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A universal planar completely regular continuum
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Sophia Zafiridou (Patras)

Abstract. We construct a universal planar completely regular continuum. This gives
a positive answer to a problem posed by J. Krasinkiewicz (1986).

1. Introduction. We use the term continuum for any (nonempty) com-
pact and connected metric space. A continuum K is said to be

• completely regular if each subcontinuum (except single points) of K
has nonempty interior;
• regular if K has a basis consisting of open sets with finite boundaries;
• hereditarily locally connected if each subcontinuum of K is locally con-

nected.

Completely regular continua are studied in [4] under the name “continua
which contain no nowhere dense subcontinua (except single points)”. Every
completely regular continuum is regular and every regular continuum is
hereditarily locally connected [4, §51, IV]. Simple examples of completely
regular continua are connected graphs.

An arc is any space A homeomorphic to the segment I = [0, 1]. The
points a and b of A which correspond to 0 and 1 under the homeomorphism
are called the endpoints of A and the arc A is written as ab. We denote
(ab) = ab \ {a, b}. An arc ab of a space X is called free (in X) if (ab) is open
in X.

We recall the following characterization of the completely regular con-
tinua [2, Lemma 2], [3, Theorem 1.3]:

Theorem 1.1. A nondegenerate continuum K is completely regular if
and only if there exist a subset F homeomorphic to the Cantor set and a
null sequence of free arcs a1b1, a2b2, . . . of K such that
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(i) K = F ∪
⋃∞
n=1 anbn;

(ii) anbn ∩ F = {an, bn} for any n;
(iii) anbn ∩ ambm = ∅ if n 6= m.

A triple (K,F,A), where K is a completely regular continuum, F is
a zero-dimensional compact subset of K, and A is a sequence of arcs of
K satisfying the conditions of Theorem 1.1, is called a completely regular
continuum with structure.

A completely regular continuum with structure (K̃, F̃ , Ã) is said to be
universal for a family F of completely regular continua with structure if
(K̃, F̃ , Ã) ∈ F and for every (K,F,A) ∈ F there exists a homeomorphism
h : K → K̃ preserving the structure, that is, h(F ) ⊆ F̃ and h(A) ∈ Ã for
every A ∈ A ([1], [6]).

A continuum X is universal for a family F of continua provided that
X ∈ F and each member of F can be homeomorphically embedded in X.
It is known that:

• There exists a universal completely regular continuum [2].
• There exists a universal planar completely regular dendrite [5].
• There is no universal completely regular continuum with structure

[1], [6].
• There is no universal element in the class of planar completely regular
continua with structure [6].

In this paper we construct a universal planar completely regular contin-
uum. This gives a positive answer to a problem posed by J. Krasinkiewicz [3].

2. Notations. All spaces considered in the paper are subspaces of the
plane E2 with a system Oxy of orthogonal coordinates. By a disk is meant
any space homeomorphic to the standard disk {(x, y) | x2 + y2 ≤ 1}.

For any set X we denote by |X| the cardinality of X.

We denote N = {0, 1, . . .}.
For two points x and y of the plane we denote by xy the segment joining

x and y. If ab is an arc and x ∈ (ab), then we write a < x < b.

Given a finite family F of bounded subsets and a subset Q of the plane
we denote F∗ =

⋃
{F : F ∈ F}, st(Q,F) = {F ∈ F : F ∩ Q 6= ∅}, and

mesh(F) = max{diam(F ) : F ∈ F}.

2.1. The family Ln of ordered n-tuples. Put L0 = {∅} and denote
by Ln, n ∈ N \ {0}, the set of all ordered n-tuples ī = i1 . . . in, where it = 0
or it = 1 for any t = 1, . . . , n. Also denote ī0 = i1 . . . in0 and ī1 = i1 . . . in1.
For ī = ∅ ∈ L0 we set ī0 = 0 and ī1 = 1. We write i1 . . . im ≤ j1 . . . jn if
either m = 0, or 1 ≤ m ≤ n and it = jt for every 1 ≤ t ≤ m.
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For ī = i1 . . . in ∈ Ln, n ≥ 1, we denote by Iī the set of all points of I
for which the tth digit of the triadic expansion, t = 1, . . . , n, is 0 if it = 0,
and is 2 if it = 1. For ī = ∅ ∈ L0 we denote Iī = I∅ = I.

For each ī ∈
⋃∞
n=0 Ln we denote

aī = min{x : x ∈ Iī}, b ī = max{x : x ∈ Iī}, a(̄i) = b ī0, b(̄i) = aī1.

2.2. The family Wn of squares. Let C denote the Cantor ternary set.
For every n ∈ N consider the finite cover Wn = {Iī × Ij̄ | ī, j̄ ∈ Ln} of C2

by squares. We denote by V (Wn) the set of all vertices of these squares.
Two elements F1 = Iī1 × Ij̄1 and F2 = Iī2 × Ij̄2 of Wn are called adjacent

if: (α) either ī1 = ī2 or j̄1 = j̄2, and (β) no segment ab with a ∈ F1 and
b ∈ F2 intersects any other element of Wn.

