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Abstract. The ample hierarchy of geometries of stables theories is strict. We gen-
eralise the construction of the free pseudospace to higher dimensions and show that the
n-dimensional free pseudospace is ω-stable n-ample yet not (n + 1)-ample. In particular,
the free pseudospace is not 3-ample. A thorough study of forking is conducted and an
explicit description of canonical bases is given.

1. Introduction. Morley’s renowned categoricity theorem [9] described
any model of an uncountably categorical theory in terms of basic founda-
tional bricks, so-called strongly minimal sets. A long-standing conjecture
aimed to understand the geometry of a strongly minimal set in terms of
three archetypal examples: a trivial set, a vector space over a division ring
and an irreducible curve over an algebraically closed field. The conjecture
was proven wrong [7] by obtaining in a clever fashion a non-trivial strongly
minimal set which does not interpret a group. In particular, Hrushovski’s
new strongly minimal set does not interpret infinite fields, which follows from
the fact that the resulting structure is CM-trivial. Recall that CM-triviality
is a generalisation of 1-basedness and it prohibits a certain point-line-plane
configuration which is present in Euclidean geometry. The simplest exam-
ple of a CM-trivial theory that is not 1-based is the free pseudoplane: an
infinite forest with infinite branching at every node. CM-trivial theories are
rather rigid and in particular definable groups of finite Morley rank are
nilpotent-by-finite [10].

Taking the pseudoplane as a guideline, a non-CM-trivial ω-stable the-
ory which does not interpret an infinite field was constructed in a purely
combinatorial way [2]. The structure so obtained is of infinite rank, and it
remains still open whether the construction could be modified to produce
one of finite Morley rank. In [11, 4] a whole hierarchy of new geometries
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(called n-ample) was exhibited, infinite fields being at the top of the class-
fication. Evans suggested that his example could be used to show that the
hierarchy is strict, though no proof was given.

The goal of this article is to generalise the aforementioned construction
to higher dimensions in order to show that the N -dimensional pseudospace
is N -ample yet not (N + 1)-ample, thus showing that the ample hierarchy
is proper. After a thorough study of the pseudospace, we are able to sim-
plify the combinatorics behind the original construction. In particular, we
characterise non-forking and give explicit descriptions of canonical bases of
finitary types over certain substructures. Moreover, we show that the theory
of the pseudospace has weak elimination of imaginaries.

Tent [12] obtained the same result earlier independently; however, we
present a different construction and axiomatisation of the free pseudospace
for higher dimensions. We are indebted to Tent for pointing out that the
prime model of the 2-dimensional free pseudospace could be seen as a build-
ing. We would like to express our gratitude to Yoneda for a careful reading
of a first version of this work. We thank the referee for helpful remarks.

2. Ample concepts. Throughout this article, we assume a certain
knowledge of stability theory, in particular non-forking and canonical bases.
We refer the reader to [13] for a gentle and careful explanation of these no-
tions. Throughout this article, we work inside a sufficiently saturated model
of a first-order theory T and all sets are small subsets of it.

We first state a fact, which we believe is common knowledge, that will
be used repeatedly.

Fact 2.1. Given a stable theory T and sets A, B, C and D, if acleq(B)∩
acleq(C) = acleq(A) and D |̂

A
BC, then

acleq(DB) ∩ acleq(DC) = acleq(DA).

Proof. Pick e in acleq(DB) ∩ acleq(DC). The independence D |̂
A
BC

implies that Cb(De/BC) lies in acleq(B) ∩ acleq(C) = acleq(A), so e lies in
acleq(DA).

Recall now the definition of CM-triviality and n-ampleness [11, 4].

Definition 2.2. Let T be a stable theory. The theory T is 1-based if
for every pair of algebraically closed (in T eq) subsets A ⊂ B and every real
tuple c, the canonical base Cb(c/A) is algebraic over Cb(c/B). Equivalently,
for every algebraically closed set A (in T eq) and every real tuple c, the
canonical base Cb(c/A) is algebraic over c.

The theory T is CM-trivial if for every pair of algebraically closed (in
T eq) subsets A ⊂ B and every real tuple c, if acleq(Ac) ∩ B = A, then
Cb(c/A) is algebraic over Cb(c/B).
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The theory T is called n-ample if there are n + 1 real tuples satisfying
the following conditions (possibly working over parameters):

(1) acleq(a0, . . . , ai) ∩ acleq(a0, . . . , ai−1, ai+1) = acleq(a0, . . . , ai−1) for
every 0 ≤ i < n,

(2) ai+1 |̂ ai
a0, . . . , ai−1 for every 1 ≤ i < n,

(3) an 6 |̂ a0.
By inductively choosing models Mi ⊃ ai such that

Mi |̂
ai

M0, . . . ,Mi−1, ai+1, . . . , an,

Fact 2.1 allows us to deduce the following, which was already remarked in
[10, Corollary 2.5] in the case of CM-triviality.

Remark 2.3. In the definition of n-ampleness, we can replace all tuples
by models.

Corollary 2.4. A stable theory T is n-ample if and only if T eq is.

Clearly, every 1-based theory is CM-trivial. Furthermore, a theory is
1-based if and only if it is not 1-ample; it is CM-trivial if and only if it is
not 2-ample [11]. Also, being n-ample implies (n − 1)-ampleness: by con-
struction, if a0, . . . , an witness that T is n-ample, the sequence a0, . . . , an−1
witnesses that T is (n − 1)-ample. In order to see this, we need only show
that an−1 6 |̂ a0, which follows from

an 6 |̂ a0 and an |̂
an−1

a0,

by transitivity.
In order to prove that the N -dimensional free pseudospace is not (N+1)-

ample, we need only consider some of the consequences of the conditions
listed above. Therefore, we will isolate such conditions for Section 8.

Remark 2.5. If the (possibly infinite) tuples a0, . . . , an witness that T
is n-ample, they satisfy the following conditions:

(a) an |̂ ai
ai−1 for every 1 ≤ i < n.

(b) acleq(ai, ai+1) ∩ acleq(ai, an) = acleq(ai) for every 0 ≤ i < n− 1.
(c) an 6 |̂ acleq(ai)∩acleq(ai+1)

ai for every 0 ≤ i < n− 1.

If the tuples a0, . . . , an witness that T is n-ample over some set A of
parameters, by adding all elements of A to each of the tuples, we may
assume that all the conditions hold with A = ∅.

Proof. Let a0, . . . , an witness that T is n-ample.
First, the intersection acleq(a1) ∩ acleq(a2) is contained in acleq(a0) by

property (1). For i ≤ 2, we have

acleq(ai) ∩ acleq(ai+1) ⊂ acleq(ai) ∩ acleq(a0, . . . , ai−1)
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again by (1). Now, (2) implies that acleq(ai)∩acleq(a0, . . . , ai−1) is contained
in acleq(ai) ∩ acleq(ai−1). By induction, we have

acleq(ai) ∩ acleq(ai+1) ⊂ acleq(a0).

The independence an |̂ ai
ai−1 follows directly from property (2) and

yields (a). Since an |̂ ai+2
a0, . . . , ai+1, we have

an |̂
ai,ai+2

ai+1.

Hence,

acleq(ai, ai+1) ∩ acleq(ai, an) ⊂ acleq(ai, ai+1) ∩ acleq(ai, ai+2),

and thus it is contained in acleq(a0, . . . , ai) by (1). Since ai+1 |̂ ai
a0, . . . , ai−1,

we get (b).
If

an |̂
acleq(ai)∩acleq(ai+1)

ai

for some 0 ≤ i < n − 1, then i > 0 by (3). Since an |̂ ai
a0, . . . , ai−1,

transitivity gives
an |̂

acleq(ai)∩acleq(ai+1)

a0, . . . , ai.

Thus, we obtain an |̂ a0
a0, . . . , ai and in particular an |̂ a0

a1. Since an |̂ a1
a0

by (2) and acleq(a0)∩ acleq(a1) = ∅ by (1), this implies that an |̂ a0, which
contradicts (3).

In [3], a weakening of CM-triviality was introduced, following the spirit
of [8], where some of the consequences for definable groups in 1-based theo-
ries were extended to type-definable groups in theories with the Canonical
Base Property. For the purpose of this article, we extend the definition to
all values of n. However, we do not know of any definability properties for
groups that may follow from the general definition.

Let Σ be an ∅-invariant family of partial types. Recall that a type p
over A is internal to Σ, or Σ-internal, if for every realisation a of p there is
some superset B ⊃ A with a |̂

A
B, and there are realisations b1, . . . , br of

types in Σ based on B such that a is definable over B, b1, . . . , br. If we replace
definable by algebraic, then p is almost internal to Σ or almost Σ-internal.

Definition 2.6. A stable theory T is called n-tight (possibly working
over parameters) with respect to the family Σ if, whenever there are n+ 1
real tuples a0, . . . , an satisfying:

(1) acleq(a0, . . . , ai) ∩ acleq(a0, . . . , ai−1, ai+1) = acleq(a0, . . . , ai−1) for
every 0 ≤ i < n,

(2) ai+1 |̂ ai
a0, . . . , ai−1 for every 1 ≤ i < n,

then Cb(an/a0) is almost Σ-internal over a1.
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Remark 2.7. As before, we may assume that all tuples are models. In
particular, the theory T is n-tight if and only if T eq is.

A theory T is 2-tight with respect to Σ if for any sets A ⊂ B and every
tuple c, if acleq(Ac)∩acleq(B) = acleq(A), then Cb(c/A) is almost Σ-internal
over Cb(c/B). In particular, this notion agrees with [3, Definition 3.1].

If T is not n-ample, it is n-tight with respect to any family Σ. Further-
more, if T is (n− 1)-tight, it is n-tight.

Proof. The equivalence between both definitions is a standard reformula-
tion by setting a0 = A, a1 = Cb(c/B) and a2 = c for one direction (working
over acleq(a0) ∩ acleq(a1)), and A = a0, B = a0 ∪ Cb(a2/a1) and c = a2 for
the other.

If T is not n-ample, it is clearly n-tight, since algebraic types are always
almost Σ-internal for any Σ.

Suppose now that T is (n−1)-tight, and consider n+ 1 tuples a0, . . . , an
witnessing (1) and (2). So do a0, . . . , an−1 as well. Hence, the canonical base
Cb(an−1/a0) is almost Σ-internal over a1.

Since an |̂ an−1
a0, by transitivity Cb(an/a0) is algebraic over Cb(an−1/a0)

and therefore the former is also almost Σ-internal over a1.

In this article, we will show that the free N -dimensional pseudospace is
N -ample yet not (N + 1)-ample. Furthermore, if N ≥ 2, it is N -tight with
respect to the family of Lascar rank 1 types.

3. Fräıssé limits. The results in this section were obtained by the third
author in an unpublished note [15] (in a slightly more general context). We
include them here for completeness.

Throughout this section, let K denote a class of structures closed under
isomorphisms in a fixed language L. We assume that the empty structure
0 is in K. Furthermore, a class S of embeddings between elements of K
is given, called strong embeddings, containing all isomorphisms and closed
under composition. We also assume that the empty map 0 → A is in S for
every A ∈ K.

We call a substructure A of B strong if the inclusion map is in S. We
denote this by A ≤ B.

Definition 3.1. An increasing chain {Ai}i<ω of strong substructures is
rich if, for all i < ω and all strong f : Ai → B, there is some i ≤ j < ω and
a strong g : B → Aj such that g ◦ f : Ai → Aj is the inclusion map.

A Fräıssé limit of (K,S) is the union of a rich sequence.

Theorem 3.2. Suppose (K,S) satisfies the following conditions:

(1) There are at most countably many isomorphism types in K.
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(2) For each A and B in K, there are at most countably many strong
embeddings A→ B.

(3) K has the amalgamation property with respect to strong embeddings.

Then rich sequences exist and all Fräıssé limits are isomorphic.

The existence of rich sequences is easy to show. Uniqueness will follow
from the next lemma. For that, let us say that A is r-strong in a Fräıssé
limit M , denoted by A ≤r M , if M is the union of a rich sequence starting
with A.

Lemma 3.3. A Fräıssé limit M has the following properties:

(a) ∅ ≤r M .
(b) For every finite A ≤r M and every B in K such that A ≤ B, there

is an r-strong subset B′ of M containing A and isomorphic to B
over A.

Proof. We observe first that if A0 ≤ A1 ≤ · · · is a rich sequence and
B ≤ A0, then B ≤ A0 ≤ A1 ≤ · · · is also rich. This implies (a). For (b),
choose a rich sequence A = A0 ≤ A1 ≤ · · · with union M . If B ≥ A is given,
there exists, by richness, some index j and B′ ≤ Aj isomorphic to B over A.
The set B′ is r-strong in M , since the subsequence B′ ≤ Aj ≤ Aj+1 ≤ · · ·
is again rich.

The lemma implies that Fräıssé limits are isomorphic by a standard back-
and-forth argument: given two Fräıssé limits M and M ′ with rich sequences
A0 ≤ A1 ≤ · · · and A′0 ≤ A′1 ≤ · · · , consider an isomorphism B → B′,
where B is strong in Ai, and B′ is strong in A′i. Then there is an extension
to an isomorphism C → C ′ such that Ai ≤ C ≤ Aj and A′i ≤ C ′ ≤ A′j for
some j > i. This results in an ascending sequence of isomorphisms whose
union yields an isomorphism M →M ′.

Corollary 3.4. Assume that M and M ′ are Fräıssé limits. Given sets
B ≤r M and B′ ≤r M

′, every isomorphism B → B′ extends to an isomor-
phism M →M ′.

The convention that S contains all isomorphisms and is closed under
composition represents no obstacle, thanks to the following easy remark.

Remark 3.5. Let S be a set of embeddings between elements of K with
the amalgamation property. The closure of S together with all isomorphisms
under composition has again the amalgamation property.

4. The free pseudospace. In this section, we will construct and ax-
iomatise the N -dimensional free pseudospace, which is a generalisation of [2],
based on the free pseudoplane. An alternative axiomatisation, in terms of
flags, may be found in [1].
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Remark 4.1. Recall that the (free) pseudoplane is a bicolored graph
with infinite branching and no loops. These elementary properties describe
a complete ω-stable theory of Morley rank ω.

Quantifier elimination is obtained after adding the collection of binary
predicates:

dn(x, y) ⇔ the distance between x and y is exactly n.

In particular, since there are no loops, the set d1(x, a) is strongly min-
imal. Morley rank for this theory is additive and agrees with Lascar rank.
Given the type of an element c over an algebraically closed set A, its canon-
ical base Cb(c/A) is the unique point a in A whose distance to c is smallest
possible (or empty if there is no path between c and A). It follows that the
theory has weak elimination of imaginaries and is moreover CM-trivial but
not 1-based.

The idea behind the construction of the free pseudospace [2] is to take a
free pseudoplane, whose vertices of one color are called planes and vertices of
the other are referred to as lines, and on each line put an infinite set of points,
such that, for each plane, the lines which are incident with it, together with
the points on them form again a free pseudoplane. Nevertheless, the actual
construction was rather combinatorial and therefore less intuitive. Instead,
our approach consists in building a model out of some basic operations and
study the complete theory of such a structure, in order to show that it agrees
with the free pseudospace in [2] for dimension N = 2.

Definition 4.2. For N ≥ 1, a colored N -space A is a colored graph
with colors (or levels) A0, . . . ,AN such that an element in Ai can only be
linked to vertices inAi−1∪Ai+1. We will furthermore consider two (invisible)
levels A−1 and AN+1, consisting of a single imaginary element a−1 and aN+1

respectively, which are connected to all vertices in A0 and AN respectively.
Given such a graph A and a subset s of {0, . . . , N}, we set

As(A) =
⋃
i∈s
Ai(A).

Given x and y in As(A), their distance in As(A) is denoted by dA
s (x, y).

Given a colored N -space A and vertices a in Al(A) and b in Ar(A), we
say that b lies over a (or a lies beneath b) if l < r and there is a path
of the form a = al, al+1, . . . , ar = b. Note that ak must be in Ak(A). By
convention, the point aN+1 lies over all other vertices (including a−1) and
a−1 lies beneath all other vertices.

