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Embedding of a planar rational compactum into
a planar continuum with the same rim-type

by

Sophia Zafiridou (Patras)

Abstract. We prove that every planar rational compactum with rim-type < «, where
a is a countable ordinal greater than 0, can be topologically embedded into a planar
rational (locally connected) continuum with rim-type < a.

1. Introduction. All spaces under consideration are separable and met-
rizable. A space is said to be planar if it is homeomorphic to a subset of the
plane. A space is said to be rational if it has a basis consisting of open sets
with countable boundaries.

Let X be a space. For every ordinal o the a-dervative X (@) of X is
defined by induction as follows: X(® = X, X(@+1) ig the set of all limit
points of X(® (in X(®) and X(*) = Np<a X®) for a a limit ordinal ([5],
IV, §24). If X(®) = ) for some ordinal , then the least such ordinal is called
the type of X and is denoted by type(X). Obviously, type(X) = 0 iff X = (.

It is easy to show that a compactum X is countable iff it has a type.
Note that the type of any countable compactum is an isolated countable
ordinal and there exists a compactum of type « for any isolated countable
ordinal « ([6]).

The following statements are easily proved and will be used in what
follows:

(1.1) If M and N are compacta, type(M) < « and type(N) < «, then
type(M UN) < a.

(1.2)  If f is a continuous map of a countable compactum M onto N, then
type(V) < type(M).

(1.3)  If f is a continuous map of a countable compactum M onto N such
that f~1(x) is finite for every x € N, then type(N) = type(M).

2000 Mathematics Subject Classification: 54C25, 54F50.

[113]



114 S. Zafiridou

By the rim-type of a rational compactum X is meant the least ordinal
« for which there exists a basis of X consisting of open sets whose bound-
aries are of type < a. Obviously the rim-type of any rational compactum
is a countable ordinal. From now on, a denotes a countable ordinal greater
than 0. Clearly rim-type(X) = 0 iff X is zero-dimensional.

We quote the following results concerning embeddings of a rational com-
pactum into a rational continuum:

(a) For every countable ordinal « there exists a planar rational (locally
connected) continuum with rim-type < a + 1 containing topologically any
planar rational compactum with rim-type < a ([7]).

(b) Every rational compactum (not necessarily planar) with rim-type

< « is contained topologically in a rational continuum with rim-type < «
([2]), Theorem 3).

In this paper we prove that every planar rational compactum with rim-
type < « can be topologically embedded into a planar rational (locally
connected) continuum with rim-type < a.

2. Definitions and notations. Let E? be the plane with a system Ozy
of orthogonal coordinates. By a disk we mean a subset of £? homeomorphic
to {(z,y) | 22 + y® < 1}. An arc is a subset A of E? for which there exists
a homeomorphism h of the segment I = [0, 1] onto A. The points ~(0) and
h(1) are the endpoints of A.

By L,, n=1,2,..., we denote the set of all ordered n-tuples i1 ...y,
where iy = 0 or iy = 1, for every t = 1,...,n. We set Lo = {0}. For
i =141...ip € Lyp, n > 1, we set 10 = i;...4,0 and il = 4;...49,1. For
z:Q)ELO we define 710 = 0 and 71 = 1.

By I;, where i = iy ...i, € L,, n > 1, we denote the set of all points
of I for which the tth digit of the dyadic expansion, t = 1,...,n, is ;. For

=0 € Lo we set I; = Iy = I. We denote by m(i) the mldpomt of ;.

Let W, = {I; x I3 | 1,7 € L,}, n = 0,1,... Obviously for every n =
0,1,... the family W, is a finite closed covering of I? by disks. We set
Bd( ) U{BA(F) | F € W,}. Obviously, BAOW,,) € Bd(W,+1). Note
that

BdW, i) \BdW,) = | (55 x {m()}) U ({m(j)} x [)).
0,j€Ly

By m and 75 we denote the first and the second projection, respectively, of
I? onto I. We set

V={(m/2",k/2") € I* | n,m,k=0,1,...}.
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Let C be the Cantor ternary set and C(1) be the set of all points of C
which are the endpoints of the components of [0, 1]\ C.

For i = iy...i, € L,, n > 1, we denote by C; the set of all points of
C for which the tth digit of their ternary expansion, t = 1,...,n, is 0 if
it = 0,and 2 if iy = 1. For i = 0 € Ly we set C; = Cy = C. Also we write
a(i) = max{z | € Cj} and b(i) = min{z | z € C5,} for every i € |Jo— L.

For every ¢ € C and n = 0, 1,... we denote by i(c,n) the unique i € L,
such that ¢ € C;. Obviously, {c} = (7_; Cie.n)-

3. LEMMA. Let D be a disk in the plane, a,b € Bd(D), a # b, and
X C D\ {a,b} be a rational compactum with rim-type(X) < a. Then there
exists an arc A C D with endpoints a,b such that type(AN X) < a.

Proof. Let Ay and Ay be the arcs of D with endpoints a,b such that
A1 U Ay = Bd(D). It is clear that X N A; and X N Ay are closed disjoint
subsets of X N D. Since rim-type(X N D) < «, there exists a closed subset
F of X N D such that type(F') < o and F separates the sets X N A; and
X NAyin XN D ([3], Theorem 6).

The rest of the proof which provides an arc A C D with endpoints a, b
such that AN X C F is the same as the corresponding part of the proof of
Lemma 5 in [1].

