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Abstract. A general theory of summation of divergent series based on the Hardy–
Kolmogorov axioms is developed. A class of functional series is investigated by means of
ergodic theory. The results are formulated in terms of solvability of some cohomological
equations, all solutions to which are nonmeasurable. In particular, this realizes a construc-
tion of a nonmeasurable function as first conjectured by Kolmogorov.

1. Introduction and general theorems. A natural axiomatic frame-
work for the summation of divergent series already appeared in Hardy’s
early papers (see [7]) and also in Kolmogorov’s short note [10]. Hardy re-
produced the axioms in the book [6] (Section 1.3) and stated that most of
the known summation methods meet them. For instance, this is the case for
the classical Cesàro method (C, k) of any order k.

In [14] the Hardy–Kolmogorov axioms were translated into the language
of functional analysis, and a brief sketch of their main consequences was
presented without proofs. Now we give a developed exposition with applica-
tions to some functional series generated by dynamical systems. The “sums”
of such series satisfy some functional (cohomological) equations and, for this
reason, they happen to be nonmeasurable. Under the summability assump-
tion, for lacunary trigonometric series this phenomenon was discovered by
Kolmogorov [10] and justified by Zygmund [17]. We prove that functional se-
ries in a wide class, including Kolmogorov’s, are indeed summable. Namely,
by using the Birkhoff–Khinchin ergodic theorem, we verify that our general
criterion of summability (Theorem 1.8) is applicable. Thus, summation of
divergent series is a source of nonmeasurable functions, as conjectured by
Kolmogorov [10].

The following general definition of a summation method is that of [14].
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Definition 1. Let s be the linear space of all sequences x = (ξn ∈ C :
n ≥ 0), let T be the shift operator on s, i.e. T (ξn) = (ξn+1), and, finally, let
L ⊂ s be a T -invariant subspace. A linear functional σ : L → C is called a
summation method (a summation, for short) on L if

(1.0) σ(x) = ξ0 + σ(Tx), x ∈ L.

(In fact, we identify the sequence (ξn) with the corresponding series ξ0 +
ξ1 + · · · ).

We do not assume that s is provided with a topology.
If there exists a summation σ on a T -invariant subspace L then we say

that L admits summation, and we call L the domain of σ. In this case for
any T -invariant subspace M ⊂ L the restriction σ|M is a summation on M .
Moreover, if L = M ⊕ N where N is also a T -invariant subspace then L
admits summation if and only if there are some summations on M and N .

A series x is called summable if it belongs to a subspace L admitting
summation. If the summation is σ, we say that x is σ-summable.

It is very instructive to rewrite (1.0) in the “cohomological” form

(1.1) σ(x)− σ(Tx) = ξ0(x), x ∈ L.

By iteration of T we obtain

(1.2) σ(x)− σ(Tnx) = sn(x) ≡
n−1∑
k=0

ξk, n ≥ 0.

(To include the case n = 0 we set s0(x) = 0.) By linearity of σ the formula
(1.2) can be extended to

(1.3) φ(1)σ(x)− σ(φ(T )x) =
m∑
n=1

ansn(x)

where

φ(λ) =
m∑
n=0

anλ
n.

A series x is called finite of length l(x) = l if either l = 0 (i.e., x = 0) or
ξn = 0 for n ≥ l > 0, but ξl−1 6= 0. The set Fm of finite series x of length
l(x) ≤ m is a T -invariant linear subspace. From (1.2) it follows that the
functional

(1.4) σF (x) =
l(x)−1∑
k=0

ξk

is a unique summation on the space F of all finite series.
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On the space c0 of convergent series we have the standard summation

(1.5) σ0(x) =
∞∑
k=0

ξk = lim
n→∞

sn(x).

However, there are infinitely many other summations on c0. We show this
after a short consideration of the general uniqueness problem.

Now we rewrite (1.1) as σ(δx) = ξ0(x), where δ = 1 − T and 1 is
the identity operator. This δ is the classical difference operator: δ(ξn) =
(ξn − ξn+1). For every T -invariant subspace L we introduce its derivative
subspace L′ = Im δL, where δL : L→ L is the restriction of δ to L. Obviously,
L′ is also T -invariant.

Lemma 1.1. If L admits a summation σ0 then the set of summations on
L consists of all linear extensions of σ0|L′ to L.

Proof. The equation (1.1) is equivalent to σ(δx) = σ0(δx), i.e. to σ|L′ =
σ0|L′.

As a consequence, we obtain

Theorem 1.2. A summation on L is unique if and only if L′ = L, i.e.
the operator δL is surjective, in other words, the equation δx = y has a
solution x ∈ L for every y ∈ L.

Remark 1.3. In the whole space s the operator δ is surjective, i.e. s′ = s.
Indeed, for x = (ξn) and y = (ηn) the equation δx = y is actually ξn − ξn+1

= ηn. Its general solution is ξn = ξ0 − sn(y) with an arbitrary ξ0, like
indefinite integral.

Remark 1.4. Using Lemma 1.1 one can explicitly describe all summa-
tions σ on L. Namely, for a fixed direct sum decomposition L = L′ ⊕R we
have σ = σ0 ⊕ χ, where χ is an arbitrary linear functional on R. The inde-
pendent parameters of this description are the values of χ on a basis B of
the subspace R. We get a one-to-one correspondence between summations
σ on L and complex-valued functions on B. As a result, if a summation on
L is not unique then the set of all summations on L is infinite.