With A, a and b as above, we denote by Aa the subgraph of A consisting
of all the elements of A lying over a. Similarly Ab denotes the subgraph of
all the elements lying beneath b. The subgraph Ab

a = (Aa)b consists of all
the elements of A lying between a and b, if a lies beneath b.
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Observe that, after a suitable renumbering of levels, the subgraph Aa

becomes a colored (N − l− 1)-space, whereas Ab becomes a colored (r− 1)-
space and Ab

a a colored (r − l − 2)-space.

Convention. Intervals are assumed to be non-empty.

Definition 4.3. Given an interval s = (ls, rs) (where −1 and N + 1
are possible values) in {0, . . . , N} and a colored N -space A with two dis-
tinguished vertices als in Als(A) beneath ars in Ars(A), we say that B =
A∪{bi | i ∈ s} with bi ∈ Ai(B) is obtained from A by applying the operation
αs on (als , ars) if

(a) The sequence als , bls+1, . . . , brs−1, ars is a path in B.
(b) B has no new edges besides the aforementioned (and those of A).

If either ls = −1 or rs = N + 1, then als lies automatically beneath ars .

The N -dimensional pseudospace will now be obtained by iterating count-
ably many times all operations αs for s varying over all intervals in [0, N ].
Clearly, we have the following.

Remark 4.4. If both B1 and B2 are obtained from A by applying re-
spectively αs1 and αs2 , then the graph-theoretic amalgam C = B1 ⊗A B2 is
obtained by applying αs1 to B2 and αs2 to B1.

Definition 4.5. Given two colored N -spaces A and B, we say that A a
strong subspace of B if A is a subgraph of B and B can be obtained from A
by a (possibly infinite) sequence of operations αs for varying s. We denote
this by A ≤ B.

A strong embedding A → B is an isomorphism of A with a strong sub-
space of B. Let K∞ be the class of all finite colored N -spaces A with ∅ ≤ A.
By the last remark and Remark 3.5, the class K∞ has the amalgamation
property with respect to strong embeddings. Clearly, there are only count-
ably many isomorphism types in K∞ and only finitely many maps between
two structures of K∞. We may consider the subclass K0, where by a 0-strong
embedding we only allow operations αs for singleton s. Again, the class K0

has the amalgamation property.

By Theorem 3.2, we define the following structures:

Definition 4.6. Let MN
∞ be the Fräıssé limit of K∞ with strong embed-

dings and MN
0 be the Fräıssé limit of K0 with 0-strong embeddings, starting

from a given (fixed) path a0 − · · · − aN , where ai ∈ Ai.

We will drop the superscript N in MN
∞ or MN

0 when it is clear from the
context.

In particular, the structure M2
0 so obtained agrees with the prime model

constructed in [2], as Theorem 4.14 will show.
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Remark 4.7. Let p be either 0 or ∞. Consider a in Al(M
N
p ) and b be

in Ar(M
N
p ) lying over a. Then

(MN
p )a ∼= MN−l−1

p , (MN
p )b ∼= Mr−1

p , (MN
p )ba
∼= Mr−l−2

p .

Furthermore, given −1 ≤ l < r ≤ N + 1, we have A[l,r](M
N
p ) ∼= Mr−l−1

p .

Proof. Given a colored N -space M and corresponding vertices a and b,
every operation in Ma can be extended to an operation on M . Moreover,
if an operation on M has no meaning restricted to Ma, then Ma does not
change. The other statements can be proved in a similar fashion.

We will now introduce a notion, simple connectedness, which tradition-
ally implies path-connectedness topologically. Despite this abuse of lan-
guage, we will use this term since it implies that loops are not punctured
(cf. Remark 4.9(2) and Corollary 6.16).

Definition 4.8. A colored N -space M is simply connected if, whenever
we are given l < r in [−1, N + 1], an interval t ⊂ [l, r], vertices a in Al(M)
beneath b in Ar(M) and x and y in At(M) lying between a and b which are
t-connected by a path of length k not passing through a nor b, then there
is a path in At(M) of length at most k connecting x and y such that every
vertex in the path lies between a and b.

Note that simple connectedness is an empty condition for l = −1 and
r = N + 1.

Remark 4.9. Let M be a simply connected connected colored N -space.
Then

(1) The subgraph A[l,l+1](M) has no closed paths with no repetitions.
(2) In a closed path P inA[l,r](M), all elements in P∩A[l,r) are connected

(in A[l,r)(M)), and likewise for the dual statement.

Proof. For (1), set r = N+1, l = l and take t = [l, l+1] in the definition
of simple connectedness.

For (2), given x and y in P ∩ A[l,r), if they are connected using an arc
of P in A[l,r)(M), there is nothing to prove. Otherwise, replace successively
every occurrence of a vertex z in P ∩ Ar(M) by a subpath in A[l,r)(M)
connecting the immediate neighbors of z in P .

As the following lemma shows, simple connectedness is preserved under
application of the operations αs.

Lemma 4.10. Let A be a simply connected colored N -space. If B is ob-
tained from A by applying αs on (als , ars), then B is simply connected as
well.
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Proof. By hypothesis, the set B equals A ∪ SB, where SB is the path

als , bls+1, . . . , brs−1, ars .

Let now t ⊂ [l, r] be given, as well as a in Al beneath b in Ar and vertices
x and y in At lying between a and b connected by a path P in At(B) of
length k. We consider the following cases:

(a) Both a and b lie in B \A. Take the direct path between x and y.
(b) Both a and b lie in A. We consider the following mutually exclusive

subcases:

(i) Both x and y lie in A. We can replace all repetitions in P to
transform it into a path fully contained in A of length at most k.
Since A is simply connected, the result follows.

(ii) Both x and y lie in SB. Again, take the direct path between x
and y.

(iii) Exactly one vertex, say y, lies in A. The path P must contain
either als or ars . Suppose that P contains ars . Hence, we can
decompose P into the direct connection (which lies between a
and b) from x to ars and a path P ′ in At(A) from ars to y. As A
is simply connected, we obtain a path in At(A) between a and
b connecting y and ars whose length is bounded by the length
of P ′. This yields a path from y to x between a and b of the
appropriate length.

(c) Exactly one vertex in {a, b} lies in A. Suppose that a lies in A \ B
and b lies in SB \ A. In particular, the vertex a lies beneath als .
Consider the following mutually exclusive cases:

(i) Both x and y lie in SB. The direct path between them in SB
again yields the result.

(ii) Both x and y lie in A. If either x or y equals als , then one
of them lies over the other and the direct connection between
them yields the result. Otherwise, we may assume that both x
and y lie beneath als . Let Q be the path consisting of the direct
connection from x to als and from als to y. If the path P con-
necting x and y necessarily passes through als , then its length
is at least the length of Q and the result follows. Otherwise,
since A is simply connected, there is a path connecting x and
y of length at most k between a and als , and thus between a
and b.

(iii) Exactly one, say y, is in A. Then y must lie beneath x and the
direct path between them yields the result.

Since the only moment a vertex from Alt ∪ Art was added was in case
(c)(ii), namely als (though only if the original path passed through it), a care-
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ful analysis of the previous proof yields the following, which corresponds to
Axiom (Σ4) in [2]; though we will not require its full strength.

Corollary 4.11. A colored N -space B with ∅ ≤ B has the following
property. Given t = [lt, rt] ⊂ [l, r], as well as a in Al(B) beneath b in Ar(B),
vertices x and y in At(B) lying between a and b and a path in At(B) of length
k connecting them, there is a path P in At(B) between a and b connecting
x and y of length at most k such that all vertices in P with levels Alt ∪Art

come from the original path.

By iterating Lemma 4.10, we obtain the following:

Corollary 4.12. If A is simply connected, then so is every strong ex-
tension of A.

The following observation can be easily shown.

Lemma 4.13. Let B be obtained from A by applying the operation αs.
Then, for every t ⊂ {0, . . . , N} and every x and y in At(A),

dA
t (x, y) = dB

t (x, y).

Theorem 4.14 (Axioms). Both Fräıssé limits M∞ and M0 have the
following elementary properties:

(1) Simple connectedness.
(2) Given a finite subset A and a non-empty interval s = (l, r), for any

two elements al and ar in A with ar over al, there are paths

al, bl+1, . . . , br−1, ar

such that the s-distance of bi to As(A) is arbitrarily large. In partic-
ular, if s = {i}, there is a new vertex bi not contained in A.

Proof. (1) This follows from Corollary 4.12.
(2) After enlarging A, we may assume that A ≤ M∞. One single appli-

cation of αs on (al, ar) implies that the s-distance of bi to A is infinite and
remains so at the end of the construction by Lemma 4.13.

If we are considering M0, we may assume as well that A ≤ M0. Further-
more, we may suppose that in order to build up M0 from A, each of the
operations αi, for i in s, was applied k times consecutively on each of the
new vertices in Ai+1 and Ai−1 between al and ar. Lemma 4.13 now yields
the desired result.

Definition 4.15. We will denote by PSN the collection of sentences
expressing properties (1) and (2) in Theorem 4.14.

Definition 4.16. A flag is a subgraph of a colored N -space M of the
form

a0 − · · · − aN ,
where ai belongs to Ai(M) and they form a path.



108 A. Baudisch et al.

A subset D of a colored N -space M is complete if every point in D is
contained in a flag in D.

Observe that, if D satisfies Axiom (2), it is complete.

Definition 4.17. A subset D of a colored N -space M is nice if it sat-
isfies the following conditions:

(1) For any two (possibly imaginary) points a and b in D,

Db
a = D ∩M b

a.

(2) For all intervals t ⊂ {0, . . . , N} and all x and y in At(D),

dM
t (x, y) <∞ ⇒ dD

t (x, y) <∞.
A set D is wunderbar in M if it satisfies the following:

(1) For any two (possibly imaginary) points a and b in D,

Db
a = D ∩M b

a.

(2) For all intervals t ⊂ {0, . . . , N} and all x and y in At(D),

dM
t (x, y) = dD

t (x, y).

Clearly, wunderbar sets are nice. Since an application of the operation
αs on A does not yield connections between points of A unless there was
already one, the following result follows immediately from Lemma 4.13.

Lemma 4.18. If A ≤ B, then A is wunderbar in B.

Lemma 4.19. Let M be a simply connected colored N -space and D nice
in M . Given an interval s = [l, r] in {−1, . . . , N+1} and al ∈ Al(D) beneath
ar ∈ Ar(D), the set Dar

al
is nice in As(M).

Proof. Since Db
a = D ∩M b

a for any a and b in D, the first condition of
niceness holds for Dar

al
.

For the second condition, we may assume that al = −1 by Remark 4.7.
Let t ⊂ (−1, r] be an interval, and x and y vertices in At(D) beneath ar.
We need only show that, if x and y are connected in At(D), then they
are connected in At(D) beneath ar. Let P be a path in At(D) connecting
x and y, but not necessarily running beneath ar. We call a vertex in P
avoidable if it does not lie beneath ar. Let An be the largest level containing
an avoidable vertex in P . Let m be the number of avoidable vertices in P of
level n. Choose P such that the pair (n,m) is minimal for the lexicographical
order.

Given an avoidable vertex b in An ∩ P , denote by a′1 in Al1 the first
non-avoidable vertex in P between b and x. Likewise, let a′2 in Al2 be the
first non-avoidable vertex in P between b and y. Note that l1 and l2 are
both smaller than n, by maximality of n. Furthermore, since every avoidable
direct neighbor of a non-avoidable vertex necessarily lies in a higher level, by
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definition, it follows that both l1 and l2 are strictly smaller than n. Hence,
the subpath P ′ of P between a′1 and a′2 yields a connection in At′ , where
t′ = t ∩ (−1, n], not passing through ar. As M is simply connected, there
is a path Q (with no repetitions) connecting a′1 and a′2 running beneath ar.
Now, the paths Q and P ′ have only a′1 and a′2 as common vertices and
they induce a loop. Remark 4.9(2) implies that a′1 and a′2 are t1-connected,
where t1 = t ∩ (−1, n). Since D is nice, there is also a t1-connection R
in D. Replacing P ′ by R, we have a path whose avoidable vertices are still
contained in (−1, n] and with fewer avoidable vertices of level n. Minimality
of (n,m) shows that this path runs beneath ar, as desired.

Corollary 4.20. Let D be nice in a colored N -space M . If M is simply
connected, then so is D.

Lemma 4.21. Let A be a nice subset of a simply connected colored N -
space M . Consider a non-empty interval s = (l, r) and two vertices als in
Als(A) and ars in Ars(A) such that ars lies over als. Let B ⊂ M be an
extension of A given by new vertices bls+1, . . . , brs−1 such that the sequence

al, bl+1, . . . , br−1, ar

is a path. The following are equivalent:

(a) The set B is nice and obtained from A by applying αs on (als , ars).
(b) For some (equivalently, all) i in s, we have dM

s (bi, A) =∞.

(c) For some (equivalently, all) i in s, we have dMar
al (bi, A) =∞.

Note that simple connectedness yields

dMar
al (bi, A) = dM

(l,r)(bi, A
ar
al

).

We say that B is obtained from A by a global application of αs if it satisfies
(any of) the above conditions. In particular, the set B is nice.

Proof. (a)→(b): By the definition of αs the distance dB
s (bi, A) is infinite

for every i in s. Since B is nice in M , so is dM
s (bi, A) =∞.

(b)→(c): Obvious.
(c)→(b): If both al and ar are imaginary, then there is nothing to prove.

Thus, we may assume that ar is real. Furthermore, suppose that there is a
path P in As(M) connecting some bi to some a in As(A). Take P of shortest
possible length.

We need to show that

dMar
al (bi, A) <∞.

Note that a and ar are connected in A(l,r](M) and, since A is nice, there is
a shortest path Q in A(l,r](A) witnessing this. In particular, let ar−1 be the
direct neighbor of ar in Q. Connecting Q and P , we find that ar−1 and bi
lie beneath ar and are connected in A(l,r] by a path disjoint from ar. Simple
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connectedness yields a path Q1 beneath ar in A(l,r) connecting them. If al
is imaginary, we are done. Otherwise, the vertices ar−1 and al are connected
through bi. Again by simple connectedness, there is a path Q′ connecting
them below ar in [l, r). Let now al+1 be the direct neighbor in Q′ above al.
Note that al+1 and bi lie between al and ar. Simple connectedness of M
implies that there is a path in Mar

al
between bi and al+1. Hence

dMar
al (bi, A) <∞.

(b)→(a): If both al and ar are imaginary, then there are clearly no new
connections between any bi and A, and thus B is obtained by applying α[0,N ]

to A. Hence, we may assume that ar is real.

We first need to show that no bi is in relation to an element in A besides
ar and al. This implies that B is obtained from A by an application of αs.
Assume first that br−1 is connected to some other element a′r in Ar(A).
Since A is nice, there is a path in A{r−1,r}(A) connecting ar and a′r. This,
together with the extra connection to br−1 yields a loop in A{r−1,r}, which
contradicts Remark 4.9(2). Likewise for bl+1. Finally, by assumption, no bi
in A(l+1,r−1) is in relation with an element in As(A).

Now, in order to show that B is nice, consider x and y in B with finite
t-distance in M . If both x and y lie in A, we are done, since A is nice.
Likewise, if both x and y lie in the path al, bl+1, . . . , br−1, ar, the direct
connection works as well. Therefore, assume that x lies in A and y does not.
By assumption, t * s. Suppose that l lies in t. Since y and al are t-connected
(in M), so are x and al. As A is nice, there is a connection between x and al
in At(A). In particular, there is a connection between x and y in At(B).

Theorem 4.22. Let M be complete and simply connected. Given a nice
subset A and b in M , there is a nice subset B of M containing b such that
A ≤ B in finitely many steps.

Proof. We may clearly assume that b does not lie in A.

Let r be minimal such that there exists an element ar in Ar(A) lying over
b (if r = N + 1, set ar = aN+1). Likewise, choose l maximal such that there
exists an element al in Al(A) beneath b (if l = −1, then set al = a−1). We
call the interval s = (l, r) the width of b over A. Define as well the distance
from b to A as ds(b, A

ar
al

).

