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Embedding of a planar rational compactum into
a planar continuum with the same rim-type

by

Sophia Zafiridou (Patras)

Abstract. We prove that every planar rational compactum with rim-type ≤ α, where
α is a countable ordinal greater than 0, can be topologically embedded into a planar
rational (locally connected) continuum with rim-type ≤ α.

1. Introduction. All spaces under consideration are separable and met-
rizable. A space is said to be planar if it is homeomorphic to a subset of the
plane. A space is said to be rational if it has a basis consisting of open sets
with countable boundaries.

Let X be a space. For every ordinal α the α-derivative X(α) of X is
defined by induction as follows: X(0) = X, X(α+1) is the set of all limit
points of X(α) (in X(α)), and X(α) =

⋂
β<αX

(β) for α a limit ordinal ([5],
IV, §24). If X(α) = ∅ for some ordinal α, then the least such ordinal is called
the type of X and is denoted by type(X). Obviously, type(X) = 0 iff X = ∅.

It is easy to show that a compactum X is countable iff it has a type.
Note that the type of any countable compactum is an isolated countable
ordinal and there exists a compactum of type α for any isolated countable
ordinal α ([6]).

The following statements are easily proved and will be used in what
follows:

(1.1) If M and N are compacta, type(M) ≤ α and type(N) ≤ α, then
type(M ∪N) ≤ α.

(1.2) If f is a continuous map of a countable compactum M onto N , then
type(N) ≤ type(M).

(1.3) If f is a continuous map of a countable compactum M onto N such
that f−1(x) is finite for every x ∈ N , then type(N) = type(M).

2000 Mathematics Subject Classification: 54C25, 54F50.

[113]



114 S. Zafiridou

By the rim-type of a rational compactum X is meant the least ordinal
α for which there exists a basis of X consisting of open sets whose bound-
aries are of type ≤ α. Obviously the rim-type of any rational compactum
is a countable ordinal. From now on, α denotes a countable ordinal greater
than 0. Clearly rim-type(X) = 0 iff X is zero-dimensional.

We quote the following results concerning embeddings of a rational com-
pactum into a rational continuum:

(a) For every countable ordinal α there exists a planar rational (locally
connected) continuum with rim-type ≤ α + 1 containing topologically any
planar rational compactum with rim-type ≤ α ([7]).

(b) Every rational compactum (not necessarily planar) with rim-type
≤ α is contained topologically in a rational continuum with rim-type ≤ α
([2]), Theorem 3).

In this paper we prove that every planar rational compactum with rim-
type ≤ α can be topologically embedded into a planar rational (locally
connected) continuum with rim-type ≤ α.

2. Definitions and notations. Let E2 be the plane with a system Oxy
of orthogonal coordinates. By a disk we mean a subset of E2 homeomorphic
to {(x, y) | x2 + y2 ≤ 1}. An arc is a subset A of E2 for which there exists
a homeomorphism h of the segment I ≡ [0, 1] onto A. The points h(0) and
h(1) are the endpoints of A.

By Ln, n = 1, 2, . . . , we denote the set of all ordered n-tuples i1 . . . in,
where it = 0 or it = 1, for every t = 1, . . . , n. We set L0 = {∅}. For
ī = i1 . . . in ∈ Ln, n ≥ 1, we set ī0 = i1 . . . in0 and ī1 = i1 . . . in1. For
ī = ∅ ∈ L0 we define ī0 = 0 and ī1 = 1.

By Iī, where ī = i1 . . . in ∈ Ln, n ≥ 1, we denote the set of all points
of I for which the tth digit of the dyadic expansion, t = 1, . . . , n, is it. For
ī = ∅ ∈ L0 we set Iī = I∅ = I. We denote by m(̄i) the midpoint of Iī.

Let Wn = {Iī × Ij̄ | ī, j̄ ∈ Ln}, n = 0, 1, . . . Obviously for every n =
0, 1, . . . the family Wn is a finite closed covering of I2 by disks. We set
Bd(Wn) =

⋃{Bd(F ) | F ∈ Wn}. Obviously, Bd(Wn) ⊆ Bd(Wn+1). Note
that

Bd(Wn+1) \ Bd(Wn) =
⋃

ī,j̄∈Ln

((Iī × {m(j̄)}) ∪ ({m(j̄)} × Iī)).

