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Wirtinger presentations for higher dimensional
manifold knots obtained from diagrams

by

Seiichi Kamada (Osaka and Mobile, AL)

Abstract. A Wirtinger presentation of a knot group is obtained from a diagram of
the knot. T. Yajima showed that for a 2-knot or a closed oriented surface embedded in the
Euclidean 4-space, a Wirtinger presentation of the knot group is obtained from a diagram
in an analogous way. J. S. Carter and M. Saito generalized the method to non-orientable
surfaces in 4-space by cutting non-orientable sheets of their diagrams by some arcs. We
give a modification to their method so that one does not need to find and describe such
arcs on the diagram. This method is easily generalized to higher dimensional manifold
knots, which may not be locally flat.

1. Introduction. A Wirtinger presentation of a knot group is obtained
from a diagram of the knot (cf. [2, 4, 20, 21]). For a 2-knot or a closed oriented
surface M in R4, a Wirtinger presentation of the knot group π1(R4 −M)
is obtained from a (broken surface) diagram in an analogous way. Consider
a diagram of M in R3, and label the sheets of the diagram by x1, . . . , xs,
where s is the number of sheets. Each xi is regarded as a meridian ele-
ment of the knot group π1(R4 − M) and the knot group is generated by
x1, . . . , xs. Each double curve (connected component of the double point set
in R3) induces a relator of the form xixjx

−1
i x−1

l or xix−1
j x−1

i xl, where xi
is the label of the upper sheet and xj , xl are the lower sheets around the
double curve. The exponents are the signs of the intersections of the ori-
ented sheets xi, xj , xl and a small loop around the double curve (cf. [3, 25]).
For a non-orientable surface in R4, this method does not apply directly. If
a sheet of a broken surface diagram contains an orientation-reversing loop,
then one cannot assign a meridian element to the sheet. This happens even
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in diagrams with simple configurations as in Figure 1 (the diagrams present
a standard projective plane and a standard Klein bottle in R4). The first di-
agram has a single sheet which is a Möbius band. The second has two sheets;
one is a disk and the other is a punctured Klein bottle. To avoid such a bad
situation, J. S. Carter and M. Saito divided the non-orientable sheets into
orientable pieces by some arcs satisfying a certain condition (see [3]). One
has to find such arcs and describe them on the diagram. This process is a
little bothersome when the configuration of the diagram is not simple. In
this paper we give an alternative method to divide the non-orientable sheets,
which is quite elementary. In fact, the diagram itself gives the information
on the division, and the argument is valid in higher dimensional cases. More-
over our argument does not require a surface in R4, or higher dimensional
manifold knot, to be locally flat. We work in the PL (or smooth) category.

Fig. 1

A method to obtain a Wirtinger presentation for PL and locally flatly (or
smoothly) embedded surfaces in R4 using diagrams was given by T. Yajima
[25] (based on an idea of [16]) and a clear exposition (without a proof) is
found in [3] including the non-orientable case. Existence of a Wirtinger pre-
sentation for such surfaces in R4 had been known before using diagrams. For
example, Fox’s method in [5] gives such a presentation. A similar method
was used in [17]. The latter method works quite well if a surface in R4 is
given in the motion picture form and the configuration of the surface satis-
fies a certain condition as on p. 134 of [5]. It is proved in [9, 12] that any (PL
locally flat or smooth) surface in R4 is deformable into such a form. Exis-
tence of a Wirtinger presentation for higher dimensional orientable smooth
manifold knots was stated by J. Simon in [23]. His idea is to use Fox’s
method inductively (the details for the 2-knot case are in [24], for example).
Yajima [27] proved algebraically that the Kervaire conditions [14, 15] im-
ply existence of a Wirtinger presentation, and hence a higher dimensional
orientable (smooth or PL locally flat) manifold knot group has a Wirtinger
presentation if the group has a trivial second homology (there exist a lot of
manifold knot groups with non-trivial second homology [1, 7, 18, 19, 23]).
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For related topics on higher dimensional manifold knot groups, we refer to
[6, 7, 8, 10, 11, 14, 15, 23, 26, 27].

