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Abstract. Using the theory of resolving classes, we show that ifX is a CW complex of
finite type such that map∗(X,S

2n+1) ∼ ∗ for all sufficiently large n, then map∗(X,K) ∼ ∗
for every simply-connected finite-dimensional CW complex K; and under mild hypotheses
on π1(X), the same conclusion holds for all finite-dimensional complexes K. Since it is
comparatively easy to prove the former condition for X = BZ/p (we give a proof in an
appendix), this result can be applied to give a new, more elementary proof of the Sullivan
conjecture.

Introduction. Haynes Miller proved the Sullivan conjecture (that the
space of pointed maps from BZ/p to K is weakly contractible for all finite-
dimensional CW complexes K) in the seminal paper [18]. The heart of
Miller’s proof is a herculean feat of pure algebra: he shows that the E2-terms
of certain Bousfield–Kan spectral sequences—involving homological algebra
in the nonabelian category of unstable algebras over the Steenrod algebra—
vanish. Around the same time, using simpler Massey–Peterson techniques
and ordinary homological algebra of unstable modules over the Steenrod al-
gebra, he showed that map∗(BZ/p, S2n+1) ∼ ∗ for all n ≥ 1 [17]. Our goal
is to prove by purely homotopy-theoretical methods that this easier result
implies the full Sullivan conjecture.

Theorem 1. Let X be a CW complex of finite type (1). Then the fol-
lowing are equivalent:

(1) map∗(X,S
n) ∼ ∗ for all sufficiently large n ≡ 1 mod k for some k.

(2) map∗(X,K) ∼ ∗ for all simply-connected finite-dimensional CW
complexes K.
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(1) X has finite type if it is homotopy equivalent to a CW complex with finitely many
cells in each dimension.
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Furthermore, if π1(X) has no nontrivial perfect quotients (2), then there is
no need to restrict the fundamental group of K.

Our proof relies heavily on the theory of resolving classes, introduced
in the paper [20]. After some preliminaries, we give a streamlined and up-
dated account of the basic theory of resolving classes, which we hope may
be useful to other researchers. Once the theory is in place, the proof of
Theorem 1 is accomplished in two steps, depending on whether or not K
is simply-connected. In the final section, we briefly discuss some issues re-
lated to resolving classes and Theorem 1. For example, if ΣX � ∗, the
condition map∗(X,K) ∼ ∗ for all simply-connected finite-dimensional com-
plexes forces there to be nontrivial maps from X to certain infinite wedges of
finite-dimensional complexes. We also offer some interesting problems and
questions concerning the ‘sphere codes’ σ(X) = {n | map∗(X,S

n) ∼ ∗}.
For completeness, we include, in an appendix, a detailed outline of the

proof of the following theorem, essentially due to Miller [17].

Theorem 2. Let X be a finite-type CW complex such that H̃∗(X;Z[1/p])
= 0. If H∗(X;Fp) is reduced and H∗(X;Fp)⊗J(n) is injective for all n ≥ 0,
then map∗(X,S

2n+1) ∼ ∗ for all n ≥ 1.

Since BZ/p satisfies the conditions of Theorem 1, Theorem 2 implies the
Sullivan conjecture.

1. Preliminaries

1.1. Notation for collections of spaces. Since we will use collections
of spaces throughout this paper, it will be helpful to set up some basic
notation for them. Our constructions are homotopy-respecting, so we tacitly
close all of our collections under weak homotopy equivalence.

If A is a collection of spaces, then an expression of a space W as a
finite-type wedge of spaces in A is a weak equivalence W ∼

∨
I Ai where

Ai ∈ A for each i ∈ I and for each n ∈ N only finitely many of the spaces Ai
are not n-connected. We say that W is a finite-type wedge of spaces in A if
it has such an expression. For a finite-type wedge W of spaces in A that is
(n−1)-connected but not n-connected (which we denote conn(W ) = n−1),
define

s(W ) = min

{
k

∣∣∣∣∣ W has an expression as a finite-type wedge of

spaces in A with all but k summands n-connected

}
.

We use the function s to impose a partial order on the collection of finite-

(2) Such groups are sometimes described as hypoabelian.
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type wedges of spaces in A: we say that V < W if conn(W ) < conn(V ) or
if conn(V ) = conn(W ) and s(V ) < s(W ).

For collections A and B, we write

A ∧ B = {A ∧B | A ∈ A, B ∈ B},
ΣA = {ΣA | A ∈ A},
A∨ = {all finite-type wedges of spaces in A}.

Thus we say that A is closed under suspension if ΣA ⊆ A, that A is closed
under smash product if A ∧ A ⊆ A, and so on. Note that (A∨)∨ = A∨. If
either A or B is closed under suspension, then so is A ∧ B.

