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Algebraic lattices are complete sublattices

of the clone lattice over an infinite set

by

Michael Pinsker (Wien)

Abstract. The clone lattice Cl(X) over an infinite set X is a complete algebraic
lattice with 2|X| compact elements. We show that every algebraic lattice with at most
2|X| compact elements is a complete sublattice of Cl(X).

1. How complicated is the clone lattice? Fix a base set X and
denote for all n ≥ 1 the set XXn

of all n-ary operations on X by O(n). Then
O =

⋃

n≥1 O(n) is the set of all functions on X which have finite arity. A set
of finitary functions C ⊆ O is called a clone iff it is closed under composition
and contains all projections, i.e. for all 1 ≤ i ≤ n the function πn

i satisfying
πn

i (x1, . . . , xn) = xi. The set of all clones over X forms a complete algebraic
lattice Cl(X) with respect to inclusion. This lattice is countably infinite
and completely known if |X| = 2 by a result of Post’s [Pos41]; however,
describing the clone lattice completely for larger X is believed impossible.

Several known results suggest this. First, Cl(X) is large; it is of size

continuum if X is finite and has at least three elements, and |Cl(X)| = 22|X|

if X is infinite. Secondly, the clone lattice does not satisfy any non-trivial
lattice identity if |X| ≥ 3 [Bul93]; it does not satisfy any quasi-identity
if |X| ≥ 4 [Bul94]. Also, if |X| ≥ 4, then every countable product of finite
lattices is a sublattice of Cl(X) [Bul94]. As for examples on infinite X, every
completely distributive lattice having not more than 2|X| compact elements
is a subinterval of a monoidal interval of Cl(X) [Pin] (a monoidal interval

being an interval of clones which have the same unary functions). Moreover,
specific complicated parts of Cl(X) have been exhibited, such as an interval
which is isomorphic to the lattice of all filters on X in [GS]. There exist
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several examples of parts of Cl(X) that are still “well-behaved” for finite
X, but which seem to be hopelessly complicated for infinite X: The interval
above O(1) is a finite chain for finite X [Bur67] but huge and extremely
complex for infinite X ([GS02] and [GSS]), and whereas Cl(X) is dually
atomic with a finite number of dual atoms which are all known if X is finite
[Ros70], it is not dually atomic on countably infinite X if the continuum
hypothesis holds [GS05], and there exist as many dual atoms as there are
clones on all infinite X [Ros76]. A recent survey of clones on infinite sets
is [GP].

We are interested in which lattices can be embedded into the clone lat-
tice over an infinite set. Assume henceforth X to be infinite. The compact
elements of Cl(X) are easily seen to be exactly the clones which are gen-
erated by a finite number of functions. Since |O| = 2|X|, this implies that
Cl(X) has at most 2|X| compact elements, and it is readily verified that
the compact elements really amount to this number. We are going to prove
that Cl(X) is in some sense the most complicated algebraic lattice with this
property.

Theorem 1. Let X be infinite. Then every algebraic lattice with at most

2|X| compact elements can be completely embedded into Cl(X).

We remark that the corresponding statement does not hold on finite X:
There, Cl(X) has countably infinitely many compact (finitely generated)
elements, but as has been proven in [Bul01], the countably infinite lattice
Mω (consisting of a countably infinite antichain plus a smallest and a largest
element) does not embed into the clone lattice over any finite set. Observe
also that our result implies that the clone lattice on infinite X does not
satisfy any non-trivial properties such as the infinite quasi-identity given in
[Bul01] which holds for Cl(X) if X is finite.

