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Abstract. For a discrete dynamical system given by a compact Hausdorff space X
and a continuous selfmap f of X the connection between minimality, invertibility and
openness of f is investigated. It is shown that any minimal map is feebly open, i.e.,
sends open sets to sets with nonempty interiors (and if it is open then it is a homeo-
morphism). Further, it is shown that if f is minimal and A ⊆ X then both f(A) and
f−1(A) share with A those topological properties which describe how large a set is. Using
these results it is proved that any minimal map in a compact metric space is almost
one-to-one and, moreover, when restricted to a suitable invariant residual set it becomes a
minimal homeomorphism. Finally, two kinds of examples of noninvertible minimal maps
on the torus are given—these are obtained either as a factor or as an extension of an
appropriate minimal homeomorphism of the torus.

1. Introduction. We will be concerned with a discrete dynamical sys-
tem (X; f) given by a Hausdorff topological space X and a continuous self-
map f of X (written f ∈ C(X)). Usually X will be compact or even compact
metric.

Minimality and extensions of minimal systems belong to central topics
in topological dynamics (see, e.g., [Au], [Br] and [deV]). In many important
examples of minimal maps, these are homeomorphisms. In the sixties J. Aus-
lander [AG, p. 514] formulated the problem whether a continuous map of
a compact metric space onto itself which is not one-to-one can be minimal.
Today, of course, it is known (owing also to J. Auslander himself) that it
can. A class of examples of noninvertible minimal maps on some compact
metric spaces can be found in [AY, p. 186].

Interesting examples of noninvertible minimal maps are known in interval
dynamics when a suitable interval map is restricted to an invariant Cantor
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set. In fact, it was proved in [BKNS] that unimodal Fibonacci maps have a
wild attractor (which is a Cantor set) provided that the order of the critical
point is sufficiently high. By [BL], the restriction of such a map to this Cantor
set is minimal and by [LM] the preimage of any point from this Cantor set is
a singleton except for the critical point of the map whose preimage consists
of two points. More generally, there are unimodal maps whose restriction
to a Cantor set (the ω-limit set ω(c) of the critical point c) is minimal and
fails to be invertible only at k points, each lying in the backward orbit of c
(one of them is c itself) and having two preimages in ω(c) (all other points
in ω(c) have only one preimage in ω(c)); see [BKP].

Symbolic dynamics provides many examples of minimal noninvertible
maps. Consider AN endowed with the shift. It is easy to prove by a com-
pactness argument that any transitive subshift (i.e., closed shift-invariant
subset of AN) on which the shift acts bijectively is reduced to a periodic or-
bit. On the other hand by the Jewett–Krieger theorem there exist a variety
of minimal subshifts, most of which do not consist of a periodic orbit; among
them, 0-entropy as well as positive-entropy systems with various properties.
Other examples are less abstract: one-sided Sturmian and Toeplitz systems
are minimal subshifts, none of which is reduced to one periodic orbit (as a
general reference see [LMa]).

None of the above mentioned examples of noninvertible minimal maps
is on a manifold. On the interval there is no minimal map at all and it is
well known that the circle admits a minimal homeomorphism but does not
admit any noninvertible minimal map (see [AK]). In Section 3 we prove
that in the case of tori of dimension n ≥ 2 the situation is different—in
contrast to the case n = 1 they admit minimal noninvertible maps. We
prove that any minimal skew product homeomorphism of the torus having
an asymptotic pair of points has an almost one-to-one factor which is a
minimal noninvertible map of the torus (see Theorem 3.2). Then we apply
the technique of factorization to the point distal homeomorphism of the torus
of M. Rees [R] to show the existence of a minimal point distal noninvertible
map on the torus such that both an extension of it and a factor of it are
minimal homeomorphisms of the torus (see Theorem 3.3). Finally, we show
how to modify Rees’ technique of extension of an irrational rotation of the
torus from [R] in order to obtain a minimal noninvertible map of the torus
(see Theorem 3.4 and, for all details, Appendix) (1).

(1) In the present paper we consider only compact spaces. Of course, the problem of
the existence of minimal maps in noncompact spaces has also been studied. For instance,
by [LCY], on the two-dimensional sphere minus a finite set there are no homeomorphisms
whose full orbits are all dense, the nonexistence of minimal maps (i.e. maps whose forward
orbits are all dense) being well known in much more general spaces [G], [HK].
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To summarize: There are compact spaces that do not admit any minimal
map, there are spaces that admit minimal homeomorphisms but do not
admit any minimal noninvertible map and there are spaces that admit both
minimal homeomorphisms and minimal noninvertible maps. The authors do
not know whether there are spaces that admit minimal noninvertible maps
but do not admit any minimal homeomorphism.

When we consider a continuous selfmap of a compact Hausdorff space, it
turns out that there is a close connection between its minimality, invertibility
and openness. In fact, in Section 2 we prove that every minimal map is
feebly open and if it is even open then it is necessarily invertible and so,
being a continuous bijective selfmap of a compact Hausdorff space, it is a
homeomorphism (see Theorem 2.4).

Further, it is shown that if f is minimal and A ⊆ X then both f(A) and
f−1(A) share with A those topological properties which describe how large
a set is (see Theorem 2.5).

In topological dynamics almost one-to-one maps (extensions) attract a
considerable attention (cf. [FW]). In the present paper we prove that any
minimal map in a compact metric space is almost one-to-one and, moreover,
when restricted to a suitable invariant residual set it becomes a minimal
homeomorphism (see Theorems 2.7 and 2.8).
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2. Minimality, invertibility and openness. Let X be a Hausdorff
topological space and let f : X → X be continuous. The dynamical sys-
tem (X; f) is called (topologically) minimal if there is no proper subset
M ⊆ X which is nonempty, closed and f -invariant (i.e., f(M) ⊆ M). In
such a case we also say that the map f itself is minimal. Note that the
system (X; f) is minimal if and only if the (forward) orbit of every point
from X is dense in X. If Y ⊆ X is nonempty, closed and f -invariant then
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Y is called a minimal set of the system (X; f) if the system (Y ; f |Y ) is
minimal (2).

Moreover, recall that the system (X; f) or the map f itself is called
(topologically) transitive if for every pair of nonempty open sets U and V in
X, there is a positive integer n such that fn(U)∩V 6= ∅. Clearly, minimality
implies transitivity. Recall also that if f is transitive then f(X) is obviously
dense in X and if we additionally assume X to be compact, then f(X) is also
compact. Hence f(X) = X. If X has an isolated point and f is transitive
then X is just a periodic orbit of f . If X is a compact metric space without
isolated points, then the above definition of transitivity is equivalent to the
existence of a dense orbit (see [S]; for a survey of results on transitivity see,
e.g., [KS]).

Recall that a map is called open if it sends open sets to open sets and is
called closed if it sends closed sets to closed sets. A map f is called feebly
open if for every nonempty open subset U of X, there is a nonempty open
subset V of X such that V ⊆ f(U). It is easy to see that a map is feebly
open if and only if the inverse image of every dense subset is dense. Note
that the terminology is not unified—instead of feebly open some authors
say semi-open, almost open or somewhat open. It seems that the idea of a
feebly open map was first introduced in [F].

We will also use the notion of an irreducible map which is very important
in general topology, mainly in the theory of absolutes (see e.g. [PW] or [Al]).
A map f : X → Y is called irreducible if the only closed set A ⊆ X for which
f(A) = Y is A = X. Note that if f is irreducible then it is surjective.