1.2. Cone length. Let A be a collection of spaces. An A-cone decom-
position of length n for a map f : X → Y is a homotopy-commutative
diagram

A0

��

A1

��

An−1

��
X0

//

'
��

X1
// · · · // Xn−1 // Xn

'
��

X
f // Y

(D)

in which Ak ∈ A for all k and each sequence Ak → Xk → Xk+1 is a cofiber
sequence; if f : X → Y is a homotopy equivalence, then it has an A-cone
decomposition

X
idX

||

f

  
X

f // Y

of length zero. The A-cone length of f is

LA(f) = inf{length(D) | D is an A-cone decomposition of f}.
(Thus LA(f) = ∞ if f has no A-cone decomposition.) The A-cone length
of a space X is clA(X) = LA(∗ → X).

1.3. Phantom maps. A phantom map is a pointed map f : X → Y
from a CW complex X such that the restriction f |Xn of f to the n-skeleton
is trivial for each n. We write Ph(X,Y ) ⊆ [X,Y ] for the set of pointed
homotopy classes of phantom maps from X to Y . See [15] for an excellent
survey on phantom maps.

If X is the homotopy colimit of a telescope diagram · · · → X(n) →
X(n+1) → · · · , then there is a short exact sequence of pointed sets

∗ → lim1[ΣX(n), Y ]→ [X,Y ]→ lim[X(n), Y ]→ ∗,
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and dually, if Y is the homotopy limit of a tower · · · ← Y(n) ← Y(n+1) ← · · · ,
then there is a short exact sequence

∗ → lim1[X,ΩY(n)]→ [X,Y ]→ lim[X,Y(n)]→ ∗.
In the particular case of the expression of a CW complex X as the homotopy
colimit of its skeleta or of a space Y as the homotopy limit of its Postnikov
system, the kernels are the phantom sets.

We will be interested in showing that certain phantom sets Ph(X,Y )
are trivial. One useful criterion is that if G is a tower of compact Hausdorff
topological groups and continuous homomorphisms, then lim1G = ∗ (see
[15, Prop. 4.3]). This is used to prove the following lemma.

Lemma 3. Let · · · ← Y(s) ← Y(s+1) ← · · · be a tower of spaces such
that each homotopy group πk(Y(s)) is finite. If Z is of finite type, then

lim1[Z,ΩY(s)] = ∗.

Proof. The homotopy sets [Zn, Ω
jY(s)] are finite, and we give them the

discrete topology, resulting in towers of compact groups and continuous ho-
momorphisms. Fixing s and letting n vary, we find that lim1

n[Zn, Ω
2Y(s)] = ∗,

and hence the exact sequence

0→ lim1
n[Zn, Ω

2Y(s)]→ [Z,ΩY(s)]→ limn[Zn, ΩY(s)]→ 1

(of groups) reduces to an isomorphism [Z,ΩY(s)] ∼= limn[Zn, ΩY(s)]. Since
[Z,ΩY(s)] is an inverse limit of finite discrete spaces, it is compact and
Hausdorff; and since the structure maps Y(s) → Y(s−1) induce maps of the
towers that define the topology, the induced maps [Z,ΩY(s)]→ [Z,ΩY(s−1)]

are continuous. Thus lim1
s[Z,ΩY(s)] = ∗.

The Mittag-Leffler condition is another useful criterion for the vanishing
of lim1. A tower of groups · · · ← Gn ← Gn+1 ← · · · is Mittag-Leffler if for
each n the images im(Gn+k → Gn) stabilize for large k, that is, there is
a function κ : N→ N such that im(Gn+k→Gn) = im(Gn+κ(n)→Gn) ⊆ Gn
whenever k ≥ κ(n).

Proposition 4. Let · · · ← Gn ← Gn+1 ← · · · be a tower of groups.

(a) If the tower is Mittag-Leffler, then lim1Gn = ∗.
(b) If each Gn is a countable group, then the converse holds: if lim1Gn

= ∗, then the tower is Mittag-Leffler [15, Thm. 4.4].

Importantly, the Mittag-Leffler condition does not refer to the algebraic
structure of the groups Gn. This observation plays a key role in the following
result (cf. [16, §3]).

Proposition 5. Let X be a CW complex of finite type, and let Y1 and Y2
be countable CW complexes with ΩY1 ' ΩY2. Then Ph(X,Y1) = ∗ if and
only if Ph(X,Y2) = ∗.
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Proof. The homotopy equivalence ΩY1 ' ΩY2 gives levelwise bijections
{[ΣXn, Y1]} ∼= {[Xn, ΩY1]} ∼= {[Xn, ΩY2]} ∼= {[ΣXn, Y2]} of towers of sets.
SinceX is of finite type and Y1, Y2 are countable CW complexes, these towers
are towers of countable groups. Now the triviality of Ph(X,Y1) implies that
the first tower is Mittag-Leffler; but then all four towers must be Mittag-
Leffler, and the result follows.

We end our account of phantom maps with a criterion for the vanishing
of phantom maps into countable wedges of spheres.

Proposition 6. If Z is rationally trivial (3) and of finite type, then

Ph
(
Z,

∞∨
i=1

Sni
)

= ∗.