We prove the theorem by induction on the width and the distance from
b to A. If the distance is infinite, by completeness of M , choose a path

al, bl+1, . . . , br−1, ar,

passing through b. By Lemma 4.21, the set A ∪ {bl+1, . . . , br−1} obtained
from A by applying αs is nice and contains b.
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Otherwise, let P be a path of minimal length lying between al and ar
connecting b to A. Let b′ be the last element in P before b. By assumption,
the distance from b′ to A is strictly smaller than the length of P . Thus, there
is a nice set B′ ≥ A containing b′. Either the width or the distance of b to
B′ has become smaller and we can now finish by induction.

In particular, we can now prove that the notions of nice and wunderbar
agree.

Corollary 4.23. A nice subset A of a complete simply connected set
M is wunderbar.

Proof. Suppose we are given two points a and b in A and an s-path P
in M of length n connecting them. By Theorem 4.22, we can obtain a nice
set B such that A ≤ B and B contains the path P . By Lemma 4.18, the set
A is wunderbar in B, so there is an s-path of length n in A connecting a
and b. Thus, the set A is wunderbar.

Combining the previous results, we obtain the following.

Corollary 4.24. Let M be complete and simply connected and A be a
nice subset. The following hold:

(a) If M \A is countable, then A ≤M .
(b) A is simply connected.
(c) A is wunderbar.
(d) If A is countable, then ∅ ≤ A.

Proof. Theorem 4.22 yields (a). Now, Corollary 4.20 yields (b). In order
to prove (c), it is sufficient to consider countable nice subsets A. Replace M
by a countable elementary substructure M ′ that contains A. Then A is nice
in M ′ and A ≤ M ′ by (a). Lemma 4.18 implies that A is wunderbar in M ′

and hence in M . Since ∅ is nice, clearly (d) follows from (a) and (b).

It follows that, for countable A, we have ∅ ≤ A if and only if A is simply
connected and complete. And for simply connected complete countable B,
we have A ≤ B if and only if A is nice in B. This yields

Corollary 4.25. The model M∞ is the Fräıssé limit of the class of
finite complete simply connected colored N -spaces together with nice embed-
dings.

The construction is actually simpler than the general construction given
in Section 3, since if a finite set B satisfies Bb

a = B∩M b
a for all a and b in B,

then B is r-strong in M∞ if and only it is nice in M∞. Indeed, consider a rich
sequence A0 ≤ A1 ≤ · · · with union M∞. Then B is contained in some Ai.
But B is also nice in Ai, which implies B ≤ Ai, and therefore B is r-strong
in M∞.
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Having M∞ as a model, the theory PSN is consistent. It will follow from
the next proposition that it is complete. In particular, the stronger version
of Axiom (1) stated in Corollary 4.11 follows formally from our axioms.

Proposition 4.26. Any two ω-saturated models of PSN have the back-
and-forth property with respect to partial isomorphisms between finite nice
substructures.

Proof. Let M and M ′ be two ω-saturated models and consider a partial
isomorphism f : A→ A′, where A is nice in M and A′ is nice in M ′.

Given b in M , Theorem 4.22 yields a nice finite subset B ≥ A containing
it. Thus, we may assume that B is obtained from A by applying αs on
(al, ar). Since M ′ is an ω-saturated model of Axiom (2), there is a path
a′l, b

′
l+1, . . . , b

′
r−1, a

′
r in M ′ such that the s-distance of b′i to A′ is infinite. By

Lemma 4.21 the set B′ = A′ ∪ {b′l+1, . . . , b
′
r−1} is nice and f extends to an

isomorphism between B and B′.

Theorem 4.27. Any partial isomorphism f : A→ A′ between two finite
nice subsets of two models of PSN is elementary.

Proof. Replace the models M and M ′ by two ω-saturated extensions M1

and M ′1. Note that A and A′ remain nice in the corresponding extensions.
Lemma 4.26 implies that f is elementary with respect to M1 and M ′1 and
thus its restriction to M and M ′ is elementary as well.

Corollary 4.28. The theory PSN is complete.

Proof. Note that the set ∅ is nice in any colored N -space and apply
Theorem 4.27.

Corollary 4.29. The type of a nice set A is determined by its quanti-
fier-free type.

Corollary 4.30. The model M∞ is ω-saturated.

Proof. Let M be any ω-saturated model of PSN . It follows from Lemma
3.3 and the equality of nice and r-strong that the family of isomorphisms
between finite nice subsets of M and M∞ has the back-and-forth property.
This implies that M∞ is also ω-saturated.

Corollary 4.31. The Fräıssé limit M0 is the prime model of PSN .

Proof. Consider any finite A ⊂ M which can be obtained from some
fixed flag by a sequence of applications of α{i} for varying i ∈ [0, N ]. Since
the d{i}-distances are either 0 or∞, it follows inductively from Lemma 4.21
that all intermediate sets are nice. So the quantifier-free type of A implies
that A is nice and therefore implies the type of A. Hence A is atomic. This
shows that M0 is atomic.

Corollary 4.32. Nice sets are algebraically closed.
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Proof. By Corollary 4.30, we may assume that the nice set A is a subset
of M∞. By Corollary 4.24(a), the model M is an increasing union of nice
sets containing A. Thus, we may reduce the statement to showing that if
B = A∪{bls+1, . . . , brs−1} is obtained by applying the operation αs on als , ars
in A, then the tuple (bls+1, . . . , brs−1) has infinitely many A-conjugates. This
is now clear, as any two sets resulting from applying the operation αs on
als , ars in A have the same type over A, by Lemma 4.21 and Corollary 4.29.

5. Words and letters. In this section, we will study the semigroup
Cox(N) generated by the operations αs, where s stands for a non-empty
interval in [0, N ]. Such intervals will then be called letters. We will exhibit
a normal reduced form for words in Cox(N) and describe the possible inter-
actions between words when multiplying them.

Two letters s and t in [0, N ] commute if their distance is at least 2. That
is, either rs ≤ lt or rt ≤ ls, where s = (ls, rs) and t = (lt, rt). By definition,
no letter commutes with itself nor with any proper subletter.

Definition 5.1. We define Cox(N) to be the monoid generated by all
letters in [0, N ] modulo the following relations:

• ts = st = s if t ⊂ s,
• ts = st if s and t commute.

We denote by 1 the empty word.

The inversion u 7→ u−1 of words defines an antiautomorphism of Cox(N).
All concepts introduced from now on will be invariant under inversion.

The centraliser C(u) of a word u in Cox(N) is the collection of all indices
in [0, N ] commuting with every letter in u. Clearly, a letter s commutes with
u in Cox(N) if and only if s ⊂ C(u).

In order to obtain a normal form for elements in Cox(N), we say that a
word s1 · · · sn is reduced if there is no pair i 6= j of indices such that si ⊂ sj
and si commutes with all sk with k between i and j.

Definition 5.2. The word u can be reduced to v, denoted by u→ v, if
v is obtained from u by finitely many iterations of the following rules:

Commutation: Replace an occurrence of s ·t by t ·s if s and t commute.

Cancellation: Replace an occurrence of s · t or t · s by s if t ⊂ s.

Two words u and v are equivalent (or u is a permutation of v), denoted by
u ≈ v, if u→ v by exclusively applying the commutation rule.

It is easy to see that permutations of reduced words remain reduced. In
particular, a word is reduced if and only if the cancellation rule cannot be
applied to any permutation.
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Clearly, two words u and v represent the same element in Cox(N) if
u → v. The following proposition implies in particular that the converse
is true: Two words have a common reduction if they represent the same
element in Cox(N) (cf. Corollary 5.4).

Proposition 5.3. Every word u can be reduced to a unique (up to
equivalence) reduced word v. We refer to v as the reduct of u.

Proof. Among all possible reductions of the word u, choose v of minimal
length. Clearly, cancellation cannot be applied any further to a permutation
of v, thus v is reduced. We need only show that v is unique such.

For that, we first introduce the following rule:

Generalised Cancellation: Given a word s1 · · · sn and a pair of in-
dices i 6= j such that si ⊂ sj and si commutes with all sk’s with k
between i and j, then delete the letter si.

If the situation described above occurs, we say that si is absorbed by sj .
Note that a generalised cancellation is obtained by successive commutations
and one single cancellation. Furthermore, one single cancellation applied to
some permutation of u can be obtained as some permutation of a generalised
cancellation applied to u. This implies that every reduct can be obtained by
a sequence of generalised cancellations followed by a permutation.

Assume now that u→ v1 and u→ v2, where both v1 and v2 are reduced.
We will show, by induction on the length of u, that v2 is a permutation
of v1. If u is itself reduced, then v1 and v2 are permutations of u and hence
the result follows. Otherwise, there are two words u1 and u2 obtained from
u by one single generalised cancellation such that ui → vi for i = 1, 2.

We claim that there is a word u′ such that ui → u′ for i = 1, 2, either
by a permutation or by a single generalised cancellation. This is immediate
except for the case where there are indices i, j and k (with i 6= k) such
that u1 is obtained from u because the letter si is absorbed by sj and u2 is
obtained from u in which the same letter sj is absorbed by sk. In this case,
set u′ to be the word obtained from u by having both si and sj absorbed
by sk. Clearly, u1 → u′. Also, since si ⊂ sj , it follows that si commutes also
with all letters between sj and sk. Hence, the word u′ is obtained from u2
in which sk absorbs si. Let v′ be a reduct of u′. Induction applied to u1 and
u2 implies that v′ is a permutation of both v1 and v2. So v1 is a permutation
of v2.

Corollary 5.4. Every element of Cox(N) is represented by a reduced
word, which is unique up to equivalence.

Proof. Let C be the collection of equivalence classes of reduced words.
By Proposition 5.3, there is a natural surjection C → Cox(N). Write [u] for
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the equivalence class of the word u. Set

[u] · [v] = [w] iff u · v → w.

Then C has a natural semigroup structure. Since C satisfies the defining
relations of Cox(N), the map C → Cox(N) is an isomorphism.

In order to exhibit a canonical representative of the equivalence class [u],
we introduce the following partial ordering on letters:

(ls, rs) < (lt, rt) iff rs ≤ lt.
A reduced word s1 · · · sn is in normal form if for all i < n, if si and si+1

commute, then si < si+1.

Remark 5.5. Every reduced word is equivalent to a unique word in
normal form.

Proof. We will actually prove a more general result: Let S be any set
equipped with a partial order <. We say that s and t commute if either s < t
or t < s. Let S∗ be the semigroup generated by S modulo commutation.
Two words in S∗ are equivalent if they can be transformed into each other by
successive commutations of adjacent elements. A word s1 · · · sn is in normal
form if si 6> si+1 for all i < n. We have the following.

Claim. Every word u in S∗ is equivalent to a unique word v in normal
form.

For existence, start with u and swap successively every pair si > si+1.
This process must stop since the number of inversions {(i, j) | i < j and
si > sj} is decreased by 1 at every step. The resulting v is in normal form.

For uniqueness, consider two equivalent words in normal form u = s1 · · · sn
and v = t1 · · · tn. Let π be some permutation transforming u into v. Suppose
for a contradiction that π(1) = k 6= 1. Then tk = s1 commutes with ti for
i < k. By hypothesis, tk−1 < tk. Note that there is no i < k with ti < tk
and tk < ti−1. Hence, for all i < k, we have ti < tk and thus t1 < tk, that is,
t1 < s1. By means of the permutation π−1, we conclude that s1 < t1, which
yields a contradiction. Thus π(1) = 1 and hence s2 · · · sn is equivalent to
t2 · · · tn. Induction on n yields the desired result.

It is an easy exercise to show that, for S and S∗ as before, we have

r · t2 · · · tn ≈ r · s2 · · · sn ⇒ t2 · · · tn ≈ s2 · · · sn.
Therefore, we obtain the following result.

Remark 5.6. u · v ≈ u · v′ implies v ≈ v′.

Given two reduced words u = s1 · · · sm and v = t1 · · · tn, their product
u · v is not reduced if and only if one of the following two cases occurs:
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• There are i ≤ m and j ≤ n such that si commutes with si+1 · · · sm
and with t1 · · · tj−1 and it is contained in tj .

• There are j ≤ n and i ≤ m such that tj commutes with t1 · · · tj−1 and
with si+1 · · · sm and it is contained in si.

Based on the previous observation, we introduce the following definition.

Definition 5.7. Given two words u = s1 · · · sm and v = t1 · · · tn words,
we say that:

(1) si belongs to the final segment of u if si commutes with si+1 · · · sm.
(2) The letter s is (properly) left-absorbed by v if it commutes with

t1 · · · tj−1 and is a (proper) subset of tj for some j ≤ n. A word
is (properly) left-absorbed by v if all its letters are (properly) left
absorbed by v.

(3) v bites u from the right if v left-absorbs some element in the final
segment of u.

The concepts of initial segment, right-absorbed and left-biting are defined
likewise.

Clearly, these notions depend only on the equivalence class of u and v.
Thus, the following lemma follows.

Lemma 5.8. Given two reduced words u and v, the product u · v is re-
duced if and only if none of them bites the other one (in the corresponding
directions).

If both u and v are reduced and u is absorbed by v, then u · v reduces
to v. Corollary 5.14 will show that the converse also holds.

The following observations will be often used throughout this article.

Lemma 5.9 (Absorption Lemma). Let v be a (possibly non-reduced)
word.

(1) If a letter s is left-absorbed by v, then there is a unique letter in v
witnessing it.

(2) If two non-commuting letters are absorbed by v, then they are ab-
sorbed by the same letter in v.

(3) Suppose v = v1·v2 and let u be a word left-absorbed by v but not bitten
from the right by v1, then u and v1 commute and u is left-absorbed
by v2.

Proof. Assume v = t1 · · · tn. Let r ⊂ ti commute with t1 · · · ti−1 and
s ⊂ tj commute with t1 · · · tj−1. Assume i ≤ j. Then either i = j or s
commutes with ti, which implies that s commutes with r. This yields both
(1) and (2).
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For (3), we apply induction on the length m of u = s1 · · · sm. If m = 0,
there is nothing to prove. Otherwise, the subword u′ = s2 · · · sm is not
bitten by v1 by assumption. Induction shows that u′ commutes with v1 and
is absorbed by v2. The letter s1 cannot be absorbed by v1, for otherwise s1
would also commute with u′ and thus it would belong to the final segment
of u. The word u would then be bitten by v1. Since s1 is absorbed by v but
not by v1, it must commute with v1 and hence it is absorbed by v2 as well.

Based on the the previous result, we introduce the following notions.

Definition 5.10. The left stabiliser SL(v) of a word v = t1 · · · tn is the
union of the sets

SjL(v) = tj ∩ C(t1 . . . tj−1).

The right stabiliser SR(v) is defined likewise or, alternatively, as SL(v−1).

By Lemma 5.9(2), the sets SjL(v) are either empty or intervals commuting
with each other. Equivalent words have the same stabilisers. In fact, if u→ v
then SL(u) ⊂ SL(v).

Lemma 5.11. The letter s is absorbed by v if and only if s ⊂ SL(v).

Set
|s1 · · · sm| = s1 ∪ · · · ∪ sm.

Then u is absorbed by v if and only if |u| ⊂ SL(v). Furthermore, the word
v bites u from the right if and only if some element in the final segment of
u is contained in SL(v).

Lemma 5.12. Given two words u and v, there is a unique decomposition
u = u1 · u2 (up to commutation) such that:

• u2 is left-absorbed by v.
• u1 is not bitten from the right by v.

The decomposition of u depends only on the set SL(v).

Proof. We proceed by induction on the length of u. If u is not bitten
by v, we set u1 = u and u2 = 1. Otherwise, up to permutation, we have
u = u′ · s, where s is absorbed by v. Decompose u′ as u′1 ·u′2 and set u1 = u′1
and u2 = u′2 · s.

Uniqueness is proved in a similar fashion.

We can now describe the general form of the product of two reduced
words in Cox(N).

