Embedding of a planar rational compactum into a planar continuum with the same rim-type

by

Sophia Zafiridou (Patras)

Abstract. We prove that every planar rational compactum with rim-type $\leq \alpha$, where α is a countable ordinal greater than 0, can be topologically embedded into a planar rational (locally connected) continuum with rim-type $\leq \alpha$.

1. Introduction. All spaces under consideration are separable and metrizable. A space is said to be *planar* if it is homeomorphic to a subset of the plane. A space is said to be *rational* if it has a basis consisting of open sets with countable boundaries.

Let X be a space. For every ordinal α the α -derivative $X^{(\alpha)}$ of X is defined by induction as follows: $X^{(0)} = X$, $X^{(\alpha+1)}$ is the set of all limit points of $X^{(\alpha)}$ (in $X^{(\alpha)}$), and $X^{(\alpha)} = \bigcap_{\beta < \alpha} X^{(\beta)}$ for α a limit ordinal ([5], IV, §24). If $X^{(\alpha)} = \emptyset$ for some ordinal α , then the least such ordinal is called the *type* of X and is denoted by type(X). Obviously, type(X) = 0 iff $X = \emptyset$.

It is easy to show that a compactum X is countable iff it has a type. Note that the type of any countable compactum is an isolated countable ordinal and there exists a compactum of type α for any isolated countable ordinal α ([6]).

The following statements are easily proved and will be used in what follows:

- (1.1) If M and N are compact, $type(M) \le \alpha$ and $type(N) \le \alpha$, then $type(M \cup N) \le \alpha$.
- (1.2) If f is a continuous map of a countable compactum M onto N, then $\operatorname{type}(N) \leq \operatorname{type}(M)$.
- (1.3) If f is a continuous map of a countable compactum M onto N such that $f^{-1}(x)$ is finite for every $x \in N$, then $\operatorname{type}(N) = \operatorname{type}(M)$.

²⁰⁰⁰ Mathematics Subject Classification: 54C25, 54F50.

By the *rim-type* of a rational compactum X is meant the least ordinal α for which there exists a basis of X consisting of open sets whose boundaries are of type $\leq \alpha$. Obviously the rim-type of any rational compactum is a countable ordinal. From now on, α denotes a countable ordinal greater than 0. Clearly rim-type(X) = 0 iff X is zero-dimensional.

We quote the following results concerning embeddings of a rational compactum into a rational continuum:

(a) For every countable ordinal α there exists a planar rational (locally connected) continuum with rim-type $\leq \alpha + 1$ containing topologically any planar rational compactum with rim-type $\leq \alpha$ ([7]).

(b) Every rational compactum (not necessarily planar) with rim-type $\leq \alpha$ is contained topologically in a rational continuum with rim-type $\leq \alpha$ ([2]), Theorem 3).

In this paper we prove that every planar rational compactum with rimtype $\leq \alpha$ can be topologically embedded into a planar rational (locally connected) continuum with rim-type $\leq \alpha$.

2. Definitions and notations. Let E^2 be the plane with a system Oxy of orthogonal coordinates. By a *disk* we mean a subset of E^2 homeomorphic to $\{(x, y) \mid x^2 + y^2 \leq 1\}$. An *arc* is a subset A of E^2 for which there exists a homeomorphism h of the segment $I \equiv [0, 1]$ onto A. The points h(0) and h(1) are the *endpoints* of A.

By L_n , n = 1, 2, ..., we denote the set of all ordered *n*-tuples $i_1 ... i_n$, where $i_t = 0$ or $i_t = 1$, for every t = 1, ..., n. We set $L_0 = \{\emptyset\}$. For $\overline{i} = i_1 ... i_n \in L_n, n \ge 1$, we set $\overline{i}0 = i_1 ... i_n 0$ and $\overline{i}1 = i_1 ... i_n 1$. For $\overline{i} = \emptyset \in L_0$ we define $\overline{i}0 = 0$ and $\overline{i}1 = 1$.

By $I_{\bar{i}}$, where $\bar{i} = i_1 \dots i_n \in L_n$, $n \ge 1$, we denote the set of all points of I for which the tth digit of the dyadic expansion, $t = 1, \dots, n$, is i_t . For $\bar{i} = \emptyset \in L_0$ we set $I_{\bar{i}} = I_{\emptyset} = I$. We denote by $m(\bar{i})$ the midpoint of $I_{\bar{i}}$.