2.3. Joining family of segments A(̄i, j̄). Let ī, j̄ ∈ Lk, k ∈ N. By a
joining family of segments for st(Iī×Ij̄ ,Wk+1) is meant any finite collection
A(̄i, j̄) of disjoint segments xy ⊆ Iī × Ij̄ with the properties:

(α) for any adjacent F1, F2 ∈ st(Iī × Ij̄ ,Wk+1) there exists xy ∈ A(̄i, j̄)
such that one of the points x, y is in F1 and the other in F2,

(β) if xy ∈ A(̄i, j̄), then one of the following four cases holds:

x ∈ {a(̄i)} × Ij̄0 and y ∈ {b(̄i)} × Ij̄0,
x ∈ {a(̄i)} × Ij̄1 and y ∈ {b(̄i)} × Ij̄1,
x ∈ Iī0 × {a(j̄)} and y ∈ Iī0 × {b(j̄)},
x ∈ Iī1 × {a(j̄)} and y ∈ Iī1 × {b(j̄)},

(γ) if xy ∈ A(̄i, j̄), then x, y ∈ C2 \
⋃∞
n=0 V (Wn).

2.4. Primary n-frames of I2. In what follows, A(̄i, j̄), where ī, j̄ ∈ Lk,
k ∈ N, denotes a (nonempty) joining family of segments for st(Iī×Ij̄ ,Wk+1).

By a primary n-frame of I2, n ∈ N \ {0}, is meant any continuum Kn of
the form

Kn =W∗n ∪
⋃
{A∗(̄i, j̄) : ī, j̄ ∈ Lk, 0 ≤ k ≤ n− 1}

=W∗n ∪ A∗(Kn),

where A(Kn) =
⋃
{A(̄i, j̄) : ī, j̄ ∈ Lk, 0 ≤ k ≤ n− 1}.

Let n ∈ N\{0} and m ∈ N. By a primary n-frame of F = IīF×Ij̄F ∈ Wm

is meant any continuum Kn(F ) of the form st∗(F,Wm+n) ∪ A∗(Kn(F )),
where

A(Kn(F )) =
⋃
{A(̄i, j̄) : ī, j̄ ∈ Lk, īF ≤ ī, j̄F ≤ j̄, m ≤ k ≤ m+ n− 1}.

We say that a primary (m + n)-frame Km+n of I2 is n-inscribed in a
primary m-frame Km of I2 if Km+n = A∗(Km) ∪

⋃
{Kn(F ) : F ∈ Wm},

where each Kn(F ) is a primary n-frame of F .
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2.5. The family C. Let {ni}∞i=1 be an increasing sequence in N \ {0}
and Kn1 ⊇ Kn2 ⊇ · · · a decreasing sequence of inscribed primary ni-frames
of I2. From Theorem 1.1 it follows that K =

⋂∞
i=1Kni is a completely regular

continuum.

Let C denote the family of all completely regular continua which are
intersections of some decreasing sequence of inscribed primary frames of I2.
Clearly, K ∈ C if and only if K = C2 ∪

⋃
{A∗(̄i, j̄) : ī, j̄ ∈ Lk, k = 0, 1, . . .}.

We say that K ∈ C is a C-representation of a completely regular contin-
uum X if X is homeomorphic to a subspace of K. The following theorem is
proved in [7, Theorem 4.2].

Theorem 2.1. For any planar completely regular continuum there exists
a C-representation.

2.6. Generalized frames. A generalized frame G is any planar contin-
uum that can be written in the form O∗(G) ∪ A∗(G), where

(i) O(G) is a finite nonempty family of pairwise disjoint squares,
(ii) A(G) is a finite nonempty family of arcs,

(iii) (ab) ∩ O∗(G) = ∅ for any ab ∈ A(G).

A generalized frame F is transitively inscribed in a generalized frame G
if:

(i) F ⊆ G.
(ii) For any F ∈ O(F) there exists G ∈ O(G) such that F ⊆ Int(G).

(iii) If G ∈ O(G), F ∈ O(F), and F ⊆ Int(G), then there exists a finite
family A(F,G) = {aibi}ni=1 of pairwise disjoint arcs of F such that
ai ∈ Bd(F ), {bi}ni=1 = Bd(G) ∩ A∗(G), and (aibi) ⊆ Int(G) \ F for
i = 1, . . . , n.

The following proposition is an easy consequence of the definition of a
completely regular continuum.

Proposition 2.2. If {Gn}∞n=1 is a sequence of generalized frames such
that Gn+1 is transitively inscribed in Gn for any n and limn→∞mesh(O(Gn))
= 0, then the continuum

⋂∞
n=1Gn is completely regular.

