
FUNDAMENTA
MATHEMATICAE

198 (2008)

Non-existence of absolutely continuous invariant
probabilities for exponential maps

by

Neil Dobbs (Warszawa) and Bartłomiej Skorulski (Antofagasta)

Abstract. We show that for entire maps of the form z 7→ λ exp(z) such that the orbit
of zero is bounded and Lebesgue almost every point is transitive, no absolutely continuous
invariant probability measure can exist. This answers a long-standing open problem.

In this paper we introduce a new method to deal with the problem of
existence of invariant measures for entire maps. To illustrate this method,
avoiding uninteresting technical difficulties, we show the following theorem.

Theorem 1. Let λ ∈ C\{0} be such that the Julia set of f : z 7→ λ exp(z)
is equal to C, the forward orbit of 0 is bounded and there is a set of positive
Lebesgue measure of points z ∈ C such that ω(z) 6⊂ P(f). Then f has a
σ-finite absolutely continuous invariant measure, but it does not have an
absolutely continuous invariant probability measure.

We denote, as usual, the ω-limit set of z ∈ C by ω(z) ⊂ C and the
post-singular set by P(f), here equal to the union of {∞} with the closure
of the orbit of 0.

Theorem 1 implies, in particular, that the map z 7→ 2πi exp(z) has no ab-
solutely continuous invariant probability measure, which was a long-standing
open problem (see [9]).

For a class of unimodal maps f of the interval with non-recurrent critical
point, Benedicks and Misiurewicz [1] showed that there exists an absolutely
continuous invariant probability measure if and only if

	
log |f ′(x)| dx > −∞.

2000 Mathematics Subject Classification: Primary 37F10.
Key words and phrases: entire map, absolutely continuous invariant probability mea-

sure.
The authors were partially supported by Research Network on Low Dimensional Dy-

namics, PBCT ACT 17, CONICYT, Chile and by the EU Research Training Network
“Conformal Structures and Dynamics”. The second author was also supported by Chilean
FONDECYT Grant No. 11060538.

[283] c© Instytut Matematyczny PAN, 2008



284 N. Dobbs and B. Skorulski

The necessity of the integrability condition was later extended by the first
author (in Theorem 1 of [3]) to all C1+ε interval maps without any hypothesis
on the critical orbits, but under the assumption that the measure has positive
Lyapunov exponent. As an example, no unimodal map of the form x 7→
C1 − C2 exp(−|x|−α) with α ≥ 1 has an absolutely continuous invariant
probability measure with positive Lyapunov exponent.

This paper extends the main result of [1] to the holomorphic setting.
The strategy of the proof has two elements: construct a nice set on which
the density of a hypothetical measure must be bounded away from zero;
show that the return time to the nice set is not integrable. This is similar in
philosophy to the proof of Benedicks and Misiurewicz, although the settings
differ.

Existence of a σ-finite measure is not new; it was shown in [7] under
weaker hypotheses but with a considerably more difficult proof. On the other
hand, existence of absolutely continuous invariant probability measures for
transcendental entire maps has been an interesting and open question for
some time with a response in only one situation: J.-M. Hemke [5] proved
that, for a class of entire maps for which the orbits of all asymptotic values
converge to infinity sufficiently fast, ω(z) ⊂ P(f). For these maps, P(f) has
zero measure and it follows from the Poincaré recurrence theorem that no
absolutely continuous invariant probability measure can exist. Hemke’s work
generalised a result proved independently by M. Rees and M. Lyubich for
z 7→ exp(z) ([11], [8]).

For non-entire maps the second author [13] has another negative result
for some postcritically finite tangent maps. For a large class of transcen-
dental non-entire maps which satisfy a Misiurewicz-type condition J. Kotus
and G. Świątek [6] showed that absolutely continuous invariant probability
measures can exist.

The mathematics involved in the proof has the merit of being surprisingly
elementary. An important and somewhat magical technique is Juan Rivera-
Letelier’s construction of nice sets for rational dynamics (see [12]) which we
adapt to the entire setting.

An open set U is called nice if fn(∂U)∩U = ∅ for all n > 0. This implies
that every pair of pullbacks (connected components of f−n(U), f−n

′
(U) for

some n, n′ ≥ 0) is either nested or disjoint. Let us fix some D > 0 such that
P(f) ⊂ B(0, D).

Lemma 2. For each sufficiently large x ∈ R, there exists a connected nice
set U ⊂ C satisfying B(x, 4π) ⊂ U ⊂ B(x, 8π).

Proof. There exists a K > 1 such that for any r and any holomorphic
function g, univalent on B(x,Kr), one has
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for all z, z′ ∈ B(x, r), by the Koebe distortion theorem.
Let x satisfy x > 8Kπ+D. Let W be a (connected) pullback of B(x, 8π)

and let n > 0 be such that fn maps W univalently onto B(x, 8π). Since fn|W
extends to map univalently onto B(x, 8Kπ), it follows that the distortion
of fn restricted to W is bounded by 2. Thus there is r > 0 such that
B((fn|W )−1(x), r) ⊂ W ⊂ B((fn|W )−1(x), 2r). But B((fn|W )−1(x), r) must lie
in a horizontal strip of height 2π, so |W | < 4π.