Lemma 2.1. Let X be a compact Hausdorff space and f ∈ C(X). Then
the following two conditions are equivalent and each of them is sufficient for
f not to be minimal :

(1) there is a closed set A 6= X in X with f(A) = f(X),
(2) there is an open set B 6= ∅ in X with f(B) ⊆ f(X \B).

Consequently , if f is minimal then it is irreducible.

Proof. From (1) we get (2) by taking B = X \ A and from (2) we get
(1) by taking A = X \ B. Suppose that (1) holds. If f(X) 6= X then f is
obviously not minimal. So let f(X) = X. Denote f |A by g and consider the
set M :=

⋂∞
k=0 f

−k(A) =
⋂∞
k=0 g

−k(A). We have X = g(A) ⊇ A. Hence the
set M , being the intersection of a nested sequence of nonempty compact sets,

(2) Thus in the present paper minimality of both a map and a homeomorphism means
the density of all (forward) orbits. Some authors, when defining minimal homeomorphisms,
only require the density of all full orbits (see, e.g., [W]) and speak of semiminimality when
they have in mind the density of all (forward) orbits (see, e.g., [G]). In compact metric
spaces these two notions are equivalent.
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is nonempty. But the f -trajectory of any point from M does not intersect
the nonempty open set X \ A (M is even f -invariant and compact). Hence
f is not minimal.

Lemma 2.2. Let X be a compact Hausdorff space and let f ∈ C(X).
Then the following are equivalent :

(1) f is irreducible and open,
(2) f is a homeomorphism.

Proof. Only (1)⇒(2) needs a proof. Since a continuous bijection from
a compact space to a Hausdorff space is a homeomorphism and f , being
irreducible, is onto, it is sufficient to prove that f is invertible. Suppose, on
the contrary, that there are a 6= b with f(a) = f(b) =: c. Take disjoint open
neighbourhoods Ua of a and Ub of b. Since f is open, f(Ua) is open and
contains c. Since f is continuous, there is an open neighbourhood Vb of b
such that Vb ⊆ Ub and f(Vb) ⊆ f(Ua). Then f(Vb) ⊆ f(X \ Vb). Hence, by
Lemma 2.1(2)⇒(1), f is not irreducible.

Lemma 2.3. Let X be a compact Hausdorff space and let f ∈ C(X) be
irreducible. Then f is feebly open.

Proof. Since f is continuous, for any A ⊆ X we have f(A) ⊆ f(A). This
inclusion is in fact an equality, because X is compact and thus f is closed.
Now let D ⊆ X be dense in X. Since f is onto, we have f(f−1(D)) = D
and so

f(f−1(D)) = f(f−1(D)) = D = X.

Since f is irreducible, this implies that f−1(D) = X.

By Lemmas 2.1 and 2.3, if f ∈ C(X) is minimal then it is irreducible
and if f is irreducible then it is feebly open. Easy examples on the interval
show that the converse implications do not hold.

From Lemmas 2.1–2.3 we immediately get

Theorem 2.4. Let X be a compact Hausdorff space and f ∈ C(X).

(1) If f is minimal then it is feebly open.
(2) If f is minimal and open then it is a homeomorphism.

Since we have seen that there are minimal maps which are not hom-
eomorphisms, in (1) we cannot replace feebly open by open and in (2) we
cannot replace open by feebly open.

Once we know that every minimal map is feebly open, we can ask whether
this result can be extended to topologically transitive maps. The answer is
negative—a topologically transitive map may not be feebly open [M] (nev-
ertheless, every transitive interval map is trivially feebly open).
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To summarize: Any minimal map is of one of the following two kinds:
either it is homeomorphism or it is noninvertible and nonopen (but feebly
open). (It cannot be invertible and nonopen, since a continuous bijection
from a compact space to a Hausdorff space is a homeomorphism, hence
open. Further, it cannot be noninvertible and open by Theorem 2.4(2).)

Recall that a set is called residual if its complement is of first category.
Further, a set A has the Baire property (see [K1, p. 87] or [O, p. 19]) if it is
the symmetric difference of an open set and a first category set, i.e., if it is
of the form A = (G\B)∪C where G is open and B and C are first category
sets or, equivalently, if it is of the form A = (F \ P ) ∪Q where F is closed
and P and Q are first category sets.

Theorem 2.4(1) together with Lemma 2.1 enable us to show that if f
is minimal and A ⊆ X then both f(A) and f−1(A) share some topological
properties with the set A—namely the ones which describe how large a set
is. For completeness, the next theorem contains also some known results.

Theorem 2.5. Let X be a compact Hausdorff space and let f ∈ C(X)
be a minimal map. Let A ⊆ X.

(1) If A is dense then both f(A) and f−1(A) are dense.
(2) If A is nowhere dense then both f(A) and f−1(A) are nowhere dense.
(3) If A is a first category set then both f(A) and f−1(A) are first

category sets.
(4) If A is a second category set then both f(A) and f−1(A) are second

category sets.
(5) If A has the Baire property then both f(A) and f−1(A) have the

Baire property.
(6) If A is residual then both f(A) and f−1(A) are residual.
(7) If A has nonempty interior then both f(A) and f−1(A) have non-

empty interiors.
(8) If A is open then there is a positive integer r with the property⋃r

k=0 f
−k(A) =

⋃r
k=0 f

k(A) = X.
(9) If A is open then there is an open set B ⊆ X such that B ⊆ f(A) ⊆

B (here B may not be unique; the largest such set is always B = int f(A)).

Proof. (1) is an easy consequence of the fact that f is continuous, onto
and feebly open.

(2) Let A be nowhere dense. We are going to prove that both f(A)
and f−1(A) are nowhere dense. Since the closure of a nowhere dense set is
nowhere dense, we may assume that A is closed.

Since A is nowhere dense, X \ A is dense. By feeble openness of f ,
f−1(X \ A) = X \ f−1(A) is dense. Since f−1(A) is closed, we get the
nowhere density of f−1(A).
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Now suppose, on the contrary, that f(A) is dense in a nonempty open set
G. Since f(A) is closed, we have f(A) ⊇ G. For the set B = A∩ f−1(G) we
have B ⊆ A and f(B) = G. Then f−1(G) is open and f−1(G) ⊇ B. Since
B is nowhere dense, there is a nonempty open set U such that U ⊆ f−1(G)
and U ∩ B = ∅. Then f(X \ U) ⊇ f(B) = G ⊇ f(U). By Lemma 2.1, f is
not minimal, a contradiction.

(3) This follows from (2).
(4) From (3) we trivially deduce that f(A) is of second category whenever

A is of second category. To prove that also f−1(A) is of second category,
realize that due to the surjectivity of f , f(f−1(A)) = A.

(5) Let A have the Baire property, i.e., A = (F \P )∪Q where F is closed
and P , Q are of first category. Then f−1(A) = (f−1(F ) \ f−1(P ))∪ f−1(Q)
and f(A) = (f(F ) \P ∗)∪ f(Q) where P ∗ ⊆ f(P ). Now use (3) and the fact
that by continuity both f(F ) and f−1(F ) are closed.

(6) follows from (3), (4) and the surjectivity of f .
(7) is a consequence of the continuity and the feeble openness of f .
(8) The existence of an r with

⋃r
k=0 f

−k(A) = X is folklore (for any
x ∈ X there is n(x) with fn(x)(x) ∈ A and so we have fn(x)(Ux) ⊆ A for
some open neighbourhood Ux of x; now use compactness to find a finite cover
of X by such neighbourhoods). Since f is surjective we have f(f−1(B)) = B
for any set B. Thus X = f r(X) = f r(

⋃r
k=0 f

−k(A)) =
⋃r
k=0 f

r−k(A) =⋃r
j=0 f

j(A).
(9) Take B = int f(A) and suppose on the contrary that for some a ∈ A,

f(a) 6∈ B. Take an open neighbourhood V of f(a) disjoint from B. By
continuity, there is an open neighbourhood U of a such that U ⊆ A and
f(U) ⊆ V . By feeble openness of f , there is a nonempty open set W with
W ⊆ f(U). Hence W is a subset of f(A) and is disjoint from B = int f(A),
a contradiction.