2.7. n-frames. For n ∈ N \ {0}, by n-frame is meant any generalized
frame that is homeomorphic to some primary n-frame of I2. If Pn is an
n-frame, then there exist a primary n-frame Kn = W∗n ∪ A∗(Kn) of I2 and
a homeomorphism h : Kn → Pn. We denote

O(Pn) = {h(W ) : W ∈ Wn}, A(Pn) = {h(A) : A ∈ A(Kn)}.
Clearly, Pn = O∗(Pn) ∪ A∗(Pn), where O(Pn) is a finite family of pairwise
disjoint squares and A(Pn) is a finite family of pairwise disjoint arcs. We
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denote

S(O(Pn)) = {s : s is a side of a square P ∈ O(Pn)}.
Squares P, P ′ ∈ O(Pn) are called adjacent if the squares h−1(P ) and

h−1(P ′) of Wn are adjacent. Given adjacent squares P, P ′ ∈ O(Pn) we
denote

APn(P, P ′) = st(P,A(Pn)) ∩ st(P ′,A(Pn)).

3. Construction of a universal planar completely regular
continuum Z

Proposition 3.1. Let D be a disk of the plane, n ≥ 2 be a natural
number, and e1, . . . , en, bn, . . . , b1, an, . . . , a1 be cyclically ordered points on
Bd(D). There exist families of disjoint arcs A = {e1a1, . . . , enan} and B =
{e1b1, . . . , enbn} such that:

(i) (eiai), (eibi) ⊆ Int(D) for any i,
(ii) eiai ∩ ejbj = ∅ for any i < j.

Proof. If D is the standard disk, then the segments eiai and eibi have
properties (i) and (ii). In the other case it suffices to map D homeomor-
phically onto the standard disk and then take the inverse images of the
corresponding segments.

Remark 3.2. From property (ii) of Proposition 3.1 it follows that for any
k,m ∈ N such that k +m ≤ n and for any strongly increasing subsequence
{i1, . . . , ik+m} of {1, . . . , n} the family {ei1ai1 , . . . , eikaik , eik+1

bik+1
, . . . ,

eik+m
bik+m

} consists of pairwise disjoint arcs.

We say that a subcontinuum F of a disk D is an n-frame of D if there
exist a primary n-frame Kn of I2 and a homeomorphism h of D onto I2 such
that F = h−1(Kn).

For any square P we can define a 1-frame K(P ) of P in a way similar
to the definition of a primary 1-frame for I2 (dividing P into nine equal
squares, taking only the corner squares and joining any pair of adjacent
corner squares by a finite number of disjoint segments).

We say that a frame K(P ) is n-joined, n ∈ N\{0}, if any adjacent squares
of K(P ) are joined by exactly n disjoint segments.

In what follows, Kn(P ) denotes an n-joined 1-frame of the square P .
For any square P = [p1, p2]× [q1, q2] of the plane we denote

v1(P ) = (p1, q1), v2(P ) = (p1, q2), v3(P ) = (p2, q2), v4(P ) = (p2, q1),

s1(P ) = v1(P )v2(P ), s2(P ) = v2(P )v3(P ),

s3(P ) = v3(P )v4(P ), s4(P ) = v4(P )v1(P ).

Denoting v5 ≡ v1 we obtain s`(P ) = v`(P )v`+1(P ) for any ` ∈ {1, 2, 3, 4}.
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Obviously, V (P ) = {v1(P ), v2(P ), v3(P ), v4(P )} is the set of vertices
of P , and S(P ) = {s1(P ), s2(P ), s3(P ), s4(P )} is the set of sides of P .

Given a 1-frame K(P ) of P , we denote by Pκ, κ ∈ {1, 2, 3, 4}, the unique
element of O(K(P )) that contains the vertex vκ(P ) (see Figure 1).

3.1. Grafting construction. Given a square P = [p1, p2] × [q1, q2], a
finite set EP ⊆ Bd(P )\V (P ) that intersects each side of P , and n ∈ N\{0},
we will define a corresponding generalized frame Gn(P,EP ).

Let P̃ = [p̃1, p̃2] × [q̃1, q̃2] be a square such that P̃ ⊆ Int(P ) and Kn(P̃ )

be any n-joined 1-frame of P̃ . We denote by D`, ` ∈ {1, 2, 3, 4}, the disk
bounded by the closed curve (see Figure 2)

Bd(D`) = v`(P̃ )v`(P ) ∪ v`(P )v`+1(P ) ∪ v`+1(P )v`+1(P̃ ) ∪ v`+1(P̃ )v`(P̃ ).

P

P̃

P̃1

P̃2 P̃3

P̃4

Fig. 1

P̃s1(P )

s2(P )

s3(P )

s4(P )v1(P )

v1(P̃ )

v2(P )

v2(P̃ )

v3(P )

v3(P̃ )

v4(P )

v4(P̃ )

D1

D2

D3

D4

Fig. 2

Construction of families A`κ(P ). To each side s`(P ) of P we will associate
two families A``(P ) and A``+1(P ) of pairwise disjoint arcs joining points of

s`(P ) ∩ EP to points of s`(P̃`) and of s`(P̃`+1), respectively (see Figure 3).
Let s`(P ) ∩ EP = {e`1, . . . , e`n`

} be cyclically ordered in Bd(P ).