Returning to the space c0 of convergent series we consider the closely
related space c0 = {(ξn) : limn→∞ ξn = 0} and prove

Lemma 1.5. c′0 = c0, moreover , for every y = (ηn) ∈ c0 its unique
δ-preimage in c0 is

ŷ =
( ∞∑
k=n

ηk

)
.
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Proof. If x = (ξn) ∈ c0 then y = δx belongs to c0 since sn(y) = ξ0−ξn →
ξ0 as n→∞. Conversely, if y ∈ c0 and x = ŷ then x ∈ c0 and δx = y. This
x is unique since if δx = 0 then all ξn = ξ0, hence x = 0 by letting n→∞.

Corollary 1.6. The derivative subspace (c0)′ is c00 = {y ∈ c0 : ŷ ∈ c0}.
Proof. Let y ∈ (c0)′, i.e y = δx, x ∈ c0. Since (c0)′ ⊂ c0 ⊂ c0, we have

y ∈ c0 and x ∈ c0. By Lemma 1.5, ŷ = x, thus y ∈ c00. Conversely, let
y ∈ c00, i.e. y ∈ c0 and ŷ ∈ c0. Since y = δŷ, we have y ∈ (c0)′.

The existence of nonstandard summations on c0 follows from Theorem
1.2 and Corollary 1.6. Indeed, the set c0 \ c00 is not empty. For instance, it
contains any series

ζα = ((n+ 1)−α), 1 < α ≤ 2.

Now we proceed to the general existence problem.

Lemma 1.7. The series π0 : 1 + 1 + · · · is not summable.

Proof. Let π0 be σ-summable. Then σ(π0)−σ(Tπ0) = 0 since Tπ0 = π0.
On the other hand, ξ(π0) = 1.

The series π0 generates the 1-dimensional subspace Π0 = ker δ of con-
stant series, ξ0 + ξ0 + · · · . This is a subspace of the space Π∞ of the series
(π(n)), where π runs over all complex-valued polynomials. Obviously, Π∞
is T -invariant as also is every subspace Πm = {π : deg π ≤ m}, m ≥ 0.
Moreover, Π ′m = Πm−1, m ≥ 1.

Theorem 1.8. Let L be a T -invariant subspace. The following state-
ments are equivalent.

(1) L admits summation.
(2) π0 does not belong to L, i.e. L ∩Π0 = 0.
(3) There is no nonzero polynomial series in L, i.e. L ∩Π∞ = 0.

Proof. (1)⇒(2) since π0 is not summable. Conversely, (2)⇒(1): we have
L ∩ ker δ = 0, hence δL is injective, so left invertible. Let i : L → L be a
left inverse to δL. (This is not unique if L′ 6= L.) Then the linear functional
σ0(x) = ξ0(ix) is a summation on L since σ0(δx) = ξ0(x).

Obviously, (3)⇒(2). Conversely, (2)⇒(3): let π ∈ L∩Π∞, and let π 6= 0,
deg π = m. Then δmπ = γπ0 where γ = const 6= 0. Hence π0 ∈ L, contrary
to (2).

Corollary 1.9. A T -invariant subspace L admits summation if and
only if the operator δL is injective.

Combining this result with Theorem 1.2 we obtain

Corollary 1.10. A T -invariant subspace L admits a unique summa-
tion if and only if the operator δL is bijective.
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Corollary 1.11. If a finite-dimensional T -invariant subspace admits
summation then the summation is unique.

Proof. In this case all injective operators are surjective.

Remark 1.12. Informally speaking, the subspaces with a unique sum-
mation are just those where the “integration” becomes definite. Indeed, δL
is bijective if and only if it is invertible.

Remark 1.13. For any T -invariant subspace L consider the sequence
of derivative subspaces L ⊃ L′ ⊃ L′′ ⊃ · · · . Let N be their intersection.
One can prove that if L admits summation but it is not unique then the
nonuniqueness is kept on any derivative subspace, while there is uniqueness
on N .

The summability problem can be “localized” as follows.

Theorem 1.14. Let L be a T -invariant subspace. Then L admits sum-
mation if and only if every x ∈ L is summable.

Proof. The “only if” part is trivial. The “if” part follows from Theorem
1.8 since π0 is not summable, thus π0 6∈ L.

Now for every x ∈ s we consider the smallest T -invariant subspace Lx
containing x. This is

Lx = Span(Tnx) = {φ(T )x}
where φ runs over all polynomials of one variable. Obviously, x is summable
if and only if Lx admits summation. Combining this fact with Theorem 1.14
we obtain a “local” version of Theorem 1.8.

Theorem 1.15. A T -invariant subspace L admits summation if and only
if for every x ∈ L the subspace Lx does not contain π0, or equivalently ,
Lx ∩Π∞ = 0.

We conclude this section with a few examples.

Example 1.16. The subspace c0 admits summation since π0 6∈ c0.

Example 1.17. The subspace m = {x : supn |ξn| < ∞} does not ad-
mit summation since π0 ∈ m. However, given a Banach limit (an invariant
mean) on m, the T -invariant subspace m0 = {x ∈ m : B-limn→∞ ξn = 0}
admits summation since π0 6∈ m0. Note that m0 ⊃ c0 since the Banach limit
coincides with the standard limit for all convergent sequences.

Example 1.18. The formula σ(x) = B-limn→∞ sn(x) determines a sum-
mation on the subspace m̂ = {x : supn |sn(x)| <∞}. We call it the Banach
summation. Note that m̂ ⊂ m0 since ξn = sn+1 − sn and the Banach limit
is T -invariant.
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Example 1.19. A summation method going back to Euler uses an an-
alytic continuation of the generating function

(1.6) g(t;x) =
∞∑
n=0

ξnt
n, x = (ξn),

where t is a complex variable. This function is defined and analytic in the
disk |t| < rx if

(1.7) rx ≡ (lim sup
n→∞

|ξn|1/n)−1 > 0.