The author thanks J. S. Carter, J. H. Przytycki, A. Kawauchi and D. Sil-
ver for valuable and fruitful conversations and comments. He also thanks the
Department of Mathematics and Statistics, University of South Alabama for
the hospitality during his visit.

2. Regular sheets. Let M be a closed (not necessarily connected)
n-manifold embedded piecewise linearly (or smoothly) in Rn+2, and let
p : Rn+2 = Rn+1 × R → Rn+1 be the projection. We suppose that M is
in general position with respect to the projection p. The singularity set ∆
that is the closure of the multiple point set {y ∈ Rn+1 | |p−1(y) ∩M | > 1} in
Rn+1 (or its preimage in M) is naturally regarded as an (n−1)-dimensional
stratified complex. It is well known that the (n− 1)-dimensional strata con-
sist of transverse double points; we call them the double point strata and
denote by ∆1. (This is seen by a general position argument which does not
require M to be locally flat, cf. [22].) Lower dimensional strata are in gen-
eral complicated. For n = 2, the 0-dimensional strata consist of triple points
and branch points if M is locally flat (cf. [3, 13]); if M is not locally flat,
then there may be some cone points over classical knot diagrams in small
2-spheres in R3. For our purpose, classification of lower dimensional strata
is not required at all since they do not contribute to the knot group.

The singularity set ∆ divides p(M) (or M in the preimage) into some
pieces. Each piece (connected component of p(M)−∆) is an open n-manifold
embedded in Rn+1 consisting of regular points of p(M), which we call an
open regular sheet . Let N(∆) be a regular neighborhood of ∆ in Rn+1. We
call a component of cl(p(M) − N(∆)) a regular sheet , where cl means clo-
sure. A regular sheet is a deformation retract of an open regular sheet. For
example, the first (broken surface) diagram in Figure 1 has a single regular
sheet which is a 2-disk. The second has two sheets; one is a 2-disk and the
other is a punctured annulus.

Lemma 1. (Open) regular sheets are 2-sided (or co-orientable).

Proof. If M is orientable, each (open) regular sheet is orientable and
hence it is co-orientable in Rn+1. If M is non-orientable and if there is a
non-orientable regular sheet Σ, take an orientation-reversing loop, say c,
in the interior of the sheet Σ. We may assume that it is a simple loop (if
dim(M) > 3, it is obvious; if dim(M) = 2, modify the loop if necessary).
Push the loop c out of Σ in Rn+1 along the normal direction, obtaining a
loop c′. Since c is an orientation-reversing loop of Σ, the regular neighbor-
hood N(c;Rn+1) of c in Rn+1 is a twisted I-bundle over N(c;Σ) and hence
we may assume that |c′ ∩N(c;Σ)| = 1. On the other hand, |c′ ∩ p(M)| = 0
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mod 2, since any Z2-intersection number of cycles vanishes in Rn+1. Hence
c′ has another intersection with p(M) off N(c;Σ). This contradicts the fact
that c is a loop on Σ.

3. How to get a presentation. Let M , p and ∆ be as before. By a
diagram of M we mean the image p(M) equipped with over-under infor-
mation at each transverse double point. The knot group π1(Rn+2 −M) has
the following “Wirtinger type” presentation: Let Σ1, . . . , Σs be the regular
sheets of the diagram of M , where s is the number of regular sheets. By
Lemma 1, they are co-orientable in Rn+1. Fix a co-orientation of each reg-
ular sheet. Generators of the group presentation are x1, . . . , xs, which are
represented by meridian loops of the regular sheets with a base point ∗ in
Rn+2 (explained later). Relators of the group presentation correspond to
the double point strata and are of the form xix

ε1
j x

ε2
k x

ε3
l and xix

ε2
k where

ε1, ε2, ε3 ∈ {1,−1}. Precisely speaking, for each double point stratum, con-
sider a small loop in Rn+1 intersecting the four regular sheets around the
stratum, say Σi, Σj , Σk, Σl. By changing the starting point and the orien-
tation of the loop if necessary, we may assume that Σi, Σj , Σk, Σl appear
in this order along the loop, Σi and Σk are above Σj and Σl, and the loop
intersects Σi in the direction of the co-orientation of Σi. Then we have
two relators xix

ε2
k and xix

ε1
j x

ε2
k x

ε3
l (or equivalently xix

ε2
k and xix

ε1
j x
−1
i xε3l ),

where ε1, ε2, ε3 are +1 (or −1, resp.) if the loop intersects Σj , Σk, Σl in
the direction of (or in the opposite direction to, resp.) their respective co-
orientations.

