⋂
A∈F

(A+ 1)∗ ⊇
⋂
A∈F

A∗ = F∗.

In the latter case, we clearly have F∗ = σ(F∗).

Lemma 3.2. Let F be a free filter. Then F∗ is a minimal right ideal if
and only if F is a Θ-ultrafilter.

Proof. First we recall a well-known fact: every minimal right ideal in N∗
is closed. To see this, let I be a minimal right ideal and let p ∈ I. Then
p + N∗ ⊆ I is a right ideal, so we must have p + N∗ = I. Since the map
q 7→ p+ q is continuous and N∗ is compact, p+N∗ is compact, hence closed.

If F∗ is a closed right ideal, it follows directly from [BHM, Theorem
2.9(c)] that F ⊆ Θ, i.e., F is a Θ-filter. By Proposition 2.1, the closed
right ideals of N∗ are precisely those sets F∗ such that F is a Θ-filter and
σ(F∗) ⊆ F∗. Thus the minimal (closed) right ideals are the sets F∗ where
F is maximal among all Θ-filters satisfying σ(F∗) ⊆ F∗.
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To prove the lemma, we will show that every Θ-ultrafilter F satisfies
σ(F∗) ⊆ F∗. Since the Θ-ultrafilters are by definition just the maximal
Θ-filters, this shows that they are also, ipso facto, the maximal Θ-filters
satisfying σ(F∗) ⊆ F∗.

Let F be a Θ-ultrafilter and A,B ∈ F . Then A ∩ B is thick, and it is
clear that if there is an interval of length k in A∩B then there is an interval
of length k − 1 in (A − 1) ∩ B. Thus (A − 1) ∩ B is also thick. Since this
is true for any B ∈ F , it follows from the maximality of Θ-ultrafilters that
A− 1 ∈ F . By Lemma 3.1, σ(F∗) ⊆ F∗.

We thank the referee for pointing out that Lemma 3.2 has a natural
extension to arbitrary semigroups. We have not defined all of the concepts
involved in this extension (see [HS] instead), but we will state it here for the
interested reader:

Proposition 3.3. Let (S, ·) be an arbitrary semigroup and let βS have
the operation making (βS, ·) a left topological semigroup with S contained in
its topological center. Let R be a closed subset of βS and let F = {A ⊆ S :
R ⊆ A}. Then R is a minimal right ideal of βS if and only if F is maximal
in {G : G is a filter on S and (∀A ∈ G)(A is thick)}.

By Lemma 3.2, some minimal right ideal is a P -set if and only if some
Θ-ultrafilter is also a P -filter. By Stone duality, a P -point exists if and only
if some ultrafilter on P(ω)/fin is also a P -filter. In either case we are just
looking for P -ultrafilters on a given partial order. This is what we mean when
we say that our main result is a translation to Θ of a theorem in P(ω)/fin.

The first proof of the existence of P -points under MA, given by Booth
[Bth] as a modification of Rudin’s [R] proof from CH, uses t = c to build
a chain in P(ω)/fin such that the filter generated by this chain is both an
ultrafilter and a P -filter.

To prove that it is possible to have P -sets that are minimal right ideals,
we will do the same thing as Booth, only replacing P(ω)/fin with Θ and
t with tΘ. The only real difference is that, instead of showing MA implies
tΘ = c directly, we will prove that tΘ = t.

Theorem 3.4. tΘ = t.

Proof. We will prove that p ≤ tΘ ≤ t. This is enough because, by a deep
new result of Malliaris and Shelah, p = t (see [MS]).

To prove tΘ ≤ t we make use of the standard trick: supposing κ < tΘ,
we will show κ < t. Suppose κ < tΘ and let T = {Aα : α < κ} be a
chain in P(ω)/fin. For each n, let In = [2n, 2n+1 − 1]. For each α < κ, let
Bα =

⋃
n∈A In. Clearly each Bα is thick and {Bα : α < κ} is a chain in Θ.

Since κ < tΘ, there is some Bκ such that Bκ ⊆∗ Bα for all α < κ. Setting



P -sets and minimal right ideals in N∗ 283

Aκ = {n : Bκ ∩ In 6= ∅}, we easily check that Aκ ⊆∗ Aα for all α < κ. Since
T was arbitrary, κ < t.