Theorem 5.13 (Decomposition Lemma). Given two reduced words u
and v, there are unique decompositions (up to permutation)

u = u1 · u′, v′ · v1 = v,

such that:
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(a) u′ is left-absorbed by v1,
(b) v′ is properly right-absorbed by u1,
(c) u′ and v′ commute,
(d) u1 · v1 is reduced.

It follows that u · v → u1 · v1. We call such a decomposition fine.

Proof. We apply Lemma 5.12 to u and v to obtain a decomposition

u = u1 · u′

such that u′ is left-absorbed by v and u1 is not bitten by v from the right.
The same (in the other direction) with u1 and v yields

v′ · v1 = v,

where v′ is right-absorbed by u1 and v1 is not bitten from the left by u1.
First, we show (c), that is, the words u′ and v′ commute. If not, let s the

first element of u′ which does not commute with v′. Since s is left-absorbed
by v′ · v1, it must be left-absorbed by v′. As u1 right-absorbs v′, it also
right-absorbs s, which contradicts that u1 · u′ is reduced. Lemma 5.9(3)
implies that u′ is absorbed by v1, showing (a).

Let us now prove (d): the product u1 · v1 is reduced. Otherwise, as v1 is
not bitten from the left by u1, it bites u1 from the right, i.e. it left-absorbs
a letter s from the final segment of u1. The Absorption Lemma 5.9, applied
to u1 = u11 · s and v′, which is right-absorbed by u1, gives (possibly after
permutation) a decomposition v′ = x · y, where |x| ⊂ s and y commutes
with s. There are two cases:

(1) The word x = 1. Then s commutes with v′ and is absorbed by v1.
This contradicts that u1 is not bitten by v1 from the right.

(2) The word x is not trivial. As it is absorbed by s and s is right-
absorbed by v1, we deduce that x is right-absorbed by v1. This con-
tradicts that v′ · v1 is reduced.

The only point left to prove is that v′ is properly right-absorbed by u1.
Otherwise, there is a letter t in v′ which is absorbed but not properly ab-
sorbed by u1. Then t occurs in the final segment of u1 and v′ = t · y up to
commutation. In particular, the word u1 is bitten from the right by v′ and
thus by v, which contradicts our choice of u1.

In order to show uniqueness, assume we are given another fine decom-
position

u = u1 · u′, v′ · v1 = v.

We need only show the following four facts:

(1) The word u′ is left-absorbed by v: Since u′ commutes with v′ and is
left-absorbed by v1, then it is left-absorbed by v′ · v1 as well.
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(2) The word u1 is not bitten by v from the right: Suppose not and take
a letter s in the final segment of u1 which is left-absorbed by v. Since
u1 · v1 is reduced, the letter s must be left-absorbed by v′. Let t in
v′ contain s. However, the word t is right-absorbed by u1. As u1 is
reduced and s is in the final segment of u1, the only possibility is
that s = t. But then t is not properly left-absorbed by u1, which is
a contradiction.

(3) v′ is right-absorbed by u1: By definition.
(4) v1 is not bitten from the left by u1: This clearly follows from the

fact that u1 · v1 is reduced.

Corollary 5.14. Let u and v be reduced words. Then v left-absorbs u
if and only if uv = v in Cox(N).

Note that uv = v in Cox(N) if and only if u · v → v.

Proof. Clearly, if v left-absorbs u, then u ·v → v. For the converse, apply
the Decomposition Lemma 5.13 to u and v to obtain

u = u1 · u′, v′ · v1 = v,

such that u′ is left-absorbed by v1, the word v′ is properly right-absorbed
by u1, the words u′ and v′ commute and u1 ·v1 is reduced. By assumption,we
have

u · v → u1 · v1 ≈ v = v′ · v1.
Thus u1 = v′. Since u1 must properly right-absorb itself, this forces u1 to
be trivial. Hence u = u′ is left-absorbed by v.

Since in Cox(N) (or generally, in any semigroup) the identity uvx = uv
holds if vx = v, we have the following.

Corollary 5.15. Let u and v be reduced words and w the reduct of u·v.
Then SR(v) ⊂ SR(w).

Definition 5.16. The wobbling between two words is

Wob(u, v) = SR(u) ∩ SL(v).

Remark 5.17. If u · v is reduced, then every s ⊂Wob(u, v) is properly
right-absorbed by u and properly left-absorbed by v.

Proof. If s is not properly right-absorbed by u, then s belongs to the
final segment of u. Since s is left-absorbed by v, the product u · v would not
be reduced.

Lemma 5.18. Assume that v1 · v2 and u · v2 are reduced. If v1 is right
absorbed by u, then

Wob(v1 · v2, h) ⊂Wob(u · v2, h).
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Proof. The word u · v2 is the reduct of u · (v1 · v2). Corollary 5.15 shows
that SR(v1 · v2) ⊂ SR(u · v2).

We will now study the idempotents of Cox(N).

Definition 5.19. A word is commuting if it consists of pairwise com-
muting letters.

The letters of the final segment of a word u form a commuting word,
which we denote by ũ (up to equivalence).

Commuting words are automatically reduced. Since every subset of [0, N ]
can be uniquely written as the union of commuting intervals, a commuting
word (up to equivalence) can be considered as just a set of numbers. The
following is an easy observation:

Lemma 5.20. Every word u is equivalent to a word x · ũ, where ũ is the
final segment of u.

Note that no letter in the final segment of x commutes with ũ.

Proposition 5.21. Let u and v be reduced words such that v left-absorbs u.
Then, up to permutation, there are unique decompositions

u = u′ · w, w · v′ = v,

such that

(1) u′ is properly left-absorbed by v′,
(2) w commutes with u′,
(3) w is a commuting word.

Proof. Apply the Absorption Lemma 5.9 to v and u, which is completely
left-absorbed by v. The letters of u which are not properly left-absorbed by
v must commute with all other letters and form the word w.

We next obtain the following consequence, which implies that a word is
commuting if and only if it is an idempotent in Cox(N).

Corollary 5.22. A reduced word is commuting if and only if it (left-,
or equivalently, right-) absorbs itself.

Proof. Clearly, if u is commuting, then |u| = SL(u), so u absorbs itself.
Suppose now that u left-absorbs itself. By the proposition applied to v = u
we find u = w ·u′ ≈ w · v′ such that u′ is properly left-absorbed by v′ and w
is a commuting word. It follows that u′ = v′ properly absorbs itself, so the
word u′ is trivial.

We can now state a symmetric version of the Decomposition Theorem
5.13, combined with Proposition 5.21.
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Corollary 5.23 (Symmetric Decomposition Lemma). Let u and v be
two reduced words. Each can be uniquely decomposed (up to commutation)
as

u = u1 · u′ · w, w · v′ · v1 = v,

such that:

(a) u′ is properly left-absorbed by v1,
(b) v′ is properly right-absorbed by u1,
(c) u′, w and v′ pairwise commute,
(d) w is a commuting word,
(e) u1 · w · v1 is reduced.

In particular, we have u · v → u1 · w · v1.

w

v′

v1u1

u′

w

u1
w

v1

u′v′

w

Proof. Let
u = u1 · ū′, v′ · v̄1 = v,

be a fine decomposition as in Theorem 5.13. Apply Proposition 5.21 to ū′

and v̄1 to obtain
ū′ = u′ · w, w · v1 = v̄1,

where u′ is properly left-absorbed by v1, w commutes with u′, and w is a
commuting word.

Uniqueness follows similarly.

In order to describe canonical paths between elements (or rather between
flags) in the Fräıssé limit MN

∞, we require a stronger form of reduction, since
applying twice the same operation αs does not necessarily yield a global
application of αs, but rather a finite product of proper subletters.

Definition 5.24. The word u is strongly reduced to v, denoted by u
∗−→ v,

if v is obtained from u by finitely many iterations of Cancellation, Com-
mutation, and

Splitting: Replace an occurrence of s ·s by a (possibly trivial) product
t1 · · · tn of letters ti, each of which is properly contained in s.

If v is reduced, we call v a strong reduct of u.
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As an example note that u · u−1 ∗−→ 1.
Despite the possible confusion for the reader, we will not refer to reduc-

tions defined in 5.2 as weak reductions.
Related to the notion of strong reduction, we also consider the following

partial ordering on words.

Definition 5.25. For words u and v, we define u ≺ v if some permu-
tation of u is obtained from v by replacing at least one letter s of v by a
(possibly empty) product of proper subletters of s. By u � v, we mean u ≺ v
or u ≈ v.

Lemma 5.26.

(1) ≺ is transitive and well-founded.
(2) u′ ≈ u ≺ v ≈ v′ implies u′ ≺ v′.
(3) If the strong reduction u

∗−→ v involves at least one cancellation or
splitting, we have v ≺ u.

Well-foundedness implies in particular that if u ≺ v, then u 6≈ v. Further-
more, property (2) shows that ≺ induces a partial order on Cox(N), setting
[u] ≺ [v] if u ≺ v, where both u and v are reduced. With this notation, the
trivial word 1 becomes the smallest element.

Proof. To see that ≺ is well-founded, we introduce an ordinal-valued
rank function ord. For i in [0, N ], set ordi(w) to be the number of letters s
in w with i+ 1 elements. Define now

ord(w) = ωN ordN (w) + ωN−1 ordN−1(w) + · · ·+ ord0(w).

Then u ≺ v implies ord(u) < ord(v).

The semigroup Cox(N), equipped with the order function as above, is an
ordered semigroup in which left and right cancellation are (almost) order-
preserving.

Lemma 5.27. Let w · v be reduced and w · v � w · v′. Then v � v′.
The condition that w · v is reduced is needed, by taking v′ = t ( s =

w = v and w · v ∗−→ 1.

Proof. By induction on the number of letters appearing in w, we need
only consider the case where w = s for some interval s.

The assumption implies that s · v is equivalent to a word us · u′ where
us � s and u′ � v′. The word us either equals s or is a product of proper
subletters of s. If us = s, we have v ≈ u′ � v′ and are done. Otherwise, since
s · v is reduced, it follows that us = 1. This implies v ≺ s · v ≈ u′ � v′.

Corollary 5.28. Given reduced words w · v and v′ such that w · v is
smaller than some strong reduct of w · v′, we have v � v′.
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Lemma 5.29. The partial order � is compatible with the semigroup op-
eration in Cox(N).

Proof. Given reduced words u,v and w, we have to show the following:

[u] � [v] ⇒ [w][u] � [w][v],

[u] � [v] ⇒ [u][w] � [v][w].

By symmetry, it is sufficient to show the first implication. By induction on
|w|, it is enough to consider the case where w is a single letter s.

Suppose first that s is left-absorbed by v. By Corollary 5.14,

[s][v] = [v].

If s is also left-absorbed by u, we are clearly done. Otherwise, by Theorem
5.13, decompose u (up to permutation) as u = u′ · u1, where s · u1 is the
reduct of s ·u. Also, write v = v̄ · t ·v1 such that s ⊂ t and v̄ is in C(s). Now,
the word u1 � u � v, so write u1 = ū1 · ut1 · ū11, where ū1 � v̄, ut1 � t and
u11 � v1. Since s · u1 is reduced, so is s · ū1 · ut1 = ū1 · s · ut1.

This forces ut1 to be either trivial or different from t (and s 6= t as well).
In both cases, we have s · ut1 � t, which implies s · u1 � v, so we are done.

If s is not left-absorbed by v, by Theorem 5.13 we can write (up to
permutation) v = v′ · v1, where v′ is properly absorbed by s and s · v1 is
reduced. So [s][v] = [s · v1]. If s is left-absorbed by u, then

[s][u] = [u] � [v′ · v1] ≺ [s · v1].
Otherwise, write u = ū · u′ · u1 as above such that s · u → ū · s · u1. Since
ū and s commute, note that ū · u1 is irreducible, since u is. Decompose
ū · u1 = u′1 · u11 with u′1 � v′ and u11 � v1. Since s · ū · u1 = ū · s · u1 is
reduced, the word u′1 must be trivial. Therefore s · ū · u1 = s · u11 � s · v1.

In particular, since 1 � v for any word v, we obtain the following result.

Corollary 5.30. Let u be reduced. Given any word v, the reduction w
of u · v is �-larger than u.

In contrast to Proposition 5.3, uniqueness of strong reductions no longer
holds, e.g. s · s ∗−→ s and s · s ∗−→ 1. However, we get the following result,
which allows us to permute the steps of the strong reduction:

Proposition 5.31 (Commutation Lemma). If x is a strong reduct of

u · v · w, then there is a strong reduct y of v such that u · y · w ∗−→ x.

Proof. Consider first the case where u = t has length 1, the word v has
length 2 and w is empty. Suppose furthermore that in the first step of the
reduction t · v ∗−→ x, the letter t is deleted. It is easy to check that setting
y as the reduct of v, the results follows, except if v = s · s, the letter t is
contained in s and the strong reduction is t · (s · s) ∗−→ s · s ∗−→ x, where x is
a product of letters which are properly contained in s. Then:
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• If t = s, set y = s.
• If t · x ∗−→ x, set y = x.
• Otherwise, apply Theorem 5.13 to x and t and decompose x = x′ · x1

such that |x′| is properly contained in t and t · x1 is reduced. Set
y = t · x1.

In all three cases, the strong reductions hold:

t · (s · s) ∗−→ t · y ∗−→ x.

In order to show the proposition for the general case, motivated by the
proof of 5.3, let us introduce the following rule:

Generalised Splitting: Given a word s1 · · · sn and a pair of indices
i 6= j such that si = sj and si commutes with all sk’s with k between
i and j, delete sj and replace si by a product of letters which are
properly contained in s.

Note that a strong reduction consists of finitely many generalised can-
cellations and generalised splittings, followed by commutation (if needed).

If v is reduced, set y = v. Otherwise, we will apply induction on the
≺-order type of v. Suppose therefore that the assertion holds for all v′ ≺ v
and consider x a strong reduct of u ·v ·w. If 2 < |v|, then (after permutation)
write v = v1 ·a · v2, where a is a non-reduced word of length 2. Note that by
assumption, the subword a ≺ v, so there is a strong reduct b of a such that
u·v1 ·b·v2 ·w

∗−→ x. Since a is not reduced, we have b ≺ a and thus v1 ·b·v2 ≺ v.
Induction yields the existence of a strong reduct y of v1 · b · v2 such that

u · y · w ∗−→ x.

Note that v = v1 · a · v2
∗−→ v1 · b · v2

∗−→ y. Therefore, we may assume that
v has length 2 and it is non-reduced. By the above discussion, the first step
in the strong reduction

u · v · w ∗−→ x

is either a generalised cancellation or a generalised splitting. If it involves
only letters from v, its strong reduction is �-smaller and one step shorter
than the output x, so we are done by induction on the number of steps in
the strong reduction. Likewise if the letters involved are in u · w. Thus, we
may assume that there are two letters t and r witnessing the reduction in
the first step and, say, the letter t occurs in u and r in v.

We have two cases:

• The letter t is absorbed by v. In particular, the letter lies in the final
segment ũ. Write u = u1 · t. If it was a generalised splitting, the
resulting word v′ is strictly ≺-smaller than v and u1 · v′ · w

∗−→ x.
Induction gives a strong reduct x′ of v′ such that u1 · x′ · w

∗−→ x. In
particular, we are now in the case t ·v ∗−→ x′ and thus, by the discussion
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at the beginning of the proof, there exists a strong reduction y of v
such that t · y ∗−→ x′. Note that

u · v · w = u1 · (t · v) · w ∗−→ u1(t · y) · w ∗−→ u1 · x′ · w
∗−→ x,

so we are done.
If the first step was a generalised cancellation, the word v does not

change and now u1 · v · w
∗−→ x in one step less. We obtain a strong

reduct x′ of v with u1 · x′ ·w
∗−→ x. Again, note that t · v ∗−→ v

∗−→ x′ so,
again by the previous discussion, there is a strong reduct y of v which
does the job.

• Otherwise, the occurrence r in v is deleted. If r = t, we are in the
previous case. Suppose hence r ( t and write u = u1 · t · u2, where u2
commutes with r. We may assume that v = r · s. Note that r and s
are comparable, since v is not reduced. If r ⊆ s, then set y = s, which
is a strong reduct of v. We conclude that u · y · w ∗−→ x.