Note that st(s`(P̃ ),O(Kn(P̃ ))) = {P̃`, P̃`+1}.
Fix cyclically ordered (in Bd(P̃ )) sets {a`1, . . . , a`n`

} ⊆ s`(P̃`) \ V (P̃`)

and {b`1, . . . , b`n`
} ⊆ s`(P̃`+1) \ V (P̃`+1). Apply Proposition 3.1 to the disk

D` and the points e`1, . . . , e
`
n`
, b`n`

, . . . , b`1, a
`
n`
, . . . , a`1 ∈ Bd(D`) to obtain

families A``(P ) = {e`1a`1, . . . , e`n`
a`n`
} and A``+1(P ) = {e`1b`1, . . . , e`n`

b`n`
} of

pairwise disjoint arcs that satisfy conditions (i) and (ii) of Proposition 3.1.
Set A`(P ) = A``(P ) ∪A``+1(P ) for any `. It is easily seen that

(a) (A`1(P ))∗ ∩ (A`2(P ))∗ = ∅ whenever `1 6= `2.
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a1
2

b12

a1
1

b11

e11

e12

e21 e22 e23 e24

e32

e31

e43 e42 e41

Fig. 3
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Fig. 4

(b) If ae ∈ A`(P ), then a ∈ (s`(P̃`) \ V (P̃`)) ∪ (s`(P̃`+1) \ V (P̃`+1)),

e ∈ s`(P ) ∩ EP , and (ea) ⊆ Int(P ) \ P̃ .
(c) If k,m∈N, k+m≤n`, and {i1, . . . , ik+m} is a strongly increasing sub-

sequence of {1, . . . , n`}, then the familiesA``,k(P )={ei1ai1 , . . . , eikaik}
and A``+1,m(P ) = {eik+1

bik+1
, . . . , eik+m

bik+m
} have the following

properties: A`k+m(P ) = A``,k(P )∪A``+1,m(P ) consists of pairwise dis-

joint arcs, |st(s`(P̃`), A`k+m(P ))| = k, and |st(s`(P̃`+1), A`k+m(P ))|
= m.

Construction of families B`(Pκ). To each side s`(P ) of P we will asso-

ciate a family B`(P̃1) of pairwise disjoint arcs joining points of EP ∩ s`(P )

to points of the side s`(P̃1) of P̃1 (the choice of P̃1 is accidental, in place of

P̃1 we could take any other element of O(Kn1 (P̃ ))) in such a way that (see
Figure 4):

(d) (B`1(P̃1))∗ ∩ (B`2(P̃1))∗ = ∅ whenever `1 6= `2.

(e) If ae ∈ B`(P̃1), then a ∈ s`(P̃1) \ V (P̃1), e ∈ s`(P ) ∩EP , and (ea) ⊆
Int(P ) \ O∗(Kn(P̃ )).

Set B1(P̃1) = A1
1 and B4(P̃1) = A4

1, where the families A1
1 and A4

1 of
pairwise disjoint arcs in Int(D1) and Int(D2), respectively, have already
been defined.

Obviously, there are disks D2, D3 ⊆ P such that: (i) the interiors of D2,

D3, D1, and D4 are pairwise disjoint, (ii) s2(P ), s2(P̃1) ⊆ Bd(D2), and (iii)

s3(P ), s3(P̃1) ⊆ Bd(D3).

Fix cyclically ordered (in Bd(P̃1)) sets {a1, . . . , an2} ⊆ s2(P̃1) \ V (P̃1)

and {b1, . . . , bn3} ⊆ s3(P̃1) \ V (P̃1). Apply Proposition 3.1 to the disks
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D2 and D3 to obtain families B2(P̃1) = {e2
1a1, . . . , e

2
n2
an2} and B3(P̃1) =

{e2
1b1, . . . , e

2
n2
bn3} of pairwise disjoint arcs that satisfy conditions (d) and (e).

Set

Gn(P,EP ) = Kn(P̃ ) ∪
( 4⋃

`=1

(A`(P ))∗
)
∪
( 4⋃

`,κ=1

(B`(Pκ))∗
)
,

A(Gn(P,EP )) = A(Kn(P̃ )) ∪
( 4⋃

`=1

A`(P )
)
∪
( 4⋃

`,κ=1

B`(Pκ)
)
.

Clearly, mesh(O(Gn(P,EP ))) = diam(P̃ )/9.

3.2. Construction of Z. We will define a sequence {Gn}∞n=1 of gener-
alized frames such that Gn+1 is transitively inscribed in Gn for all n.

Let T = [t1, t2]2 be any square of the plane. In each side s` of T take a
point e` ∈ s`(T ) \ V (T ). Select ET = {e1, e2, e3, e4} ⊆ Bd(T ). We define

G1 = G1(T,ET ) and A(G1) = A(G1(T,ET )).

Clearly, O(G1) = O(K1(P̃ )). From the definition of G1(T,ET ) it follows that
for any P ∈ O(G1) and for any side s`(P ) of P the set A∗(G1) ∩ s`(P ) is a
nonempty subset of s`(P ) \ V (P ).