Remark. From the proof of Theorem 2.5 one can see that the state-
ments (1)–(7) and (9) do not hold only for minimal maps but also for larger
subclasses of C(X). For instance, if we consider surjective maps then

• the f -part of (1) and the f−1-part of (7) hold for all continuous maps,
• the f−1-parts of (1), (2), (3), (5) and (6) as well as the f -parts of (4)

and (7) hold for all feebly open maps,
• the f -parts of (2), (3), (5) and (6) as well as the f−1-part of (4) hold

for all irreducible maps,
• the statement (9) holds for all feebly open maps.

Note that for topologically transitive maps the theorem does not hold
even on the interval (except the parts holding for all surjective feebly open
maps; note that on the interval transitivity implies feeble openness). For
instance, one can find a transitive feebly open map f from a compact real
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interval I into itself and a nowhere dense set A ⊂ I such that f(A) = I
(take the Cantor set A and the corresponding Cantor stairs map I → I
and in each interval contiguous to A replace the constant piece of the map
by three linear pieces—increasing, decreasing, increasing; just take care of
having sufficiently big “peaks” to ensure transitivity but not too big to
ensure continuity).

For completeness let us remark that for continuous maps in compact
topological spaces minimality (even surjectivity) implies another form of
openness, so-called bicontinuity. A map f : X → X is called bicontinuous
(or a factor map or an identification map) if it is onto and f−1(A) is open
if and only if A is open. In fact, if X is compact and f ∈ C(X) onto, then
f , being a closed map, is bicontinuous (see [K1], p. 119).

Recall that a set is called regular closed or canonical closed if it is the
closure of an open set (equivalently, if it is the closure of its interior). In the
theory of absolutes it is important that if X and Y are topological spaces,
f : X → Y is closed and irreducible and A ⊆ X and B ⊆ Y are regular
closed sets, then f(A) is regular closed and there is a unique regular closed
set B∗ with f(B∗) = B (see [Al], p. 345). By Lemma 2.1, if X is compact
Hausdorff and f ∈ C(X) minimal then it also has the described properties.

Having proved Theorem 2.5 we are prepared to attack the problem of
to what extent a minimal map may be noninvertible. We start with the
following simple observation.

Lemma 2.6. Let (X, %) be a compact metric space and f ∈ C(X) be
onto. Then the map ϕ : X → [0,diamX] defined by

ϕ(x) = diam f−1(x)

is upper semicontinuous.

Proof. Fix a point x0 ∈ X. To prove that lim supx→x0
ϕ(x) ≤ ϕ(x0)

assume that ϕ(zn) → d for some sequence zn → x0. We need to show
that d ≤ ϕ(x0). For any n take points pn and qn from the compact set
f−1(zn) such that %(pn, qn) = ϕ(zn). Since we are in a compact metric
space, there are subsequences pkn and qkn converging to some points p and
q. Then %(p, q) = limn→∞ %(pkn , qkn) = limn→∞ ϕ(zkn) = d. Further, f(p) =
limn→∞ f(pkn) = limn→∞ zkn = x0 and similarly f(q) = x0. Hence p, q ∈
f−1(x0) and so d ≤ ϕ(x0).

Recall that a map f : X → X is called almost one-to-one if for every x
in a Gδ-dense subset of X, card(f−1(x)) = 1. Equivalently, in this definition
instead of “Gδ-dense” we can use “residual”, because any Gδ-dense set is
residual and any residual set (in a compact metric space) contains aGδ-dense
set. Thus, a map is called almost one-to-one if generically the preimage of
a point is a singleton.
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The following theorem sheds some light on the problem of to what extent
a minimal map may be noninvertible. It shows that for minimal maps the
set of points which have more than one preimage is of first category. In fact,
we have

Theorem 2.7. Let (X, %) be a compact metric space and f ∈ C(X) be
minimal. Then the set A = {x ∈ X : card f−1(x) = 1} is a Gδ-dense set in
X. Hence, f is almost one-to-one.

Proof. Consider the map ϕ from Lemma 2.6. Notice that A =
⋂∞
k=1Ak,

where Ak = ϕ−1([0, 1/k)). Since ϕ is upper semicontinuous, Ak is open in X
for every k. By the Baire theorem the intersection of countably many open
dense sets in X is Gδ-dense, therefore to finish the proof it is sufficient to
prove that for every k the set Ak is dense. Suppose, on the contrary, that
for some k, the (closed) set Dk = X \ Ak = {x ∈ X : diam f−1(x) ≥ 1/k}
has nonempty interior. Then also f−1(Dk) has nonempty interior. Take a
nonempty open set B ⊆ f−1(Dk) such that diamB < 1/k. The set B is
covered by the preimages of some points from Dk. Each of these preimages
has diameter ≥ 1/k and so cannot be placed entirely in B. Hence f(B) ⊆
f(X \B). By Lemma 2.1, f is not minimal, a contradiction.

The above theorem enables us to show that a “substantial” part of a
minimal map is a minimal homeomorphism.

Theorem 2.8. Let (X, %) be a compact metric space and f ∈ C(X)
be minimal. Then there exists a residual set Y ⊆ X such that f(Y ) = Y
and f |Y is a minimal homeomorphism. Moreover , (f |Y )−1 is also a min-
imal homeomorphism and while f |Y is uniformly continuous, (f |Y )−1 is
uniformly continuous only in the case when f is a homeomorphism (then
one can take Y = X).

Proof. By Theorem 2.7, the set A = {x ∈ X : card f−1(x) = 1} is
Gδ-dense and so D = {x ∈ X : card f−1(x) > 1} is of first category. Using
Theorem 2.5(6) and the fact that the intersection of countably many residual
sets is again residual we see that also the set Y =

⋂∞
n=−∞ f

n(A) is residual.
(One can also notice that Y = X \⋃∞n=−∞ fn(D).)

It is not difficult to see that y0 ∈ Y if and only if the full orbit of
y0, i.e. the set {x ∈ X : ∃i, j ∈ N with f i(x) = f j(y0)}, is of the form
{. . . , y−2, y−1, y0, y1, y2, . . .} where f(yn) = yn+1 for every integer n. From
this we immediately see that f(Y ) = Y and f |Y is a bijection. Trivially, f |Y
is continuous. We claim that also (f |Y )−1 is continuous. To see it, suppose
that (f |Y )−1 is not continuous at a point y0 ∈ Y . Then we can find a
sequence zi in Y such that zi → y0 and f−1(zi) 6→ f−1(y0). Considering
now f−1(zi) in the compact metric space X, we can assume that f−1(zi)→
z 6= f−1(y0). Since both f(z) and f(f−1(y0)) equal y0, we deduce that



150 S. Kolyada et al.

y0 ∈ D and so y0 6∈ Y , a contradiction. Thus f |Y is a homeomorphism. The
minimality of f |Y is obvious, since it is a restriction of a minimal map.

Now consider (f |Y )−1. Obviously, it is a homeomorphism Y → Y . We
are going to prove its minimality. Suppose, on the contrary, that for some
point y0 ∈ Y its (f |Y )−1-trajectory is not dense in Y . Denote by ω its
ω-limit set (in X), i.e. the set of all points in X which are limit points of
this trajectory. Trivially, ω is nonempty and closed in X and by the above,
ω 6= X. Taking a ∈ ω and using the continuity of f one can find b ∈ ω with
f(a) = b. Hence f(ω) ⊆ ω, a contradiction with the minimality of f .