Proof. The Hilton–Milnor theorem implies that there is a weak product
of spheres P =

∏
α S

mα such that Ω(
∨∞
i=1 S

ni) ' ΩP (that is, P is the
(homotopy) colimit of the diagram of finite subproducts of the categorical
product). By Proposition 5, it suffices to show that Ph(Z,P ) = ∗.

Since the skeleta of Z are compact, every map ΣZk → P factors through
a finite subproduct of P , so [ΣZk, P ] is a weak product

∏
α[ΣZk, S

mα ].
Because Z is rationally trivial and of finite type, we have Ph(Z, Sm) ∼=
lim1[ΣZk, S

m] = ∗ for each m [15]. These are towers of countable groups, so
they must all be Mittag-Leffler. Write λ(n,m) for the first k for which the
images

im([(ΣZ)n+k, S
m]→ [(ΣZ)n, S

m])

stabilize. Since λ(n,m) = 0 for m > n + 1, the set {λ(n,m) | m ≥ 0} is
finite, and we define κ(n) to be its maximum. Now it is clear that the images

im
(∏
α

[ΣZn+k, S
mα ]→

∏
α

[ΣZn, S
mα ]
)

are independent of k for k ≥ κ(n). Thus the tower {
∏
α[ΣZk, S

nα ]} is
Mittag-Leffler, Ph(Z,P ) = ∗, and the proof is complete.

2. Resolving classes. We are interested in the condition map∗(X,Y )
∼ ∗. Since this can happen only for path-connected X, we tacitly assume
that X is path-connected; thus map∗(X,Y ) = map∗(X,Y?), where Y? is the
basepoint component of Y , so we may assume that Y is path-connected too,
if we like.

2.1. Basic definitions. Let X and Y both denote the classes of all
collections of spaces (we intend to use X for domains and Y for targets). We

(3) That is, H̃∗(Z;Q) = 0.
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define functions

Φ : X→ Y and Θ : Y→ X

by the rules

Φ(X ) = {Y | map∗(X,Y ) ∼ ∗ for all X ∈ X},
Θ(Y) = {X | map∗(X,Y ) ∼ ∗ for all Y ∈ Y}.

The maps Φ and Θ are a Galois connection between X and Y, and hence
establish a bijection between im(Θ) and im(Φ).

A collection C ∈ im(Θ) is a strongly closed class; in particular, Θ ◦
Φ({X}) is the Bousfield class 〈X〉 (studied by A. K. Bousfield, E. D. Farjoun,
W. Chachólski, and others). The collections R ∈ im(Φ) have received less
attention; we call them resolving kernels (4).

It follows formally from the definition that a strongly closed class is
closed under weak equivalence, pointed homotopy colimits and extensions
by cofibrations; dually, resolving kernels are closed under weak equivalence,
pointed homotopy limits and extensions by fibrations.

We call a class R ∈ Y (which we assume to be closed under weak equiv-
alence) a resolving class if it is closed under pointed homotopy limits, and
a strong resolving class if it is also closed under extensions by fibrations.

2.2. Closure properties for resolving classes. The power of the
theory of closed classes is founded on a few duality-violating theorems, such
as the Zabrodsky lemma and E. D. Farjoun’s theorem relating the fiber of
an induced map of homotopy colimits to the ‘pointwise fibers’. Similarly,
resolving classes are useful tools by virtue of three formally implausible
closure properties. These properties are best expressed in terms of collections
of spaces rather than one space at a time; throughout this section we write
A and B to denote collections of simply-connected spaces.

The first result concerns the closure of resolving kernels under the forma-
tion of wedges. This is a minor extension of [20, Prop. 7] using an argument
due to W. Dwyer.

Theorem 7. Let R be a resolving kernel. If A ∧ A ⊆ A and ΣA ⊆ R,
then ΣA∨ ⊆ R.

Proof. If W ∈ ΣA∨ then we can write W = ΣA ∨ ΣB, where B ∈ A
and ΣA < W (in the partial order defined in Section 1.1). The homotopy
fiber W1 of the quotient map ΣA∨ΣB → ΣB is easily seen to be homotopy

(4) Thus Φ({X}) = im(PX) and Θ ◦ Φ({X}) = ker(PX), where PX denotes the
X-nullification functor (see [6, 5]).
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equivalent to

W1 ' ΣAoΩΣB = ΣA ∧ (ΩΣB)+ ' ΣA ∧
( ∞∨
k=0

B∧k
)
,

where the 0-fold smash product B∧0 is S0; see [8] for a proof (or [20]).
Since A is closed under smash products, it follows that W1 ∈ ΣA∨, and the
displayed wedge decomposition demonstrates that W1 < W . Repeating this
process yields a tower

W ←W1 ←W2 ← · · · ←Wn ←Wn+1 ← · · ·
in which Wn ∈ ΣA∨ and Wn+1 < Wn for each n. It follows that the con-
nectivity of Wn increases without bound and so holimWn ∼ ∗.