Assume that all series from a T -invariant subspace L satisfy (1.7), so we
have a linear space AL of analytic germs g(t;x) at t = 0. Let G ⊂ C be an
open connected set containing t = 0, 1, and let each g ∈ AL be the Taylor
germ of a function g̃(t;x) that is analytic on Gx = G\Γx where Γx is a finite
set, 1 6∈ Γx. Then ε(x) = g̃(1;x) is a summation on L (Euler’s summation).
Indeed, from (1.6) it follows that

g(t;x)− tg(t;Tx) = ξ0(x), |t| < min(rx, rTx).

By uniqueness of analytic continuation, g̃(t;x) is a linear functional of x and

g̃(t;x)− tg̃(t;Tx) = ξ0(x), t ∈ Gx ∩GTx.
In particular, ε(x)− ε(Tx) = g̃(1;x)− g̃(1;Tx) = ξ0(x).

The best known example of Euler’s sum is ε(((−1)n)) = 1/2. More gen-
erally,

ε((λn)) = (1− λ)−1, λ ∈ C \ {1}.

2. Quasiexponential series. The geometric progression (or exponen-
tial series) (λn) is an eigenvector of T for the eigenvalue λ ∈ C. (For
λ = 0 we set 00 = 1.) The corresponding eigenspace Eλ = ker(T − λ1)
is 1-dimensional. This is the first member of the increasing sequence of the
root subspaces Eλ,m = ker(T − λ1)m, m = 1, 2, . . . ; their union is denoted
by Eλ,∞. We have E0,m = Fm, the space of all finite series of length ≤ m, so
E0,∞ = F . If λ 6= 0 then Eλ,m consists of all series (π(n)λn)∞0 , π ∈ Πm−1.
In particular, E1,m = Πm−1, E1,∞ = Π∞. Note that dimEλ,m = m in any
case.

Now let φ(λ) be a nonconstant polynomial, i.e.

φ(λ) = λm0

ν∏
k=1

(λ− λk)mk ,

where m0 ≥ 0, and if ν > 0 then λk are nonzero pairwise distinct roots with
multiplicities mk ≥ 1. Then

kerφ(T ) = E0,m0 ⊕ Eλ1,m1 ⊕ · · · ⊕ Eλν ,mν
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according to the Jordan form of T |kerφ(T ). In other words, φ(T )x = 0 if
and only if

(2.1) ξn =
∑

k :λk 6=0

πk(n)λnk + ζn,

where πk ∈ Πmk−1 and (ζn) ∈ F , ζn = 0 for n ≥ m0. The decomposition
(2.1) is unique. By the way, φ(T )x = 0 is nothing but a homogeneous linear
difference equation with constant coeeficients, and (2.1) is its general solu-
tion. In the case m0 = 0 this formula turns into the classical one concerning
two-sided sequences.

Any series x with members of the form (2.1) is called quasiexponential.
The complex linear space of all quasiexponential series will be denoted by Q.
This is a T -invariant subspace of s. Letting Zm0 = {0} for m0 > 0 and
Zm0 = ∅ form0 = 0, we call the set {λk : πk 6= 0}∪Zm0 the spectrum of x ∈ Q
and denote it by spec(x). Obviously, spec(x) 6= ∅ if x 6= 0 but spec(0) = ∅.
Let x 6= 0. Then x is finite or polynomial if and only if spec(x) = {0} or {1},
respectively. In general, spec(x) coincides with the set of roots of a minimal
polynomial φx(λ) such that φx(T )x = 0. (As usual, the minimality means
that deg φx is minimal. This polynomial is unique up to a constant factor.)

The following theorems show the importance of quasiexponential series
for general summation theory.

Theorem 2.1. A series x is not summable if and only if x ∈ Q and
1 ∈ spec(x).

Proof. By Theorem 1.15, x is not summable if and only if π0 ∈ Lx, i.e.
Lx ∩ ker(1− T ) 6= 0 or, equivalently, there is a polynomial ψ such that

(2.2) ψ(T )x 6= 0, (1− T )ψ(T )x = 0.

From (2.2) it follows that x ∈ Q and (1−λ)ψ(λ) is divisible by the minimal
polynomial φx(λ). Hence, φx(1) = 0, otherwise, ψ is divisible by φx, so
ψ(T )x = 0. Conversely, if x ∈ Q and φx(1) = 0 then φx(λ) = (1 − λ)ψ(λ),
so (2.2) is valid since degψ < deg φx.

In view of Theorem 2.1 let us introduce

Q1 = {x ∈ Q : 1 6∈ spec(x)},

so x ∈ Q1 if and only if φ(T )x = 0 for a polynomial φ such that φ(1) 6= 0.
The subspace Q1 is T -invariant, and Q = Q1 ⊕Π∞ according to (2.1).

Now note that x ∈ Q if and only if the set {Tnx}∞n=0 is linearly de-
pendent, i.e. the subspace Lx is finite-dimensional. Its basis is {Tnx}ν−1

n=0,
where ν is the degree of the related minimal polynomial, thus, dimLx = ν.
If x 6∈ Q then Lx is infinite-dimensional since {Tnx}∞n=0 is its basis.
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Theorem 2.2. Let x be a summable series. Then the summation on Lx
is unique if and only if x ∈ Q1.

Proof. By Theorem 2.1 either x ∈ Q1, or x 6∈ Q. In the first case the
summation is unique by Corollary 1.11. In the second case the values σ(Tnx),
n ≥ 1, are determined by (1.2), while σ(x) remains arbitrary.