Theorem 2. The group presentation described above is a presentation
of the knot group π1(Rn+2−M). In particular , any PL (or smooth) manifold
knot group has a Wirtinger type presentation.

Remark. Suppose that there is a relator xix
ε1
j x
−1
i xε3l with ε3 = ε1

in the above presentation. If one prefers that ε3 = −ε1, then one has to
introduce a new generator, say x′l, and a relator x′lxl to the presentation, so
that the relator xix

ε1
j x
−1
i xε3l may be replaced with xix

ε1
j x
−1
i x′l

−ε1 .

For a given Wirtinger type presentation, it is easy to construct a PL lo-
cally flat (or smooth) surface in R4 whose knot group has that presentation
(see 14.2.1 of [11]). Thus we have the following.

Corollary 3. For any PL (or smooth) manifold knot M in Rn+2, there
exists a PL locally flat (or smooth) surface F in R4 such that π1(Rn+2 −M)
∼= π1(R4 − F ).

4. Proof of Theorem 2. First we explain the elements x1, . . . , xs of
π1(Rn+2 −M). Let Σ = cl(p(M) − N(∆)), which is the union of regular
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sheets. We denote by M+ the part of M homeomorphic to Σ via p, and by
M− the closure of the complementary part in M :

M+ = M ∩ p−1(Σ) = M ∩ p−1(cl(Rn+1 −N(∆))),

M− = M ∩ p−1(N(∆)).

As is usual with knot diagrams, we assume that M+ is contained in Rn+1×
[0, 1) ⊂ Rn+1 × R = Rn+2 and M− is contained in Rn+1 × (−1, 0]. More
precisely, we assume that

M+ = (∂Σ)× [0, 1/2] ∪Σ × {1/2},
M− ∩ Rn+1 × {0} = (∂Σ)× {0}.

Take a base point ∗ in Rn+2 = Rn+1 × R whose last coordinate is suffi-
ciently large. For each i ∈ {1, . . . , s}, consider a small arrow ai in Rn+1 inter-
secting the interior of Σi transversely in the direction of the co-orientation
of Σi. Put a copy of ai in Rn+1×{0}, which we denote by the same symbol
ai. Let xi be an element of π1(Rn+1× [0,∞)−M+, ∗) represented by a loop
b0i ·ai ·b1i in Rn+1× [0,∞)−M+ with base point ∗, where b0i is a straight path
from ∗ to the initial point of ai and b1i is a straight path from the terminal
point of ai to ∗.

Lemma 4. (1) The element xi ∈ π1(Rn+1 × [0,∞) − M+, ∗) does not
depend on the arrow ai.

(2) The group π1(Rn+1 × [0,∞) −M+, ∗) is a free group generated by
x1, . . . , xs.

Proof. (1) Let a′i be another small arrow in Rn+1 intersecting the interior
of Σi in the direction of the co-orientation of Σi, and let x′i be an element
of π1(Rn+1 × [0,∞)−M+, ∗) obtained by use of a′i. Since Σi is connected,
we can slide the arrow a′i onto ai along Σi; then x′i is a conjugate of xi by
an element represented by a loop in Rn+1 × [0,∞) −M+ which is disjoint
from Σ× [0, 1]. Since the loop is null-homotopic in Rn+1× [0,∞)−M+, we
have xi = x′i.