To complete the proof, we use the fact that R = Φ(X ) is a resolving
kernel. Let X ∈ X and observe that since map∗(X,ΣB) ∼ ∗ for all B ∈ A,
the induced maps

map∗(X,Wn+1)→ map∗(X,Wn)

are weak equivalences for all n; hence

map∗(X,W ) ∼ holimn map∗(X,Wn) ∼ map∗(X,holimnWn) ∼ ∗,
so W ∈ R.

Next we investigate suspension in resolving classes.

Theorem 8. Let R be a resolving class. If ΣA∨ ⊆ R then A∨ ⊆ R.

Proof. To prove the theorem, it suffices to show that if X is simply-
connected and

∨k
1 ΣX ∈ R for all k, then X ∈ R. This is a consequence,

known to Barratt in the 1950s, of the generalization of the Blakers–Massey
theorem to n-ads of simply-connected spaces, proved in [1, 22].

Start with n copies of the inclusion X ↪→ CX and build a strongly co-
cartesian n-cube by repeatedly forming (homotopy) pushouts. The result is
an n-cube with each entry (except X) a wedge of copies of ΣX. Remove
X from the cube and form the homotopy limit, Y(n) ∈ R. The n-ad ex-
cision theorem implies that the natural comparison map X → Y(n) is an
n-equivalence. These cubes map to one another, leading to a morphism of
towers

· · · X

��

X

��

· · · X

��

X

��
· · · // Y(n+1)

// Y(n) // · · · // Y(1) // Y(0)

in which the vertical maps become ever more highly connected as n increases.
The homotopy limit Y is then both in R and weakly equivalent to X.
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The last of our three main theorems on resolving classes concerns their
closure under certain extensions by cofibrations.

Theorem 9. Let R be a strong resolving class with ΣA∨, ΣB∨ ⊆ R.
Assume that A ∧A ⊆ A, ΣA ⊆ A and that A ∧ΣB ⊆ ΣB∨. If X sits in a
cofiber sequence

B → X → A

with A ∈ A∨ and B ∈ B∨, then X ∈ R.

Proof. The proof depends on a decomposition of the homotopy fiber of
a principal cofibration: if P → X → ΣQ is a cofiber sequence, then the
suspension of the homotopy fiber F of X → ΣQ is a half-smash product

ΣF ' ΩΣQnΣP '
( ∞∨
n=0

Q∧n
)
∧ΣP

(see [20, Prop. 4] for a proof; recall that Q∧0 = S0).

Applying this to the cofiber sequence
∨k

1 ΣB →
∨k

1 ΣX →
∨k

1 ΣA we
conclude that the homotopy fiber Fk satisfies

ΣFk '
( ∞∨
n=0

( k∨
1

A
)∧n)

∧ΣB.

Therefore ΣFk ∈ A∨∧ΣB∨ ⊆ ΣB∨ ⊆ R, so Theorem 8 implies that Fk ∈ R.
Since R is closed under extension by fibrations,

∨k
1 ΣX ∈ R for each k; then

Theorem 8 implies X ∈ R.

Notice that, like the proof of Theorem 7, this argument requires that we
work with collections rather than individual spaces. It is not enough to know
that B ∈ R; rather, we need to know that a vast array of related spaces are
all in R.

2.3. Cone length in resolving classes. We finish this section by
observing that Theorem 9 implies a closure property for strong resolving
classes best expressed in terms of cone length.

Recall that throughout this section, the collections A and B are assumed
to contain only simply-connected spaces.

Theorem 10. Let R be a strong resolving class with ΣA∨, ΣB∨ ⊆ R.
Assume that A ∧ A ⊆ A, ΣA ⊆ A and that A ∧ ΣB ⊆ ΣB∨. If there is a
map f : B → K such that B ∈ B∨ and LA∨(f) <∞, then K ∈ R.

Proof. Write Bn for the collection of all spaces K such that there is a
map f : B → K with B ∈ B∨ and LA∨(f) ≤ n. The hypotheses imply that
A ∧ΣBn ⊆ ΣB∨n for each n. We will prove that each Bn ⊆ R by induction
on n.
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First of all, B0 = B∨ ⊆ R by Theorem 8. Now suppose that Bn ⊆ R, and
let K ∈ Bn+1. The last step in an A∨-cone decomposition for f : B → K
gives a cofiber sequence

An → Kn → K → ΣAn

with Kn ∈ Bn and An ∈ A∨. Therefore Theorem 9 implies that K ∈ R, so
Bn+1 ⊆ R, and the induction is complete.

If we set A = {∗} in Theorem 10 (or even Theorem 9), we recover
Theorem 8 (which, of course, was used in the proof of Theorem 9). Taking
B = {∗}, on the other hand, we derive the following corollary.

Corollary 11. If R is a strong resolving class with ΣA∨⊆R, A ∧A
⊆ A and ΣA ⊆ A, then R contains every simply-connected space K with
clA∨(K) <∞.

3. Proof of Theorem 1. Now we apply the theory of resolving classes
to prove Theorem 1. We begin with two reductions.

Corollary 12. Let R be a resolving kernel.