Corollary 2.3. Every subspace L ⊂ Q1 admits a unique summation.

Proof. Let x ∈ L and let σ be a summation on L. Then σ(x) = (σ|Lx)(x).
By Theorem 2.2 the summation σ|Lx does not depend on the choice of σ.

We denote by ε1 the unique summation on Q1. By Corollary 2.3 the
unique summation on any subspace L ⊂ Q1 is ε1|L.

Example 2.4. Let Q0 = Q ∩ c0, i.e. Q0 is the subspace of convergent
quasiexponential series. Using (2.1) one can prove that x ∈ Q0 if and only
if x ∈ Q and spec(x) ⊂ {λ ∈ C : |λ| < 1}. In particular, 1 6∈ spec(x) for
x ∈ Q0, so Q0 = Q1 ∩ c0. Therefore, on Q0 the summation ε1 coincides with
the standard summation σ0.

Now we prove that the summation ε1 coincides with the restriction of
Euler’s summation ε to the subspace Q1.

Lemma 2.5. For x ∈ Q the generating function g(t;x) is well-defined ,
and g̃(t;x) is a rational function of t. The set of its poles is

(2.3)
{
t = λ−1 : λ ∈ spec(x), λ 6= 0

}
.

Proof. It suffices to consider the case of a single-point spectrum. If
spec(x) = {0} then x is finite, so g̃(t;x) is a polynomial in t. On the other
hand, the set (2.3) is empty in this case. Now let spec(x) = {λ}, λ 6= 0.
Then x = (π(n)λn) where π ∈ Π∞. Accordingly,

g(t;x) =
∞∑
n=0

π(n)λntn, |t| < |λ|−1.

If deg π = ν − 1 then π can be represented as

π(n) =
ν−1∑
k=0

ck

(
k + n

k

)
, cν−1 6= 0.

This yields

(2.4) g̃(t;x) =
ν−1∑
k=0

ck
(1− λt)k+1

.

By the way, any rational function g(t) which is regular at t = 0 is the
generating function of a series x ∈ Q. According to (2.4), this x can be
obtained from the decomposition of g(t) into partial fractions.
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Corollary 2.6. For x ∈ Q1 the function g̃(t;x) is rational and regular
at t = 1.

This means that Q1 is a subspace of the domain of Euler’s summation.
Therefore, ε1 = ε|Q1 by uniqueness of summation on Q1.

For x ∈ Q1 an explicit expression of ε1|Lx follows from the formula (1.3).
Namely, if

φx(λ) =
ν∑

n=0

anλ
n

is a corresponding minimal polynomial then

ε1(z) =
1

φx(1)

ν∑
n=1

ansn(z), z ∈ Lx.

Indeed, φx(T )z = 0 for all z ∈ Lx. It remains to substitute x = z and φ = φx
into (1.3). Actually, we see that the minimal polynomial φx can be changed
to any polynomial φ such that φ(T )x = 0 and φ(1) 6= 0.

Example 2.7. Let x be (l + 1)-periodic, i.e. T l+1x = x, and let 1 6∈
spec(x) or equivalently, sl+1(x) = 0. Then

ε1(x) =
1

l + 1

l∑
n=1

sn(x),

so ε1(x) coincides with the Cesàro sum of order 1. This is not an accidental
fact. The point is that a quasipolynomial series x is (C, 1)-summable if and
only if spec(x) ⊂ {λ ∈ C : |λ| ≤ 1} and the roots of the minimal polynomial
lying on the unit circle are simple. If, in addition, 1 6∈ spec(x) then the
Cesàro sum of x coincides with ε1(x) by uniqueness.

3. Extension theory. In the spirit of the classical definition (see e.g.
[6, Section 4.3]) we say that a summation τ is stronger than σ and write
τ � σ if τ is an extension of σ. For instance, σ0 � σF (see (1.4) and (1.5)). In
turn, σ is called regular if σ � σ0. The Banach summation on m̂ (Example
1.18) is regular by definition of the Banach limit. The Cesàro methods of all
orders are regular, while Euler’s method is not. Indeed, rx ≥ 1 for x ∈ c0 but
for some x’s the function g(t;x) cannot be analytically continued to t = 1.

A summation µ is called maximal if there are no summations τ � µ,
τ 6= µ.

Theorem 3.1. For every summation σ there exists a maximal µ � σ.

Proof. We use the Zorn lemma. The relation “�” is a partial order on
the set of all summations, a fortiori, on the subset {τ : τ � σ}. This order
is inductive: there is a majorant τ for any linearly ordered subset {τα � σ}.
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Indeed, let Lα be the domain of τα, and let L =
⋃
α L

α. Then τ is well-
defined on L as τx = ταxx where αx is any index such that x ∈ Lαx .

Corollary 3.2. There exists a regular maximal summation.

Actually, any extension can be realized as a sequence (transfinite, in
general) of minimal steps. Every such step extends the domain L of a sum-
mation σ to L[x] = L + Lx with some x 6∈ L. To analyze this situation we
consider the set Ix,L of polynomials φ(λ) such that φ(T )x ∈ L. Since L is
T -invariant, the Ix,L is an ideal of the ring of all polynomials of λ. Though
0 ∈ Ix,L, the nonzero constants do not belong to Ix,L as long as x 6∈ L.
Obviously, Ix,K ⊂ Ix,L if K ⊂ L, in particular, Ix,0 ⊂ Ix,L. Implicitly, we
already dealt with the ideal Ix,0 in Section 2.

Lemma 3.3. If Ix,L = 0 then any summation σ on L extends to L[x].