Suppose that a generalized frame Gn = O∗(Gn)∪A∗(Gn), n ∈ N \ {0}, is
defined and for any P ∈ O(Gn) and any side s`(P ) of P the setA∗(Gn)∩s`(P )
is a nonempty subset of s`(P ) \V (P ). Set EP = A∗(Gn)∩Bd(P ) and define

Gn+1 =
(
Gn ∩

⋃

P∈O(Gn)

Gn+1(P,EP )
)
∪ A(Gn),

A(Gn+1) = A(Gn) ∪
⋃

P∈O(Gn)

A(Gn+1(P,EP )).

3.3. Properties of {Gn}∞n=1. For any n ∈ N \ {0} the following prop-
erties are satisfied:

(1) Gn+1 ⊆ Gn.
(2) mesh(O(Gn+1)) < mesh(O(Gn))/9.

(3) If P ∈ O(Gn), then there exists P̃ ⊆ Int(P ) such that

P∩Gn+1 = Gn(P,EP ) = Kn+1(P̃ )∪
( 4⋃

`=1

(A`(P ))∗
)
∪
( 4⋃

`,κ=1

(B`(Pκ))∗
)
.

(4) Gn+k is transitively inscribed in Gn for any k ∈ N \ {0}. Moreover,

if P̂ ∈ O(Gn) and P ∈ st(P̂ ,O(Gn+k)), then for each ` ∈ {1, 2, 3, 4}
there exists a finite family B`(P̂ , P ) consisting of pairwise disjoint
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arcs ab ∈ Gn+k such that

a ∈ s`(P̂ ) ∩ A∗(Gn), b ∈ s`(P ) ∩ A∗(Gn+k), (ab) ⊆ Int(P̂ ) \ P.

Also, (B`1(P̂ , P ))∗ ∩ (B`2(P̂ , P ))∗ = ∅ for `1 6= `2.

We define Z =
⋂∞
n=1 Gn. By Proposition 2.2, Z is a planar completely regular

continuum.

4. Main theorem

Lemma 4.1. Let A, B, C be disks of the plane such that A ⊆ Int(B)
and B ⊆ Int(C). Let also {b1a1, . . . , bnan}, {c1b1, . . . , cnbn} be families of
pairwise disjoint arcs such that for any i = 1, . . . , n:

(i) {a1, . . . , an} ⊆ Bd(A), {b1, . . . , bn} ⊆ Bd(B), and {c1, . . . , cn} ⊆
Bd(C),

(ii) (biai) ⊆ Int(B) \A and (cibi) ⊆ Int(C) \B.

Suppose also that for i = 1, . . . , n there are given homeomorphisms gi :
cibi → cibi ∪ biai such that gi(ci) = ci and gi(bi) = ai. Then for any hom-
eomorphism h : B → A such that h(bi) = ai for any i, there exists a
homeomorphism h : C → C such that

(iii) h|B = h,
(iv) h|Bd(C) is identity, and

(v) h|cibi = gi for any i.

Proof. We denote bn+1 = b1 and cn+1 = c1. For any i = 1, . . . , n we
consider the arc cici+1 in Bd(C) for which (cici+1) ∩ {c1, . . . , cn} = ∅, the
arc bibi+1 in Bd(B) for which (bibi+1)∩ {b1, . . . , bn} = ∅, and the arc aiai+1

in Bd(B) for which (aiai+1) ∩ {a1, . . . , an} = ∅. Note that

(vi) C \ Int(B) is a union of disks DB
i , i = 1, . . . , n, bounded by the

closed curves Bd(DB
i ) = cici+1 ∪ bibi+1 ∪ cibi ∪ ci+1bi+1,

(vii) C\Int(A) is a union of disksDA
i , i = 1, . . . , n, bounded by the closed

curves Bd(DA
i ) = cici+1∪aiai+1∪(cibi∪biai)∪(ci+1bi+1∪bi+1ai+1).

Let hi : Bd(DB
i )→ Bd(DA

i ) be a homeomorphism such that hi(bi) = ai,
hi(bi+1) = ai+1, hi(bibi+1) = aiai+1, hi is the identity on cici+1, hi|cibi = gi,
and hi|ci+1bi+1

= gi+1. Then there is a homeomorphism hi : DB
i → DA

i such

that hi|Bd(DB
i ) = hi. The required homeomorphism h : C → C is defined by

h(x) =

{
h(x) if x ∈ B,

hi(x) if x ∈ DB
i .

Lemma 4.2. Let rp be an arc and {ri}∞i=0, {pi}∞i=0 be sequences in (rp)
such that limi→∞ pi = p and ri < pi < ri+1 for any i ∈ N. Then there is a
sequence of homeomorphisms gi : rpi−1 → rpi, i = 1, 2, . . . , such that
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(i) gi(r) = r and gi(pi−1) = pi,
(ii) gi is the identity on rri−1,

(iii) f = limi→∞(gi ◦ · · · ◦ g1) is a homeomorphism of rp0 onto rp.

Proof. Let {xi}∞i=1 be a sequence of points of (r0p0) such that limi→∞ xi
= p0 and xi < xi+1 < p0 for any i.