We use the same trick to prove p ≤ tΘ. Suppose κ < p and let {Tα :
α < κ} be a chain in Θ; we will show that there is some Tκ ∈ Θ such that
Tκ ⊆∗ Tα for every α.

Let T = {Tα − n : α < κ, n ∈ N}. We claim that the closure of T under
finite intersections is a filter base. Fix α0, . . . , αm and n0, . . . , nm. There is
a thick set T ⊆

⋂
k≤m Tαk

; in fact, some cofinite subset of Tmax{α0,...,αn} will
do. Let N = max{n0, . . . , nm}. Because T is thick, there is an infinite T ′ ⊆ T
such that for every ` ∈ T ′ we have [`, `+N ] ⊆ T . But if [`, `+N ] ⊆ T then
` ∈

⋂
k≤m(Tαk

− nk); thus
⋂
k≤m(Tαk

− nk) is infinite.
The closure of T under finite intersections is a filter base, and it has size

|T | = κ. Since κ < p, this filter base has a lower bound A in P(ω)/fin. Let
{an : n ∈ N} be an increasing enumeration of A.

For each α < κ and m ∈ N, there is some minimal ` ∈ N such that

{an : n ≥ `} ⊆
⋂
k≤m

(Tα − k).

Let fα(m) = `. Equivalently, fα(m) is the least element of N such that if
n ≥ fα(m) then [an, an +m] ⊆ Tα. It is well known that p ≤ b (see, e.g.,
[vD]). Therefore κ < b and there is some f : N→ N such that, for all α < κ,
fα <

∗ f . Let
Tκ =

⋃
n∈N

[af(n), af(n) + n].

Clearly Tκ ∈ Θ. Fix α < κ. There is some N ∈ N such that fα(n) < f(n)
for n ≥ N . But if fα(n) < f(n) then [af(n), af(n) + n] ⊆ Tα. Thus Tκ ⊆∗ Tα,
as required.

We leave it an open question whether there is an “elementary” proof that
tΘ = t, i.e., one that avoids the power of Malliaris and Shelah’s equality. We
also leave as an exercise the (easy) proof that MA can be used directly to
show tΘ = c.

Theorem 3.5. If t = c then there is a minimal right ideal in N∗ that is
also a P -set.

Proof. Using Lemma 3.2, it suffices to construct a Θ-ultrafilter that is
also a P -filter.

Fix an enumeration {Aα : α < c} of Θ. We construct a (reverse well-
ordered) chain T = {Xα : α < c} in Θ as follows. Set X0 = N. If Xα has
already been defined, let Xα+1 = Xα ∩ Aα if Xα ∩ Aα ∈ Θ, and otherwise
let Xα+1 = Xα. For limit α, let Xα be any lower bound in (Θ,⊆∗) of {Xβ :
β < α}; a lower bound exists because α < tΘ.



284 W. R. Brian

The chain T constructed in the previous paragraph is a filter base; let
F be the filter generated by T . If Aα ∈ Θ, then either Aα ⊆ Xα+1, which
implies Aα ∈ F , or Aα ∩Xα is not thick. Thus F is a Θ-ultrafilter. If A is
a countable subset of F then, shrinking the elements of A if necessary, we
may assume A ⊆ T and write A = {Xαn : n ∈ ω}. Since the cofinality of
c is uncountable, there is some α < c with αn < α for all n. Then Xα is a
pseudo-intersection for A in F , so that F is a P -filter.

Remark 3.6. The minimal right ideal constructed in the previous proof
is actually a Pc-set (the proof implies automatically that it is a Pcf(c)-set,
and t is a regular cardinal).

As remarked in the final section of [Bl1], the elements of minimal right
ideals are never P -points. In fact, if I is a minimal right ideal and p ∈ I,
then {σn(p) : n ∈ N} is dense in I by Proposition 2.1; since the minimal
right ideals are separable with no isolated points, no point of one is even a
weak P -point. Our result states that (sometimes, in some models) this is the
only reason a minimal ultrafilter fails to be a P -point.

4. More on P -set right ideals. We begin this section by proving that
the conclusion of Theorem 3.5 is consistently false.

Lemma 4.1. If f : N → N is finite-to-one, then βf maps closed P -sets
to closed P -sets.

Proof. This lemma is a well-known bit of folklore, but we will give the
short proof here for completeness.