By π1 and π2 we denote the first and the second projection, respectively, of
I2 onto I. We set

V = {(m/2n, k/2n) ∈ I2 | n,m, k = 0, 1, . . .}.
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Let C be the Cantor ternary set and C(1) be the set of all points of C
which are the endpoints of the components of [0, 1] \ C.

For ī = i1 . . . in ∈ Ln, n ≥ 1, we denote by Cī the set of all points of
C for which the tth digit of their ternary expansion, t = 1, . . . , n, is 0 if
it = 0, and 2 if it = 1. For ī = ∅ ∈ L0 we set Cī = C∅ = C. Also we write
a(̄i) = max{x | x ∈ Cī0} and b(̄i) = min{x | x ∈ Cī1} for every ī ∈ ⋃∞n=0 Ln.

For every c ∈ C and n = 0, 1, . . . we denote by ī(c, n) the unique ī ∈ Ln
such that c ∈ Cī. Obviously, {c} =

⋂∞
n=0 Cī(c,n).

3. Lemma. Let D be a disk in the plane, a, b ∈ Bd(D), a 6= b, and
X ⊆ D \ {a, b} be a rational compactum with rim-type(X) ≤ α. Then there
exists an arc A ⊆ D with endpoints a, b such that type(A ∩X) ≤ α.

Proof. Let A1 and A2 be the arcs of D with endpoints a, b such that
A1 ∪ A2 = Bd(D). It is clear that X ∩ A1 and X ∩ A2 are closed disjoint
subsets of X ∩D. Since rim-type(X ∩D) ≤ α, there exists a closed subset
F of X ∩ D such that type(F ) ≤ α and F separates the sets X ∩ A1 and
X ∩ A2 in X ∩D ([3], Theorem 6).

The rest of the proof which provides an arc A ⊆ D with endpoints a, b
such that A ∩X ⊆ F is the same as the corresponding part of the proof of
Lemma 5 in [1].

4. Lemma. For every planar rational compactum X with rim-type(X)
≤ α there exists a homeomorphism h of X onto a subset of I2 such that :

(1h) h(X) ⊆ Int(I2),
(2h) h(X) ∩ V = ∅,
(3h) type(h(X) ∩ Bd(Wn)) ≤ α for every n = 1, 2, . . .

Proof. Let X be a planar rational compactum with rim-type(X) ≤ α.
We set

Q∆ = {m/2n ∈ I \ {0, 1} | m,n = 0, 1, . . .},
QT = {m/3n ∈ I | m,n = 0, 1, . . .}.

Observe that x ∈ Int(I2) ∩⋃∞n=0 Bd(Wn) iff either π1(x) ∈ Q∆ or π2(x) ∈
Q∆, and x ∈ Int(I2) ∩ V iff π1(x), π2(x) ∈ Q∆.

Let Y = I2 \ (((I \QT )×Q∆) ∪ (Q∆ × (I \QT ))).
It is proved in [1] that Y is a rational containing space for the family of

all planar rational compacta. Since X is a planar rational compactum, there
exists a homeomorphism h of X onto a subspace of Y . Moreover, in [1] the
above homeomorphism is constructed in such a manner that condition (1h)
is satisfied. Since Y ∩ Int(I2) ∩ V = ∅, condition (2h) holds.

Since Y ∩ Bd(Wn) is countable for every n = 1, 2, . . . , it follows that
h(X) ∩ Bd(Wn) is countable for every n = 1, 2, . . .
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It remains to prove that h satisfies condition (3h). To do that, we slightly
modify the construction of h in [1] applying Lemma 3 of the present paper
instead of Lemma 5 of [1].

5. Theorem. Every planar rational compactum X with rim-type(X)
≤ α can be homeomorphically embedded into a planar rational locally con-
nected continuum D with rim-type(D) ≤ α.

Proof. Let X be a planar rational compactum with rim-type(X) ≤ α.
By Lemma 4 we can assume that:

(i) X ⊆ Int(I2),
(ii) X ∩ V = ∅,
(iii) type(X ∩ Bd(Wn)) ≤ α for every n = 1, 2, . . .

We define a map f of C2 onto I2 as follows: if c = (c1, c2) ∈ C2 and
{c} =

⋂∞
n=0(Cī(c1,n) × Cī(c2,n)) then f(c) =

⋂∞
n=0(Iī(c1,n) × Iī(c2,n)). It is

easily seen that f has the following properties:

(1f) f(Cī × Cj̄) = Iī × Ij̄ for all ī, j̄ ∈ Ln, n = 0, 1, . . . ,
(2f) f−1(x) is a singleton iff neither π1(x) nor π2(x) is in Q∆,
(3f) f−1(x) consists of two points iff exactly one of π1(x) and π2(x) is

in Q∆,
(4f) f−1(x) consists of four points iff π1(x), π2(x) ∈ Q∆,
(5f) f is a continuous map.