Finally, let us turn to uniform continuity. Since f is uniformly continuous,
so is f |Y . If f is a homeomorphism (i.e., Y = X) then so is f−1 and by
compactness we get the uniform continuity of f−1|Y = (f |Y )−1. Conversely,
let (f |Y )−1 be uniformly continuous. Then it has a continuous extension
g ∈ C(X) and obviously g ◦ f |Y = f ◦ g|Y = id|Y . Since Y is dense in X,
this implies g ◦ f = f ◦ g = id on X. Hence f is a homeomorphism.

Remark. From the proof of Theorem 2.7 one can see that it holds under
weaker assumptions—it is sufficient to assume that f ∈ C(X) is irreducible.
(One can compare this result with that of [MW] where, though under weaker
assumptions, only the density of A is obtained.)

Similarly, if in Theorem 2.8 we only assume irreducibility of the map
f ∈ C(X) then the statement remains valid except for the minimality of
f |Y and (f |Y )−1. One can only claim that these maps, being bijective, are
irreducible.

Finally we remark that if f in Theorem 2.8 is not a homeomorphism,
i.e., we cannot put Y = X, then the set Y has necessarily empty interior in
X (use for instance Theorem 2.5(8) and the fact that f(Y ) = Y ).

J. Auslander brought our attention to the fact that there is a valid con-
verse to Theorem 2.8. In fact, we have

Theorem 2.9. Let (Y, τ) be a metric space and h : Y → Y be a minimal
homeomorphism such that

(a) h is uniformly continuous,
(b) h−1 is not uniformly continuous and
(c) for any ε > 0 there is a nonnegative N such that for every y ∈ Y ,

the set {y, h(y), . . . , hN (y)} is ε-dense in Y .

Then (Y, τ) is not complete, its completion (X, %) is compact (hence a
compactification of (Y, τ)), and there is a minimal noninvertible map f on
X which extends h.

Proof. Suppose that (Y, τ) is complete. By (c) it is also totally bounded
and thus compact. But then h−1 is uniformly continuous on Y , a contradic-
tion.
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Let (X, %) be the completion of (Y, τ). Since Y is totally bounded, so is
X. Hence X is compact.

The map h : Y → X is uniformly continuous and Y is dense in the
compact (hence complete) metric space X. Thus there is a (uniformly) con-
tinuous extension f : X → X of h. Obviously, f is onto because f(X) ⊇
h(Y ) = Y , Y is dense in X and f(X) is compact. The map f cannot be
invertible on X since otherwise h−1 would be uniformly continuous on Y .

Finally, from (c) we conclude, using uniform continuity of f , that for
any ε > 0 there is a nonnegative N such that for every x ∈ X, the set
{x, h(x), . . . , hN (x)} is ε-dense in X. The minimality of f trivially follows.

Remark. Notice that in Theorem 2.9, up to isometry there is no other
compactification (X̃, %̃) of (Y, τ) for which the metric %̃ induces the given
metric τ on Y . In fact, any such compactification is automatically the com-
pletion of (Y, τ).

3. Noninvertible minimal maps on the torus. We are going to
prove that the torus admits minimal noninvertible maps. Two kinds of ex-
amples of such maps will be given—they will be obtained either as a factor
or as an extension of an appropriate minimal homeomorphism of the torus.

We start with some preliminaries.
Above we worked with almost one-to-one maps. Similar terminology is

also used for extensions and factors. Let f : X → X, g : Y → Y and
ϕ : X → Y be continuous, with ϕ surjective. Let ϕ ◦ f = g ◦ ϕ, i.e., ϕ is a
semiconjugacy , f is an extension of g and g is a factor of f . This extension of
g (factor of f) is called almost one-to-one if the semiconjugacy ϕ is an almost
one-to-one map, i.e., if for every y in a residual subset of Y , cardϕ−1(y) = 1.

Let (X, %) be a metric space and f : X → X be continuous. Then two dif-
ferent points x, y ∈ X are called distal if lim infn→∞ %(fnx, fny) > 0, proxi-
mal if lim infn→∞ %(fnx, fny) = 0 and asymptotic if limn→∞ %(fnx, fny) =
0. The map f is called distal if any two different points from X are distal,
and is called point distal if there is a point x0 ∈ X such that for every y ∈ X,
y 6= x0, the points x0, y are distal. If f is distal then it is point distal but,
in general, not conversely. If a misunderstanding can arise, we say f -distal
instead of distal and similarly for proximality and asymptoticity.

A decomposition D of a topological space X is upper semicontinuous
(u.s.c.) if for each element E in D and each open set U containing E there
is an open set V such that E ⊂ V ⊂ U and V is the union of members of D.

Further we need to recall the Roberts–Steenrod theorem from [RS]. Let
M be a compact connected 2-dimensional manifold without boundary (it
need not be orientable) and G be an u.s.c. collection of continua filling
M . Let R(g) denote the mod 2 one-dimensional Betti number of the set g.
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Theorem 1 of [RS] says that if G contains at least two elements and R(g) = 0
for each g ∈ G, then the quotient space M/G is homeomorphic to M . (One
can easily see that the topology used by Roberts and Steenrod is really the
quotient topology in the contemporary terminology.)

A continuous map S from the 2-torus T2 into itself is called a skew prod-
uct if it is of the form S(x, y) = (f(x), g(x, y)). Obviously, if S is minimal
then so is the circle map f . But then f is topologically conjugate to an
irrational rotation x 7→ x + α (see [AK]). A set of the form {x0} × I ⊆ T2

where I is an interval on the circle is said to be a vertical interval on the
torus.

The following lemma admits generalizations but is sufficient for our pur-
poses.

Lemma 3.1. Let Φ be a minimal skew product continuous selfmap of the
2-torus T2. Assume that one of the following holds:

(a) There are (possibly degenerate) compact vertical intervals Jn, n =
0, 1, 2, . . . , such that Φ(Jn) = Jn+1 for every n, and diamJn → 0 as n →
+∞.

(b) There are (possibly degenerate) compact vertical intervals Jn, n =
0,−1,−2, . . . , such that J0 is a singleton and Φ(Jn) = Jn+1 for n = −1,
−2, . . . , and diamJn → 0 as n→ −∞.

Let D be the decomposition of T2 whose elements are the intervals Jn
and the individual points from the rest of the torus. Then the quotient space
T2/D is homeomorphic to T2 and there exists a natural almost one-to-one
factor Ψ : T2/D → T2/D of the map Φ (the corresponding semiconjugacy
is the natural projection p : T2 → T2/D). Moreover , Ψ is a continuous
minimal map.

Proof. According to the discussion preceding the lemma, the intervals
are pairwise disjoint and so the decomposition is well defined. In either
of the cases (a) and (b), Φ maps an element of the decomposition D into
an element of D. Hence there is a unique map Ψ : T2/D → T2/D with
Ψ ◦ p = p ◦ Φ. We prove that Ψ is continuous. Since the map h = p ◦ Φ :
T2 → T2/D is continuous and h = Ψ ◦ p, for each open set U ⊆ T2/D,
h−1(U) = p−1(Ψ−1(U)) is open in T2. Therefore, since p is a quotient map,
the set Ψ−1(U) is open in T2/D. Thus Ψ is continuous and, being a factor
of a minimal map, it is also minimal. Obviously, it is an almost one-to-one
factor of Φ.