(a) If {Snk+1 | n ≥ n0} ⊆ R, then R contains all finite-type wedges of
simply-connected finite complexes.

(b) If R contains all simply-connected wedges of spheres, then R con-
tains all wedges of simply-connected finite-dimensional spaces.

Proof. We begin our proof of (a) by showing that R contains all simply-
connected finite-type wedges of spheres. Since A = {Snk | n ≥ n0} is closed
under smash product and ΣA ⊆ R, we may apply Theorem 7 to conclude
ΣA∨ ⊆ R. Repeated application of Theorem 8 implies

∨m
1 S

n ∈ R for all
m ∈ N and all n ≥ 2. Then Theorems 7 and 8 give the result.

Now let F denote the collection of all simply-connected finite complexes.
Since every space K ∈ ΣF has finite cone length with respect to the collec-
tion of simply-connected finite-type wedges of spheres, Corollary 11 implies
that ΣF ⊆ R. Since F ∧ F ⊆ F and ΣF ⊆ F , Theorem 7 implies that
ΣF∨ ⊆ R. Theorem 8 shows that F∨ ⊆ R, proving (a).

For (b), observe that the collection of all simply-connected wedges of
spheres is closed under suspension, smash and finite-type wedge, so Corol-
lary 11 implies that R contains every 2-connected finite-dimensional space.
Theorems 7 and 8, applied to the collection of all simply-connected finite-
dimensional spaces, complete the proof.

Next we establish a simple lemma characterizing the rational homotopy
type of spaces like the ones considered in Theorem 1.

Lemma 13. If map∗(X,S
n) ∼ ∗ for infinitely many values of n, then

H̃∗(X;Q) = 0.



180 J. Strom

Proof. Since ΣX also satisfies the hypotheses and H̃∗(X;Q) = 0 if and

only if H̃∗(ΣX;Q) = 0, we may assume that X is simply-connected. To show

that H̃k(X;Q) = 0, choose n such that k ≤ n − 2 and map∗(X,S
n) ∼ ∗.

The map `∗ : [X,Ωn−kSn] → [X,Ωn−kSnQ] induced by the rationalization

of spaces ` : Ωn−kSn → Ωn−kSnQ is rationalization of abelian groups. But

map∗(X,S
n) ∼ ∗ implies [X,Ωn−kSn] = 0, so [X,Ωn−kSnQ] = 0. Since

every rational loop space splits as a product of Eilenberg–Mac Lane spaces,
K(Q, k) is a retract of Ωn−kSnQ and H̃k(X;Q) = [X,K(Q, k)] = 0.

Proof of Theorem 1. Let X be a space satisfying the hypotheses of The-
orem 1, and suppose that K is a simply-connected finite-dimensional CW
complex. Since the resolving kernel

R = {K | map∗(X,K) ∼ ∗}
contains Snk+1 for all sufficiently large n, Corollary 12(a) guarantees that
R contains all finite-type wedges of simply-connected finite complexes. Ac-
cording to Corollary 12(b), it suffices to show that

[ΣtX,W ] = πt(map∗(X,W )) = 0

for all t ≥ 0, where W =
∨
i∈I S

ni is a simply-connected wedge of spheres.

So we choose a typical map f : ΣtX →W and attempt to show it is trivial.
Since X has finite type, each skeleton (ΣtX)k is compact so f((ΣtX)k)

is contained in a finite subwedge V ⊆ W . It follows that f factors through
the inclusion of a countable subwedge of W , and so we may as well assume
in retrospect that W is itself a countable wedge. Furthermore, we know from
Corollary 12(a) that map∗(X,V ) ∼ ∗, so there is a homotopy commutative
diagram

(ΣtX)k

��
f |(ΣtX)k

��||

ΣtX

∗
��

f

{{
V

i //

idV

88W
q // V

i //W

in which q is the collapse map to V and i is the inclusion. This shows that
f |(ΣtX)k ' ∗ for every k, and hence that f is a phantom map. The conclusion
f ' ∗ follows from Lemma 13 and Proposition 6. Thus map∗(X,K) ∼ ∗ if
K is simply-connected.

Finally allow the possibility that K is not simply-connected and assume
that π1(X) has no nontrivial perfect quotients. Write G = im(π1(f)) and
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consider the covering q : L→ K corresponding to the subgroup G ⊆ π1(K).
There is a lift φ in the diagram

L

q

��
ΣtX

f //

φ
33

K

which induces a surjection on fundamental groups. If G = {1}, then L is
simply-connected and finite-dimensional, and φ ' ∗ by the simply-connected
part of Theorem 1. If G 6= {1}, then it is not perfect, so there is a nontrivial
map u : L → K(A, 1) for some abelian group A (u can be chosen so that
u∗ : π1(L) → A is abelianization). Thus φ is nonzero on cohomology and
so its suspension Σφ : Σt+1X → ΣL is also nontrivial, contradicting the
simply-connected part of Theorem 1.