1.1. Notation. We denote the unary projection π1
1 by the somewhat

simpler symbol id, and use J for the set of projections on X. If F ⊆ O,
then we write 〈F 〉 for the clone generated by F . Three lattices will appear
in the proof, the clone lattice Cl(X), the lattice L to be embedded into the
clone lattice, and the lattice of join-semilattice ideals of compact elements
of L: For all of them, we use the symbols ∧,∨,

∧

,
∨

with their standard
meanings, and confusion shall be carefully avoided. If Φ ⊆ O(1) is a set of
unary operations, then Φ∗ will stand for all those functions which arise from
functions of Φ by the addition of any finite number of dummy variables.
Such functions will remain essentially unary, i.e. although possibly non-
unary they depend on only one variable, as opposed to essentially at least

binary functions, which are functions that depend on at least two of their
variables.
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2. Proof of the main theorem. Let L be the lattice to be embedded
into Cl(X) and denote by P the set of all compact elements of L. Then P

is a join-semilattice (cf. the textbook [Grä78]). By an ideal I ⊆ P we mean
a lower subset of P closed under (finite) joins. The set of all ideals of P is
a complete algebraic lattice, and in fact

Fact 2. L is isomorphic to the lattice of ideals of P.

We are going to assign a clone CI to every ideal I ⊆ P in such a way
that the resulting mapping is a complete embedding of L into Cl(X). Fix
four elements 0, 1, 2, 4 ∈ X and set A = X \ {0, 1, 2, 4}. Let A = (Ap)p∈P

be a family of subsets of A indexed by the elements of P with the following
property: Whenever Ap, Aq1

, . . . , Aqk
∈ A and p 6= qi for all 1 ≤ i ≤ k,

then Ap * Aq1
∪ · · · ∪ Aqk

. Such a family exists: For example, there exist

independent families of size 2|X|, where a family F of subsets of A is called
independent iff for all finite disjoint F1, F2 ⊆ F ,

⋂

{F : F ∈ F1} ∩
⋂

{A \ F : F ∈ F2} 6= ∅.

See the textbook [Jec03, Lemma 7.7]. If |X| = ℵ0, then one could also take
A to be almost disjoint, meaning that all members of A are infinite and
the intersection of any two distinct sets from A is finite (cf. [Jec03, Lemma
9.21]).

Define for all p ∈ P a unary function φp ∈ O(1) by

φp(x) =



















0, x ∈ A \ Ap,

1, x ∈ Ap,

2, x = 2,

4, x ∈ {0, 1, 4};

so on A, φp is the characteristic function of Ap. Set Φ = {φp : p ∈ P}. Now
define for all p, q1, q2 ∈ P with p ≤ q1 ∨ q2 a ternary function mq1,q2

p by

mq1,q2

p (x, y, z) =



















φp(x), y = φq1
(x) ∧ z = φq2

(x),

2, (x = 2 ∨ y = 2 ∨ z = 2) ∧

(y /∈ {1, 4}) ∧ (z /∈ {1, 4}),

4, otherwise.

The function is well-defined: We only have to check that there is no
conflict between the conditions for mq1,q2

p (x, y, z) to yield φp(x) and 2, re-
spectively. If both conditions are satisfied, then one of the components of
the tuple (x, y, z) equals 2; since y = φq1

(x) and z = φq2
(x), this implies

x = y = z = 2, making the function value mq1,q2

p (x, y, z) = 2 = φp(x)
unique.

We write M = {mq1,q2

p : p, q1, q2 ∈ P ∧ p ≤ q1 ∨ q2} and C = 〈Φ ∪ M 〉.
The clones CI will all be subclones of C and will all contain M . They
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will essentially consist of those φp for which p ∈ I, plus the functions from
M ; the exact definition can only be given later. One can think of the φp

as functions that represent the elements of P in such a way that they are
in some sense “independent” of each other, and of the mq1,q2

p as functions
representing the order of P, since mq1,q2

p (id, φq1
, φq2

) = φp and since mq1,q2

p is
defined only if p ≤ q1 ∨ q2. The following lemma follows easily by induction
over terms in C .

Lemma 3. The only functions in C which take values in A are the pro-

jections.

Definition 4. We call a function f ∈ O(1) distracted iff there exists
a ∈ A such that f(a) ∈ {2, 4}.

Lemma 5. Let t ∈ C (n) and t1, . . . , tn ∈ O(1). If t depends on its i-th
variable, where 1 ≤ i ≤ n, and if ti is distracted , then t(t1, . . . , tn) is dis-

tracted.