Proof. In this case L ∩ Lx = 0 and x 6∈ Q. Thus, L[x] = L⊕ Lx and Lx
admits summation by Theorem 2.1.

Remark 3.4. In Lemma 3.3 the set of extensions is infinite by Theo-
rem 2.2.

Now we assume Ix,L 6= 0 and introduce

θx,L(λ) =
ν∑

n=0

cnλ
n,

a minimal polynomial in Ix,L. This is a greatest common divisor of all φ ∈
Ix,L. Below we use the simplified notation θ(λ) ≡ θx,L(λ). It is convenient
to normalize this polynomial so that cν = 1, i.e.

(3.1) θ(λ) = λν +
ν−1∑
n=0

cnλ
n.

The trivial case θ(λ) ≡ 1 (i.e. ν = 0) is formally included in this setting.

Lemma 3.5. A summation σ on L extends to L[x] if and only if either
θ(1) 6= 0, and then σ is arbitrary , or θ(1) = 0, and then σ is such that

(3.2) σ(θ(T )x) +
ν∑

n=1

cnsn(x) = 0.

The extension is unique if and only if θ(1) 6= 0.

Proof. Let τ be an extension of σ to L[x]. Then

(3.3) θ(1)τ(x) = τ(θ(T )x) +
ν∑

n=1

cnsn(x)

according to (1.3). However, τ(θ(T )x) = σ(θ(T )x) since θ(T )x ∈ L and
τ |L = σ. Thus, if θ(1) = 0 then (3.3) turns into (3.2).
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In the converse direction we start with a value τ(x) such that

(3.4) θ(1)τ(x) = σ(θ(T )x) +
ν∑

n=1

cnsn(x).

This value does exist under our conditions (and is uniquely determined if
θ(1) 6= 0, and arbitrary otherwise). Setting

(3.5) τ(Tnx) = τ(x)− sn(x), 1 ≤ n ≤ ν − 1,

we determine a linear extension τ of σ to

L[x] = L⊕R, R = Span{Tnx}ν−1
n=0.

To prove that τ is a summation it remains to verify the equality

(3.6) τ(T νx) = τ(x)− sν(x).

Note that, as a rule, T νx 6∈ R, so the space R is not T -invariant. Indeed,
by (3.1) we have

(3.7) T νx = θ(T )x⊕ (T ν − θ(T ))x,

so T νx 6∈ R as long as θ(T )x 6= 0. According to (3.7),

τ(T νx) = σ(θ(T )x) + τ((T ν − θ(T ))x) = σ(θ(T )x)−
ν−1∑
n=0

cnτ(Tnx).

By substitution from (3.5) we obtain

τ(T νx) = σ(θ(T )x) +
ν−1∑
n=0

cnsn(x)− τ(x)
ν−1∑
n=0

cn.

(Recall that s0(x) = 0.) This yields (3.6) because of (3.4) and the relation

θ(1)−
ν−1∑
n=0

cn = cν = 1.

Corollary 3.6. Every maximal summation µ is stronger than ε1.

Proof. By the uniqueness of the summation ε1 on Q1 we only have to
show that the domain M of µ contains Q1. Let x ∈ Q1, so φ(T )x = 0
where φ is a polynomial with φ(1) 6= 0. Thus, φ ∈ Ix,M , so θx,M is a divisor
of φ. Therefore, θx,M (1) 6= 0. By Lemma 3.5 and maximality of µ we obtain
x ∈M .

Lemma 3.5 shows that the only obstacle to extension of a summation σ
from L to L[x] is the inequality

σ(θ(T )x) +
ν∑

n=1

cnsn(x) 6= 0
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in the case θ(1) = 0. However, this can be removed by a “polynomial regu-
larization” of x.

Lemma 3.7. Let θx,L(1) = 0 and let m be the multiplicity of this root of
θx,L(λ). Then there exists a polynomial series π of degree ≤ m−1 such that
any summation σ extends from L to L[x− π].

Proof. We start with the case θx,L(λ) = (λ − 1)m. For every y = x − p
with p ∈ Πmx−1, we have θx,L(T )y = θx,L(T )x ∈ L, so θx,L ∈ Ix,L. Hence,
θx,L is divisible by θy,L, so θy,L(λ) = (λ − 1)my with some my ≤ m. We
choose the summand p in y to make my minimal. If my = 0 then θy,L = 1,
hence y ∈ L. Thus, we have a trivial extension L[x− π] = L with π = p.

Let my ≥ 1. Then we consider z = y − q with q ∈ Πmy−1, so that
z = x − π where π = p + q ∈ Πm−1. As before, θz,L(λ) = (λ − 1)mz where
mz ≤ my. Finally, mz = my by minimality of the latter. Thus, θz,L = θy,L,
and accordingly,

(3.8) σ(θz,L(T )x)+
my∑
n=1

cnsn(z) = σ(θy,L(T )y)+
my∑
n=1

cnsn(y)−
my∑
n=1

cnsn(q).

The corresponding obstacle to extension of σ to L[z] disappears if, for in-
stance,

q(n) = α

(
n

my − 1

)
with a suitable α ∈ C. Indeed, for this q the last sum in (3.8) reduces to α.

In general, θx,L(λ) = φ(λ)(λ−1)m, where φ(1) 6= 0. With u = (T −1)mx
we have φ(T )u = θx,L(T )x ∈ L. Therefore, φ is divisible by θu,L, thus
θu,L(1) 6= 0. By Lemma 3.5, σ extends to a summation τ on L[u]. In turn,
θx,L[u](λ) = (λ− 1)l with l ≤ m. Hence, there exists π ∈ Πl−1 ⊂ Πm−1 such
that τ extends to (L[u])[x− π], and, a fortiori, to L[x− π].