4. Discussion

4.1. Some comments on theorems. Corollary 11 implies a bit more
than is actually stated. Since the collection cl<∞(A∨) of spaces K with finite
A∨-cone length is closed under suspension and smash, we find that

cl<∞(A∨) ⊆ cl<∞((cl<∞(A∨))∨) ⊆ cl<∞(cl<∞((cl<∞(A∨))∨)∨) ⊆ · · · ⊆ R.
These are genuine improvements: for example, they imply that for X as in
Theorem 1,

map∗

(
X,

∞∨
n=2

(ΩSn+1)n2

)
∼ ∗

(the subscript n2 denotes dimension of a CW skeleton); in this example, the
target has infinite Lusternik–Schnirelmann category and hence infinite cone
length with respect to any collection A.

Perhaps the reader is thinking that the insistence on finite-type wedges in
Theorems 7 and 8 is simply a matter of expediency—that ‘finite-type’ could
be eliminated if we tried hard enough. But it is not true that a space X sat-
isfying the conditions of Theorem 1 satisfies the condition map∗(X,W ) ∼ ∗
for all wedges of finite complexes W ; indeed all such spaces X that are not
killed by suspension must have nontrivial maps into certain wedges of finite
complexes.

Theorem 14. If X is as in Theorem 1 and ΣX � ∗, then the universal
phantom map ΘX : X →

∨∞
n=1ΣXn is nontrivial.

Proof. Just as in the proof of Theorem 1, we can show that every map
from ΣX to a wedge of finite complexes must be a phantom map. It is shown
in [10, Thm. 2] that if ΘX ' ∗ then ΣX is a retract (up to homotopy) of a
wedge of finite complexes. Thus ΘX ' ∗ simultaneously implies that idΣX is
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a phantom map and that ΣX is not the domain of any nontrivial phantom
maps.

The conclusion map∗(X,K) ∼ ∗ for non-simply-connected spaces K in
Theorem 1 can be deduced more generally. It is valid provided no homo-
morphism from π1(X) to π1(K) can have a nontrivial perfect group as its
image. This is the case, for example, if π1(K) is hypoabelian, regardless of
the structure of π1(X). The restriction on fundamental groups cannot be
entirely dispensed with, however. Any nontrivial acyclic 2-dimensional com-
plex X satisfies map∗(X,K) ∼ ∗ for all finite-dimensional spaces K with
hypoabelian fundamental groups, but map∗(X,X) � ∗. Such spaces also
demonstrate the need for the hypothesis ΣX � ∗ in Theorem 14.

4.2. The sphere code of a space. Corollary 12(a) suggests an in-
teresting array of questions. Define the sphere code of a space X to be the
set

σ(X) = {n ∈ N | map∗(X,S
n) ∼ ∗}.

(This can be extended to resolving classes: σ(R) = {n | Sn ∈ R}.) We
have shown in Corollary 12(a) that if σ(X) contains an infinite arithmetic
sequence of the form {nk + 1 | n ≥ n0}, then σ(X) = N. What else can be
said of it?

We offer only a few simple observations, followed by some questions.

Proposition 15. Let X and Y be CW complexes.

(a) If 2 ∈ σ(X), then 1 ∈ σ(X); if 4 ∈ σ(X), then 3 ∈ σ(X); if
8 ∈ σ(X), then 7 ∈ σ(X).

(b) If X is p-local (p is an odd prime) and 2n ∈ σ(X), then 2n − 1
∈ σ(X) (5).

(c) σ(X ∨ Y ) = σ(X) ∩ σ(Y ).
(d) σ(X ∧ Y ) ⊇ σ(X) ∪ σ(Y ).

We omit the proof and offer a few questions about sphere codes.

(1) If σ(X) 6= N, can σ(X) contain an infinite arithmetic sequence?
(2) Can σ(X) be infinite without being all of N?
(3) Is it possible to classify the sphere codes of spaces? Is there a space

X such that σ(X) = {1 and all primes}?
(4) There is a closure operation for subsets N ⊆ N given by N = σ(R),

where R = Θ({Sn | n ∈ N}); can it be described numerically?

5. Appendix: Reduction from algebra to topology. The follow-
ing theorem gives the basic algebraic input for the proof of the Sullivan
conjecture (see Section 5.1 for notation and terminology).

(5) Thus if {nk + 1 + εk | k ≥ k0, εk ∈ {0, 1}} ⊆ σ(X), then σ(X) = N.
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Theorem 16 (Miller, Carlsson). The unstable Ap-module H̃∗(BZ/p;Fp)
is reduced and H̃∗(BZ/p;Fp)⊗ J(n) is injective for all n ≥ 0.

We will not prove this here (6). Rather, we show how these algebraic
properties guarantee that map∗(BZ/p, S2n+1) ∼ ∗ for n ≥ 1. We begin
by reviewing some preliminary material on the category U of unstable Ap-
algebras. Then we give a brief account of Massey–Peterson towers and finally
derive from Theorem 16 that map∗(BZ/p, S2n+1) ∼ ∗ for all n.