We shall use this to construct nice sets exactly as in [12]. We include the
proof for the reader’s convenience: Let U0 := B(x, 4π) and define Un as the
connected component of

⋃n
i=0 f

−i(U0) containing U0 and U =
⋃
n≥0 Un. We

prove by induction that Un ⊂ B(x, 8π) for all n ≥ 0. This is clearly true
for n = 0. So suppose it is true for all n ≤ k. We must show it holds for
n = k + 1.

Let X be a connected component of Uk+1 \ U0. Then there is a minimal
m ≥ 0 such that fm(z) ∈ U0 for some z ∈ X, and necessarily m ≥ 1.
Consider fm(X). This set is contained in Uk+1−m, and so by hypothesis is
contained in B(x, 8π). But then X, being connected, is contained in some
pullback W with |W | < 4π. The result follows.

Lemma 3. There exists a c > 0 such that if fn(z) /∈ B(0, 2D) then
n > −c log |z|.

Proof. LetM > 1 be such that |f ′(z)| < M for all z ∈ B(0, 2D). Suppose
fn(z) /∈ B(0, 2D). Then |fn(z)−fn(0)| > D > 1. This implies that |z−0| =
|z| > M−n. Thus log |z| > −n logM and n > (−1/logM) log |z|.

In what follows, let U be a nice set given by Lemma 2 for some x >
8π+ 2D; we fix x too. In particular, U ∩B(0, 2D) = ∅. We denote by rU (z)
the first return time of z to U . Also let r, φ ∈ R be such that λ = reiφ.

Lemma 4. There exist C ∈ R and c > 0 with the following property.
Suppose z ∈ U and Re(fk(z)) ≤ −K for some 0 < k < rU (z) and K > 0.
Then rU (z) > C + cK.

Proof. Let c be given by Lemma 3. We have |fk+1(z)| ≤ re−K . Then the
time it takes for fk+1(z) to leave B(0, 2D) is greater than −c log(re−K) =
−c(−K + log r) by Lemma 3. Take C := −c log r.

Lemma 5. Denote by m Lebesgue measure. Then
	
U rU (z) dm =∞.

Proof. Define h : R→ R by h(y) = (r/2) exp(y) and let

SR := {z : Re(z) > x and arg f(z) ∈ [−π/4, π/4]},
SL := {z : Re(z) > x and arg f(z) ∈ [3π/4, 5π/4]}.
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Note that each connected component of {z : arg f(z) ∈ [−π/4, π/4]} is a
horizontal strip of height π/2 and the components are periodic of period
2iπ. A similar statement holds for {z : arg f(z) ∈ [3π/4, 5π/4]}. Let

Pn := {z ∈ B(x, 4π) : fk(z) ∈ SR for all 0 ≤ k ≤ n},
and let Qn := Pn−1 ∩ f−n(SL). For z ∈ SR, Re(f(z)) ≥ h(Re(z)), so by
induction, for all z ∈ Pn, Re(fn(z)) ≥ hn(x). Then distortion arguments as
in [10] show that m(Qn)/m(Pn) tends to one and

lim
n→∞

m(Pn)/m(Pn+1) = 1/4.

Thus there exists a γ ∈ (0, 1/4) such that for all n ≥ 1,

m(Qn) ≥ γn.
Now for z ∈ Qn, Re(fn+1(z)) < −hn+1(x), so we have rU (z) > C+chn+1(x)
where the constants c, C are given by Lemma 4. But hn(x) grows with n
faster than any exponential so

lim
n→∞

m(Qn) inf{rU (z) : z ∈ Qn} =∞.

Proof of Theorem 1. Let ψ denote the first return map to U . Since U is
nice and disjoint from P(f), every connected component of the domain of ψ is
mapped univalently onto U by ψ. Moreover, the branches of ψ are uniformly
extendible, so the Koebe distortion theorem gives a uniform distortion bound
for all branches of all iterates of ψ. Note that by Corollary 2 of [2], Lebesgue
almost every point has a transitive orbit.

Denote by Vk the set of points from U whose first return time to U is k. By
the Folklore Theorem (see for example [4]), there exists a unique absolutely
continuous invariant probability ν for ψ and its density is bounded below by
some ε > 0. Then the spread measure µ :=

∑∞
k=1

∑k−1
n=0 f

n
∗ ν|Vk

is a σ-finite
absolutely continuous invariant measure for f . This gives the easy proof of
its existence.

Suppose now µ is an absolutely continuous f -invariant probability mea-
sure. By transitivity of Lebesgue almost every point, µ(U) > 0. Then µ is also
a finite invariant measure for ψ, since ψ is a first return map. By uniqueness,
the density of µ is then bounded from below on U by µ(U)ε > 0. Thus

1 =
�

U

rU (z) dµ ≥ µ(U)ε
�

U

rU (z) dm,

the first equality being Kac’s lemma. This contradicts Lemma 5, so no ab-
solutely continuous invariant probability measure can exist.
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