Thus to finish the proof we need to show that T2/D is homeomorphic to
T2. To this end we apply the above mentioned Roberts–Steenrod theorem.
Since the mod 2 one-dimensional Betti number of every element of D is zero,
the only thing which remains to be proved is that the partition D is u.s.c.
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First realize that in either of the cases (a) and (b) the decomposition D
consists of individual points and of a sequence of closed (possibly degenerate)
one-dimensional intervals Kn, n = 0, 1, 2, . . . , with diamKn → 0 as n →
∞. Take any element E of D and any open set U containing E. Since
E is compact, without loss of generality we may assume that U is a δ-
neighbourhood of E for some δ > 0. Now let Y be the union of all elements
of D which intersect the boundary of U . Obviously, Y ⊇ bdU . To finish the
proof that D is u.s.c. it is obviously sufficient to show that Y is closed. To
this end let (yn)∞n=1 be a converging sequence of points from Y and y be its
limit. Denote by Dn the element of D containing yn. If for infinitely many
n’s the point yn is contained in the same element Dr then y ∈ Dr ⊆ Y and
we are done. So let there be a subsequence (Dnk)∞k=1 of mutually different
elements. From the fact that diamKn → 0 it follows that also the diameters
of Dnk tend to zero, whence limk→∞ ynk = y ∈ bdU and so again y ∈ Y .

Now we are ready to prove that the torus admits noninvertible minimal
maps. Since there are minimal skew product homeomorphisms of the torus
having asymptotic pairs of points (an example of such a homeomorphism is
in [R]), it is sufficient to prove the following

Theorem 3.2. Any minimal skew product homeomorphism of the 2-
torus T2 having an asymptotic pair of points has an almost one-to-one factor
which is a noninvertible minimal map of T2.

Proof. Let S(x, y) = (f(x), g(x, y)) be a minimal skew product homeo-
morphism of T2. Assume that S has an asymptotic pair of points {z1, z2}.
Of course, these points lie in one fibre, i.e., they are of the form z1 = (x, y1),
z2 = (x, y2).

Since S is a homeomorphism of the above form, the S-image of a vertical
interval is again a vertical interval whose endpoints are the S-images of the
endpoints of the original interval. The points z1, z2 are the endpoints of
two vertical compact intervals. Since these points are asymptotic and S is
uniformly continuous, one of the above mentioned two vertical intervals,
denote it by I0, is such that for In := Sn(I0) we have diam In → 0 as
n→ +∞.

Let D be the decomposition of T2 whose elements are the (pairwise
disjoint) compact intervals In, n ≥ 0, and the individual points from T2 \⋃∞
n=0 In. Consider the quotient space T2/D.

By identifying each of the intervals In, n ≥ 0, to a single point we get,
by Lemma 3.1, an almost one-to-one factor F : T2/D → T2/D of the map
Φ. The map F is continuous, minimal and noninvertible at the point p(I0).

To finish the proof realize that, by Lemma 3.1, T2/D is homeomorphic
to T2.
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The technique from Lemma 3.1 applied to the map from [R] can be used
to prove the following

Theorem 3.3. There is a minimal point distal noninvertible map of the
2-torus T2 such that :

(1) an extension of it is a minimal point distal skew product homeomor-
phism of T2 and

(2) a factor of it is a minimal distal homeomorphism of T2.

Proof. The three minimal maps will be denoted by S, F and H, F being
noninvertible and homeomorphisms S and H being an extension and a factor
of F , respectively.

Let S be the minimal point distal but not distal skew product homeo-
morphism from [R]. It is obtained as an extension of an irrational rotation of
T2. We will use the following properties of S. There is a vertical nondegen-
erate compact interval I0 such that for In := Sn(I0) we have diam In → 0
as n→∞ as well as n→ −∞. There are no S-proximal pairs which are not
S-asymptotic. Two different points x, y ∈ T2 are S-asymptotic if x, y ∈ In
for some integer n and are S-distal otherwise.

The identification of each of the intervals In, n ≥ 0, to a single point
leads, in view of Lemma 3.1, to a minimal continuous selfmap F of T2, a
factor of S. Obviously, F is noninvertible (at the point which corresponds
to the interval I0).

Quite analogously, the further identification of the intervals In, n < 0,
to singletons leads to a minimal homeomorphism H of T2, a factor of F .

Thus H : T2 → T2 is a factor of S which is topologically conjugate to
another factor of S, the map T2/D → T2/D obtained from S by collapsing all
the elements of D to singletons, where D consists of the intervals (In)∞n=−∞
and the individual points from the rest of the torus (we use the fact that, by
Lemma 3.1, T2 and T2/D are homeomorphic). Hence there is a continuous
surjective map π : T2 → T2 with π ◦ S = H ◦ π (the level sets of π are the
elements of D). We are going to show that H is distal.

Suppose, on the contrary, that two different points x, y ∈ T2 are H-
proximal. Since x 6= y, A = π−1(x) and B = π−1(y) are different elements
of D. Pick a ∈ A, b ∈ B. Then a, b are S-distal. Thus for some δ > 0 we
have %(Sna, Snb) ≥ δ, n = 0, 1, 2, . . . , and lim infn→∞ %(Hnx,Hny) = 0. By
a compactness argument there is a sequence nk →∞ and points c, d and z
such that

Hnkx→ z, Hnky → z, Snka→ c, Snkb→ d.

The semiconjugacy gives π(c) = z as well as π(d) = z. Thus c, d lie in
the same interval In. Therefore they are S-asymptotic. Hence, for some m,
%(Sma, Smb) < δ, a contradiction.
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To show the existence of noninvertible minimal maps on the torus we
were using the technique of factorization (see Theorems 3.2 and 3.3). Nev-
ertheless, taking an extension of a minimal homeomorphism can also yield
a noninvertible minimal map. In fact, we are going to show how to modify
the construction of M. Rees [R] to obtain a noninvertible minimal map of
the torus. (In the first part of the proof of Theorem 3.3 we showed that the
map S from [R] has a factor F which is a noninvertible minimal map of the
torus. Now we want to find such a map without using factorization.)

Theorem 3.4. Any irrational rotation of the 2-torus T2 has an almost
one-to-one extension which is a noninvertible minimal map of T2.

Idea of the proof . Extend an irrational rotation of the torus analo-
gously to [R] but in the doubly infinite sequence of squares . . . , A3, A1, A0,
A2, A4, . . . let A2n, n = 1, 2, . . . , be degenerate (i.e., points). (In [R] all the
squares are nondegenerate.)

Just pointing out the differences between the proof of Theorem 3.4 and
that from [R] may not seem sufficient. In fact, the authors of the present
paper find the paper [R] very difficult to read—in particular, there are many
misprints and gaps there. On the other hand the map and the construction
from [R] are very interesting and exhibit nice properties. It seems that in
spite of that they are often overlooked and are not widely known. All things
considered, we have decided to present a detailed proof of Theorem 3.4 as
an appendix.

4. Appendix—detailed proof of Theorem 3.4. Let T : (x, y) 7→
(x + α, y + β) be a minimal homeomorphism of the 2-torus T2 = R2/Z2,
where 1, α, β ∈ R are rationally independent and + : R/Z × R → R/Z
is defined in the obvious way. The circle R/Z will be denoted by K. Let
π : T2 → K be the projection (x, y) 7→ x. If z = (x, y) is a point from the
torus we will denote the set {x} ×K = {π(z)} ×K by Kx and sometimes
also by Kz (we hope that no confusion can arise since it will always be clear
whether the subscript is a point from the torus or only its first coordinate).