If s ( r, then s and u2 commute as well. Note that u1 ·(t·s)·u2 ·w =

u · s · w ∗−→ x in one step less. We have u1 · t · u2 · w
∗−→ x and setting

y = r does the job.

Despite the apparent arbitrariness of strong reductions, they are orthog-
onal to the reduction without splitting, as the following result shows.

Proposition 5.32. Let u and v be reduced words and consider the reduct
x of u · v and some strong reduct x∗ of u · v, where splitting occurs. Then
x∗ ≺ x.

Note that this is not true for the product of three reduced words: s · s · s
can be strongly reduced to s by one splitting operation.

Proof. Observe first that, if w = s1 · · · sn is a commuting word and y∗ is
a strong reduct of w ·w, then y∗ = t1 · · · tn, where each ti is a strong reduct
of si · si. If splitting ever occurred in the reduction, then y∗ ≺ w.

To prove the proposition, choose decompositions u = u1 · u′ · w and
w · v′ · v1 = v, as in Corollary 5.23. A general cancellation applied to u1 · u′ ·
w ·w ·v′ ·v1 does the following: either the last letter of (a permutation of) u′ is
deleted, the first letter of v′ is deleted or one letter in one of the copies of w
is deleted. Hence, after finitely may generalised cancellations, the end result
has the form z = u1 ·u′′ ·w′ ·w′ ·v′′ ·v1, where u′′ is a left end of u′, the subword
v′′ is a right end of v′, and w′ is a subword of w. A generalised splitting for
z can only happen inside w′ ·w′. So we obtain a word z′ = u1 · u′′ · a · v′′ · v1,
where a is obtained from w · w by the splitting operation. If we apply the
Commutation Lemma 5.31 to (u1 · v′) · a · (u′ · v1) ≈ z′, we obtain a strong

reduct b of a such that u1 · b · v1
∗−→ x∗. The above observation gives b ≺ w

and thus x∗ � u1 · b · v1 ≺ u1 · w · v1 ≈ x.
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Inspired by the following picture:

a b

c

we deduce strong reductions from a given one, as long as products are in-
volved.

Proposition 5.33 (Triangle Lemma). Let a, b and c be reduced words.

Then a · b ∗−→ c−1 implies c · a ∗−→ b−1 and b · c ∗−→ a−1.

Proof. By symmetry, it is enough to show that a ·b ∗−→ c−1 implies c ·a ∗−→
b−1. Suppose hence that a · b ∗−→ c−1. We apply induction on the ≺-type of
a and b.

If a · b is reduced, then c = b−1 · a−1 and so c · a = b−1 · a−1 · a ∗−→ b−1.
Thus, assume a · b is not reduced. We distinguish the following cases (up to
permutation):

• a = a1 · s, where s is properly left-absorbed by b. Since b is the only
strong reduct of s · b, the Commutation Lemma 5.31 gives

a · b = a1 · (s · b)→ a1 · b
∗−→ c−1.

Since a1 ≺ a, induction gives c · a1
∗−→ b−1, which implies that

c · a = (c · a1) · s
∗−→ b−1 · s→ b−1.

• b = s · b1, where s is properly right-absorbed by a. Again a · b =
a · (s · b1)→ a · b1

∗−→ c−1, so by induction c · a ∗−→ b−11 . Thus

c · (a · s) ∗−→ b−11 · s = b−1.

Since a is the only strong reduct of a · s, again Proposition 5.31 gives
that c · a ∗−→ b−1.

• a = a1 · s and b = s · b1 Since a1 · (s · s) · b1
∗−→ c−1, Proposition 5.31

provides a strong reduct x of s · s such that a1 · x · b1
∗−→ c−1b

∗−→ c−1.
The word x is either s or a product of proper subletters of x and hence
≺-smaller than s. Since b = s · b1 is reduced, apply Theorem 5.13 to
decompose x = x1 · x′, where x′ is properly left-absorbed by b1 and
x1 · b1 is reduced (if x = s, then x1 = s and x′ = 1). Since x′ · b1

∗−→ b1,

the reduction (a1 · x1) · (x′ · b1)
∗−→ c−1 implies a1 · x1 · b1

∗−→ c−1. Since
a1 ≺ a and x1 · b1 � b, induction gives

c · a1
∗−→ b−11 · x

−1
1 .

In particular,

c · a = c · a1 · s
∗−→ (b−11 · x

−1
1 ) · s→ b−11 · s→ b−1.
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We can now easily deduce the following:

Corollary 5.34. If u and v are both reduced and u · v ∗−→ 1, then
v ≈ u−1.

Proof. The Triangle Lemma (Proposition 5.33) yields 1 · u ∗−→ v−1 and

v · 1 ∗−→ u−1. That is, u−1
∗−→ v and v

∗−→ u−1. Thus

u−1 � v � u−1,
and therefore v ≈ u−1.

Recall by Corollary 5.14 that, if u is the reduct of u · v, then v is right-
absorbed by u. This is no longer true for strong reductions: take for example

(s · t) · (t · s · t) = s · (t · t) · (s · t) ∗−→ s · (s · t) ∗−→ s · t.
However, in certain situations we are still able to conclude the same for
strong reductions as for reductions with no splitting.

Lemma 5.35. Let u and v be reduced. If every letter in v which is right-
absorbed by u is properly absorbed and u · v ∗−→ u, then u · v → u.

Proof. Apply Theorem 5.13 to obtain fine decompositions u = u1 · u′
and v′ · v1 = v such that u′ is properly left-absorbed by v1, the word v′ is
right-absorbed by u1, the words u′ and v′ commute and u1 · v1 is reduced.

By hypothesis, the word v′ is properly right-absorbed by u1. The Com-
mutation Lemma 5.31 applied to (u1 · v′) · (u′ · v1)

∗−→ u gives

(u1 · v′) · (u′ · v1)→ u1 · v1
∗−→ u.

Since u1 ·v1 is reduced, we have u1 ·v1 = u. So v1 = u′ must properly absorb
itself, which is a contradiction unless v1 = 1 and thus u · v → u.

Let us conclude by giving a criterion for a word to wobble inside two
others. This will be useful for determining all possible paths between two
given flags.

Proposition 5.36. Let u · v and w be reduced. If u · w ∗−→ u and w−1 ·
v
∗−→ v, then |w| ⊂Wob(u, v).

Proof. By Remark 5.17 and Lemma 5.35, it is enough to prove that w is
properly right-absorbed by u (and likewise for v). We proceed by induction
on the length of |v|.

If v = 1, then w−1 · 1 ∗−→ 1 implies w−1 = 1, since w is reduced.
Suppose now that v = s · v1. Set u · s = u1, which is again reduced. So

is u1 · v1 = u · v.
The condition w−1 · v ∗−→ v implies v−1 · w ∗−→ v−1 by Proposition 5.33.

This implies

v−11 · (s · w · s)
∗−→ (v−11 · s) · s

∗−→ v−11 .
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By the Commutation Lemma (Proposition 5.31), there is a strong reduct

w1 of s · w · s with v−11 · w1
∗−→ v−11 , or equivalently, w−11 · v1

∗−→ v1.

The Triangle Lemma 5.33 shows that s · (w · s) ∗−→ w1 implies w−11 · s
∗−→

s · w−1, that is, s · w1
∗−→ w · s.

In particular, u1 · w1 = u · (s · w1)
∗−→ u · (w · s) ∗−→ u · s = u1.

By the induction hypothesis applied to u1, v1 and w1, we find that w1 is
properly right-absorbed by u1 = u · s. By Lemma 5.9(3), write w1 as ws ·wu

where ws is properly absorbed by s and wu is properly right-absorbed by u
and commutes with s. Note that s · wu is the only strong reduct of s · w1.
Proposition 5.31 shows that the strong reduction (s ·w1) · s

∗−→ w · s · s ∗−→ w

factors through s · wu · s
∗−→ w.

Since s ·wu · s is equivalent to s · s ·wu, there is a strong reduct x of s · s
such that x · wu

∗−→ w. However, the product x · wu is already reduced and
so x · wu = w. The reduct x is either s or consists of proper subletters of s.
Suppose that x = s. Then u · w = u · s · wu = u · s, since wu is properly
right-absorbed by u and commutes with s. This contradicts u·w ∗−→ u. Hence,
the word x consists of proper subletters of s. By Theorem 5.13, since u · s is
reduced, decompose x into x′ · x1, where x′ is properly right-absorbed by u
and u·x1 is reduced. Then u·x1 is the only strong reduct of u·w = u·x′·x1·wu.
We conclude that u · x1 = u and thus x1 = 1 by Corollary 5.14. Hence, the
word w = x′ · wu is properly right-absorbed by u.

6. Flags and paths. Let M be any colored N -space. As in Definition
4.16, recall that a flag F in M is a path a0 − · · · − aN of length N , where
each ai belongs to Ai(M). We call ai the i-vertex of the flag F .

Definition 6.1. Given flags F and G, we say that G is obtained from
F by the weak operation αs if s consists of the indices where the vertices of
F and G differ. A weak flag path P is a sequence of flags F0, . . . , Fn, where
each Fi is obtained from Fi−1 by a weak operation αsi . We call s1 · · · sn the
word of P .

More generally, we define:

Definition 6.2. Let A be a subset of [0, N ]. Two flags are equivalent
modulo A if they have the same vertices in all levels outside A. We write
F/A for the equivalence class of F modulo A.

Note that F/A is interdefinable with the set of vertices of F with levels
outside A. For i in [0, N ] and Ai = [0, N ] \ {i}, the equivalence class F/Ai

is interdefinable with the vertex fi. We can say that F/Ai and F ′/Aj , for i
and j immediate successors, are connected in case they belong to a class of
a common flag G. This induces a structure bi-interpretable with PSN .
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Any two flags can be connected by a weak flag path: decompose the
set I of indices where the vertices of F and G differ as the disjoint union
s1 ∪ · · · ∪ sn of intervals such that si and sj commute for i 6= j. Then F
and G are connected by a weak path with word s1 · · · sn. In particular, we
obtain the following.

Lemma 6.3. Two flags F and G are equivalent modulo A if and only
if they can be connected by a weak path whose word consists of letters con-
tained in A. Furthermore, there is such a path whose word is commuting. In
particular, any two flags are connected by a weak path, by taking A = [0, N ].

Commuting letters in a path induce another path whose word is a per-
mutation of the previous one.

Lemma 6.4. Let s and t be commuting letters and assume that F and
G are connected by a weak flag path with word s · t. Then there is a unique
weak flag path from F to G with word t · s.

Proof. Given the path F −H −G with word s · t, define a new flag H ′

by replacing the s-part of H by the s-part of F and its t-part by the t-part
of G. By construction, the weak path F −H ′ −G has word t · s.

Uniqueness is clear since the s-part and the t-part of H ′ are determined
by those of F and G.

Iterating the previous result, since any permutation can be achieved by a
sequence of transpositions of adjacent commuting letters, given a weak path
Pu from F to G with word u, if v is a permutation of u, we can connect F
and G by a weak path Pv with word v. Note that Pv does not depend on the
sequence of transpositions and the collection of vertices of flags occurring
in Pu agrees with the one of flags in P . We call the path Pv a permutation
of Pu.

We will now link the words appearing in weak paths with the distance
of flags as in Lemma 4.13.

Lemma 6.5. Let t = (l, r) and F and G be equivalent modulo t. Let al
and ar be the vertices of F (and G) of level l and r, respectively. Given a
subletter s ⊂ t, the following are equivalent:

(a) The flags F and G have finite s-distance in Mar
al

.
(b) The flags F and G are connected by a weak flag path whose letters

are contained in t but do not contain s.

Proof. (a)→(b): Consider a path b0, . . . , bn in As(M
ar
al

) connecting two
vertices of F and G. For every i in {1, . . . , n−1}, pick a flag Fi containing bi
and bi+1 which agrees with F and G outside the levels in t. Set F0 = F and
Fn = G. If bi+1 has level ji, then Fi and Fi+1 are equivalent modulo t \{ji}.
They are thus connected by a weak flag path whose letters are contained in
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t \ {ji} and therefore none contains s. The concatenation of these flag paths
gives the result.

(b)→(a): Let F = F0 − · · · − Fn = G be a weak flag path whose letters
are in t but do not contain s. For every i in {0, n − 1}, the flags Fi and
Fi+1 have a common vertex in As(M

ar
al

). Thus, we can connect F and G
by a path whose vertices lie in As(F0) ∪ · · · ∪ As(Fn) and hence between al
and ar.

In order to distinguish between weak operations between flags and global
applications of αs to nice sets, as in Lemma 4.21, we introduce the following
definition, at the level of flags.

Definition 6.6. For s = (l, r), the flag G is obtained by a global appli-
cation of αs from F if G is obtained by a weak application of αs from F
and its new vertices have infinite distance in Mar

al
from F , where al and ar

are the vertices of F (and G) of level l and r, respectively.

Since a flag is in particular a nice set, these two definitions agree by
applying Lemma 6.5 to the case t = s:

Corollary 6.7. Given an interval s and flags F and G, the following
are equivalent:

(a) The flag G is obtained from F by a global application of αs, as in
Lemma 4.21.

(b) The flag G is obtained from F by the weak operation αs and there
is no weak flag path connecting them whose word consists of proper
subletters of s.

Definition 6.8. A flag path is a weak flag path where each flag is ob-
tained from its predecessor by a global operation. If F and G are connected
by a flag path with word u, we write

F −→
u
G.

A flag path is reduced if its word is reduced.

Lemma 6.9. If there is a weak path from F to G with word u, we have
F −→

v
G for some v with v � u.

Proof. By Lemma 6.3, choose a weak path F = F0−· · ·−Fn = G whose
word v = s1 · · · sn is �-smaller than u and minimal such. We need only show
that this path is a flag path. Otherwise, some operation αsi is not global
and, by Corollary 6.7, we can connect Fi−1 and Fi by a weak path whose
word consists of proper subletters of si. The resulting word is ≺-smaller
than v, contradicting its minimality.
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Combining the previous result and Corollary 6.7, we obtain the following:

Corollary 6.10. If F andG are equivalent modulo t, then either F −→
t
G,

or F −→
x
G for some product x whose factors are proper subletters of t.

Proof. By Lemma 6.3, the flag G is obtained from F by a weak path P
whose word x either equals t or consists of letters properly contained in t.
By Lemma 6.9, we may assume that P is a flag path.

We can now compose flag paths, using the results of the previous section.

Lemma 6.11. Assume F −→
s
G −→

t
H.

(1) If s and t commute, there is a unique G′ with F −→
t
G′ −→

s
H.

(2) If s is a proper subset of t, then F −→
t
H. Similarly, if t is a proper

subset of s, then F −→
s
H.

(3) If s = t, then either F −→
t
H or F −→

x
H, for some product x whose

factors are proper subletters of t.

In particular, a permutation of a flag path yields again a flag path, by (1).

Proof. Property (1) follows easily from Lemma 6.4, since the permuta-
tion of a reduced word remains reduced.

For (2), assume s ( t. Then H is equivalent to F modulo t. So by
Corollary 6.10, either F −→

t
H, or F −→

x
H, where x consists of proper

subletters of t. The latter implies that G −−→
s·x

H, which contradicts the

assumption G −→
t
H. The proof is similar if t is a proper subset of s.

Property (3) clearly follows from Corollary 6.10, as F and H are equiv-
alent modulo t.

Lemma 6.9 yields the following.

Corollary 6.12. Let F and G be two flags.

(1) If F −→
u
G, then F −→

v
G for some strong reduct v of u.

(2) If u is ≺-minimal with F −→
u
G, then u is reduced.

Definition 6.13. Let A be a subset of M and let al and ar be two
vertices in A such that al lies below ar in A. The pair (al, ar) is called open
in A if there are vertices b and c in Aar

al
whose distance in Mar

al
is infinite.

A pair as before which is not open is called closed.