We have r < r0 < x1 < p0 < r1 < p1.
Let g1 : rp0 → rp1 be a homeomorphism such that g1 is the identity on

rr0, g1(r0x1) = (r0r1), and g1(x1p0) = r1p1. Note that {g1(xi)}∞i=2 ⊆ (r1p1).
Assume that for any 1 ≤ j ≤ i homeomorphisms gj with properties (i)

and (ii) have been defined and that {gi(. . . g1(xk))}∞k=i+1 ⊆ (ripi).
For x′i+1 = gi(. . . g1(xi+1)) we have r < ri < x′i+1 < pi < ri+1 < pi+1.
Let gi+1 : rpi → rpi+1 be a homeomorphism such that gi+1 is the iden-

tity on rri, gi+1(rix
′
i+1) = (riri+1), and gi+1(x′i+1pi) = ri+1pi+1. Note that

{gi+1(. . . g1(xk))}∞k=i+2 ⊆ (ri+1pi+1).
Set fi = gi ◦ · · · ◦ g1. Since limi→∞ pi = p, {fi}∞i=1 converges uniformly

to f and since f is defined on the compact set rp0, we conclude that f is a
closed map. Obviously, f(r) = r and f(p0) = p. Hence, f(rp0) = rp.

In order to prove that f is one-to-one assume that r ≤ x < y ≤ p1.
If x, y ∈ rr0, then f(x) = g1(x) 6= g1(y) = f(y), because each gi is the

identity on rr0. In the other case r ≤ x ≤ xk < y ≤ p0 for some k. Since
fk(xk) = rk, it follows that r ≤ fk(x) ≤ rk < fk(y) ≤ f(y) ≤ p. Since gi is
the identity on rrk for each i ≥ k, it follows that f(x) = fk(x) ∈ rrk and
f(y) 6∈ rrk. Thus f(x) 6= f(y).

Main Theorem 4.3. For any K ∈ C there exists a homeomorphism
H : E2 → E2 such that H(K) ⊆ Z.

Proof. Let K ∈ C. Then

K = C2 ∪
⋃
{A∗(̄i, j̄) : ī, j̄ ∈ Lk, k = 0, 1, . . .}.

For any i ∈ N and for any F ∈ Wi we denote by A(F ) the joining family
of segments for st(F,Wi+1). Then K(F ) = st∗(F,Wi+1)∪A∗(F ) is a 1-frame.
Note that K(F ) = (

⋃4
`=1 F`) ∪ A∗(F ). We define

nF = max{|AK(F )(F`, F`+1)| : F`, F`+1 are adjacent in st(F,Wi+1)}.
Set A(Ki) =

⋃
{A(̄i, j̄) : ī, j̄ ∈ Lk, 0 ≤ k ≤ i − 1} and Ki = W∗i ∪ A∗(Ki).

Note that
Ki+1 = A∗(Ki) ∪

⋃
{K(F ) : F ∈ Wi}.

Clearly each Ki is a primary i-frame of I2 which for any i > 1 is 1-inscribed
in Ki−1 and K =

⋂∞
i=1Ki.

Let {ni}∞i=1 be a sequence of natural numbers such that ni+1 > ni + 2
and ni > max{nF : F ∈ Wi} for any i. For each i ≥ 1 we will define an
i-frame Mi ⊆ Gni and a homeomorphism hi : Ki →Mi such that:
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(1i) Mi ⊆Mi+1.
(2i) If F ∈ O(Ki) and F ′ ∈ st(F,O(Ki+1)), then hi+1(F ′) ⊆ Int(hi(F )).
(3i) hi(A) ⊆ hi+1(A) for all A ∈ A(Ki).
(4i) If x is an endpoint of an arc A ∈ A(Ki), then

st(hi+1(x),O(Mi+1)) = hi+1(st(x,O(Ki+1))).

Construction of M1. We begin by taking any P ∈ O(Gn1−1). By prop-

erty (3) of the family {Gn}∞n=1 there are a square P̃ ⊆ Int(P ) and an n1-

joined 1-frame Kn1(P̃ ) of P̃ such that Kn1(P̃ ) ⊆ Gn1 .

Since K1 is an at most n1-joined 1-frame of I2, there exists an embedding
h1 : K1 → Kn1(P̃ ) such that

(1h1) h1(I2
` ) = P̃` for all ` ∈ {1, 2, 3, 4}.

(2h1) h1(sκ(I2
` )) = sκ(P̃`) for all `, κ ∈ {1, 2, 3, 4}.

(3h1) If A ∈ AK1(I2
`1
, I2
`2

), then h1(A) ∈ AKn1 (P̃ )
(h1(I2

`1
), h1(I2

`2
)).

Let i ≥ 1 and suppose that for any 1 ≤ j ≤ i a j-frame Mj and a
homeomorphism hj : Kj →Mj have been defined.

Construction of an i-frame Ni that is transitively inscribed in Mi. For
any P̂ ∈ O(Mi) we fix any P ∈ st(P̂ ,O(Gni+1−1)) and denote it by ω̂(P̂ ).

Since P̂ ∈ O(Gni), from property (4) of {Gn}∞n=1 it follows that for any

` ∈ {1, 2, 3, 4} there is a finite family B`(P̂ , P ) of pairwise disjoint arcs

p̂p ⊆ Gni+1−1 such that p̂ ∈ s`(P̂ ) ∩ A∗(Mi), p ∈ s`(P ) ∩ A∗(Gni+1−1), and

(p̂p) ⊆ Int(P̂ ) \ P .