Combining Lemmas 3.3, 3.5 and 3.7 we obtain the following general

Theorem 3.8. Suppose that a subspace L admits summation. Then for
every x ∈ s there exists a polynomial series π such that any summation σ
extends from L to L[x− π].

As an important consequence we obtain

Theorem 3.9. A T -invariant subspace M is the domain of a maximal
summation if and only if

(3.9) M ⊕Π∞ = s,

i.e. M is a T -invariant direct complement in s of the subspace of polynomial
series.
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Thus, every maximal summation is applicable to all series up to a poly-
nomial regularization. In this sense, the maximal summations are universal.

Proof. “If”: M admits summation, since M ∩Π∞ = 0. Any summation
on M is maximal since any nontrivial extension of M intersects Π∞.

“Only if”: We apply Theorem 3.8 to L = M . By maximality of M the
extension M [x−π] is trivial, i.e. x−π ∈M . Thus, M +Π∞ = s. Moreover,
M ∩Π∞ = 0 since M admits summation.

Corollary 3.10. Every maximal summation is unique on its domain.

Proof. The operator δ = 1 − T is surjective on the whole space s (see
Remark 1.3). Since in (3.9) both summands are T -invariant, the restriction
δM is also surjective. Thus, Theorem 1.2 is applicable.

As a result, we have a 1-1 correspondence between maximal summations
and T -invariant direct complements of Π∞ in s.

4. Orbital series. A functional series on a set A 6= ∅ is a mapping
X : A→ s, i.e. for every α ∈ A we have a numerical series X(α) = (ξn(α)).
Given a summation σ with a domain L, we say that X is σ-summable if so
are all series X(α), i.e. ImX ⊂ L, and

(4.1) σ(X(α))− σ((TX)(α)) = ξ0(α), α ∈ A,
where (TX)(α) = T (X(α)) = (ξn+1(α)).

A functional series X is called summable if there exists a summation σ
such that X(α) is σ-summable for every α. For example, every trigonometric
series whose coefficients tend to zero is summable. Moreover, there is a
common summation for all these series, namely, any summation on c0.

An important class of functional series is

(4.2) X(α) = (ξ0(fnα)), α ∈ A,
where f is a mapping A → A. The sequence (fnα) is the f -orbit of the
point α, therefore, we call the functional series (4.2) orbital. In this case the
subspace

LX = Span(ImX) ⊂ s
is T -invariant since

(4.3) (TX)(α) = X(fα).

Hence, an orbital series X is summable if and only if there exists a summa-
tion on LX . Combining (4.3) and (4.1) we obtain

Proposition 4.1. If an orbital series X is σ-summable then the func-
tion ψ(α) = σ(X(α)) satisfies the cohomological equation (c.e.)

(4.4) ψ(α)− ψ(fα) = ξ0(α), α ∈ A.
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This is a bridge between summations and functional equations playing
a considerable role in the modern theory of dynamical systems and group
representation theory (see e.g. [1], [5], [8], [9]). In standard terms related to
the dynamical system (A, f), any function ψ : A → C is a 0-cochain, and
its coboundary is the 1-cochain

θ(n, α) = ψ(α)− ψ(fnα), n ≥ 0, α ∈ A.
A 1-cochain ω(n, α) is a cocycle if

ω(n, fmα)− ω(n+m,α) + ω(m,α) = 0 (n,m ≥ 0).

Every coboundary is a cocycle but, in general, the converse is not true,
i.e. not every cocycle is “cohomologically trivial”. For any 0-cochain ξ0 the
1-cochain

s(n, α) ≡ sn(α) =
n−1∑
k=0

ξ0(fkα)

is a cocycle. This cocycle is a coboundary if and only if the c.e. (4.4) is
solvable.

In the context of summations we have a dynamical system (L, T ), where
L is a T -invariant subspace of s, and deal with the cocycle

(4.5) s(n, x) ≡ sn(x) =
n−1∑
k=0

ξ0(T kx), x ∈ L.

A linear functional σ on L is a summation if and only if the cocycle (4.5)
is the coboundary of σ (see (1.2)). Accordingly, L admits summation if
and only if the cocycle (4.5) is cohomologically trivial in the class of linear
cochains.

Later on we assume that A is provided with a measure dα, mesA = 1,
and f is a measure preserving transformation of A into itself. In this setting
all cochains are assumed measurable, and accordingly, two cochains which
coincide almost everywhere (a.e.) can be identified. (This is not necessary
for our purposes.)

The following lemma can be extracted from [16] (see also [15, Section 5]).

Lemma 4.2. Let ψ(α), α ∈ A, be a measurable function and let ε > 0.
Then there exist M > 0 and a sequence of subsets An ⊂ A such that
mesAn> 1− ε and

(4.6) |ψ(α)− ψ(fnα)| ≤M, α ∈ An.
Proof. There is a subsetD such that |ψ(α)| ≤M/2, α∈D and mes(A\D)

< ε/2. The inequality (4.6) is valid on An := D∩f−nD. On the other hand,
mesAn > 1− ε since

mes(A \An) ≤ mes(A \ f−nD) + mes(A \D) = 2 mes(A \D) < ε.
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Theorem 4.3. Suppose that there exists a sequence of subsets Bn ⊂ A
with infn(mesBn) > 0 and

(4.7) inf
α∈Bn

∣∣∣ n−1∑
k=0

ξ0(fkα)
∣∣∣→∞, n→∞.

Then the c.e. (4.4) has no measurable solutions.