Proof. We use induction over terms in C . First, let t ∈ J ∪ Φ ∪ M .
There is nothing to show if t is a projection. If t ∈ Φ and t1 ∈ O(1) is dis-
tracted, then there exists a ∈ A such that t1(a) ∈ {2, 4}, so t(t1(a)) ∈ {2, 4}
and t(t1) is distracted. If t = mq1,q2

p ∈ M and ti is distracted for some i ∈
{1, 2, 3}, then ti(a) ∈ {2, 4} for some a ∈ A implies that mq1,q2

p (t1, t2, t3)(a) ∈
{2, 4}: Indeed, if mq1,q2

p (t1, t2, t3)(a) ∈ {0, 1}, then the definition of mq1,q2

p

would allow us to conclude t1(a) ∈ A and t2(a) = φq1
(t1(a)) ∈ {0, 1} and

t3(a) = φq2
(t1(a)) ∈ {0, 1}, which is clearly impossible as ti(a) ∈ {2, 4}.

For the induction step, assume that t = f(s1, . . . , sm), where f ∈ J ∪
Φ∪M and sj satisfies the induction hypothesis, 1 ≤ j ≤ m. Now there exists
1 ≤ j ≤ m such that f depends on its j-th variable and sj depends on its
i-th variable. By induction hypothesis sj(t1, . . . , tn) is distracted and so is
f(s1(t1, . . . , tn), . . . , sm(t1, . . . , tn)), by the same proof as for the induction
beginning.

Lemma 6. Let mq1,q2

p ∈ M and t1, t2, t3 ∈ Φ ∪ {id}. Then f =
mq1,q2

p (t1, t2, t3) is distracted unless t1 = id, t2 = φq1
, and t3 = φq2

. In

the latter case we have f = φp.

Proof. If t2 = id or t3 = id, then f(a) ∈ {2, 4} for all a ∈ A, since
mq1,q2

p can yield 0 or 1 only if its second and third argument is in the range
of a function in Φ; hence f is distracted in that case. Assume henceforth
t2, t3 ∈ Φ and write t2 = φr and t3 = φs, where r, s ∈ P.

If t1 = id, then f yields 4 on the symmetric differences Aq1
△ Ar and

Aq2
△As by the very definition of mq1,q2

p . Hence f is distracted unless those
sets are empty, i.e. s = q1 and r = q2; in the latter case we have f = φp as
asserted.
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If t1 = φl ∈ Φ, then mq1,q2

p (φl, φr, φs) yields by definition either 2, 4, or
an element of the form φp(φl(x)) ∈ {2, 4}, so f is distracted.

Lemma 7. All t ∈ C (1) \ (Φ ∪ {id}) are distracted.

Proof. We prove this by induction over terms in C . The beginning is
trivial since there are no unary functions in the generating set J ∪ Φ ∪ M
of C except those from Φ ∪ {id}.

For the induction step, assume that t = f(t1, . . . , tn), where f ∈ J ∪
Φ ∪ M and ti satisfies the induction hypothesis for all 1 ≤ i ≤ n. The case
f ∈ J is trivial. If f ∈ Φ and t1 6= id, then t1 takes only values outside
A by Lemma 3, so f(t1) takes only values in {2, 4} and is distracted. The
other possibility is that f ∈ M , so write t = mq1,q2

p (t1, t2, t3). If any of the
ti is distracted then so is t, by Lemma 5. We may therefore assume that the
ti are not distracted and hence are elements of Φ∪{id}. But then Lemma 6
tells us that t, not being an element of Φ ∪ {id} by assumption, must be
distracted.

Definition 8. We say that t ∈ C (n) is unspoilt iff there exist t1, . . . , tn ∈
C (1) such that t(t1, . . . , tn) ∈ Φ. Otherwise we call t spoilt.

Remark 9. By Lemmas 5 and 7, ti must be in Φ∪ {id} if t depends on
its i-th variable, for all 1 ≤ i ≤ n.

Remark 10. An easy induction using Lemmas 5 and 6 shows that ti is
uniquely determined if t depends on its i-th variable, for all 1 ≤ i ≤ n.