Let $\mathcal{W}_n = \{I_{\bar{i}} \times I_{\bar{j}} \mid \bar{i}, \bar{j} \in L_n\}, n = 0, 1, \dots$ Obviously for every $n = 0, 1, \dots$ the family \mathcal{W}_n is a finite closed covering of I^2 by disks. We set $\operatorname{Bd}(\mathcal{W}_n) = \bigcup \{\operatorname{Bd}(F) \mid F \in \mathcal{W}_n\}$. Obviously, $\operatorname{Bd}(\mathcal{W}_n) \subseteq \operatorname{Bd}(\mathcal{W}_{n+1})$. Note that

$$\operatorname{Bd}(\mathcal{W}_{n+1}) \setminus \operatorname{Bd}(\mathcal{W}_n) = \bigcup_{\overline{i}, \overline{j} \in L_n} ((I_{\overline{i}} \times \{m(\overline{j})\}) \cup (\{m(\overline{j})\} \times I_{\overline{i}})).$$

By π_1 and π_2 we denote the first and the second projection, respectively, of I^2 onto I. We set

$$\mathcal{V} = \{(m/2^n, k/2^n) \in I^2 \mid n, m, k = 0, 1, \ldots\}.$$

Let C be the Cantor ternary set and C(1) be the set of all points of C which are the endpoints of the components of $[0,1] \setminus C$.

For $\overline{i} = i_1 \dots i_n \in L_n$, $n \ge 1$, we denote by $C_{\overline{i}}$ the set of all points of C for which the tth digit of their ternary expansion, $t = 1, \dots, n$, is 0 if $i_t = 0$, and 2 if $i_t = 1$. For $\overline{i} = \emptyset \in L_0$ we set $C_{\overline{i}} = C_{\emptyset} = C$. Also we write $a(\overline{i}) = \max\{x \mid x \in C_{\overline{i}0}\}$ and $b(\overline{i}) = \min\{x \mid x \in C_{\overline{i}1}\}$ for every $\overline{i} \in \bigcup_{n=0}^{\infty} L_n$.

For every $c \in C$ and n = 0, 1, ... we denote by $\overline{i}(c, n)$ the unique $\overline{i} \in L_n$ such that $c \in C_{\overline{i}}$. Obviously, $\{c\} = \bigcap_{n=0}^{\infty} C_{\overline{i}(c,n)}$.

3. LEMMA. Let D be a disk in the plane, $a, b \in Bd(D)$, $a \neq b$, and $X \subseteq D \setminus \{a, b\}$ be a rational compactum with rim-type $(X) \leq \alpha$. Then there exists an arc $A \subseteq D$ with endpoints a, b such that type $(A \cap X) \leq \alpha$.

Proof. Let A_1 and A_2 be the arcs of D with endpoints a, b such that $A_1 \cup A_2 = \operatorname{Bd}(D)$. It is clear that $X \cap A_1$ and $X \cap A_2$ are closed disjoint subsets of $X \cap D$. Since rim-type $(X \cap D) \leq \alpha$, there exists a closed subset F of $X \cap D$ such that type $(F) \leq \alpha$ and F separates the sets $X \cap A_1$ and $X \cap A_2$ in $X \cap D$ ([3], Theorem 6).

The rest of the proof which provides an arc $A \subseteq D$ with endpoints a, b such that $A \cap X \subseteq F$ is the same as the corresponding part of the proof of Lemma 5 in [1].

4. LEMMA. For every planar rational compactum X with rim-type(X) $\leq \alpha$ there exists a homeomorphism h of X onto a subset of I^2 such that:

- (1h) $h(X) \subseteq \operatorname{Int}(I^2)$,
- (2h) $h(X) \cap \mathcal{V} = \emptyset$,
- (3h) type $(h(X) \cap Bd(\mathcal{W}_n)) \leq \alpha$ for every n = 1, 2, ...

Proof. Let X be a planar rational compactum with rim-type(X) $\leq \alpha$. We set

$$Q_{\Delta} = \{m/2^n \in I \setminus \{0,1\} \mid m, n = 0, 1, \ldots\},\$$

$$Q_T = \{m/3^n \in I \mid m, n = 0, 1, \ldots\}.$$

Observe that $x \in \text{Int}(I^2) \cap \bigcup_{n=0}^{\infty} \text{Bd}(\mathcal{W}_n)$ iff either $\pi_1(x) \in Q_{\Delta}$ or $\pi_2(x) \in Q_{\Delta}$, and $x \in \text{Int}(I^2) \cap \mathcal{V}$ iff $\pi_1(x), \pi_2(x) \in Q_{\Delta}$.

Let $Y = I^2 \setminus (((I \setminus Q_T) \times Q_\Delta) \cup (Q_\Delta \times (I \setminus Q_T))).$

It is proved in [1] that Y is a rational containing space for the family of all planar rational compacta. Since X is a planar rational compactum, there exists a homeomorphism h of X onto a subspace of Y. Moreover, in [1] the above homeomorphism is constructed in such a manner that condition (1h) is satisfied. Since $Y \cap \text{Int}(I^2) \cap \mathcal{V} = \emptyset$, condition (2h) holds.