5.1. Unstable modules over the Steenrod algebra. The cohomol-
ogy functor H∗( ? ;Fp) takes its values in the category U of unstable modules
and their homomorphisms. An unstable module over the Steenrod algebra
Ap is a graded Ap-module M satisfying P I(x) = 0 if e(I) > |x|, where e(I)
is the excess of I and |x| is the degree of x ∈M . We begin with some basic
algebra of unstable modules, all of which is (at least implicitly) in [19].

Suspension of modules. An unstable module M ∈ U has a suspension
ΣM ∈ U given by (ΣM)n = Mn−1. The functorΣ : U → U has a left adjoint

Ω and a right adjoint Σ̃ (7). A module M is called reduced if Σ̃M = 0.

Projective and injective unstable modules. In the category U , there are
free modules F (n) = Ap/E(n), where E(n) is the smallest left ideal con-
taining all Steenrod powers P I with excess e(I) > n. It is easy to see that
the assignment f 7→ f([1]) defines natural isomorphisms

HomU (F (n),M)
∼=−→Mn.

This property defines F (n) up to natural isomorphism, and shows that F (n)
deserves to be called a free module on a single generator of dimension n.
More generally, the free module on a set X = {xα} with |xα| = nα is (up to
isomorphism) the sum

⊕
F (nα) (see [19, §1.6] for details).

A graded Fp-vector space M is of finite type if dimFp(M
k) < ∞ for

each k. Since Ap is of finite type, so is F (n).
The functor which takes M ∈ U and returns the dual Fp-vector space

(Mn)∗ is representable: there is a module J(n) ∈ U and a natural isomor-
phism

HomU (M,J(n))
∼=−→ HomFp(M

n,Fp).
Since finite sums of vector spaces are also finite products, these functors are
exact, so the module J(n) is an injective object in U .

5.2. The functor τ . In [19, Thm 3.2.1] it is shown that for any module
H ∈ U , the functor H ⊗Ap ? has a left adjoint, denoted (? : H)U . Fix a

(6) A proof can be found in [19, Lem. 2.6.5 & Thm. 3.1.1].

(7) Σ̃M is the largest suspension module contained in M .
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module H (to stand in for H̃∗(X;Fp)) and write τ for the functor ( ? : H)U ;
this is intended to evoke the standard notation T for the special case H =
H̃∗(BZ/p;Fp).

Lemma 17. Let H ∈ U be a reduced unstable module of finite type and
suppose that H ⊗ J(n) is injective in U for every n ≥ 0. Then:

(a) τ is exact.
(b) τ commutes with suspension.
(c) If M is free and of finite type, then so is τ(M).
(d) If H0 = 0, then τ(M) = 0 for any finite module M ∈ U .
(e) If H0 = 0, then ExtsU (H,Σs+tM) = 0 for all s, t ≥ 0 and all finite

modules M ∈ U .

Proof. These results are covered in Sections 3.2 and 3.3 of [19]. Specif-
ically, parts (a) and (b) are proved as in [19, Thm. 3.2.2 & Prop. 3.3.4].
Parts (c) and (d) may be proved following [19, Lem. 3.3.1 & Prop. 3.3.6],
but since there are some changes needed, we prove those parts here.

Write dk = dimFp(H
k); then there are natural isomorphisms

HomU (τ(F (n)),M) ∼= HomU (F (n), H ⊗M) ∼= HomU

( ⊕
i+j=n

F (i)⊕dj ,M
)
,

proving (c) in the case of a free module on one generator. Since τ is a left
adjoint, it commutes with colimits (and sums in particular), and we derive
the full statement of (c).

If H0 = 0, then d0 = 0 and τ(F (n)) is a sum of free modules F (k)
with k < n. Since F (0) = Fp, we see that τ(Fp) = 0; then (a), together
with the fact that τ commutes with colimits, implies that τ(M) = 0 for all
trivial modules M . Finally, any finite module M has filtration all of whose
subquotients are trivial, and (d) follows.

To prove (e), let P∗ →M → 0 be a free resolution of M in U . Parts (a),
(c) and (d) together imply that τ(P∗)→ 0→ 0 is a free resolution of 0, so

ExtsU (M,Σs+tH) = ExtsU (M,H ⊗Σs+tFp)) = Hs(Hom(P∗, H ⊗Σs+tFp))
∼= Hs(Hom(τ(P∗), Σ

s+tFp)) = ExtsU (0, Σs+tFp) = 0.

5.3. Massey–Peterson towers. Cohomology of spaces has more struc-
ture than just that of an unstable Ap-module: it has a cup product which
makes H∗(X;Fp) into an unstable algebra over Ap. The category of unstable
algebras is denoted K.

The forgetful functor K → U has a left adjoint U : U → K. A space X
is said to have very nice cohomology if H∗(X) ∼= U(M) for some unstable
module M of finite type.