Remark 11. By Lemmas 5 and 7, a unary t ∈ C (1) is distracted iff it is
spoilt.

Lemma 12. Let t ∈ C (n) be unspoilt , and assume it depends on its first

variable. Then t(2, x2, . . . , xn) ∈ {2, 4} for all x2, . . . , xn ∈ X.

Proof. We use induction on the complexity of t. The lemma is trivial
if t ∈ J ∪ Φ ∪ M . For the induction step, since the range of φp(t1) is
contained in {2, 4} and since therefore φp(t1) is spoilt for all φp ∈ Φ and
all t1 ∈ C \ J , we may assume t = mq1,q2

p (t1, t2, t3), where ti satisfies the
induction hypothesis for 1 ≤ i ≤ 3. Now one of the ti must depend on its
first variable, implying ti(2, x2, . . . , xn) ∈ {2, 4} by induction hypothesis.
Hence, mq1,q2

p (t1, t2, t3)(2, x2, . . . , xn) ∈ {2, 4} by the definition of mq1,q2

p .

Let t(x, y) ∈ C (2), and consider a concrete representation r = r(t) of t as
a term over the generating set J ∪ Φ ∪M of C . In the following, we write
such representations without the use of projections, using the variables x, y
instead: for example, we write mq1,q2

p (x, y, y) instead of mq1,q2

p (π2
1, π

2
2, π

2
2).

This is no loss of generality and only avoids unnecessary usage of the pro-
jections, as in π2

1(π
2
2, φp(π

2
1)) (equivalently, we could demand the projections

to appear only as innermost arguments in the representation). We say that
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a subterm s of r is a leaf of r iff it involves exactly one function symbol
from Φ ∪ M . For example, the leaves of

mq1,q2

p (mv1,v2

u (x, φl(y), φr(x)), φd(y), mh1,h2

g (x, x, x))

are φl(y), φr(x), φd(y), and mh1,h2

g (x, x, x). If we think of r as a tree in which
the variables are not represented by their own nodes, the leaves of r are really
exactly the leaves of the tree.

We call the representation r(t) reduced iff it has no subterms of the
form mq1,q2

p (x, φq1
(x), φq2

(x)). Such subterms can be replaced by φp(x) by
virtue of Lemma 6, so every term t has a reduced representation. We are
only interested in representations of unspoilt functions that depend on both
variables, so all unary subterms of any representation correspond to elements
of Φ, by Lemmas 5 and 7; working with reduced terms means that we demand
those unary subterms to be represented by only one function symbol.

Let r(t) be reduced. We set Leaf(r) to consist of all leaves of r(t). Note
that Leaf(r) depends on the representation of the function t.

Lemma 13. Let r(x, y) be a reduced representation of a binary function

in C that is unspoilt and depends on both of its variables. Let a ∈ A. Then

r(2, a) = 4 iff a ∈
⋃

{Av : φv(y) ∈ Leaf(r)}.

Proof. We use induction on the complexity of r. The beginning is trivial
as there are no binary functions depending on both variables in the gen-
erating set of C . For the induction step, write r = f(r1, . . . , rn), where
f ∈ Φ∪M , and where ri satisfies the induction hypothesis for 1 ≤ i ≤ n. If
f ∈ Φ, then using Lemma 3 it is readily verified that f(r1) is spoilt unless
r1 is a projection, in which case r ∈ Φ∗, contradicting the assumption that
r depends on both variables. Assume henceforth that f = mq1,q2

p ∈ M .

Observe that all ri must be unspoilt, for otherwise r would be spoilt
as well by Lemmas 5 and 7. Since r is unspoilt, there exist s1, s2 ∈ C (1)

such that mq1,q2

p (r1(s1, s2), r2(s1, s2), r3(s1, s2)) ∈ Φ. By Lemmas 5–7, this
is only possible if r1(s1, s2) is the identity, which together with Lemma 3
implies that r1 is a projection. Suppose that r2 = r1 = π2

i , where i ∈ {1, 2}.
Then r(s1, s2) = mq1,q2

p (si, si, r3(s1, s2)) ∈ Φ and Lemma 6 implies that the
first argument in mq1,q2

p must be the identity, while the second must equal
φq1

, an obvious contradiction. The same contradiction occurs upon assuming
r3 = r1, and hence we have ri 6= r1, i = 2, 3. We now distinguish six cases.