Let x ∈ X. Since X ⊆ Int(I2) \ V, it follows that either π1(x) 6∈ Q∆
or π2(x) 6∈ Q∆. From (2f) and (3f) we conclude that f−1(x) consists of at
most two points. In particular, f−1(x) is a singleton iff x 6∈ ⋃∞n=0 Bd(Wn),
and f−1(x) is a two-element subset of C2 iff x ∈ ⋃∞n=0 Bd(Wn).

It is easy to verify that

Int(I2) ∩
∞⋃

n=0

Bd(Wn) =
∞⋃

n=0

⋃

ī,j̄∈Ln

((Iī × {m(j̄)}) ∪ ({m(j̄)} × Iī)).

Thus X∩⋃∞n=0 Bd(Wn) is the union of the sets of the form X∩(Iī×{m(j̄)})
and X ∩ ({m(j̄)} × Iī), where ī, j̄ ∈ Ln, n = 0, 1, . . .

Let ī, j̄ ∈ Ln, n = 0, 1, . . . From the definition of f it follows that if x ∈
(Iī×{m(j̄)})\V, then f−1(x) = {c1, c2}, where π1(c1) = π1(c2) ∈ Cī \C(1)
and {π2(c1), π2(c2)} = {a(j̄), b(j̄)}.

Therefore f−1((Iī × {m(j̄)}) \ V) = (Cī \C(1))× {a(j̄), b(j̄)}. Similarly,
f−1(({m(j̄)} × Iī) \ V) = {a(j̄), b(j̄)} × (Cī \ C(1)).

Since X ∩ (Iī×{m(j̄)}) and X ∩ ({m(j̄)}× Iī) are subsets of Bd(Wn+1),
from the property (iii) of X it follows that type(X ∩ (Iī×{m(j̄)})) ≤ α and
type(X ∩ ({m(j̄)} × Iī)) ≤ α.
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Let ī ∈ Ln, n = 0, 1, . . . We set

PXī =
⋃

j̄∈Ln

(π1(f−1(X ∩ (Iī × {m(j̄)}))) ∪ π2(f−1(X ∩ ({m(j̄)} × Iī)))),

where π1 (resp. π2) is the projection of C2 onto the first (resp. second)
coordinate.

Since X∩V = ∅, we have PX
ī
⊆ Cī\C(1). From (1.1)–(1.3) it follows that

type(PX
ī

) ≤ α. Since α > 0, there exists a compact subset Pī of Cī \ C(1)
such that

(i) PX
ī
⊆ Pī,

(ii) type(Pī) = type(PX
ī

) (therefore type(Pī) ≤ α),
(iii) Pī ∩ Cī0 6= ∅ and Pī ∩ Cī1 6= ∅.
For every ī, j̄ ∈ Ln, n = 0, 1, . . . , we define a collection D(̄i, j̄) of two-

element subsets of C2 as follows: {c1, c2} ∈ D(̄i, j̄) iff either π1(c1) =
π1(c2) ∈ Pī and {π2(c1), π2(c2)} = {a(j̄), b(j̄)} or π2(c1) = π2(c2) ∈ Pj̄
and {π1(c1), π1(c2)} = {a(̄i), b(̄i)}.

We set D(1) =
⋃∞
n=0{D(̄i, j̄) | ī, j̄ ∈ Ln}.

Let D be the partition of C2 consisting of all elements of D(1) and all
singletons {c}, where c ∈ C2 and c 6∈ ⋃{d | d ∈ D(1)}. It has been proved
([4], Lemma 4) that D is an upper semicontinuous partition of C2 and that
the corresponding quotient space D is a planar locally connected continuum
with rim-type(D) ≤ α.

Let p : C2 → D be the quotient mapping. Since the set f(p−1(d)) is
a singleton for every d ∈ D, we can define a mapping g : D → I2 by
letting g(d) = f(p−1(d)) for d ∈ D. The mapping g is continuous since the
composition f = g ◦p is continuous and p is a quotient map. It is easy to see
that g|g−1(X) : g−1(X) → X is one-to-one, hence g−1(X) is homeomorphic
to X. It follows that X embeds in D.

The proof of the theorem is complete.
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