Since U(F (n)) ∼= H∗(K(Z/p, n)), there is a contravariant functor K
which carries a free module F to a generalized Eilenberg–Mac Lane space
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(usually abbreviated GEM) K(F ) such that H∗(K(F )) ∼= U(F ). If F is free,
then so is ΩF , and K(ΩF ) ' ΩK(F ).

Lemma 18. For any X, [X,K(F )] ∼= HomU (F, H̃∗(X)).

It is shown in [17, 11, 14] that if H∗(Y )∼= U(M) and P∗→M → 0 is a
free resolution in U , then Y has a Massey–Peterson tower

· · · // Ys //

��

Ys−1 //

��

· · · // Y1 //

��

Y0

��
K(ΩsPs+1) K(Ωs−1Ps) K(ΩP2) K(P1)

in which

(1) Y0 = K(P0),
(2) each homotopy group πk(Ys) is a finite p-group,
(3) the limit of the tower is the p-completion Y ∧p ,

(4) each sequence Ys → Ys−1 → K(Ωs−1Ps) is a fiber sequence, and
(5) the compositionsΩK(Ωs−1Ps)→ Ys → K(ΩsPs+1) can be naturally

identified with K(Ωsds+1), where ds+1 : Ps+1 → Ps is the differential
in the given free resolution.

We use Massey–Peterson towers to give a criterion for the vanishing of
homotopy sets.

Theorem 19. Suppose Y is a simply-connected CW complex with H∗(Y )
= U(M) for some finite M ∈ U and Z is a CW complex of finite type with

H̃∗(Z;Z[1/p]) = 0. If ExtsU (M,ΣsH̃∗(Z)) = 0 for all s ≥ 0, then [Z, Y ] = ∗.

Proof. According to [17, Thm. 4.2], the natural map Y → Y ∧p induces

a bijection [Z, Y ]
∼=−→ [Z, Y ∧p ], so it suffices to show [Z, Y ∧p ] = ∗. Since

H∗(Y ) = U(M), Y has a Massey–Peterson tower, whose homotopy limit
is Y ∧p . Let fs be the composite Z → Y → Ys; we will show by induction
that fs ' ∗ for all s.

Since Y0 is a GEM, f0 is determined by its effect on cohomology; and
since HomU (M, H̃∗(Z)) = Ext0U (M,Σ0H̃∗(Z)) = 0, f0 is trivial on coho-
mology, and hence trivial. Inductively, suppose fs−1 is trivial. We have the
following situation:

K(ΩsPs−1)

K(Ωsds)

''
// ΩYs−1 //

∗

99K(ΩsPs) //

K(Ωsds+1)

''
Ys

��

// K(ΩsPs+1)

Ys−1
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Now apply [Z, ? ] to this diagram and observe that Lemma 18, together with

the isomorphism HomU (ΩsP,H) ∼= HomU (P,ΣsH) (with H = H̃∗(Z)),
gives

[Z, Ys+1]

��
HomU (Ps−1, Σ

sH)
d∗s //

∗

66HomU (Ps, Σ
sH)

α //

d∗s+1

''
[Z, Ys]

��

β // HomU (Ps+1, Σ
sH)

[Z, Ys−1]

Exactness at [Z, Ys] implies that the homotopy class [fs] is equal to α(gs)
for some gs ∈ HomU (Ps, Σ

sH). Since [fs] is in the image of the vertical map
from [Z, Ys+1], it is in the kernel of β, so d∗s+1(gs) = β([fs]) = 0; in other
words, gs is a cycle representing an element [gs] ∈ ExtsU (M,ΣsH). Since
ExtsU (M,ΣsH) = 0, we conclude that there is a gs−1 ∈ HomU (Ps−1, Σ

sH)
such that gs = d∗s(gs−1). Therefore [fs] = α(d∗s(gs−1)) = [∗].

Since every map f : Z → Y is trivial on composition to Ys for each s,
the exact sequence ∗ → lim1[Z,ΩYs]→ [Z, Y ∧p ]→ lim[Z, Ys]→ ∗ reduces to

a surjection lim1[Z,ΩYs]→ [Z, Y ∧p ], and Lemma 3 finishes the proof.

5.4. Maps from BZ/p to odd spheres. We are finally able to es-
tablish Theorem 2, which, by virtue of Theorem 16, implies the weak con-
tractibility of the space of maps from BZ/p to odd spheres.

Proof of Theorem 2. Write H = H̃∗(X;Fp); thus H ∈ U is a reduced
module of finite type and H ⊗J(n) is injective for all n. Since H∗(S2n+1) =
U(Σ2n+1Fp), the result follows from applying Lemma 17(e) and Theorem 19
to the spaces Z = ΣtX for t ≥ 0.

Corollary 20. map∗(BZ/p, S2n+1) ∼ ∗ for all n ≥ 1.

Proof. Lemma 13 and Theorem 16 imply that we may take X = BZ/p
in Theorem 2.

Acknowledgments. Many thanks are due to John Harper for pointing
out that I had the raw materials for a proof of the full Sullivan conjecture,
and for bringing the paper [17] to my attention.
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