Assume first r2, r3 ∈ J . Then r = mq1,q2

p (x, y, y) or r = mq1,q2

p (y, x, x).
In either case we have r(2, a) = 2 6= 4, in accordance with our assertion as
r does not have any leaves of the form φv(y).

Consider the case where r2 ∈ J and r3 ∈ Φ∗ (by symmetry, this
also covers the case r3 ∈ J and r2 ∈ Φ∗). Keeping Lemma 6 in mind
we conclude that r = mq1,q2

p (x, y, φq2
(x)) or r = mq1,q2

p (y, x, φq2
(y)) or
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r = mq1,q2

p (x, y, φq2
(y)) or r = mq1,q2

p (y, x, φq2
(x)). The last two possibil-

ities, however, are spoilt, as substitution of φq1
for y and x, respectively,

yields a distracted third argument φq2
(φq1

) of mq1,q2

p . The first possibility
gives us r(2, a) = mq1,q2

p (2, a, 2) = 2 6= 4, in accordance with our assertion.
Finally, for the second term we have r(2, a) = mq1,q2

p (a, 2, φq2
(a)), which

equals 4 iff φq2
(a) ∈ {1, 4} iff a ∈ Aq2

.
Now assume that r2 ∈ J and r3 /∈ J ∪ Φ∗. Then r3 depends on both

of its variables by Lemma 7, and therefore satisfies the assertion of this
lemma by induction hypothesis. By Lemma 12 we find that r(2, a) = 4
iff r(2, a) 6= 2; the definition of mq1,q2

p tells us that this is the case iff
2 /∈ {r1(2, a), r2(2, a), r3(2, a)} or r2(2, a) ∈ {1, 4} or r3(2, a) ∈ {1, 4}. Now
r3(2, a) ∈ {2, 4} by Lemma 12, and r2(2, a) ∈ {2, a} since r2 is a projection.
Thus, r(2, a) = 4 iff r3(2, a) = 4, which by induction hypothesis is the case
iff a ∈

⋃

{Av : φv(y) ∈ Leaf(r3)}. Since the leaves of r3 are just the leaves
of r, we are done.

Next say that r2 ∈ Φ∗ and r3 /∈ J ∪ Φ∗. We have r(2, a) = 4 iff r(2, a)
6= 2, which happens iff 2 /∈ {r1(2, a), r2(2, a), r3(2, a)} or r2(2, a) ∈ {1, 4}
or r3(2, a) ∈ {1, 4}. Again, r3(2, a) ∈ {2, 4} by Lemma 12, and r2(2, a) ∈
{0, 1, 2} as r2 ∈ Φ∗, implying r(2, a) = 4 iff r2(2, a) = 1 or r3(2, a) = 4. Now
if r2(x, y) = φq1

(x), then r2(2, a) = 2 and so r(2, a) = 4 iff r3(2, a) = 4 iff
a ∈

⋃

{Av : φv(y) ∈ Leaf(r3)} by induction hypothesis. This is in accordance
with our assertion since then φv(y) ∈ Leaf(r3) iff φv(y) ∈ Leaf(r). If on the
other hand r2(x, y) = φq1

(y), then r2(2, a) = 1 iff a ∈ Aq1
, and hence

r(2, a) = 4 iff a ∈ Aq1
∪

⋃

{Av : φv(y) ∈ Leaf(r3)}; this is the case iff
a ∈

⋃

{Av : φv(y) ∈ Leaf(r)}.
If r2, r3 ∈ Φ∗, then up to symmetry we have r = mq1,q2

p (x, φq1
(x), φq2

(y))
or r = mq1,q2

p (x, φq1
(y), φq2

(y)) or r = mq1,q2

p (y, φq1
(x), φq2

(x)) or r =
mq1,q2

p (y, φq1
(x), φq2

(y)). Therefore r(2, a) = 4 iff a ∈ Aq2
in the first case,

iff a ∈ Aq1
∪ Aq2

in the second case, and iff a ∈ Aq2
in the fourth case; in

the third case, r(2, a) = 2 6= 4.
Finally, consider r2, r3 /∈ J ∪ Φ∗. By Lemma 12, {r2(2, a), r3(2, a)} ⊆