Let z0 = (x0, y0) ∈ T2 and for n ≥ 0 let z2n = (x2n, y2n) = Tn(x0, y0)
and z2n+1 = (x2n+1, y2n+1) = T−n−1(x0, y0). So, the trajectory of the point
z0 is . . . , z3, z1, z0, z2, z4, . . . Set X = T2 \⋃∞n=−∞Kzn .

For x, y ∈ K, if x = Z + a, y = Z + b (a, b ∈ R), then let |x − y| =
infp∈Z |a − b + p|. If z1 = (x1, y1) ∈ T2, z2 = (x2, y2) ∈ T2, let |z1 − z2| =
max{|x1−x2|, |y1−y2|}. If f and g are continuous selfmaps of the torus, we
define their distance by ‖f − g‖ = maxz∈T2 |f(z)− g(z)|. The identity map
will be denoted by id. If A is a square, |A| will denote the length of its side.
Sometimes we will use the notation r, s for the set of integers {r, r+1, . . . , s}.
The symbol N will denote the set of nonnegative integers.
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(A)–(H) Definition of a sequence of squares (An)∞n=0 and sequences of
maps (Λn)∞n=0 and (Φn)∞n=0. The square An will have centre zn. The lengths
of the sides of the squares will be chosen to satisfy several conditions (see
below).

(A) Define a family ht, t ∈ [−1, 1], of continuous functions [−1, 1] →
[−1, 1] as follows. Let h0 be the piecewise linear map consisting of three
pieces, whose graph contains the points [−1,−1], [−1/2, 0], [1/2, 0], [1, 1]. For
t 6= 0 let ht be the piecewise linear map consisting of five pieces (of one piece
if t=±1) whose graph contains the points [−1,−1], [h−1

0 (t), t], [−1/2,−|t|/2],
[1/2, |t|/2], [h−1

0 (−t),−t], [1, 1]. Note that h−1 = h1 = id, h−t = ht and only
h0 is not a homeomorphism, h−1

0 (0) = [−1/2, 1/2].

(B) Let A ⊆ T2 be a square with |A| = 2δ > 0 and with centre zA.
Define ΛA = id outside A, and

(0) ΛA(zA + (t, s)) = zA + (t, ht ◦ h−1
δ (s))

for all (t, s) ∈ [−δ, δ]2. It is easy to check that ΛA is the identity on the
boundary of A, hence continuous. Notice also that ΛA does not change the
first coordinate of points of the torus. Since h−1

t (y) is a singleton except
for the case when t = 0 and y = 0, the inverse map Λ−1

A exists everywhere
except at the point zA. Moreover, one can see that Λ−1

A is continuous on
T2 \ {zA}.

Further, if the square A is degenerate to a point, ΛA will denote the
identity on the torus. Then Λ−1

A = id on the whole torus.
Put IzA = Λ−1

A (zA).

(C) For any finite system of squares A0, . . . , An we define Φn = Λn ◦
. . . ◦ Λ1 ◦ Λ0, where Λi stands for ΛAi .

(D) Let |A2n| = 0 for n = 1, 2, . . . , i.e., A2n = {z2n} is a degenerate
square. (This is the only formal difference between our construction and
that from [R] where |An| is never zero.)

(E) For any n let |An| < 1
2 min{|xm − xp| : m 6= p, m, p ≤ n + 5}.

Then, for any n, An does not intersect Kxi , i ∈ 0, n− 1 ∪ n+ 1, n+ 5, and
An ∩ Am = ∅ whenever |m − n| ≤ 5. Note that for such n,m we therefore
have Λn ◦ Λm = Λm ◦ Λn, which will be used later. Note also that even the
sets π(Ai) × K, i = k, k + 5, are pairwise disjoint, where Ai is the square
with centre zA and with side length equal to the largest of the side lengths
of the squares Ak, . . . , Ak+5.

(F) Let |An| < 1/2n, n = 0, 1, 2, . . .

(G) Further, let |An| be so small that |Φ−1
r−1((ar + 1)Ar)| < 1/r where

(ar)∞r=1 is a fixed sequence of integers with ar > 2 and
∏∞
r=1(1− 2/ar) > 0,
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and (ar + 1)Ar denotes the square with the same centre as Ar, and sides
ar + 1 times as long.

(H) To formulate the next condition for the sides of the squares An
we need some notation. First, fix a sequence (A∗n)∞n=0 of squares satisfying
the conditions (A)–(G). For s ≥ 0 let Ms be a closed subset of the torus
which does not contain the points zi, i = 0, s, contains the squares A∗j , j =
s+ 1, s+ 5, (this is possible by (E)) and T (A∗s+3) ∪ T−1(A∗s+3) ⊆ Ms (this
is also possible by (E)).

The map Φ−1
s is defined and is continuous on T2 \ {z0, . . . , zs}. The map

Φ−1
s is not uniformly continuous but Ms ⊆ T2 \ {z0, . . . , zs} is compact and

therefore Φ−1
s is uniformly continuous on Ms. Hence there is ηs > 0 such

that |Φ−1
s (x)− Φ−1

s (y)| < 1/2s whenever x, y ∈Ms and |x− y| ≤ ηs.
Now we are ready to formulate the last conditions for the squares An.

First of all let An ⊆ A∗n (with the same centre as A∗n). Then we have

(1) T (As+3) ∪ T−1(As+3) ⊆Ms.

Finally let

(2) |An| < min{ηn−1, . . . , ηn−5}.
We have finished the definition of the sequence (An)∞n=0.

(I) Definition of maps σ, τ : N → N and Φσ,n, Φτ,n : T2 → T2. Let
σ, τ : N→ N be bijective maps such that T (zn) = zσ(n) and T−1(zn) = zτ(n).
So τ ◦ σ = σ ◦ τ = id on N. Then 0 < |σ(n)− n| ≤ 2 and 0 < |τ(n)− n| ≤ 2
for all n = 0, 1, 2, . . .

Let Φσ,n = Λσ(n) ◦ . . .◦Λσ(1) ◦Λσ(0) and Φτ,n = Λτ(n) ◦ . . .◦Λτ(1) ◦Λτ(0).
We claim that for all n ≥ 2,

(3) Φσ,n = Λ2[n/2]+2 ◦ Λ2[n/2] ◦ Φn−2

and

(4) Φτ,n = Λ2[(n−1)/2]+3 ◦ Λ2[(n−1)/2]+1 ◦ Φn−2.

The formulas can be proved by induction, using the commutativity prop-
erty mentioned in (E) and distinguishing whether n is even or odd.

(J) Uniform convergence of Φn, Φσ,n and Φτ,n to the same limit Φ. We
have ‖Φn+1 −Φn‖ = ‖Λn+1 ◦Φn − id ◦Φn‖ = ‖Λn+1 − id‖ < 1/2n+1 by (F).
Hence Φn uniformly converges on T2 to some continuous map Φ.

Further, ‖Φσ,n−Φ‖ ≤ ‖Φσ,n−Φn−2‖+ ‖Φn−2−Φ‖. The second term on
the right-hand side tends to zero and by (3) the first term equals ‖Λ2[n/2]+2◦
Λ2[n/2] − id‖ ≤ max{|A2[n/2]+2|, |A2[n/2]|}, which by (F) tends to zero.

Similarly one can show that Φτ,n also converges to Φ.

(K) Bijectivity of Φ|X : X → X. The map Φ|X is surjective, being the
uniform limit of surjective maps Φn|X . Suppose that Φ(x) = Φ(y) for some
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x, y ∈ X, x 6= y. Take n with |x−y| ≥ 1/n. Then by (G), for m ≥ n at least
one of the points Φm(x), Φm(y), say Φm(y), does not belong to the square
(am+1 + 1)Am+1. Now we distinguish two cases.