Let F be a filter with F∗ a closed P -set, and let G denote the unique
filter such that βf(F∗) = G∗. One can easily check that

G = {A ⊆ N : f−1(A) ∈ F}.
Let A ⊆ G be countable. Since F is a P -filter, F contains a pseudo-intersec-
tion B for {f−1(A) : A ∈ A}. Now f(B) = {n : B∩f−1(n) 6= ∅} is a pseudo-
intersection for A, so G is a P -filter as well.

Lemma 4.2. There is a finite-to-one map f : N → N such that if I is
a minimal right ideal then βf(I) is a single point. Furthermore, for every
p ∈ N∗ there is some minimal right ideal I such that βf(I) = p.

Proof. Let {an : n ∈ N} be an increasing sequence of natural numbers
such that limn→∞(an+1 − an) = ∞, and let f be the map that sends m
to the greatest n such that an ≤ m. We will show that f has the required
property.

For each n, let In = f−1(n). Let F be a Θ-ultrafilter. Letting

βf(F) = {A ⊆ N : f−1(A) ∈ F}
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as in the proof of Lemma 4.1, we see it suffices to check that βf(F) is an
ultrafilter on N. We will show that for every A ⊆ N either f−1(A) ∈ F or
f−1(N \A) ∈ F .

Suppose this is not the case, and let A be such that neither f−1(A) nor
f−1(N\A) is in F . As F is a Θ-ultrafilter, this means that there are B,C ∈ F
such that neither f−1(A) ∩ B nor f−1(N \ A) ∩ C is thick. F is a filter, so
B ∩ C ∈ F , and neither D = B ∩ C ∩ f−1(A) nor E = B ∩ C ∩ f−1(N \ A)
is thick. Fix k such that neither D nor E contains an interval of length ≥ k.
There is some M such that if n > M then an+1 − an > k. If I is an interval
in D ∪ E with min I ≥ aM , then I has length at most 2k (otherwise either
D or E contains an interval of length greater than k). Thus D ∪ E is not
thick. Since

D ∪ E = (B ∩ C ∩ f−1(A)) ∪ (B ∩ C ∩ f−1(N \A)) = B ∩ C

and B ∩ C ∈ F , this is a contradiction.
For the second claim, observe that for any p ∈ N∗,{⋃

n∈A
[an, an+1 − 1] : A ∈ p

}
is a Θ-filter. If F is a Θ-ultrafilter extending this filter, then F∗ is a minimal
right ideal with βf(F∗) = p.

We remark that Blass and Hindman in [BlH] have proved a similar result.
They show that if MA holds, then the (finite-to-one) map f on N that sends
n to the leftmost 1 in its binary expansion has the property that βf sends
some idempotent ultrafilter to a Ramsey ultrafilter. Our lemma shows that
if p is any ultrafilter, then this map (or one of many others like it) will send
some minimal idempotent to p.

Theorem 4.3. It is consistent with ZFC that no minimal right ideal is
a P -set.

Proof. By Lemmas 4.1 and 4.2, if some minimal right ideal is a P -set
then there is a P -point in N∗. By a famous result of Shelah, it is consistent
with ZFC that N∗ has no P -points (see [W] or [S2]).

The proof of Theorem 4.3 suggests the following problem:

Problem 4.4. Is it consistent that N∗ has a P -point but that no minimal
right ideal is a P -set?

If X,Y ⊆ Z, we say that X and Y are homeomorphically embedded in Z
if there is a homeomorphism Z → Z that restricts to a homeomorphism
X→Y . Thus, for example, Z is homogeneous if and only if all of its points
are homeomorphically embedded.
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Recall that p is idempotent if and only if p + p = p. The idempotents
of N∗ admit a natural partial order as follows: if p and q are idempotent
ultrafilters, then p ≤ q if and only if p + q = q + p = p. It is known (see,
e.g., [Be, Theorem 2.7]) that an idempotent p is minimal with respect to this
order if and only if p belongs to some minimal right ideal. Such ultrafilters
are called minimal idempotents. It is also known that if q is any idempotent
then there is a minimal idempotent p with p ≤ q.