Let p̂q̂ ∈ A(Mi). Then there are adjacent elements P̂ , Q̂ of O(Mi) and

`p̂, `q̂ ∈ {1, 2, 3, 4} such that p̂ ∈ s`p̂(P̂ ) and q̂ ∈ s`q̂(Q̂). Let ω̂(P̂ ) = P and

ω̂(Q̂) = Q.

Consider the points p∈s`p̂(P )∩A∗(Gni+1−1) and q∈s`q̂(Q)∩A∗(Gni+1−1)

such that p̂p, q̂q ⊆ Gni+1−1, (p̂p) ⊆ Int(P̂ ) \ P , and (q̂q) ⊆ Int(Q̂) \ Q. We
denote τ̂i(p̂q̂) = p̂q̂ ∪ p̂p ∪ q̂q.

Set A(Ni) = {τ̂i(A) : A ∈ A(Mi)} and O(Ni) = {ω̂(P̂ ) : P̂ ∈ O(Mi)}.
Clearly, τ̂i : A(Mi)→ A(Ni) and ω̂i : O(Mi)→ O(Ni) are bijections.

Set Ni = O∗(Ni) ∪ A∗(Ni).

Construction of Mi+1. Let P̂ ∈ Mi. Then ω̂i(P̂ ) = P ∈ O(Ni). Since

P ∈ O(Gni+1−1), by property (3) of {Gn}∞n=1 there exist a square P̃ ⊆ Int(P )

and an ni+1-joined 1-frame Kni+1(P̃ ) of P̃ such that P ∩Gni+1 = Kni+1(P̃ )∪⋃4
`=1(A`(P̃ ))∗, where the families of arcs A`(P ) have properties (a)–(c) of

Subsection 3.1. Clearly, to each P̂ ∈Mi corresponds a unique P̃ . We denote
P̃ = ω̃i(P̂ ).
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On the other hand P̂ = hi(F ), where F ∈ O(Ki). Since K(F ) = F ∩Ki+1

is an at most ni+1-joined 1-frame of F and Kni+1(P̃ ) is an ni+1-joined 1-

frame of P , there is an embedding hF : K(F )→ Kni+1(P̃ ) such that:

(1hF ) hF (F`) = P̃` for all ` ∈ {1, 2, 3, 4}.
(2hF ) hF (sκ(F`)) = sκ(P̃`) for all `, κ ∈ {1, 2, 3, 4}.
(3hF ) If A∈AK(F )(F`1 , F`2), then hF (A) ∈ AKni+1 (P̃ )

(hF (F`1), hF (F`2)).

Let ` ∈ {1, 2, 3, 4} be such that s`(F ) ∩ A∗(Ki) 6= ∅.
Note that st(s`(F ),O(Ki+1)) = {F`, F`+1}. We denote

k = |F` ∩ A∗(O(Ki))| and m = |F`+1 ∩ A∗(O(Ki))|.
Then |s`(P ) ∩ A∗(Ni)| = k +m ≤ |s`(P ) ∩ A∗(Gni+1)|.

From property (c) of A`(P ) it follows that there are families of pairwise
disjoint arcs A``,k(P ) and A``+1,m(P ) of Gni+1 such that:

(i) A``,k(P ) ∪A``+1,m(P ) consists of pairwise disjoint arcs.

(ii) |A``,k(P )| = k and |A``+1,m(P )| = m.

(iii) If pp̃ ∈ A``,k(P ), then p ∈ s`(P ) ∩ A∗(N1), p̃ ∈ s`(P̃`), and (pp̃) ⊆
Int(P ) \ P̃ .

(iv) If pp̃ ∈ A``+1,m(P ), then p ∈ s`(P ) ∩ A∗(N1), p̃ ∈ s`(P̃`+1), and

(pp̃) ⊆ Int(P ) \ P̃ .

For any p ∈ s`(P )∩A∗(N1) we denote τ̃(p) = st(p,A``,k(P )∪A``+1,m(P )).

Let A = pAqA ∈ A(Ki), p̂ = hi(pA), and q̂ = hi(qA). Then p̂q̂ ∈ A(Mi)
and τ̂i(p̂q̂) = pq ∈ A(Ni). There are adjacent elements P,Q of O(Ni) and
`p, `q ∈ {1, 2, 3, 4} such that p ∈ s`p(P ) ∩ A∗(Ni) and q ∈ s`q(Q) ∩ A∗(Ni).
Let τ̃(p) = pp̃ and τ̃(q) = pq̃. Set p̃q̃ = τ̃(p) ∪ pq ∪ τ̃(q).

Let hA : pAqA → p̃q̃ be a homeomorphism such that hA(pA) = p̃ and
hA(qA) = q̃. Set Mi+1 = (

⋃
F∈O(Ki)

hF (K(F ))) ∪ (
⋃
A∈A(Ki)

hA(A)).