Case 1. If Φm(x) ∈ Am+1, then Φm+1(x) ∈ Am+1 and therefore
|Φm+1(x) − Φm(x)| ≤ |Am+1|. Further, |Φm(x) − Φm(y)| ≥ 1

2am+1|Am+1|.
So, taking into account that Φm+1(y) = Φm(y), we get

|Φm+1(x)− Φm+1(y)| ≥ |Φm(x)− Φm(y)| − |Φm+1(x)− Φm(x)|
≥ |Φm(x)− Φm(y)|(1− 2/am+1).

Case 2. If Φm(x) 6∈ Am+1 then we have Φm+1(x) = Φm(x) and similarly
for y, hence

|Φm+1(x)− Φm+1(y)| = |Φm(x)− Φm(y)|
> |Φm(x)− Φm(y)|(1− 2/am+1).

In any case,

0 = |Φ(x)− Φ(y)| = lim
m→∞

|Φm(x)− Φm(y)|

≥
∞∏

r=n+1

(1− 2/ar)|Φn(x)− Φn(y)|,

whence Φn(x) = Φn(y), contrary to Φn|X being a bijection.
Below in (L), (M) and (N), A and B will be squares with centres zA, zB

and we will assume that T (zA) = zB.

(L) Uniform continuity of LAB = Λ−1
B ◦T ◦ΛA, where A is a nondegen-

erate square, on T2 \KzA (even on T2 \ IzA). On T2 \ IzA , LAB is obviously
defined and continuous.

To prove the uniform continuity of LAB on T2 \ IzA it is sufficient to
prove that LAB can be continuously extended to the whole torus. The set
M = A ∩ (T ◦ ΛA)−1(B) contains an open neighbourhood of IzA and if
zA + (t, s) ∈M \ IzA , then by (0) we have

(5) LAB(zA + (t, s)) = zB + (t, hη ◦ h−1
δ (s))

where |A| = 2δ, |B| = 2η. If we define LAB on the whole set M (includ-
ing IzA) by the formula (5), then it is obviously continuous on M . Thus
LAB, being continuous both on T2 \ IzA and on a neighbourhood of IzA , is
continuous on T2 and the result follows.

(M) Uniform continuity of LAB on T2 if both A and B are degenerate
squares. This is obvious, since in this case LAB = T .

(N) Nonuniform continuity of LAB on T2 \ {zA} if A is a degenerate
and B a nondegenerate square. In this case we have LAB = Λ−1

B ◦T ◦ id and
the result follows from the nonuniform continuity of Λ−1

B .
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(O) Uniform continuity of the map Sn = Φ−1
σ,n ◦ T ◦ Φn defined on the

set X. Since in this part we work on X, all the sets should be considered
to be intersected with X even if we do not state it explicitly.

We prove this by induction. We have S0 = Λ−1
2 ◦ T ◦ Λ0 and since A0 is

a nondegenerate square and A2 is degenerate, it suffices to use (L).
Assume inductively that Sn is uniformly continuous on X. Since Sn =

Φ−1
σ,n ◦ T ◦ Φn and Sn+1 = Φ−1

σ,n ◦ Ln+1,σ(n+1) ◦ Φn where Ln+1,σ(n+1) =
Λ−1
σ(n+1) ◦ T ◦ Λn+1, we have

{z : Sn+1(z) 6= Sn(z)}
⊆ {z : Φn(z) ∈ An+1} ∪ {z : T ◦ Λn+1 ◦ Φn(z) ∈ Aσ(n+1)}.

The maps Λi, Φi do not change the first coordinates of the points and so

{z : Sn+1(z) 6= Sn(z)}
⊆ π(An+1)×K ∪ [xn+1 − |Aσ(n+1)|/2, xn+1 + |Aσ(n+1)|/2]×K
= [xn+1 − αn+1/2, xn+1 + αn+1/2]×K = Dn+1

where αn+1 = max{|An+1|, |Aσ(n+1)|}.
The set Dn+1 is invariant under all Λm and is mapped to

[xσ(n+1) − αn+1/2, xσ(n+1) + αn+1/2]×K = T (Dn+1)

by Ln+1,σ(n+1) and T (Dn+1) is invariant under all Λm.
Since Sn+1 = Sn on (at least) X \Dn+1 and Sn is uniformly continuous

on X, to finish the proof it suffices to show that Sn+1 is uniformly continuous
onDn+1\Kzn+1 . The map Φn is uniformly continuous onDn+1. The compact
set T (Dn+1) does not intersect Kxi for i ∈ {σ(0), σ(1), . . . , σ(n)}, therefore
Φ−1
σ,n is uniformly continuous on T (Dn+1).

We now show that Ln+1,σ(n+1) is uniformly continuous on Dn+1 \Kzn+1 .
But this restriction is uniformly continuous ifAn+1 is nondegenerate (by (L))
or Aσ(n+1) is degenerate, and is not uniformly continuous if An+1 is degen-
erate but Aσ(n+1) nondegenerate. Since by the definition of the sequence
(Ai)∞i=0 this last case cannot occur, Ln+1,σ(n+1) is uniformly continuous on
Dn+1 \Kzn+1 .

Now the uniform continuity of

Sn+1 = Φ−1
σ,n ◦ Ln+1,σ(n+1) ◦ Φn

on the set Dn+1 \Kzn+1 follows from the facts that Φn is uniformly continu-
ous on Dn+1 \Kzn+1 , Φn(Dn+1 \Kzn+1) = Dn+1 \Kzn+1 , Ln+1,σ(n+1) is uni-
formly continuous on Dn+1 \Kzn+1 , Ln+1,σ(n+1)(Dn+1 \Kzn+1) ⊆ T (Dn+1)
and Φ−1

σ,n is uniformly continuous on T (Dn+1).
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(P) Nonuniform continuity of the map S∗n = Φ−1
τ,n ◦ T−1 ◦ Φn defined

on the set X for n ≥ 2. As in the previous part, all the sets should be
considered to be intersected with X.

First notice that S∗0 and S∗1 are uniformly continuous on X by the same
argument as for Sn, n ∈ N. Roughly speaking, the reason why S∗n, n ≥ 2,
are not uniformly continuous on X is that the map L∗2,0 = Λ−1

0 ◦ T−1 ◦
Λ2 = Λ−1

0 ◦ T−1 ◦ id is not uniformly continuous (this map is defined on
T2 \ {z2}, it sends the points close to z2 to points close to z0 and is not
uniformly continuous on any neighbourhood of z2). We show that this fact
really implies the nonuniform continuity of S∗n, n ≥ 2.

Quite analogously to the case of the maps Sn (just replace T by T−1

and σ by τ) we get

{z : S∗n+1(z) 6= S∗n(z)} ⊆ [xn+1 − α∗n+1/2, xn+1 + α∗n+1/2]×K = D∗n+1

where α∗n+1 = max{|An+1|, |Aτ(n+1)|}. The set D∗n+1 is invariant under all
Λm and is mapped to [xτ(n+1)−α∗n+1/2, xτ(n+1)+α∗n+1/2]×K = T−1(D∗n+1)
by L∗n+1,τ(n+1) = Λ−1

τ,n+1 ◦ T−1 ◦ Λn+1 and T−1(D∗n+1) is invariant under
all Λm.

The map S∗1 is uniformly continuous on X and S∗2 = S∗1 on (at least)
X \D∗2 , so S∗2 is uniformly continuous on X \D∗2 . But S∗2 = Φ−1

τ,1 ◦L∗2,0 ◦Φ1 is
not uniformly continuous onD∗2 because Φ1 = id onD∗2 , L∗2,0 is not uniformly
continuous on D∗2 , L∗2,0(D∗2) = T−1(D∗2) and Φ−1

τ,1 = id on T−1(D∗2). Thus
we have proved that S∗2 is not uniformly continuous on X ⊇ X \D∗3 ⊇ D∗2 .