We now give three corollaries of our Theorem 3.5:

Corollary 4.5. Suppose t = c. Then:

(1) The minimal right ideals are not homeomorphically embedded in N∗.
(2) There is a minimal right ideal I ⊆ βN such that, for any p, q ∈ βN,

p+ q ∈ I if and only if p ∈ I.
(3) There is an idempotent ultrafilter that is both minimal and maximal

with respect to ≤.
Proof. (1) It suffices to show that some minimal right ideal is not a P -set.

Let K =
⋃
{I ⊆ N∗ : I is a minimal right ideal} and fix p ∈ N∗ \K. Then

p + βN = {σn(p) : n ∈ N} is clearly a right ideal and, by Zorn’s Lemma,
must contain a minimal right ideal I. Since I is closed under σ−1 (by Propo-
sition 2.1), and p /∈ I, we have σn(p) /∈ I for all n. It follows that I is not a
P -set.

(2) Let I be a P -set and a minimal right ideal. If p ∈ I, then p + q ∈ I
because I is a right ideal. If p /∈ I, then p + q = q-limn∈N σ

n(p) is an
element of {σn(p) : n ∈ N}. Since, as in (1), σn(p) /∈ I for all n, we have
I ∩ {σn(p) : n ∈ N} = ∅. In particular, p+ q /∈ I.

(3) Let I be a minimal right ideal satisfying (2), and let p ∈ I be idem-
potent. Let q be any idempotent other than p. If q ∈ I then q is ≤-minimal,
so p 6≤ q. If q /∈ I then q + p /∈ I by (2), in which case p 6≤ q.

We remark that (2) and (3) are already known to follow from t = c
(see [Z]), though our proof is different. Also, the consistency of (1) is easily
inferred from known results: there are 2c minimal right ideals and it is con-
sistent to have only c autohomeomorphisms of N∗ (in fact, this follows from
PFA; see [SS]). That (1) follows from t = c is a new result, and we do not
know whether it follows from ZFC.

Problem 4.6. Is any of the three propositions listed in Corollary 4.5
provable from ZFC?

It may be possible to solve all three parts of this question at once. Recall
that a weak P -set is a closed X ⊆ N∗ such that if Y ⊆ N∗ \X is countable
then X ∩ Y = ∅. The proof of Corollary 4.5 does not require that we have
a minimal right ideal that is a P -set: having a minimal right ideal that is a
weak P -set is enough. In ZFC, it is impossible to prove that P -points exist
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(by the aforementioned result of Shelah), but it is possible to prove that weak
P -points exist (a result of Kunen [K]). Perhaps a similar situation holds for
the minimal right ideals.

Problem 4.7. Is some minimal right ideal a weak P -set?

While ZFC is not strong enough to prove that some minimal right ideal
is a P -set, we can show that some “small” right ideal is a P -set.

Theorem 4.8. There is a nonempty, nowhere dense P -set X ⊆ N∗ such
that σ(X) = X. In particular, there is a nowhere dense P -set that is also a
closed right ideal.

Proof. The second claim of the theorem follows from the first claim and
Proposition 2.1.

By Lemma 3.1, it suffices to find a Θ-filter F such that F∗ is nowhere
dense, every countable subset of F has a pseudo-intersection in F , and, for
every A ∈ F , we have A+ 1, A− 1 ∈ F .

Let B = {bn : n ∈ N} satisfy limn→∞(bn+1 − bn) = ∞. Let G be a filter
such that G∗ is a nowhere dense P -set (it is easy to prove that such a G exists:
take a maximal chain in P(ω)/fin and let G be the filter generated by it). Let
B denote the family of all functions f : N→ N such that limn→∞ f(n) =∞.
By a standard diagonalization argument, if f0, f1, f2, . . . ∈ B then there is
some f ∈ B such that f <∗ fn for every n.

For every G ∈ G and f ∈ B, let

X(G, f) =
⋃
n∈G

[bn − f(n), bn + f(n)].

Let G0, G1 ∈ G and f0, f1 ∈ B. Then G2 = G0 ∩ G1 ∈ G, and if we define
f2 : N→ N by f2(n) = min{f0(n), f1(n)} then f2 ∈ B. Clearly X(G2, f2) ⊆
X(G0, f0)∩X(G1, f1). Thus {X(G, f) : G ∈ G, f ∈ B} is a filter base; let F
denote the filter generated by it. Clearly, F is a Θ-filter; we now show that
it has the other required properties.