{2, 4}; thus, r(2, a) = 4 iff r(2, a) 6= 2 iff r2(2, a) = 4 or r3(2, a) = 4.
Using the induction hypothesis, we find that r(2, a) yields 4 iff a ∈

⋃

{Av :
φv(y) ∈ Leaf(r2)} or a ∈

⋃

{Av : φv(y) ∈ Leaf(r3)}; hence, r(2, a) = 4 iff
a ∈

⋃

{Av : φv(y) ∈ Leaf(r)}.

Set S = {t ∈ C : t spoilt}. For all I ⊆ P define sets of functions
ΦI = {φp ∈ Φ : p ∈ I} and GI = ΦI ∪M ∪S , and a clone CI = 〈GI〉. Write
〈I〉 for the ideal of P generated by I.

Lemma 14. Let p ∈ P and I ⊆ P. Then φp ∈ CI iff p ∈ 〈I〉.

Proof. Let t ∈ CI ; using induction over the complexity of t as a term
over the generating set GI , we show that t = φp implies p ∈ 〈I〉. The
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beginning is trivial, since if t ∈ GI , then t ∈ ΦI and so p ∈ I. For the
induction step, write t = f(t1, . . . , tn), with f ∈ GI and ti ∈ CI satisfying
the induction hypothesis, 1 ≤ i ≤ n. Clearly, f ∈ S is impossible. f ∈ ΦI

implies that t1 is the identity and so f = φp; hence p ∈ I. Assume therefore
that f = mq1,q2

u ∈ M . Then u = p, t1 = id, t2 = φq1
and t3 = φq2

by
Lemmas 5–7. By induction hypothesis, q1, q2 ∈ 〈I〉. Hence, p ≤ q1∨q2 ∈ 〈I〉.

For the other direction, it is enough to show that if φq1
, φq2

∈ CI , then
φu ∈ CI for all u ≤ q1 ∨ q2. But this is clear since φu = mq1,q2

u (id, φq1
, φq2

)
∈ CI .

Lemma 15. Let I be a family of ideals of P. Then
∨

{CI : I ∈ I }
= C∨

I .

Proof. Trivially, C∨

I contains all CI , where I ∈ I , hence it contains
∨

{CI : I ∈ I }. For the other inclusion we have to show that C∨

I is
contained in

∨

{CI : I ∈ I }; clearly, it is enough to show that Φ∨

I ⊆
∨

{CI : I ∈ I }. Indeed, if φp ∈ Φ∨

I , then p ∈
∨

I . Since
∨

I = 〈
⋃

I 〉,
the preceding lemma implies φp ∈ C⋃

I . Now it is enough to observe that
C⋃

I equals 〈
⋃

{CI : I ∈ I }〉, which is exactly
∨

{CI : I ∈ I }.

Lemma 16. Let I be a family of ideals of P. Then
∧

{CI : I ∈ I }
= C∧

I .

Proof. C∧

I is a subclone of all CI , where I ∈ I , so trivially C∧

I ⊆
∧

{CI : I ∈ I }. For the other direction, let t ∈
∧

{CI : I ∈ I } =
⋂

{CI :
I ∈ I }. If t is spoilt, then t ∈ C∧

I by definition, so assume that t is
unspoilt. If t is essentially unary, then t is a projection or an element of
Φ∗, by Lemma 7. In the latter case, t ∈