Assume that S∗n is not uniformly continuous on X \ D∗n+1. We have
S∗n+1 = S∗n on X \ D∗n+1, therefore S∗n+1 is not uniformly continuous on
X ⊇ X \D∗n+1.

(Q) The sequences (Sn)∞n=0 and (S∗n)∞n=0 are Cauchy sequences on X.
By (3) for n ≥ 2 we have

Sn = Φ−1
σ,n ◦ T ◦ Φn = Φ−1

n−2 ◦ Λ−1
2[n/2] ◦ Λ−1

2[n/2]+2 ◦ T ◦ Λn ◦ Λn−1 ◦ Φn−2

and
Sn+1 = Φ−1

σ,n ◦ Λ−1
σ(n+1) ◦ T ◦ Λn+1 ◦ Φn

= Φ−1
n−2 ◦ Λ−1

2[n/2] ◦ Λ−1
2[n/2]+2 ◦ Λ−1

σ(n+1) ◦ T ◦ Λn+1 ◦ Λn ◦ Λn−1 ◦ Φn−2.

Since Sn = Sn+1 on X \Dn+1, we need only estimate ‖Sn+1−Sn‖ on Dn+1.
First notice that n + 1 6∈ {n − 1, n} and so An−1 and An are disjoint

from Dn+1. Further, both for even and odd n (note that n ≥ 2), σ(n+ 1) 6∈
{2[n/2], 2[n/2] + 2} and so A2[n/2] and A2[n/2]+2 are disjoint from T (Dn+1).
Finally, recall that Φn−2 as well as all Λi do not change the first coordinates
of points. As a result of all these facts we get

Sn = Φ−1
n−2 ◦ T ◦ Φn−2 on Dn+1
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and
Sn+1 = Φ−1

n−2 ◦ Λ−1
σ(n+1) ◦ T ◦ Λn+1 ◦ Φn−2 on Dn+1.

Hence, on X we have

‖Sn+1 − Sn‖
= ‖Φ−1

n−2 ◦ Λ−1
σ(n+1) ◦ T ◦ Λn+1 ◦ Φn−2 − Φ−1

n−2 ◦ T ◦ Λn+1 ◦ Φn−2

+ Φ−1
n−2 ◦ T ◦ Λn+1 ◦ Φn−2 − Φ−1

n−2 ◦ T ◦ Φn−2‖
≤ ‖Φ−1

n−2 ◦ Λ−1
σ(n+1) − Φ−1

n−2‖+ ‖Φ−1
n−2 ◦ T ◦ Λn+1 − Φ−1

n−2 ◦ T‖

≤ max
n−1≤r≤n+3

‖Φ−1
n−2 ◦ Λ−1

r − Φ−1
n−2‖+ ‖Φ−1

n−2 ◦ T ◦ Λn+1 − Φ−1
n−2 ◦ T‖

(in the last inequality we used the fact that |σ(n)−n| ≤ 2 and so σ(n+1) ∈
n− 1, n+ 3).

By (E), if n − 1 ≤ r ≤ n + 3, x ∈ X and Λ−1
r (x) 6= x (hence, x ∈ Ar),

then x,Λ−1
r (x) ∈ Ar ∩Mn−2 (we used the fact that by (H) for any k, Mk

contains the squares Ak+1, . . . , Ak+5).
By (2), |Λ−1

r (x)− x| < |Ar| < ηn−2. It follows that

(10) max
n−1≤r≤n+3

‖Φ−1
n−2 ◦ Λ−1

r − Φ−1
n−2‖ < 1/2n−2.

If T ◦ Λn+1(x) 6= T (x) then Λn+1(x) 6= x and so x,Λn+1(x) ∈ An+1.
Then by (2), |T ◦ Λn+1(x) − T (x)| = |Λn+1(x) − x| ≤ |An+1| < ηn−2. By
(1), T (An+1) ⊆ Mn−2, whence T (x), T ◦ Λn+1(x) ∈ Mn−2 and taking into
account the above inequality, we get

(11) ‖Φ−1
n−2 ◦ T ◦ Λn+1 − Φ−1

n−2 ◦ T‖ < 1/2n−2.

From (10) and (11) we have ‖Sn+1 − Sn‖ < 1/2n−3 and so (Sn)∞n=0 is a
Cauchy sequence. Denote its uniform limit on X by S.

The proof for (S∗n)∞n=0 is analogous, the difference being that one has τ
and T−1 instead of σ and T , respectively. Denote the uniform limit of S∗n
on X by S∗.

(R) Definition of the continuous surjective map S̃ on T2. Since the map
Sn is uniformly continuous on the dense subset X of T2, there is a unique
continuous extension S̃n of Sn to T2. Since (Sn)∞n=0 is a Cauchy sequence,
obviously (S̃n)∞n=0 is also Cauchy and so has a uniform limit S̃. Clearly,
S̃|X = S. Since Sn(X)=X for any n, we have S(X)=X and so S̃(T2)=T2.

(S) Noninvertibility of S̃. Recall that, by definition, Φσ,n ◦ Sn = T ◦Φn
and Φτ,n◦S∗n = T−1 ◦Φn on the set X. Further, Φσ,n, Φτ,n and Φn uniformly
converge to Φ on the torus, and the map Φ as well as all the maps Φσ,n, Φτ,n,
Φn, n = 1, 2, . . . , are uniformly continuous. It follows that Φ◦S = T ◦Φ and
Φ ◦ S∗ = T−1 ◦ Φ on X. (We used the fact that fn ◦ gn uniformly converge
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to f ◦ g whenever gn uniformly converge to g, fn uniformly converge to f
and the maps fn, n = 1, 2, . . . , are equicontinuous—which is the case when
fn, n = 1, 2, . . . , and f are uniformly continuous and fn uniformly converge
to f .)

Since Φ is bijective (see (K)), we get S = Φ−1◦T◦Φ and S∗ = Φ−1◦T−1◦Φ
on X. Hence S∗ = S−1 on X. Since S̃|X = S and S̃(X) = X we have
(S̃|X)−1 = S∗. But S∗ is not uniformly continuous on X (by (P)), therefore
S̃ does not have an inverse on T2.

(T) Minimality of S̃. Take any nonempty closed set M ⊆ T2 with
S̃(M) ⊆ M ; we need to show that M = T2. Since S̃ is an extension of
T , we have T (Φ(M)) = Φ(S̃(M)) ⊆ Φ(M) and by minimality of T we
get Φ(M) = T2. Recall that Φ = limn→∞ Φn and the maps Φn do not
change the first coordinate of points. Therefore also Φ has this property,
i.e., Φ(x, y) = (x, φ(x, y)). Hence Φ(X) = X and Φ(T2 \ X) = T2 \ X. It
follows that Φ(M ∩ X) = X. Since Φ|X : X → X is a bijection (see (K)),
M ∩ X = X. Now use the density of X and the closedness of M in T2 to
conclude that M = T2.

Added in proof (March 2001). After submitting the paper the authors (S. Kolyada
and L’. Snoha) and H. Bruin found a compact metric space which admits a minimal map
but does not admit any minimal homeomorphism (cf. Introduction).
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Tôhoku Math. J. 32 (1980), 177–188.

[BL] A. M. Blokh and M. Lyubich, Measurable dynamics of S-unimodal maps, Ann.
Sci. Ecole Norm. Sup. 24 (1991), 545–573.
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