For f ∈ B, let f−(n) = f(n)− 1 and note that f− ∈ B whenever f ∈ B.
If G ∈ G and f ∈ B, it follows from our definitions that X(G, f) + 1 ⊇
X(G, f−) and X(G, f) − 1 ⊇ X(G, f−). Consequently, for every A ∈ F we
have A+ 1, A− 1 ∈ F .

For each n, let Gn ∈ G and fn ∈ B. Since G is a P -filter, there is some
G∞ ∈ G that is a pseudo-intersection for the Gn. As noted above, there is
also some f∞ ∈ B such that f∞ <∗ fn for every n. Then X(G∞, f∞) is a
pseudo-intersection for {X(Gn, fn) : n ∈ N}. Since the X(G, f) form a basis
for F , it follows that F is a P -filter.

Finally we show that F∗ is nowhere dense. Using Stone duality, we find
that F∗ is nowhere dense if and only if F is unbounded in P(ω)/fin. Suppose
the latter is not the case, and let A be a bound for F .
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For each n, let

α(n) = max
{
min{a− bn, bn+1 − a} : a ∈ A ∩ [bn, bn+1]

}
.

If the range of α is unbounded, then there is some function f ∈ B such
that α 6<∗ f . In this case, X(N, f) misses infinitely many elements of A,
contradicting the assumption that A is a pseudo-intersection for F .

Therefore α is bounded: there is some k such that α(n) < k for all n. Fix
N large enough so that bn+1 − bn > 2k whenever n > N . Fix f ∈ B so that
k ≤ f(n) ≤ b(bn − bn−1)/2c for all n > N . Define

B = {n > N : |bn − a| < k for some a ∈ A}.
Since G∗ is nowhere dense, G has no pseudo-intersection; in particular, B is
not a pseudo-intersection for G. Thus there is some G ∈ G such that B \G
is infinite. Then X(G, f) misses infinitely many elements of A (namely all
of those in [bn− k, bn+ k] for n ∈ B \G), contradicting the assumption that
A is a pseudo-intersection for F .

Corollary 4.9. There is a nowhere dense closed I ⊆ N∗ such that, for
any p, q ∈ βN, p+ q ∈ I if and only if p ∈ I.

Proof. The proof is similar to that of Corollary 4.5(2). Let I ⊆ N∗ be a
nowhere dense P -set with σ(I) = I. Then I is a right ideal by Proposition 2.1,
so if p ∈ I then p + q ∈ I for any q. If q /∈ I, then {σn(p) : n ∈ N} ∩ I = ∅
because σ(I) = I; so {σn(p) : n ∈ N} ∩ I = ∅ because I is a P -set. Thus
p+ q = q-limn∈N σ

n(p) /∈ I.

5. A consistent characterization of σ and σ−1. In this section we
show that it is both consistent with and independent of ZFC that the shift
map σ and its inverse are, up to isomorphism, the unique chain transitive
autohomeomorphisms of N∗. The “independence” part of this result will use
the nowhere dense P -set of Theorem 4.8.

Recall that two dynamical systems (X, f) and (Y, g) are isomorphic (or,
for some authors, conjugate), written (X, f) ∼= (Y, g) or X ∼= Y , if there is a
homeomorphism h : X → Y such that the following diagram commutes:

X X

Y Y

hh

f

g

We say Y is a quotient of X (or is semiconjugate to X) if h : X → Y is
a continuous surjection, but not necessarily a homeomorphism, for which
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the above diagram commutes. In this case, h is called a quotient map (or a
semiconjugation).

Chain transitivity is a well-studied property of metric dynamical systems.
While it is typically defined in terms of some fixed metric, it is actually a
topological property (i.e., it is preserved by isomorphisms), and, if one re-
places metrics with uniformities, chain transitivity can be defined for non-
metrizable systems as well.

Explicitly, if X is a dynamical system and U is an open cover of X,
we say that 〈xi : i ≤ n〉 is a U-chain from x0 to xn if, for every i < n,
there is some U ∈ U such that f(xi) ∈ U and xi+1 ∈ U . Let us say that a
(not necessarily metric) dynamical system X is chain transitive if for every
open cover U of X and all x, y ∈ X, there is a U-chain from x to y. The
reader can easily check that this is equivalent to the usual definition of chain
transitivity for metric systems (use the Lebesgue Covering Lemma for the
nontrivial direction).