Lemma 6.14. Let s = (l, r) be an interval and M be simply connected.
Take a nice subset A of M with two distinguished vertices al and ar of levels
l and r, respectively. Given a flag F in A containing al and ar, assume that
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F −→
s
G for some flag G in M . Set B = A ∪G. If the pair (al, ar) is closed

in A, then:

(1) The set B is obtained from A by a global application of αs on (al, ar).
(2) The open pairs in B are exactly the open pairs of A together with

(al, ar).

Proof. For the first assertion, by Lemma 4.21, we need only check that

dMar
al (d,A) =∞,

where d is one of the new vertices of G.

Pick any b in Aar
al

and choose some vertex c in F between al and ar.

Since (al, ar) is closed in A, we have dMar
al (b, c) <∞. Since F −→

s
G, Lemma

6.5 shows that dMar
al (c, d) =∞. In particular,

dMar
al (b, d) =∞,

which gives the desired result.

For the second assertion, clearly (al, ar) is now open in B. We need only
show there are no new open pairs in B. Consider an open pair (x, y). If x
is one of the new elements of G, then y is either also in B \ A or in A and
either equal to ar or above it. If both x and y lie in B \A, they form a closed
pair. If y = ar, all vertices between x and y lie on B \A, and thus the pair
(x, y) is closed. If y lies above ar in A, then all vertices between x and y are
connected with ar and thus their distance is finite, so (x, y) is closed.

Hence, we conclude that both x and y lie in A. Suppose (x, y) is not
(al, ar). Either it was already open in A or there is a vertex d in B \ A
whose distance to some b in A is infinite in My

x . In particular, the vertex x
lies below al, and y lies above ar. Since (x, y) is closed in A, the distance
between b and al in My

x is finite and thus b and d have finite distance in
My

x , which is a contradiction.

Flag paths provide scaffolds which are nice sets, as the following lemma
shows.

Lemma 6.15. Let M be simply connected and F0 −→
s1

F1 −→
s2

. . . −→
sn

Fn

be a reduced flag path in M . Then:

(1) The set An = F0 ∪ F1 ∪ · · · ∪ Fn is nice in M .
(2) If a0 − · · · − aN are the vertices of Fn, then (al, ar) is open in An if

and only if the letter (l, r) belongs to the final segment of s1 · · · sn.

Proof. We use induction on n. Let si = (li, ri) and wi = s1 · · · si. If
n = 0, there is nothing to prove, since any flag is nice and the word w0 is
trivial.
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Suppose hence that n > 0 and let Fn = a0−· · ·−aN . Since wn is reduced
by assumption, the letter sn does not belong to the final segment of wn−1.
Therefore, the pair (aln , arn) appeared already in Fn−1 and, by induction,
it is closed in An−1, which is nice. Lemma 6.14 shows that so is An.

Furthermore, Lemma 6.14 also implies that (al, ar) is open in An if and
only if (al, ar) = (aln , arn) or it belongs to An−1 and was already open in
An−1. In particular, the pair (al, ar) belongs to An−1 if and only if either
(l, r) commutes with sn or (l, r) contains sn. Since sn is not contained in
the final segment of wn−1, induction implies that (al, ar) is open in An iff
(l, r) = sn or (l, r) commutes with sn and belongs to the final segment of
wn−1, which means that (l, r) belongs to the final segment of wn.

If the space is simply connected, we shall prove that there are no flag
loops, unless they are not reduced.

Corollary 6.16. If M is simply connected, there are no non-trivial
closed reduced flags paths.

Proof. Let F0 −→
s1

F1 −→
s2
· · · −→

sn
Fn be a non-trivial reduced flag path.

By Lemmata 6.14 and 6.15, the flag Fn is obtained by a global application
of αsn to F0 ∪ · · · ∪ Fn−1. In particular, the flag Fn must differ from F0.

Since there are no loops, the reduced word of a flag path is unique, up
to permutation.

Proposition 6.17. The word of a reduced path between two flags F and
G is uniquely determined up to equivalence.

Proof. If u and v are both reduced and there are two flag paths F −→
u
G

and F −→
v
G connecting F and G, composing them we get a weak path F−F

with word u · v−1. Corollary 6.12 yields a strong reduct w of u · v−1 with
F −→

w
F . Corollary 6.16 implies that w = 1 and thus u ≈ v by Corollary

5.34.

If u is reduced, we will sometimes refer to F −→
u
G by saying that the

reduced word u connects F to G.

Lemma 6.18. Let M be simply connected and P be a reduced flag path
in M . Denote by A the set of vertices of flags occurring in P . Every flag
contained in A appears in some permutation of P .

Proof. We use induction on the length of P . Let u = v · s be the word of
P with s = (l, r). Split P in a path Q from F to G with word v and in the
path from G to H with word s. Denote by B the vertices of flags occurring
in Q. Consider a flag K ⊂ A. If K ⊂ B, then K occurs in a permutation of
Q by induction. Thus, it occurs in a permutation of P . If K * B, since u is
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reduced, the letter s does not belong to the final segment of v, so by Lemma
6.15 the pair (al, ar) in K is closed. Lemma 6.14 shows that H is obtained by
applying the operation αs to the nice set B. So K −→

w
H, where the reduced

word w commutes with s. By Lemma 6.3, there is a unique G′ ⊂ B such
that G′ −→

w
G and G′ −→

s
K. Induction implies that G′ is part of a reduced

path F → G′ −→
w
G, which is a permutation of Q. Then F → G′ −→

w
G −→

s
H

is a permutation of P . We permute w and s and obtain F → G′ −→
s
K −→

w
H,

as desired.

Once the word of a flag path between F and G is fixed, the intermediate
flags appearing in the path are unique up to wobbling.

Lemma 6.19 (Wobbling Lemma). Given two paths between F and G
with reduced word s1 · · · si · · · sn,

H1 · · · Hn−1

F G

H ′1 · · · H ′n−1

s1

s1

sn

sn

the flags Hi and H ′i are equivalent modulo Wob(s1 · · · si, si+1 · · · sn) for every
i in {1, . . . , n− 1}.

Proof. Write u = s1 · · · si and v = si+1 · · · sn. Suppose we are given flags
Hi and H ′i as in the previous picture. Hence

F −→
u
Hi −→

v
G, F −→

u
H ′i −→v G.

Let w be some reduced word with Hi −→
w
H ′i. By Corollary 6.12 and Propo-

sition 6.17, the word u is a strong reduct of u · w. Likewise, the word v is
a strong reduct of w−1 · v. Proposition 5.36 gives |w| ⊂ Wob(u, v), which
yields the result.

We finish this section by observing that nice sets are flag-connected.

Proposition 6.20. Let M be simply connected and A some union of
flags from M . The set A is nice if and only if any two flags in A can be
connected by a reduced flag path which belongs to A.

Proof. Clearly, any union of flags satisfies Ab
a = A ∩M b

a.
Suppose A is nice. Consider two flags F and G in A and connect them in

M by some weak path. Since A is nice, we can find a weak path P belonging
to A which is reduced in the sense of A. In order to show that P is a flag
path (in the sense of M), we need only show that if G is obtained from F
by a global application of αs in A, then it remains a global application of αs
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in M . Equivalently, for any b in G \F , if dA
s (b, F ) =∞ then dM

s (b, F ) =∞.
This is exactly the definition of niceness.

Assume now that any two flags in A are connected in A by a reduced flag
path. Consider two vertices b and c in As(A) with finite s-distance in M and
choose two flags F and G in A containing b and c, respectively. Lemma 6.5
(with t = [0, N ]) and Lemma 6.9 imply that we can connect F and G by a
reduced path P with word u whose letters do not contain s. By assumption,
there is a reduced flag path P ′ in A connecting F and G as well. Thus, the
word of P ′ is a permutation of u by Proposition 6.17. So, again by Lemma
6.5, the points b and c are s-connected in A and hence A is nice.

7. Forking in the free pseudospace. In this section we provide a
detailed description of non-forking over nice sets and canonical bases. In
particular, we obtain weak elimination of imaginaries. The theory PSN has
trivial forking and is totally trivial, as in [2].

We will work inside a sufficiently saturated model M . We start with an
easy observation which follows immediately from Theorem 4.22.

Proposition 7.1. The theory PSN is ω-stable.

Proof. Work over a countable subset A, which we may assume to be
nice. Theorem 4.22 shows that every 1-type over A lies in some nice set B,
obtained from A by a finite number of applications of αs. In particular,
there are countably many quantifier-free types of such B’s over A and thus
countably many types by Corollary 4.29. The theory PSN is therefore ω-
stable.

The following result will allow us to determine the type of a flag over a
nice set.

Proposition 7.2. Let X be a nice set and F a flag which is connected
to a flag G in X by a reduced flag path P with word u. The following are
equivalent:

(a) Let v be a reduced word connecting G to another flag G′ in X. Then
F is connected to G′ by the reduct of u · v.

(b) u is the �-smallest word connecting F to a flag in X.
(c) u is �-minimal among words connecting F to a flag in X.

Proof. (a)→(b) follows from Corollary 5.30.

(b)→(c) is trivial.

(c)→(a): Let G′ be any flag in X. Then G is connected to G′ by a flag
path P with word v. By Proposition 6.20, we may assume that P is in X.
Choose a decomposition u = u1 · u′ · w and w · v′ · v1 = v as in Corollary
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5.23, with corresponding paths

F −−−→
u1·u′

F ∗ −→
w
G −→

w
G∗ −−−→

v′·v1
G′,

where G∗ is a flag in X.

Let b be a strong reduct of w ·w connecting F ∗ to G∗. If b 6≈ w, consider
the reduced word c which connects F to G∗. Since c is a strong reduct of
u1 · u′ · b, we have c � u1 · u′ · b ≺ u, a contradiction. So b is equivalent
to w. We obtain a path from F to G′ with word u1 · u′ · w · v′ · v1. Up to
permutation, its only possible strong reduct is u1 · w · v1. So F connects to
G′ by the word u1 · w · v1, which is the reduct of u · v.

Definition 7.3. Given a nice set X. We call a flag G in X a base point
of F over X if the conditions of Proposition 7.2 hold: The word connecting
F to G is �-minimal among words which connect F with flags in X.

Lemma 7.4. Let X be a nice set and F0 −→
s1
· · · −→

sn
Fn be a reduced flag

path with Fn ∈ X. Then Fn is a base point of F0 over X if and only if the
flag Fi−1 is obtained from Fi∪ · · · ∪Fn∪X by a global application of αsi for
all i ≥ 1.

In particular, if Fn is a base point of F0 over X, then F0 ∪ · · · ∪ Fn ∪X
is nice.

Proof. The equivalence for n = 1 is clear, since F0 is obtained by a global
application of αs1 from F1 ∪X = X if and only if there is no connection of
F0 to X by a product of proper subletters of s by Lemma 6.5.

We proceed now by induction over n and assume first that each Fi−1 is
obtained from Fi ∪ · · · ∪ Fn ∪X by a global application of αsi . Lemma 4.21
implies that Y = F1∪· · ·∪Fn∪X is nice. Furthermore, the flag F1 is a base
point of F0 over Y . We will show that property 7.2(a) holds for F0 and Fn

over X. Let G be a flag in X. Choose reduced words x, y and v with

F0 −→
x
G, F1 −→

y
G, Fn −→

v
G.

Then x is the reduct of s1 · y and, by induction, the word y is the reduct of
s2 · · · sn · v. So x is the reduct of s1 · · · sn · v. Therefore, the flag Fn is a base
point of F0 over X.

For the other direction, note first that Fn−1 is obtained from Fn∪X = X
by a global application of αsn . So Y = Fn−1∪Fn∪X is nice. If we can show
that Fn−1 is a base point of F0 over Y , we can conclude by induction. For
that, we will verify 7.2(b). Consider any flag G in Y and let x be the reduced
word which connects F0 to G. If G belongs to X, we have s1 · · · sn−1 ≺
s1 · · · sn � x. Otherwise, there are a flag G′ in X and a word w commuting
with sn such the following diagram holds:
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Fn−1 Fn

F0

G G′

∏n−1
j=1 sj

x

sn

sn

w

The reduced word x′ connecting F0 to G′ is a strong reduct of x · sn. Mini-
mality of u = s1 · · · sn yields u � x′. Corollary 5.28 gives s1 · · · sn−1 � x.

Corollary 7.5. Let G be a flag in a nice set X. Given a reduced word u,
there is a flag F and a path P from F to G with word u such that G is a
base point of F over X. The set X ∪ P is nice. The type of F over G (and
thus over X) is uniquely determined.

Denote these types by pu(G) and pu(G)|X.
In order to describe the regular types and the dimensions of PSN , we

will need a characterisation of non-forking over nice sets in terms of the
reduction of the corresponding words connecting the paths.

Lemma 7.6. Let F and G be flags, where G lies in a nice set X. The
independence F |̂

G
X holds if and only if G is a base point of F over X.

Proof. Let u be the reduced word which connects F to G. Then the type
pu(G) of F over G has a canonical extension pu(G)|Y to every nice set Y
which contains G. Since PSN is stable, it follows that pu(G)|X is the only
non-forking extension of pu(G) to X.

Proposition 7.7. Given three flags with reduced paths F −→
u
G, G −→

v
H

and F −→
w
H, we have F |̂

G
H if and only if u · v → w.

Proof. If F |̂
G
H, there is a nice set X containing G and H such that

F |̂
G
X. But then G is a base point of F over X and u · v → w follows.

Assume now u · v → w. Let P be the reduced path from G to H with
word v. The set P is nice. It is enough to show F |̂

G
P by verifying 7.2(a).

Given any flag G′ in P , by Lemma 6.18 we may assume that G′ occurs in P .
Thus, write v1 · v2 = v with G −→

v1
G′ −→

v2
H. If x is reduced with F −→

x
G′,

then

u · v = (u · v1) · v2
∗−→ x · v2

∗−→ w.

By assumption u ·v → w, so Proposition 5.32 shows that no splitting occurs
in the strong reductions above. This implies that u·v1 → x, which completes
the proof.

Note that the previous proof also yields x · v2 → w, which will be used
in the proof of Lemma 7.19. Furthermore, we have the following:
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Corollary 7.8. Given flags F , G and H with F |̂
G
H, we have

F |̂
G

P,

where P is the reduced flag path connecting G to H.

We will now compute the Morley rank MR(p) and Lascar rank U(p) of
certain types in PSN .

Definition 7.9. Given reduced words u and v, we say that u is a proper
left-divisor of v if u 6≈ v and there is a reduced w such that uw = v in
Cox(N).

Note that uw = v in Cox(N) is equivalent to u · w → v.
If u is a proper left-divisor of v, it follows by Corollary 5.30 that u ≺ v.

In particular, Lemma 5.26 shows that being a proper left-divisor is well-
founded. Let Rdiv be its foundation rank and likewise let R≺ denote the
foundation rank with respect to ≺.

Lemma 7.10. For every flag G and every reduced word u,

U(pu(G)) = Rdiv(u).

Proof. We show U(pu(G)) ≤ Rdiv(u) by induction on Rdiv(u). Assume
that α < U(pu(G)). Then there is is a nice extension X of G and a realisation
F of pu(G) such that α ≤ U(F/X). Since F 6 |̂

G
X, the type of F over X is

of the form pv(H)|X for a reduced word v and some flag H in X. Proposition
7.2(a) and Lemma 7.6 imply that v is a proper left-divisor of u. By induction,
we have

α ≤ U(F/X) = U(pv(H)) = Rdiv(v) < Rdiv(u),

which proves U(pu(G)) ≤ Rdiv(u).
For the other direction, assume α < Rdiv(u). Then there is a proper

left-divisor v of u such that α ≤ Rdiv(v). Choose a reduced word w such
that v · w → u. It is easy to construct a flag H with

F −→
v
H −→

w
G.

Actually, such an H exists whenever v ·w ∗−→ u. By Proposition 7.7 we have
F |̂

H
G. Let P be a path from H to G with associated word w. Seen as a

collection of points, the path P is nice by Lemma 6.15. Corollary 7.8 gives
that F |̂

H
P , so tp(F/P ) = pv(H)|P and thus F 6 |̂

G
P . By induction,

α ≤ Rdiv(v) = U(pv(H)) < U(pu(G).