(2) From the above argument we see that if s = 1, then π1(Rn+1 ×
[0,∞)−M+, ∗) is a free group generated by x1. We prove the assertion by
induction on s. If s > 1, consider a regular neighborhood N(Σ1) of Σ1 in
Rn+1 and consider a cone V1 in Rn+1 × [0,∞) over the copy (∂N(Σ1)) ×
{0} of ∂N(Σ) with the base point ∗ as the cone vertex. The cone V1 di-
vides Rn+1 × [0,∞) − M+ into two pieces, say H1 and H2, such that
H1 ∩ H2 = V1 and H1 contains the component M (1)

1 of M+ correspond-
ing to Σ1. It is not difficult to see that H1 is a deformation retract of
Rn+1 × [0,∞) −M (1)

+ and H2 is a deformation retract of Rn+1 × [0,∞) −
(M+−M (1)

+ ). In particular, we have π1(H1, ∗) ∼= π1(Rn+1× [0,∞)−M (1)
+ , ∗)
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and π1(H2, ∗) ∼= π1(Rn+1× [0,∞)− (M+−M (1)
+ ), ∗). By induction hypoth-

esis, the former is a free group generated by x1 and the latter is a free
group generated by x2, . . . , xs. Applying the van Kampen theorem along
V1, we see that π1(Rn+1 × [0,∞) − M+, ∗) is a free group generated by
x1, . . . , xs.

The images of x1, . . . , xs under the inclusion-induced homomorphism
π1(Rn+1 × [0,∞) − M+, ∗) → π1(Rn+2 − M, ∗) are denoted by the same
symbols. They are the generators of the group presentation given in Theo-
rem 2.

Proof of Theorem 2. Put ∆ = ∆1 ∪ ∆2, where ∆1 is the double point
strata (the (n − 1)-dimensional strata) and ∆2 is the lower dimensional
strata. We divide the regular neighborhood N(∆) as follows: Let N(∆2) be
a regular neighborhood of ∆2 in Rn+1, and put W2 = cl(Rn+1 − N(∆2)).
Let N(∆1) be a regular neighborhood of ∆1 ∩W2 in W2, and put W1 =
cl(Rn+1 − N(∆2) −N(∆1)). We assume that N(∆) is the union of N(∆2)
and N(∆1).

Let A1 and A2 be arcs in a cylinder D2 × [−1, 0] as in Figure 2. No-
tice that N(∆1) is a trivial D2-bundle over ∆1 ∩W2, since each component
of ∆1 (a double point stratum) has a trivialization determined from the
four regular sheets around it. We identify N(∆1) with (∆1 ∩ W2) × D2

and N(∆1) × [−1, 0] with (∆1 ∩ W2) × (D2 × [−1, 0]). We may assume
that M− restricted to N(∆1) × [−1, 0] is (∆1 ∩W2) × (A1 ∪ A2) ⊂ (∆1 ∩
W2) × (D2 × [−1, 0]). By a routine argument in knot theory using the
van Kampen theorem inductively, we see that π1((Rn+1 × [0,∞) − M+)
∪ (N(∆1)× [−1, 0]−M−), ∗) has a group presentation as in Theorem 2.

Fig. 2
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Since ∆2 has codimension more than two in Rn+1, we have

π1(Rn+2 −M)
∼= π1((Rn+1 × [0,∞)−M+) ∪ (Rn+1 × (−∞, 0]−M−)−∆2 × (−∞, 0], ∗)
∼= π1((Rn+1 × [0,∞)−M+) ∪ (Rn+1 × [−1, 0]−M−)−N(∆2)× [−1, 0], ∗)
∼= π1((Rn+1 × [0,∞)−M+) ∪ (N(∆1)× [−1, 0]−M−), ∗).
Therefore the knot group π1(Rn+2 −M) has the required presentation.
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[6] F. González-Acuña, A characterization of 2-knot groups, Rev. Mat. Iberoamericana

10 (1994), 221–228.
[7] C. McA. Gordon, Homology of groups of surfaces in the 4-sphere, Math. Proc.

Cambridge Philos. Soc. 89 (1981), 113–117.
[8] J. A. Hillman, 2-Knots and Their Groups, Austral. Math. Soc. Lect. Ser. 5, Cam-

bridge Univ. Press, 1989.
[9] S. Kamada, Non-orientable surfaces in 4-space, Osaka J. Math. 26 (1989), 367–

385.
[10] —, A characterization of groups of closed orientable surfaces in 4-space, Topology

33 (1994), 113–122.
[11] A. Kawauchi, A Survey of Knot Theory, Birkhäuser, Basel, 1996.
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