The following lemma is essentially proved in [A] as Theorem 4.12, al-
though the notation is different and the proof there is for metric systems.
For completeness, we give a proof here as well.

Lemma 5.1. (X, f) fails to be chain transitive if and only if there is some
nonempty open U 6= X and closed C ⊆ U such that f(U) ⊆ C.

Proof. Suppose there is some open U 6= X and closed C ⊆ U such that
f(U) ⊆ C. Then U = {U,X \ C} is an open cover of X, and there is no
U-chain from a point of U to a point of X \ U .

For the other direction, suppose X is not chain transitive. Fix some open
cover U of X, and some x, y ∈ X with no U-chain from x to y. Notice that
if there is a U-chain from x to any point of some V ∈ U then there is a
U-chain from x to every point of V . Let U0 be the set of all V ∈ U such that
there is a U-chain from x to some (any) point of V , and let U1 = U \U0. Set
U =

⋃
U0 and C = X \

⋃
U1. Then ∅ 6= U 6= X because x ∈ U 63 y. As U

covers X, we have C ⊆ U . If f(U) \C 6= ∅, then clearly it is possible to find
a U-chain from x to a point of X \ C =

⋃
U1, contradicting the definition

of U1. Thus f(U) ⊆ C.

Lemma 5.2. A map F : N∗ → N∗ is chain transitive if and only if, for
every infinite, co-infinite A ⊆ N, F (A∗) 6⊆ A∗.

Proof. Let U be an open subset of N∗ with U 6= N∗, and let C ⊆ U
be nonempty and closed. Since C is closed, C =

⋂
{A∗ : A∗ ⊇ C}. By [E,

Corollary 3.1.5], there is some finite set {Ai : i ≤ n} such that
⋂
i≤nA

∗
i ⊆ U .

Since
⋂
i≤nA

∗
i = (

⋂
i≤nAi)

∗, there is some A ⊆ N such that C ⊆ A∗ ⊆ U . If
f(U) ⊆ C then f(A∗) ⊆ A∗, so the result follows from Lemma 5.1.
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Theorem 5.3. The shift map on N∗ is chain transitive.

Proof. Suppose A is infinite and co-infinite. Then (A + 1) ∩ (N \ A) =
{n ∈ N : n ∈ A and n+ 1 /∈ A} is infinite. In particular,

σ(A∗) ∩ (N∗ \A∗) = (A+ 1)∗ ∩ (N \A)∗ = ((A+ 1) ∩ (N \A))∗ 6= ∅.
This shows that σ(A∗) 6⊆ A∗.

Lemma 5.4. If X is chain transitive and Y is a quotient of X, then Y
is chain transitive.

Again, this is proved in [A] for metric spaces, and the proof generalizes
easily to the nonmetric case.

Proof of Lemma 5.4. Let Q : X → Y be a quotient map, let U be an
open cover of Y , and let y, z ∈ Y . Then V = {Q−1(U) : U ∈ U} is an open
cover of X. Fixing some xy ∈ Q−1(y) and xz ∈ Q−1(z), there is a V-chain
〈xi : i ≤ n〉 in X from xy to xz. Then 〈Q(xi) : i ≤ n〉 is a U-chain from y
to z.

We say that a map F : N∗ → N∗ is trivial if there is some map f : N→ N
such that F = βf�N∗.

Lemma 5.5. If τ is any chain transitive trivial autohomeomorphism of N∗,
then either (N∗, τ) or (N∗, τ−1) is isomorphic to (N∗, σ).

Proof. Suppose t : N → N is a function such that τ = βt�N∗ is a chain
transitive autohomeomorphism of N∗. By continuity, τ(A∗) = (t(A))∗ for
every A ⊆ N. If A ⊆ N and t(A) ⊆∗ A, then τ(A∗) ⊆ A∗. If ∅ 6= A∗ 6= N∗,
this contradicts the chain transitivity of τ by Lemma 5.2. Thus, unless A is
either finite or cofinite, t(A) \A must be infinite.

Since βt is bijective, t restricts to an injection on a cofinite subset D
of N. By making t undefined on N \D, we may assume t is injective, hence
invertible. For each n, let O(n) = {tm(n) : m ∈ Z}. Note that the O(n)
partition N, that is, n ∈ O(m) if and only if m ∈ O(n).