⋂

{Φ∗
I : I ∈ I } by Lemma 14,

so t ∈ C⋂

I = C∧

I . So let t be essentially at least binary, and assume
without loss of generality that it depends on all of its variables. Because
t is unspoilt, there exist t1, . . . , tn ∈ Φ ∪ {id} such that t(t1, . . . , tn) ∈ Φ.
Set si(x, y) = t(t1(x), . . . , ti−1(x), y, ti+1(x), . . . , tn(x)) for all 1 ≤ i ≤ n.
Obviously, all si are unspoilt. They also depend on both variables: indeed, let
without loss of generality i = 1. Then s1(2, t1(a)) = t(t1(a), 2, . . . , 2) ∈ {2, 4}
by Lemma 12 but s1(a, t1(a)) = t(t1, . . . , tn)(a) ∈ {0, 1} for all a ∈ A,
so s1 depends on the first variable. For the second variable, observe that
s1(a, 2) = t(2, t2(a), . . . , tn(a)) ∈ {2, 4}, so s1(a, t1(a)) 6= s1(a, 2).

Assume that t is represented as a reduced term. The si might not be
reduced: for example, t could have a subterm like mq1,q2

p (x2, φq1
(x3), x4),

which becomes mq1,q2

p (x, φq1
(x), φq2

(x)) when we substitute x2 = x3 = x
and x4 = φq2

(x) upon building, say, s1. However, such redundancies will
occur only for the variable x. Thus, when simplifying si to a reduced term
according to the equation mq1,q2

p (x, φq1
(x), φq2

(x)) = φp(x), the leaves of the
form φp(y), which were originally (that is, in t) leaves of the form φp(xi),
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do not change. Therefore, φp(y) is a leaf of the new reduced si iff φp(xi) is
a leaf of t.

By Lemma 13, for all 1 ≤ i ≤ n and for all a ∈ A we deduce that
si(2, a) = 4 iff a ∈

⋃

{Av : φv(y) ∈ Leaf(si)}. This is the case iff a ∈
⋃

{Av :
φv(xi) ∈ Leaf(t)}. Therefore, there exists 1 ≤ i ≤ n with si(2, a) = 4 iff
a ∈

⋃

{Av : ∃i (φv(xi) ∈ Leaf(t))}. Pick arbitrary I, J ∈ I and consider
two reduced representations tI , tJ of t, where tI is a term over GI and tJ
one over GJ . Then, since whether or not si(2, a) = 4 does not depend on the
representation,

⋃

{Av : ∃i (φv(xi) ∈ Leaf(tI))} =
⋃

{Av : ∃i (φv(xi) ∈ Leaf(tJ))}.

Because Av * Aq1
∪ · · · ∪Aqk

whenever qi 6= v for all 1 ≤ i ≤ k, we conclude

{v : ∃i (φv(xi) ∈ Leaf(tI))} = {v : ∃i (φv(xi) ∈ Leaf(tJ))}.

Thus, the latter set is a subset of both I and J , implying that tI actually
involves only functions from GI∩J as leaves. Since J was arbitrary, we may
conclude that the term tI uses only functions from G∧

I as leaves. Because
functions from Φ can appear only as leaves in an unspoilt term (φv(f) is
spoilt for all φv ∈ Φ and all f ∈ C unless f is a projection), this means that
tI contains only functions from G∧

I . Hence, t ∈ C∧

I .

Proposition 17. The mapping assigning CI to every ideal I ⊆ P is a

complete lattice embedding of L into Cl(X).

Proof. The function is injective by Lemma 14 and preserves arbitrary
suprema and infima by Lemmas 15 and 16.

3. Concluding remarks and outlook. The only place where we used
the infinity of the base set X is when we claim the existence of a family A
which is as large as P and has the property that whenever Ap, Aq1

, . . . , Aqk
∈

A and p 6= qi for all 1 ≤ i ≤ k, then

Ap * Aq1
∪ · · · ∪ Aqk

.

Therefore surprisingly, the same proof works to show that every finite lattice
L is a sublattice of the clone lattice over a finite X for some X large enough
(|X| ≥ |L| + 4 suffices). However, as mentioned in the introduction, much
better results already exist for finite X.

Answering the following question would be a next interesting step in
answering the question of how complicated the clone lattice is.

Problem 18. Is every algebraic lattice with at most 2|X| compact ele-

ments an interval of Cl(X)?
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