Proof. We use Lemma 4.2 with ε < infn(mesBn); then An ∩ Bn 6= ∅.
For α ∈ An ∩Bn the equality

n−1∑
k=0

ξ0(fkα) = ψ(α)− ψ(fnα)

yields

inf
α∈Bn

∣∣∣ n−1∑
k=0

ξ0(fkα)
∣∣∣ ≤M,

contrary to (4.7).

Now we consider the space L1(A, dα) of Lebesgue integrable complex-
valued functions. In this setting the following Birkhoff–Khinchin ergodic
theorem (see e.g. [12, Ch. 1]) is our main tool.

Theorem 4.4. Let φ ∈ L1(A, dα). Then the limit

φ̃(α) = lim
m→∞

1
m

m−1∑
n=0

φ(fnα)

exists for α ∈ Aφ where Aφ is an f -invariant subset of A with mes(A \Aφ)
= 0. The limit function φ̃ is f -invariant , it belongs to L1(A, dα), and

�
φ̃ dα =

�
φdα.

Recall that f is said to be ergodic if every f -invariant measurable function
is constant a.e. In this case

(4.8) lim
m→∞

1
m

m−1∑
n=0

φ(fnα) =
�
φdα, α ∈ Aφ,

where Aφ may not be the same as before, but has the same properties. Later
on we deal with the Aφ from (4.8).

Theorem 4.5. Let f be ergodic, and let ξ0 ∈ L1(A, dα) be such that

(4.9)
�
ξ0 dα = 0.

Then the orbital series (4.2) is summable on Aξ0 , hence a.e.
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Proof. By Theorem 1.8 it suffices to show that π0 6∈ LX . Suppose oth-
erwise. Then

(4.10)
∑
k

λkξ0(fnαk) = 1, n ≥ 0,

for a finite set {(α1, λ1), (α2, λ2), . . .} with αk ∈ Aξ0 , λk ∈ C. This contra-
dicts (4.8) with φ = ξ0. Indeed, by (4.9) the averaging (in the sense of (4.8))
over n in (4.10) yields 0 on the left hand side, and 1 on the right.

Remark 4.6. Obviously, for any measure preserving f the L1-solvability
of (4.4) implies that ξ0 belongs to L1(A, dα) and satisfies (4.9). Moreover, the
latter is necessary for the existence of a measurable solution to (4.4) (see [1]).
However, it is not sufficient. For the irrational rotations of the circle and
continuous ξ0 this was shown in [1] with the references to some dynamical
constructions due to Neumann and Kolmogorov. (For another construction
see [4].) In [13] the nonexistence of measurable solutions was established by
means of the Banach closed graph theorem. (See [2] for a generalization.)
Also note that the measurable solutions may not be Lebesgue integrable
[1], [11].

Remark 4.7. For a multiplicative version of c.e. the absence of measur-
able solutions was proven in [3] assuming that the known function in the
equation is not homotopic to a constant. For this reason the problem for the
additive equation cannot be reduced to the result of [3] by exponentiating.

In [10] Kolmogorov claimed (without any proof or heuristics) that if the
trigonometric series

(4.11) sin t+ sin 3t+ · · ·+ sin 3nt+ · · · , t ∈ R,
is summable, then one can construct an effective example of a Lebesgue
nonmeasurable function. Formally, the last sentence sounds as “the sum
(in the sense of a summation) of the series (4.11) is nonmeasurable”. This
property was proven by Zygmund ([17, Ch. 5, Problem 26]) for the series

(4.12) cos t+ cos 2t+ · · ·+ cos 2nt+ · · · , t ∈ R.
Our general theory allows us to prove Kolmogorov’s conjecture in the form:
the series (4.11) is summable a.e., and its sum is nonmeasurable. The same
is true for the series (4.12). (It is interesting that (4.12) turns into the
nonsummable series π0 at t = 0.) Moreover, we prove

Theorem 4.8. Let q be an integer , q ≥ 2. Then

(1) For any 2π-periodic function θ ∈ L1(0, 2π) with zero mean value the
series

(4.13) θ(t) + θ(qt) + · · ·+ θ(qnt) + · · ·
is summable a.e. to a function ψ(t).
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(2) ψ(t) satisfies the c.e.

(4.14) ψ(t)− ψ(qt) = θ(t).

(3) Let θ be a trigonometric polynomial ,

(4.15) θ(t) =
m∑
i=1

(ai cos νit+ bi sin νit),

and suppose that no ratio νi/νj (i > j) is a power of q. Then all
solutions to the equation (4.14) are nonmeasurable.

In particular, in (3), θ(t) can be any trigonometric polynomial of degree
< q.

Proof. The transformation fq : t 7→ qt (mod 2π) is ergodic. Hence, (1)
follows from Theorem 4.5. Then Proposition 4.1 implies (2). To prove (3)
we use Theorem 4.3.

Consider the sequence of trigonometric polynomials

(4.16) θn(t) =
n−1∑
k=0

θ(qkt), n ≥ 1.

The Fourier spectrum Ωn of θn(t) is the union of the pairwise disjoint sets
{qkνi}mi=1, 0 ≤ k ≤ n− 1. Accordingly, the summands in (4.16) are pairwise
orthogonal. Moreover, they have the same L2-norm, say τ . Therefore, the L2-
norm of θn(t) is equal to τ

√
n. On the other hand, the sets Ωn are uniformly

lacunar: there is κ > 1 independent of n such that ω′ ≥ κω for all ω′, ω ∈ Ωn
with ω′ > ω. Indeed, let ω′ = qkνi and ω = qlνj . Then either ω′ ≥ 2ω, or
qk−l < 2 max{νj/νi : 1 ≤ i, j ≤ m}. In the second case the set of all possible
differences k− l is finite since, in addition, qk−l > min{νj/νi : 1 ≤ i, j ≤ m}.
Hence, the latter inequality can be strengthened by inserting a factor of
κ > 1 on the right hand side. This yields ω′ > κω. (Obviously, κ < 2 if the
second case is nonempty, otherwise, κ = 2.)