Lemma 7.11. For every flag G and reduced word u, we have

MR(pu(G)) ≤ R≺(u).

Proof. Extend pu(G) to p = pu(G)|X, where X is an ω-saturated model
containing G. The type p contains a formula ϕ(x) stating that there is a weak
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path connecting the flag x to G with word u. If F realizes ϕ, then either
F realizes p or there is a path connecting F to X with word ≺-smaller
than u. For the latter, induction implies that the Morley rank of F over
X is strictly smaller than R≺(u). Since X is ω-saturated, this implies that
MR(p) ≤ R≺(u).

Lemma 7.12. If u = s1 · · · sn is reduced and |si| ≥ |si+1| for i = 1, . . . ,
n− 1, then

Rdiv(u) = R≺(u) = ω|s1|−1 + · · ·+ ω|sn|−1.

Proof. Let ord be the function introduced in the proof of Lemma 5.26.
Recall that for any reduced word w,

Rdiv(w) ≤ R≺(w) ≤ ord(w).

If u satisfies the above hypotheses, then ord(u) = ω|s1|−1 + · · · + ω|sn|−1.
Hence, we need only that ord(u) ≤ Rdiv(u). By induction, it is enough
to find, for every α < ord(u), a proper left-divisor u′ of u satisfying the
hypotheses of the lemma such that α ≤ ord(u′).

There are two cases: If |sn| = 1, set u′ = s1 · · · sn−1. If |sn| > 1, let k be
large enough such that

α ≤ ω|s1|−1 + · · ·+ ω|sn−1|−1 + ω|sn|−2 · k.
Then choose an appropriate sequence t1 · · · tk of subletters of sn, each of size
|sn| − 1, such that u′ = s1 · · · sn−1 · t1 · · · tk is reduced.

Corollary 7.13. For every flag G and every reduced word u = s1 · · · sn
with |si| ≥ |si+1| for i = 1, . . . , n− 1,

U(pu(G)) = MR(pu(G)) = ω|s1|−1 + · · ·+ ω|sn|−1.

However, Lascar and Morley rank may differ in general, as the following
example shows.

Remark 7.14. Consider the word u = [0, 1][1, 3]. It is easy to see that
Rdiv(u) = ω2 and R≺(u) = ω2 + ω, since the inversion antiautomorphism
u → u−1 preserves ≺. In particular, the Lascar rank of pu(G) is ω2. To
compute the Morley rank of pu(G), consider the following sequence of words:

uk = [1][0] · · · [1][0]︸ ︷︷ ︸
k

[1, 3].

The Morley rank of uk is at least Rdiv(uk) = ω2. Since pu(G) is the limit of
the types puk

(G), its Morley rank of pu(G) is at least ω2 + 1. Actually, it is
easy to show that MR(pu(G)) = ω2 + 1.

The non-orthogonality classes of regular types over a nice set in PSN

are given by global operations of αs for s varying among all intervals. These
types have trivial forking and therefore so does PSN .
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Theorem 7.15. The theory PSN is ω-stable of rank ωN . Every type
over a nice set X is non-orthogonal to some type ps(G)|X, where G lies
in X. Forking is trivial, that is, any three pairwise independent tuples are
independent (as a set).

Proof. By Lemma 7.11, the Morley ranks of a flag cannot exceed
R≺([0, N ]) = ωN = U(p[0,N ](G)) = MR(p[0,N ](G)), by Corollary 7.13. Thus,

the Lascar and Morley ranks of a flag over the empty set are both ωN . Let a
be a vertex of F . The Lascar inequalities imply that U(F/a)+U(a) ≤ U(F ).
Since U(a) > 0, this implies that U(a) = ωN , and therefore MR(a) = ωN .

Given a type p over X, we may assume it is the type of a flag F and
thus determined by some reduced word u connecting F to a base point G
over X. In particular, take any s in the final segment of u. The type p is
hence non-orthogonal to the type ps(G)|X, since the connecting word of F
over the nice set consisting of G together with a realisation of ps(G)|X is
≺-smaller than u.

Since the type ps(G) has monomial Lascar rank, it is regular. A different
way to see this is by taking a non-forking realisation F of ps(G)|X and a
forking realisation F ′ to X. Now, since F ′ forks with X over G, Proposition
7.2(b) gives a flag G′ in X such that the word connecting F ′ to G′ is a finite

product x of proper subletters of s. Since the reduction s · x ∗−→ s involves
no splitting, the flags F and F ′ are independent over G by Proposition 7.7.
The type ps(G) is regular, and so is ps(G)|X.

Note that the geometry on every type ps(G) is trivial: given three pair-
wise independent realisations F1, F2 and F3 of ps(G), note that any flag in
G ∪ F2 ∪ F3 must be either G, F2 or F3, for there are no new s-connections
between them. Hence, F1 |̂ G

F2∪F3 and forking is trivial on each ps(G)|X.
Since the theory is superstable, forking is trivial [6, Proposition 2].

Nice sets are algebraically closed in PSeq
N .

Remark 7.16. Let X be nice and F be a flag with F/A ∈ acleq(X) for
some set A ⊂ [0, N ]. Then the class F/A lies in Xeq. That is, all vertices of
F with level outside A belong to X.

Since X is nice, this is equivalent to F/A = G/A for some G in X.

Proof. Let u be the reduced word connecting F to a base point G over X.
By taking a sufficiently large initial segment of a sequence of X-independent
realisations of tp(F/X), since the class F/A is algebraic, we may find another
realisation F ′ with F |̂

G
F ′ and F/A = F ′/A. By Lemmata 6.3 and 6.9,

there is a path connecting F and F ′ whose reduced word v satisfies |v| ⊂ A.
Proposition 7.7 and the independence F |̂

G
F ′ imply that v is the reduct

of u · u−1. Thus |u| = |u · u−1| = |v| ⊂ A. In particular, the flags F and G
are equivalent modulo A.



Ample hierarchy 141

Let us now explicitly describe canonical bases of types over nice sets.
They are interdefinable with finite sets of real elements and hence PSN has
weak elimination of imaginaries (cf. Corollary 7.24).

Theorem 7.17. Let u be a reduced word and G a flag. Then the canon-
ical base of pu(G) is interdefinable with G/SR(u).

Observe that G/SR(u) is interdefinable with a finite set by Definition
6.2.

Proof. We have to show that pu(G) and pu(G′) have a common non-
forking extension if and only if G and G′ are equivalent modulo SR(u). Or,
in other words, given a nice set X, if F is a realisation of pu(G)|X, then
G′ ∈ X is a base point of F over X if and only if G/SR(u) = G′/SR(u).

If v is a reduced word connecting G and G′, then G/SR(u) = G′/SR(u)
means that |v| ⊂ SR(u), or equivalently by Lemma 5.11, v is right-absorbed
by u. Let w be the reduced word connecting F to G′. Then w is the reduct
of u · v by Proposition 7.2(a). The flag G′ is a base point of F if and only
if w ≈ u. By Corollary 5.14, this is equivalent to v being right-absorbed
by u.

The following result will be useful in order to prove that the theory PSN

is not (N + 1)-ample.

Lemma 7.18 (Base Point Lemma). Let X be a nice set and F connected
by a reduced word u to its base point G in X. Assume u = w · v and pick a
flag H with

F −→
w
H −→

v
G.

If H/A ∈ X for some set A ⊂ [0, N ], then |v| is a subset of A.

Proof. By Remark 7.16 and Corollary 6.12, there is a flag G′ in X con-
nected to H by a reduced word |v′| ⊂ A. The flag G is a base point of
H over X by Lemma 7.4. Proposition 7.2(b) gives v � v′ and therefore
|v| ⊂ |v′| ⊂ A.

We finish the section with a strengthening of triviality, called totally triv-
ial [6], that is, given any set of parameters X and tuples a, b and c such that
a is both independent from b and c over X, then it is independent of {b, c}
over X. For theories of finite U-rank, both notions agree [6, Proposition 5].

By Lemma 7.6, recall that, given a nice set X and a distinguished flag
F0 in X, the following are equivalent for any flag F ,

• F |̂
F0
X,

• F |̂
F0
H for every flag H in X,

• F0 is a base point of F over X.
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Whilst considering flag paths, there is a simpler version of transitivity
of non-forking, due to the nature of the reduction with non-splitting.

Lemma 7.19. Given flags H, F , H0 and F0, then F |̂
F0
H0 and F |̂

H0
H

imply F |̂
F0
H. If there is a reduced path F0 −→

v
H0 −→

w
H, the converse also

holds: F |̂
F0
H implies F |̂

F0
H0 and F |̂

H0
H.

Observe that the condition on the path being reduced is needed for the
converse, as the following example shows, where t ( s:

F0 H0 H

F

s

t

s

s t s

Although F |̂
F0
H, since no splitting occurs when reducing s · t to s, we

see that F 6 |̂
F0
H0, as t is not the reduct of s · s.

Proof. Throughout the proof we will use the characterisation of indepen-
dence between flags given by Proposition 7.7. It actually follows from the
proof of Proposition 7.7 that the above converse holds, by taking F , G, G′, H
instead of H, F , H0, F0 in the proof. Alternatively, we may argue as follows:
as H0 occurs in a reduced path P from F0 to H, the proof of Proposition
7.7 shows that F |̂

F0
P . This implies F |̂

F0
H0. Since F0 −→

v
H0 −→

w
H, we

have F0 |̂ H0
H by Proposition 7.7. This, together with F |̂

F0
H, the first

part of the lemma and forking symmetry, implies F |̂
H0
H.

Assume now F |̂
F0
H0 and F |̂

H0
H. Choose reduced paths F −→

u
F0,

F0 −→
v
H0, H0 −→

w
H and F0 −→

x
H. The word a which connects F to H0

is the reduct of u · v. Also, the word b connecting F to H is the reduct of
u′ · w. Hence, the word b is the reduct of u · v · w. If x were the reduct of
v · w, then b is the reduct of u · x, so we are done. Therefore, suppose that
splitting occurs in v · w ∗−→ x. We treat first the case v = w = s. Then x is
a product of proper subintervals of s. By the Decomposition Lemma 5.13,
either s is right-absorbed by u, or u = u1 · u′, where u′ is properly absorbed
by s and u1 · s is reduced. In the first case, the word x is properly absorbed
by u, hence F |̂

F0
H.

For the second case, decompose u = u1 · u′ as above. Then b (the word
connecting F and H) equals u1 ·s. This cannot be a strong reduct of u1 ·u′ ·x,
since the latter is ≺-smaller, contradicting Proposition 5.32.

For the general case, as in the proof of Proposition 5.32).we may assume

that the splitting in v · w ∗−→ x happens at the first step of the reduction.
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Write hence v = v′ · s and w = s · w′, where

F0 −→
v′
K1 −→

s
H0 −→

s
K2 −→

w′
H.

The word y connecting K1 and K2 consists of proper subletters of s. By the
first part of the proof, since F |̂

F0
H0, we have F |̂

F0
K1 and F |̂

K1
H0.

Similarly, we obtain F |̂
H0
K2 and F |̂

K2
H. By the previous discussion,

we have F |̂
K1
K2. This, together with F |̂

F0
K1, yields F |̂

F0
K2, by

induction on the length of v. Now, the word connecting F0 −→ K2 is a strong
reduction of v′ · y, so ≺-smaller than v. Induction on the complexity of v
together with F |̂

K2
H gives F |̂

F0
H, as desired.

In order to prove the total triviality of PSN , we will use the following
lemma, a stronger form of which follows already from total triviality, without
the assumption F0 |̂ A

B, since if

A −→
s
B −→

t
C,

where s and t commute with each other, then B is definable in A ∪ C, by
Lemma 6.19.

Lemma 7.20. Let A, B, C, F , F0 be flags and s and t two commuting
letters such that A −→

s
B −→

t
C. If the following independencies hold:

F |̂
F0

A, F |̂
F0

C, F0 |̂
A

B,

then F |̂
F0
B.

Proof. In order to show that F |̂
F0
B, since F |̂

F0
A, by Lemma 7.19

we need only show F |̂
A
B. Thus, consider a reduced word z with F −→

z
B

and connect the above flags by reduced paths as in the diagram below.

B

A C

F0

F

u
ba

yx
v

ts

Assume for a contradiction that F 6 |̂
A
B. Then z, which is a strong

reduct of a · s, is not the reduct of a · s. This has two consequences: first, the
letter s does not occur in the final segment of z. Secondly, up to permutation,
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the path F −→
a
A ends with a flag A′ −→

s
A such that A′ is connected to B by

a word consisting of proper subletters of s. Since F0 |̂ A
B, such a flag A′

cannot occur in any permutation of x. Thus, as a is a reduct of u·x, it follows
that s commutes with x and is in the final segment of u. In particular, the
word x · s is reduced, which implies that v is (up to permutation) the word
x · s.

On the other hand, the word v = x · s is a strong reduct of y · t. It is easy
to see that this can only be possible if (after permutation) y has the form
y′ · s, where y′ and s commute. The independence F |̂

F0
C implies that b

is the reduct of u · y. Hence s still belongs to the final segment of b. Finally,
since z is a strong reduct of b · t, the word s must belong to the final segment
of z, which contradicts F 6 |̂

A
B.

In order to ensure the independence of a flag with respect to a whole flag
path over a nice set, it is enough to check the independence with respect to
the set itself and the end flag of the path.

Lemma 7.21. Let A be a nice set and a reduced path P connecting a
flag H to a base point in A. Given a flag F0 in A and a flag F , we have
F |̂

F0
A ∪ P if and only if F |̂

F0
A and F |̂

F0
H.

Proof. Left-to-right is clear. Assume now that F |̂
F0
A and F |̂

F0
H.

Since A ∪ P is nice by Lemma 7.4, in order to check that F |̂
F0
A ∪ P , we

need to check that F |̂
F0
H ′ for any flag H ′ in A∪ P by the remark above

Lemma 7.19. This is clear for flags in A, so let H ′ be in A∪P but not in A.

We treat first the case where H ′ is in P . Let H0 be the base point of H
in A. We then have F0 |̂ H0

H and F |̂
F0
H by assumption, which implies

F |̂
H0
H by Lemma 7.19. Since the path P is reduced, Lemma 7.19 gives

F |̂
H0
H ′, which together with F |̂

F0
H0 implies F |̂

F0
H ′.

For the general case, we will proceed by induction on the length of P ,
based on the above paragraph. Thus, it suffices to consider the case where
P has length 1 and let s be its letter:

H0 −→
s
H.

If H ′ is a flag in A ∪ P not completely contained in A, it differs from H
only on the indices outside s. As in the proof of Lemma 6.18, we can find a
reduced word w commuting with s such that H ′ −→

w
H. Furthermore, there

is some flag H ′0 in A with H ′0 −→w H0 and H ′0 −→s H ′.

Note thatH ′0 is again a base point ofH ′ overA, so in particular F0 |̂ H′0
H ′.

By induction on the length of w, we may assume that w is a letter t. Setting
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A = H ′0, B = H ′ and C = H, the hypotheses of Lemma 7.20 are satisfied.
We conclude that F |̂

F0
H ′, which gives the desired result.

We have now all the ingredients to prove total triviality of forking.

Proposition 7.22. The theory PSN is totally trivial, that is, given any
set of parameters X and tuples a, b and c such that a is independent of both
b and c over X, then it is independent of {b, c} over X. In particular, the
canonical base of a tuple is the union of the canonical bases of each singleton.

Proof. We may assume that our parameter set X is nice, by choosing a
small model containing it, independent of a, b, c.

Suppose first that the tuples a, b and c consist of singletons: By transi-
tivity, choose flags H1 and H2 independently of a over X containing b and
c respectively. Choose now a flag F containing a independently of H1 and
of H2 over X. We need only show that

F |̂
X

H1 ∪H2.

Let F0 and H0 be base points of F and H1 respectively over X. Since
F |̂

F0
X and F |̂

X
H1, we have F |̂

F0
X ∪ P1 by Lemma 7.21, where

P1 denotes the reduced flag path (connecting H1 to H0) determined by H1

over X. The set X∪P1 is again nice by Lemma 7.4. We work now over X∪P1

in order to show that F |̂
F0
X ∪ P1 ∪ P2, where P2 is the flag path given

by H2 over X ∪ P1. Lemma 7.21 shows that F is independent of H1 ∪ H2

over X.
Transitivity of forking allows us to work with finite tuples by choos-

ing accordingly non-forking extensions for each coordinate. The result now
follows by local character.