Suppose there are infinitely many n with O(n) finite. Except for possibly
the finitely many cases where O(n) contains an element of N\D or N\ t(D),
if O(n) is finite, then n is periodic under t and O(n) is invariant under t. If A
is an infinite, co-infinite subset of {O(n) : |O(n)| < ℵ0}, then

⋃
A is infinite

and t(A) \A is finite. This contradicts the conclusion of the first paragraph
of our proof, so there are finitely many n with O(n) finite.

In particular, O(n) is infinite for some n. Since t(O(n)) = O(n), O(n) is
cofinite, again using the first paragraph of our proof.

Fix n with O(n) cofinite. Clearly, either O+(n) = {tm(n) : m ≥ 0} or
O−(n) = {tm(n) : m ≤ 0} is infinite. We suppose O+(n) is infinite and
show (N∗, τ) ∼= (N∗, σ) (an analogous argument shows (N∗, τ−1) ∼= (N∗, σ) if
O−(n) is infinite).
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Observe thatO+(n) is cofinite: otherwise ∅ 6=O+(n)∗ 6=N∗ and τ(O+(n))∗

= O+(n)∗. Let ϕ : N → N be given by ϕ(m) = tm(n). Consider βϕ :
βN → βN. Since ϕ is a bijection of N onto a cofinite subset of N, βϕ re-
stricts to an autohomeomorphism ϕ∗ : N∗ → N∗. For every A ⊆ N, we have
ϕ(A + 1) = t(ϕ(A)). By continuity, ϕ∗(σ(A∗)) = ϕ∗((A + 1)∗) = τ(ϕ∗(A))
for every A. It follows that, for every p ∈ N∗, ϕ∗(σ(p)) = τ(ϕ∗(p)). Thus ϕ∗
is an isomorphism (N∗, σ)→ (N∗, τ).

Notice that (N∗, σ) ∼= (N∗, τ−1) if and only if (N∗, σ−1) ∼= (N∗, τ). We
now have a consistent characterization of σ and σ−1:

Theorem 5.6. It is consistent with ZFC that (up to isomorphism) σ and
σ−1 are the only chain transitive autohomeomorphisms of N∗.

Proof. Shelah [S1] proves that it is consistent with ZFC that every au-
tohomeomorphism of N∗ is trivial.

The next theorem gives the complementary result:

Theorem 5.7. Assuming the Continuum Hypothesis, there is a chain
transitive autohomeomorphism of N∗ not isomorphic to σ or σ−1.

Proof. Using Theorem 4.8 (or Theorem 3.5 plus CH), let X ⊆ N∗ be a
nowhere dense P -set with σ(X) = X. Let Y be the quotient space obtained
from N∗ from the relation

p ∼ q ⇔ p = q or p, q ∈ X.
That is, Y is the compact Hausdorff space obtained from N∗ by collapsing
X to a point.

Because σ(X) = X, [σ(x)] = [σ(y)] whenever x ∼ y; define τ on Y by
setting τ([x]) = [σ(x)]. It is easy to check that this map is continuous, so
that (Y, τ) is a dynamical system. Clearly, τ is a bijection on Y (because
σ is a bijection on N∗), so that τ is a continuous bijection, hence an auto-
homeomorphism, on Y . By construction (Y, τ) is a quotient of (N∗, σ) and
is therefore chain transitive by Lemma 5.4.

Because X is nowhere dense in N∗, Corollary 1.2.4 in [vM] implies that
Y ≈ N∗. Thus τ is a chain transitive autohomeomorphism of N∗. We note
that Corollary 1.2.4 in [vM] requires CH; in fact, it has been shown that a
version of it is equivalent to CH (see [vDvM]).

To complete the proof, we observe that τ([x]) = [x] for x ∈ X. Since σ has
no fixed points, (Y, τ) can be isomorphic to neither (N∗, σ) nor (N∗, σ−1).

Roughly speaking, there are many models in which CH fails and not
every autohomeomorphism of N∗ is trivial. We leave open the question of
whether some of these contain chain transitive autohomeomorphisms of N∗
other than σ and σ−1. We also leave open the question of whether another



292 W. R. Brian

adjective or two can be added to “chain transitive autohomeomorphism” to
obtain a topological characterization of σ in ZFC.
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