By the established properties of θn(t) there are γ, δ > 0 (depending on
κ only) such that the measure of every set

Bn =
{
t :
∣∣∣ n−1∑
k=0

θn(t)
∣∣∣ ≥ γ√n}

is greater than δ (see [17, Ch.5, Th. 8.25]). Thus, Theorem 4.3 is applicable.

Corollary 4.9. If θ is a trigonometric polynomial such that the c.e.
(4.14) has a measurable solution ψ, then ψ(t) is a trigonometric polyno-
mial a.e.
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Proof. By Theorem 4.8 there is νi ≡ 0 (mod q) in (4.15). Let ν = νl = qµ
be the maximum of such νi. We will argue by induction on ν. Consider

θ̃(t) = θ(t) + al(cosµt− cos νt) + bl(sinµt− sin νt).

Accordingly, we introduce

ψ̃(t) = ψ(t) + al cosµt+ bl sinµt,

so that ψ̃(t)−ψ̃(qt) = θ̃(t). If θ̃ = 0 then ψ̃ is a trigonometric polynomial a.e.
since there is ν̃ < ν in the role of ν for θ̃. If θ̃ = 0 then ψ̃ is a constant a.e.
by ergodicity. As a result, ψ is a trigonometric polynomial a.e. in any case.

Now we can explicitly describe all the “trigonometric coboundaries” θ.

Theorem 4.10. A general form of the trigonometric coboundaries is

(4.17) θ(t) =
∑
p∈Id

ip,d∑
i=0

(ap,i cos pqit+ bp,i sin pqit)

where d ≥ 1, Id = {p : 1 ≤ p ≤ d, p 6≡ 0 (mod q)}, ip,d = min{i : pqi > d},
and the coefficients satisfy

(4.18)
ip,d∑
i=0

ap,i = 0,
ip,d∑
i=0

bp,i = 0.

Proof. By substitution of

ψ(t) =
d∑
j=1

(hj cos jt+ gj sin jt)

into (4.14) we obtain (4.17) with

(4.19)
ap,0 = hp, ap,i = hpqi − hpqi−1 (1 ≤ i ≤ ip,d − 1),
ap,ip,d = −h

pq
ip,d−1

and similar formulas for bp,i. The relations (4.18) follow from (4.19) by sum-
mation. This calculation is invertible since the representation j = pqi with
p ∈ Ip,d and 0 ≤ i ≤ ip,d − 1 is unique for every j, 1 ≤ j ≤ d.

In conclusion we return to Proposition 4.1 and inverse it as follows.

Theorem 4.11. Let f be ergodic, and let ψ ∈ L1(A, dα) be a solution
of the c.e. (4.4) for α ∈ A0 where A0 is an f -invariant subset of A with
mes(A\A0) = 0. Then the formula

(4.20) σ(X(α)) = ψ(α)−
�
ψ dα, α ∈ A1 = A0 ∩Aψ,

determines a summation σ of the orbital series (4.2).

Let us emphasize that the set A1 is f -invariant and mes(A \A1) = 0, so
the series (4.2) is summable a.e.
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Proof. For any constant c the function ψ + c is also a solution of (4.4)
on A0. In particular, so is

ψ̂(α) = ψ(α)−
�
ψ dα,

so (4.20) can be rewritten as

(4.21) σ(X(α)) = ψ̂(α), α ∈ A1,

with

(4.22)
�
ψ̂ dα = 0.

Formula (4.21) correctly defines σ(X(α)), α ∈ A1, if

X(α1) = X(α2) ⇒ ψ̂(α1) = ψ̂(α2).

Moreover, it can be extended linearly as long as

(4.23)
∑
k

λkX(αk) = 0 ⇒
∑
k

λkψ̂(αk) = 0

for all finite sets {(α1, λ1), (α2, λ2), . . .} with αk ∈ A1, λk ∈ C. The resulting
σ is indeed a summation of X(α) on A1 since

σ(X(α))− σ(T (X(α))) = ψ̂(α)− ψ̂(fα) = ξ0(α).

It remains to prove the implication (4.23).
The hypothesis in (4.23) can be rewritten as∑

k

λkξ0(f lαk) = 0, l ≥ 0,

or equivalently as∑
k

λkψ̂(f lαk)−
∑
k

λkψ̂(f l+1αk) = 0, l ≥ 0.

The sum of these equalities over 0 ≤ l ≤ n− 1 yields

(4.24)
∑
k

λkψ̂(αk) =
∑
k

λkψ̂(fnαk), n ≥ 0.

By (4.22) the averaging over n in (4.24) yields the conclusion in (4.23).

Remark 4.12. Without any assumption on ψ the c.e. (4.4) is solvable
if and only if sn(α) = 0 for all α ∈ A, n ≥ 1, such that fnα = α. The
necessity of this condition is obvious. For the converse we introduce an
equivalence relation on A via fmβ = fnα for some m,n (depending on
α, β). It suffices to solve (4.4) separately on each equivalence class, say, the
class of an α. To this end we determine ψ(fnα) = ψ(α) − sn(α), n ≥ 1,
and then ψ(β) = ψ(fnα) + sm(β) as long as fmβ = fnα. It is easy to show
that ψ is correctly defined and satisfies (4.4). For preperiodic f an explicit
solution has been given in [2].
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