Since PSN is superstable, [6, Proposition 7] yields the following.

Corollary 7.23. The theory PSN is perfectly trivial, that is, given any
set of parameters X and tuples a, b and c such that a and b are both inde-
pendent over X, then they are so over X ∪ {c}.

Corollary 7.24. The theory PSN has weak elimination of imaginaries.

Proof. By Proposition 7.22, in order to study the canonical base of a
real tuple ā over an algebraically closed set B (in PSeq

N ), we may assume
that ā is an enumeration of a flag F . Furthermore, we may suppose that B
is nice. By Theorem 7.17, the canonical base is interdefinable with a finite
set, thus we get weak elimination of imaginaries.

Although the theory PSN is not 1-based, being N -ample by Proposition
8.1, it is 2-based, i.e. the canonical base of a type is determined by two
independent realisations.
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Proposition 7.25. Let u be a reduced word and X a nice set. The
canonical base of pu(G)|X is algebraic over two independent realisations.

Proof. LetF andF ′ be realisations of pu(G)|X, which areX-independent.
Since the base point is only determined up to SR(u)-equivalence, pick a
common base point G in X for both F and F ′.

As F |̂
X
F ′ and F |̂

G
X, combining Lemmata 7.19 and 7.21, we con-

clude that F |̂
G
F ′. Therefore, the word connecting F and F ′ is the reduc-

tion of u · u−1. Write u = u1ũ, where ũ is the final segment of u. Hence,

u · u−1 → u1 · ũ · u−11 ,

as the diagram shows:

F ′F

H

G

ũ

u−1
1u1

ũ

ũ

Note that G and H are equivalent modulo |ũ| ⊂ SR(u). By Lemma 6.19,
the flag H is determined by F and F ′ modulo SR(u) ∩ SL(u−11 ) and thus
modulo SR(u). In particular, the canonical base G/SR(u) is algebraic over
F, F ′.

8. Ample yet not wide ample. This last section shows that the ample
hierarchy defined in 2.2 is proper, since the theory of the free N -dimensional
pseudospace PSN is N -ample but not (N + 1)-ample. We will furthermore
show that it is N -tight with respect to the family Σ of Lascar rank 1 types,
if N ≥ 2.

The proof that PSN is N -ample is a direct translation of the proof in [2],
which we nonetheless include for completeness.

Proposition 8.1. Consider a flag a0−· · ·−aN . We have the following:

(a) acleq(a0, . . . , ai) ∩ acleq(a0, . . . , ai−1, ai+1) = acleq(a0, . . . , ai−1) for
every 0 ≤ i < N .

(b) ai+1 |̂ ai
a0, . . . , ai−1 for every 1 ≤ i < N .

(c) aN 6 |̂ a0.

In particular, the theory PSN is N -ample.

Proof. In order to prove (a), fix some i < N and choose parameters
bi, . . . , bN independently of ai, ai+1 such that
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a0 − · · · − ai−1 − bi − · · · − bN
is a flag. Set X = {a0, . . . , ai−1, bi, . . . , bN}, which is nice.

By Fact 2.1, assume for a contradiction that there is an element e in

acleq(X, ai) ∩ acleq(X, ai+1) \ acleq(X).

Choose now a′i realising tp(ai/X, e). Since e lies also in acleq(X, a′i), we
have ai 6 |̂ X

a′i. As the �-minimal word connecting ai (or rather the flag
a0 − · · · − aN ) to X is [i,N ], it follows from Lemma 7.6 that ai and a′i
(or rather generic flags containing them) are connected through a finite
product of proper intervals of [i,N ]. Compactness (and Lemma 6.5) implies
that there exists a natural number n such that

tp(ai/X, e) |= d[i,N ](x, ai) ≤ n.

Let m be such that 2m > n. Consider the reduced word

u = [i+ 1, N ] · i · · · [i+ 1, N ] · i︸ ︷︷ ︸
2m

.

Corollary 7.5 provides us with a flag F and a path P from G = a0−· · ·−aN
to F with word u

F = F0 −−−−→
[i+1,N ]

F ′0 −→
i
F1 −−−−→

[i+1,N ]
· · · −−−−→

[i+1,N ]
F ′m−1 −→

i
Fm = G

such that G is a base point of F over the nice set G. Since the Fi and F ′i
are connected by the word [i,N ] to G, they have all the same type over X.
Denote

Fr = a0 − · · · − ai−1 − ari − ari+1 − · · · − arN ,
F ′r = a0 − · · · − ai−1 − ari − ar+1

i+1 − · · · − a
r+1
N .

Since F0 and F ′0 have the same type over X, they have also the same type
over Xa0i and therefore over Xe. This implies that e belongs to acleq(Xa1i+1).
Similarly, the flags F ′0 and F1 have the same type over Xa1i+1 and therefore
over Xe, which implies that e belongs to acleq(Xa1i ). Iterating, we see that
ami has the same type over Xe as ai. Thus d[i,N ](a

m
i , ai) ≤ n, which gives a

contradiction since the shortest path between ai and ami in A[0,N ] is

a0i − a1i+1 − a1i − · · · − ami+1 − ami ,
of length 2m.

For (b), choose generic flagsF containing ai+1 andG containing a0, . . . , ai.
The canonical base Cb(ai+1/a0, . . . , ai) equals Cb(F/G). On the other hand,
the flags F and G are connected by the reduced word u = [0, i][i+ 1, N ]. So

Cb(F/G) = G/SR(u) = G/([0, i− 1] ∪ [i+ 1, N ]) = ai

by Theorem 7.17, which gives the desired independence.
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For (c), choose a generic flag F which contains aN and a generic flag G
which contains a0. Then Cb(aN/a0) equals Cb(F/G). On the other hand
the reduced word connecting F to G is u = [0, N − 1][1, N ]. So

Cb(F/G) = G/SR(u) = G/[1, N ] = a0,

which is clearly not algebraic over a1. Thus, aN 6 |̂ a0.

For the proof that PSN is not (N + 1)-ample, we need some auxiliary
results on the nature of the reduced words arising from the hypothesis on
ampleness.

Lemma 8.2. Consider nice sets A and B and a flag F such that acleq(AB)
∩ acleq(A,F ) = acleq(A) and F |̂

B
A. Let u = uB (resp. uA) be the �-

minimal word connecting F to a flag GB in B (resp. GA in A) and let v be
the reduced word connecting GB to GA. If

u = u1 · u′, v′ · v1 = v

is the fine decomposition as in Theorem 5.13, then v1 is commuting.

Proof. By hypothesis, F |̂
GB

GA, so the product u1 · v1 is equivalent

to uA. Suppose for a contradiction that v1 is not commuting. Hence, we may
decompose v1 = v11 · s · v21, where v21 is the final segment of v1 and s does not
commute with v21.

By Lemma 5.9, we can write u′ = u′2 · u′1, where u′1 is left-absorbed by
v11 · s, the word u′2 commutes with v11 · s and is left-absorbed by v21. We have
the following diagram:

GB

F

H

K GA

v′

v11 ·s

v21
u1

u′

u1 v11 ·s v21

u′2u′v′

where the path connecting K and H is given by u′2. So the flags H and K
are equivalent modulo |u′2|.

Lemma 5.18 shows that Wob(v′ · v11 · s, v21), the wobbling of v at H,
is contained in W = Wob(u1 · v11 · s, v21). In particular, by Lemma 6.19,
the class H/W lies in acleq(AB). So does K/(|u′2| ∪W ), which also lies in
acleq(AF ). By assumption, K/(|u′2| ∪W ) lies in acleq(A) since acleq(AB) ∩
acleq(AF ) = acleq(A), and therefore in A by Remark 7.16. Since uA is �-
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minimal connecting F to a flag in A, Lemma 7.18 implies

|v21| ⊂ |u′2| ∪W.
Observe that u′2 centralises s and W is contained in s ∪ C(s). Hence,

so does |v21|. Since v1 is reduced and v21 is commuting, no letter of v21 is
contained in s. So v21 must commute with s, which contradicts the definition
of v21.

Proposition 8.3. Consider nice sets A and B and a flag F such that
acleq(AB) ∩ acleq(A,F ) = acleq(A) and F |̂

B
A. Let u = uB (resp. uA) be

the minimal word connecting F to a flag GB in B (resp. GA in A). (These
are the same hypotheses as in Lemma 8.2.) Then either F |̂

A∩B AB or u is
non-trivial and its final segment ũ, as a set of indices, is strictly contained
in ũA, the final segment of uA.

In particular, consider the reduced word v which connects GB to GA and
the associated fine decomposition

u = u1 · u′, v′ · v1 = v,

as in Theorem 5.13. If F 6 |̂
A∩B A, then ũ is non-trivial and

|v′| * |ũ| ( |ũA|.
Proof. Since F |̂

B
A and v is reduced connecting GB to GA, the word

u · v reduces to uA. If

u = u1 · u′, v′ · v1 = v,

is the fine decomposition (cf. Theorem 5.13) applied to u and v, we may
thus assume that uA = u1 · v1.

Let H be the flag in the path GB −→
v
GA between v′ and v1. Likewise,

let K be the flag in the path F −−→
uA

GA between u1 and v1. Note that H

and K are connected through u′. Furthermore, Lemma 5.18 implies that
Wob(v′, v1) is contained in W = Wob(u1, v1). Since H and K are equivalent
modulo |u′| and H/Wob(v′, v1) lies in acleq(AB) by Lemma 6.19, it follows
that K/(W ∪ |u′|) lies in acleq(AB) ∩ acleq(AF ) = acleq(A) and hence in A
by Remark 7.16. Lemma 7.18 gives now

|v1| ⊂ |u′| ∪W.
Decompose the final segment of u as

ũ = w1 · w2,

where w2 is the final segment of u′ and w1 is a subword of the final segment
of u1. In particular u′ = u′′ ·w2 and w1 and u′′ commute. We show first that
w1 and v1 commute: since u′ ⊂ C(w1) and W ⊂ SR(u1) ⊂ |w1| ∪ C(w1), we
have v1 ⊂ |w1| ∪ C(w1). A letter s of v1 cannot be contained in |w1|, since
u1·v1 is reduced. So s belongs to C(w1), which gives the desired result. Recall
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that v1 is commuting by Lemma 8.2. Thus, the final segment of uA = u1 · v1
is

ũA = w1 · v1,
which clearly contains ũ, as |w2| is a subset of |v1|.

Suppose the inclusion is not strict. Hence, |w2| = |v1|. Then |v1| ⊂ SR(u)
and hence |v| ⊂ SR(u). So GB and GA are equivalent modulo SR(u). In
particular, the canonical base Cb(F/B) lies in A and thus F |̂

A∩B B. Since
F |̂

B
A, transitivity of non-forking implies that F |̂

A∩B AB.
Finally, assume that ũ = 1, which forces u = 1 and thus v′ = 1. In par-

ticular, since |v1| ⊂ |ũA| ⊂ SR(uA) and GA and GB are equivalent modulo
v = v1, they are equivalent modulo SR(uA), so Cb(F/A) = GA/SR(uA) lies
in B and hence F |̂

A∩B A.
Similarly, if |v′| ⊂ |ũ| ⊂ |ũA| ⊂ SR(uA), we conclude as before that

Cb(F/A) = GA/SR(uA) lies in B and thus F |̂
A∩B A.

We can now state and prove the desired result.

Theorem 8.4. The theory PSN is not (N+1)-ample and is N -tight with
respect to the family of Lascar rank 1 types.

Proof. By Remark 2.5, we need only show that given tuples b0, . . . , bN+1

with:

(a) acleq(bi, bi+1) ∩ acleq(bi, bN+1) = acleq(bi) for every 0 ≤ i < N ,
(b) bN+1 |̂ bi

bi−1 for every 1 ≤ i ≤ N ,

there is some i in {0, . . . , N − 1} such that

bN+1 |̂
acleq(bi)∩ acleq(bi+1)

bi.

By Fact 2.1, it suffices to prove this for tuples b0, . . . , bN which enumerate
small models B0, . . . , BN , although for the proof, we only require that each
Bi is nice. Total triviality (cf. Proposition 7.22) allows us to assume that
bN+1 consists of a single flag F .

Choose for every i ≤ N a base point Fi for F over Bi. Note that we
obtain the following configuration:

F0

F1
.

.
.

FN−1

FN

F

uN

uN−1

u1

u0

vN

v1
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such that ui ·vi reduces to ui−1, for every i in {1, . . . , N}, due to (b). Propo-
sition 8.3 implies that either, for some i < N ,

F |̂
Bi∩Bi+1

Bi,

or the final segment ũi+1 of ui+1 is non-trivial and strictly contained in ũi
for all i < N .

The second possibility for every i < N provides a strictly increasing
sequence of length N + 1 of non-empty subsets of {0, . . . , N}, which implies
that ũ0 equals [0, N ] and thus u0 = [0, N ]. Hence F |̂ B0, and thus

F |̂
acleq(B0)∩ acleq(B1)

B0.

The first possibility implies

F |̂
acleq(Bi)∩acleq(Bi+1)

Bi,

as desired. This proves that PSN is not (N + 1)-ample.
Suppose now that N ≥ 2. In order to show that PSN is N -tight with

respect to Σ, where Σ denotes the collection of all Lascar rank 1 types,
assume we are given tuples b0, . . . , bN witnessing the following conditions:

(a) acleq(b0, . . . , bi)∩acleq(b0, . . . , bi−1, bi+1)=acleq(b0, . . . , bi−1) for every
0 ≤ i < N .

(b) bi+1 |̂ bi
b0, . . . , bi−1 for every 1 ≤ i < N .

As in Remark 2.5, it follows that:

(c) acleq(bi+1) ∩ acleq(bi) ⊂ acleq(b0) for every 1 ≤ i < N .
(d) bN |̂ bi

bi−1 for every 1 ≤ i < N .

(e) acleq(bi, bi+1) ∩ acleq(bi, bN ) = acleq(bi) for every 0 ≤ i < N − 1.

Note that (almost) internality is preserved under taking non-forking re-
strictions. Furthermore, if a tuple d is (almost) internal over C and e is
algebraic over Cd, then e is (almost) internal over C. Thus, we may as be-
fore replace every bi by a nice set Bi by Fact 2.1 and assume that bN is
a flag F by total triviality (cf. Proposition 7.22). In particular, we need to
prove that Cb(F/B0) is almost Σ-internal over B1.

As before, let ui be �-minimal connecting F to a flag Fi of F in Bi for
i < N . Since N ≥ 2, there is (at least) one triangle to apply Proposition 8.3,
and thus either for some 0 ≤ i < N − 1 we have

F |̂
Bi∩Bi+1

Bi,

or the final segment ũi+1 of ui+1 is non-trivial and strictly contained in ũi
for every i < N . The independence F |̂

Bi∩Bi+1
Bi implies by properties (b)
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and (c) that F |̂
acleq(B0)∩acleq(B1)

B0. So Cb(F/B0) is algebraic over B1,

and hence internal over B1.

Otherwise, if

F 6 |̂
Bi∩Bi+1

Bi

for every i < N , then the final segment ũ0 must have length N . Consider
the fine decomposition u1 = u11 · u′1 and v′1 · v11 = v1 from Theorem 5.13.
Proposition 8.3 implies that |v′1| is not fully contained in ũ1, which must then
have non-trivial centraliser. Since ũ1 has size N − 1, it must be either [2, N ]
or [0, N − 2]. Let us consider the first case. The canonical base Cb(bN/B0)
is F0 modulo SR(u0) = [1, N ], which is the 0-vertex f0 of F0. Furthermore,
since v1 = [0] · [1, N ], the vertex f0 is directly connected to B1 and, by
Theorem 7.15, it has rank 1 over B1, so the canonical base Cb(F/B0) is
Σ-internal over B1, which concludes the proof.
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