Since $Y \cap Bd(\mathcal{W}_n)$ is countable for every n = 1, 2, ..., it follows that $h(X) \cap Bd(\mathcal{W}_n)$ is countable for every n = 1, 2, ...

It remains to prove that h satisfies condition (3h). To do that, we slightly modify the construction of h in [1] applying Lemma 3 of the present paper instead of Lemma 5 of [1].

5. THEOREM. Every planar rational compactum X with rim-type(X) $\leq \alpha$ can be homeomorphically embedded into a planar rational locally connected continuum D with rim-type(D) $\leq \alpha$.

Proof. Let X be a planar rational compactum with rim-type(X) $\leq \alpha$. By Lemma 4 we can assume that:

- (i) $X \subseteq Int(I^2)$,
- (ii) $X \cap \mathcal{V} = \emptyset$,
- (iii) type $(X \cap Bd(\mathcal{W}_n)) \leq \alpha$ for every $n = 1, 2, \dots$

We define a map f of C^2 onto I^2 as follows: if $c = (c_1, c_2) \in C^2$ and $\{c\} = \bigcap_{n=0}^{\infty} (C_{\overline{i}(c_1,n)} \times C_{\overline{i}(c_2,n)})$ then $f(c) = \bigcap_{n=0}^{\infty} (I_{\overline{i}(c_1,n)} \times I_{\overline{i}(c_2,n)})$. It is easily seen that f has the following properties:

(1f) $f(C_{\overline{i}} \times C_{\overline{j}}) = I_{\overline{i}} \times I_{\overline{j}}$ for all $\overline{i}, \overline{j} \in L_n, n = 0, 1, \dots,$

(2f) $f^{-1}(x)$ is a singleton iff neither $\pi_1(x)$ nor $\pi_2(x)$ is in Q_{Δ} ,

(3f) $f^{-1}(x)$ consists of two points iff exactly one of $\pi_1(x)$ and $\pi_2(x)$ is in Q_{Δ} ,

(4f) $f^{-1}(x)$ consists of four points iff $\pi_1(x), \pi_2(x) \in Q_\Delta$,

(5f) f is a continuous map.

Let $x \in X$. Since $X \subseteq \text{Int}(I^2) \setminus \mathcal{V}$, it follows that either $\pi_1(x) \notin Q_\Delta$ or $\pi_2(x) \notin Q_\Delta$. From (2f) and (3f) we conclude that $f^{-1}(x)$ consists of at most two points. In particular, $f^{-1}(x)$ is a singleton iff $x \notin \bigcup_{n=0}^{\infty} \text{Bd}(\mathcal{W}_n)$, and $f^{-1}(x)$ is a two-element subset of C^2 iff $x \in \bigcup_{n=0}^{\infty} \text{Bd}(\mathcal{W}_n)$.

It is easy to verify that

$$\operatorname{Int}(I^2) \cap \bigcup_{n=0}^{\infty} \operatorname{Bd}(\mathcal{W}_n) = \bigcup_{n=0}^{\infty} \bigcup_{\overline{i}, \overline{j} \in L_n} ((I_{\overline{i}} \times \{m(\overline{j})\}) \cup (\{m(\overline{j})\} \times I_{\overline{i}})).$$

Thus $X \cap \bigcup_{n=0}^{\infty} \operatorname{Bd}(\mathcal{W}_n)$ is the union of the sets of the form $X \cap (I_{\bar{i}} \times \{m(\bar{j})\})$ and $X \cap (\{m(\bar{j})\} \times I_{\bar{i}})$, where $\bar{i}, \bar{j} \in L_n, n = 0, 1, \ldots$

Let $\overline{i}, \overline{j} \in L_n, n = 0, 1, \ldots$ From the definition of f it follows that if $x \in (I_{\overline{i}} \times \{m(\overline{j})\}) \setminus \mathcal{V}$, then $f^{-1}(x) = \{c_1, c_2\}$, where $\pi_1(c_1) = \pi_1(c_2) \in C_{\overline{i}} \setminus C(1)$ and $\{\pi_2(c_1), \pi_2(c_2)\} = \{a(\overline{j}), b(\overline{j})\}.$

Therefore $f^{-1}((I_{\overline{i}} \times \{m(\overline{j})\}) \setminus \mathcal{V}) = (C_{\overline{i}} \setminus C(1)) \times \{a(\overline{j}), b(\overline{j})\}$. Similarly, $f^{-1}((\{m(\overline{j})\} \times I_{\overline{i}}) \setminus \mathcal{V}) = \{a(\overline{j}), b(\overline{j})\} \times (C_{\overline{i}} \setminus C(1)).$