4. LEMMA. For every planar rational compactum X with rim-type(X)
< « there exists a homeomorphism h of X onto a subset of I? such that:

(1h) h(X) C Int(1?),
(2h) K(X)NV =1,
(3h) type(h(X)NBdW,)) < « for everyn =1,2,...

Proof. Let X be a planar rational compactum with rim-type(X) < a.
We set
Qa={m/2" € I\{0,1} | m,n=0,1,...},
Qr={m/3" €l |mn=0,1,...}.

Observe that = € Int(I?) N {J,—, Bd(W,,) iff either 71 (z) € QA or ma(x) €
Qa, and x € Int(I?) NV iff 71 (2), ma(2) € Q.

Let Y = I*\ (I \ Q7) x Qa) U (Qa x (I\ Qr))).

It is proved in [1] that Y is a rational containing space for the family of
all planar rational compacta. Since X is a planar rational compactum, there
exists a homeomorphism h of X onto a subspace of Y. Moreover, in [1] the
above homeomorphism is constructed in such a manner that condition (1h)
is satisfied. Since Y N Int(1?) NV = ), condition (2h) holds.

Since Y N Bd(W,,) is countable for every n = 1,2,..., it follows that
h(X) N Bd(W,) is countable for every n = 1,2, ...
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It remains to prove that h satisfies condition (3h). To do that, we slightly
modify the construction of i in [1] applying Lemma 3 of the present paper
instead of Lemma 5 of [1].

5. THEOREM. FEvery planar rational compactum X with rim-type(X)
< «a can be homeomorphically embedded into a planar rational locally con-
nected continuum D with rim-type(D) < «.

Proof. Let X be a planar rational compactum with rim-type(X) < a.
By Lemma 4 we can assume that:

(i) X C Int(1?),

i) XNy =10,

(iii) type(X NBd(W,,)) < a for every n =1,2, ...

We define a map f of C? onto I? as follows: if ¢ = (c1,¢2) € C? and
{C} = m (Cz(cl, ) X 01(02 n)) then f(C) = mzo:[)(lz(cl,n) X IZ(Cg,n))' It is
easily seen  that f has the following properties:

(1f) f(C;5 % C;) =I; xI; foralli,j € L,,n=0,1,...,

(2f) f~1(x) is a singleton iff neither 7 (x) nor m(z) is in Q A,

(3f) f~Y(z) consists of two points iff exactly one of 71(z) and () is
in Qa,

(4f) f=1(x) consists of four points iff 71 (z), T2 (x) € Qa,

(5f) f is a continuous map.

Let x € X. Since X C Int(I?)\ V, it follows that either m1(z) & Qa
or ma(z) € Qa. From (2f) and (3f) we conclude that f~1(x) consists of at
most two points. In particular, f~*(z) is a singleton iff z & (J.2_, BA(W,),
and f~!(x) is a two-element subset of C? iff z € (J.2, BAW,,).

It is easy to verify that

Int(1%) N U Bd(W U U (@ x {m(bHumG)} x 1)).
n=04,5€L,

Thus X NJ,2, Bd(W,,) is the union of the sets of the form X N(f; x {m(j)})
and X N ({m(j)} x I;), where i,j € L,, n=0,1,...

Let i,5 € L,, n=0,1,... From the definition of f it follows that if x €
(L x {m(5)})\V, then f~!(z) = {c1, c2}, where w1 (c1) = mi(c2) € C;\ C(1)
and {Wz(Cl)ﬂm(Cz)} = {a(4),0(j)}- -

Therefore f~((I; x {m(7)})\ V) = (C;\ C(1)) x {a(j),b(j)}. Similarly,
FHHmG)} x L)\ V) = {a(5), ()} x (C7\ C(1)).

Since X N (I; x {m(j)}) and X N ({m(j)} x I;) are subsets of Bd(Wn 1),
from the property (iii) of X it follows that type(X N (I3 x {m(j)})) < o and
type(X N ({m(j)} x [;)) < «
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Leti € L,, n=0,1,... We set
PX = |J m( X0 x {m()H)) Uma(f~H(X N ({m()} x [;)))),

JEL,

where 7; (resp. m2) is the projection of C? onto the first (resp. second)
coordinate.

Since XNV = 0, we have P> C C;\C(1). From (1.1)~(1.3) it follows that
type(PX) < . Since a > 0, there exists a compact subset P; of C; \ C(1)
such that

(i) type(P;) = type(P;*) (therefore type(P;) < a),

For every 4,7 € L, n = 0,1,..., we define a collection D(i,j) of two-
element subsets of C? as follows: {c1,c2} € D(i,j) iff either mi(c;) =
mi(c2) € Fy and {ma(c1),m2(c2)} = {a()),b(j)} or ma(c1) = ma(c2) € F;
and {my(c1), m1(c2)} = {a(i), b(i)}.

We set D(1) = o o{D(4,7) | i,j € Ly}

Let D be the partition of C? consisting of all elements of D(1) and all
singletons {c}, where ¢ € C? and ¢ & | J{d | d € D(1)}. It has been proved
([4], Lemma 4) that D is an upper semicontinuous partition of C? and that
the corresponding quotient space D is a planar locally connected continuum
with rim-type(D) < a.

Let p : C? — D be the quotient mapping. Since the set f(p~1(d)) is
a singleton for every d € D, we can define a mapping g : D — I? by
letting g(d) = f(p~*(d)) for d € D. The mapping g is continuous since the
composition f = gop is continuous and p is a quotient map. It is easy to see
that gl,-1(x) : g1 (X) — X is one-to-one, hence g~!(X) is homeomorphic
to X. It follows that X embeds in D.

The proof of the theorem is complete.
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