Since $X \cap (I_{\bar{i}} \times \{m(\bar{j})\})$ and $X \cap (\{m(\bar{j})\} \times I_{\bar{i}})$ are subsets of $\operatorname{Bd}(\mathcal{W}_{n+1})$, from the property (iii) of X it follows that $\operatorname{type}(X \cap (I_{\bar{i}} \times \{m(\bar{j})\})) \leq \alpha$ and $\operatorname{type}(X \cap (\{m(\bar{j})\} \times I_{\bar{i}})) \leq \alpha$. Let $\overline{i} \in L_n$, $n = 0, 1, \dots$ We set

$$P_{\bar{i}}^{X} = \bigcup_{\bar{j} \in L_{n}} (\pi_{1}(f^{-1}(X \cap (I_{\bar{i}} \times \{m(\bar{j})\}))) \cup \pi_{2}(f^{-1}(X \cap (\{m(\bar{j})\} \times I_{\bar{i}})))),$$

where π_1 (resp. π_2) is the projection of C^2 onto the first (resp. second) coordinate.

Since $X \cap \mathcal{V} = \emptyset$, we have $P_{\overline{i}}^X \subseteq C_{\overline{i}} \setminus C(1)$. From (1.1)–(1.3) it follows that type $(P_{\overline{i}}^X) \leq \alpha$. Since $\alpha > 0$, there exists a compact subset $P_{\overline{i}}$ of $C_{\overline{i}} \setminus C(1)$ such that

- (i) $P_{\overline{i}}^X \subset P_{\overline{i}}$,
- (ii) type $(P_{\bar{i}}) = \text{type}(P_{\bar{i}}^X)$ (therefore type $(P_{\bar{i}}) \le \alpha$), (iii) $P_{\bar{i}} \cap C_{\bar{i}0} \neq \emptyset$ and $P_{\bar{i}} \cap C_{\bar{i}1} \neq \emptyset$.

For every $\overline{i}, \overline{j} \in L_n, n = 0, 1, \dots$, we define a collection $D(\overline{i}, \overline{j})$ of twoelement subsets of C^2 as follows: $\{c_1, c_2\} \in D(\bar{i}, \bar{j})$ iff either $\pi_1(c_1) =$ $\pi_1(c_2) \in P_i$ and $\{\pi_2(c_1), \pi_2(c_2)\} = \{a(\bar{j}), b(\bar{j})\}$ or $\pi_2(c_1) = \pi_2(c_2) \in P_i$ and $\{\pi_1(c_1), \pi_1(c_2)\} = \{a(\overline{i}), b(\overline{i})\}.$

We set $D(1) = \bigcup_{n=0}^{\infty} \{D(\overline{i}, \overline{j}) \mid \overline{i}, \overline{j} \in L_n\}.$

Let D be the partition of C^2 consisting of all elements of D(1) and all singletons $\{c\}$, where $c \in C^2$ and $c \notin \bigcup \{d \mid d \in D(1)\}$. It has been proved ([4], Lemma 4) that D is an upper semicontinuous partition of C^2 and that the corresponding quotient space D is a planar locally connected continuum with rim-type(D) $< \alpha$.

Let $p: C^2 \to D$ be the quotient mapping. Since the set $f(p^{-1}(d))$ is a singleton for every $d \in D$, we can define a mapping $g: D \to I^2$ by letting $q(d) = f(p^{-1}(d))$ for $d \in D$. The mapping q is continuous since the composition $f = g \circ p$ is continuous and p is a quotient map. It is easy to see that $g|_{q^{-1}(X)}: g^{-1}(X) \to X$ is one-to-one, hence $g^{-1}(X)$ is homeomorphic to X. It follows that X embeds in D.

The proof of the theorem is complete.

References

- L. E. Feggos, S. D. Iliadis and S. S. Zafiridou, Planar rational compacta, Colloq. [1]Math. 68 (1995), 49–54.
- S. D. Iliadis, On rim-type of spaces, in: Topology (Leningrad, 1982), Lecture Notes [2]in Math. 1060, Springer, New York, 1984, 45–54.
- [3] S. D. Iliadis and E. D. Tymchatyn, Compactifications with minimum rim-types of rational spaces, Houston J. Math 17 (1991), 311–323.
- S. D. Iliadis and S. S. Zafiridou, Planar rational compacta and universality, Fund. [4]Math. 141 (1992), 109–118.
- K. Kuratowski, Topology, Vol. I, Pergamon Press, New York, 1966. [5]

S. Zafiridou

- S. Mazurkiewicz et W. Sierpiński, Contribution à la topologie des ensembles dénombrables, Fund. Math. 1 (1920), 17–27.
- J. C. Mayer and E. D. Tymchatyn, Containing spaces for planar rational compacta, Dissertationes Math. 300 (1990).

Department of Mathematics University of Patras 26500 Patras, Greece E-mail: zafeirid@math.upatras.gr

> Received 20 March 2000; in revised form 25 October 2000

118