We define hi+1 : Ki+1 →Mi+1 as follows:

hi+1(x) =

{
hF (x) if x ∈ F ∈ O(Ki),
hA(x) if x ∈ A ∈ A(Ki).

Construction of a homeomorphism H : E2 → E2 that carries K into Z.
Given a square P we denote by U [P, δ] the square consisting of points that
are at distance ≤ δ from P .

For each i = 1, 2, . . . , we choose δi > 0 such that

(i) U [P̂ , δi] ∩ U [Q̂, δi] = ∅ for any distinct P̂ , Q̂ ∈ O(Mi).

(ii) If Q̂ ∈ O(Mi) and P̂ ∈ st(Q,O(Mi+1)), then U [P̂ , δi+1] ⊆ Int(Q̂).

Obviously, limi→∞ δi = 0.
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To each i-frameMi we associate the i-frame Ui = O∗(Ui)∪A∗(Ui), where

O(Ui) = {U [P̂ , δi] : P̂ ∈ O(Mi)},
A(Ui) = {Cl(A \ O∗(Ui)) : A ∈ A(Mi)}.

For each A ∈
⋃∞
i=1A(Ki) we will define an embedding HA : A→ Z. The

final homeomorphism H will be such that H|A = HA.

Let A = pAqA ∈
⋃∞
i=1A(Ki). Since A(K1) ( A(K2) ( · · · , there is

a least iA such that A ∈ A(KiA). Consider adjacent F pA , F qA ∈ O(KiA)
such that pA ∈ F pA and qA ∈ F qA . Set hiA+i(pA) = pi, hiA+i(qA) = qi,
hiA+i(F

pA) = Pi, and hiA+i(F
qA) = Qi for any i ∈ N. Then pi ∈ Pi, qi ∈ Qi,

and Pi, Qi are adjacent in O(MiA+i) for any i ∈ N.

Since the sets Pi and Qi are compact and since, from (2i), we have
Pi+1 ⊆ Pi and Qi+1 ⊆ Qi, it follows that

⋂∞
i=1 Pi = {p} and

⋂∞
i=1Qi = {q}.

Let piqi = hiA+i(pAqA). Then piqi ⊆ pi+1qi+1 from (3i). It is easy to see
that

⋃∞
i=1 piqi = pq and pq is an arc of Z.

Note that p ∈ Int(Pi) ⊆ U [Pi, δiA+i] and q ∈ Int(Qi) ⊆ U [Qi, δiA+i] for
all i ∈ N. Denote ri = pq ∩ Bd(U [Pi, δiA+i]) and si = pq ∩ Bd(U [Qi, δiA+i]).

Fix any r ∈ (r0s0). Note that the sequences {ri}∞i=0 and {pi}∞i=0 of (rp)
as well as the sequences {si}∞i=0 and {qi}∞i=0 of (rq) satisfy the conditions of
Lemma 4.2. Since rpi ∪ rqi = piqi, there is a sequence of homeomorphisms
gAi : pi−1qi−1 → piqi, i = 1, 2, . . . , such that:

(i) gAi (r) = r, gAi (pi−1) = pi, and gAi (qi−1) = qi.
(ii) gAi is the identity on ri−1si−1.

(iii) fA = limi→∞(gAi ◦ · · · ◦ gA1 ) is a homeomorphism of p0q0 onto pq.

Obviously, HA = fA ◦ hiA is a homeomorphism of A onto pq.

Since K1 is a union of finitely many pairwise disjoint disks joined by
finitely many pairwise disjoint arcs and since h1 : K1 →M1 is a homeomor-
phism, there exists a homeomorphism H1 : E2 → E2 such that H1|K1 = h1.

Let P̂ ∈ O(M1) and st(P̂ ,A(M1)) = {AP̂1 , . . . , AP̂n }. Since M1 =
h1(K1), there exist pairwise disjoint arcs A1, . . . , An ∈ A(K1) such that

AP̂i = h1(Ai) for i = 1, . . . , n. Clearly,

st(U [P̂ , δ1],A(U1)) = {Cl(AP̂i \ O∗(U1))}ni=1.

Also, for P̃ = ω̃1(P̂ ) we have st(P̃ ,A(M2)) = {h2(Ai)}ni=1.

Obviously, we have Cl(AP̂i \ O∗(U1)) ⊆ AP̂i ⊆ h2(Ai) for i = 1, . . . , n.

We denote ri0 = Bd(U [P̂ , δ1]) ∩ Cl(AP̂i \ O∗(U1)), pi0 = Bd(P̂ ) ∩ AP̂i , and
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pi1 = Bd(P̃ ) ∩ h2(Ai). Then

{r1
0, . . . , r

n
0 } = Bd(U [P̂ , δ1]) ∩ A∗(M1),

{p1
0, . . . , p

n
0} = Bd(P̂ ) ∩ A∗(M1),

{p1
1, . . . , p

n
1} = Bd(P̃ ) ∩ A∗(M2).

Observe that P̃ , P̂ , and U [P̂ , δ1] are disks such that P̃ ⊆ Int(P̂ ) and

P̂ ⊆ Int(U [P̂ , δ1]).

Since pi0 ∈ Bd(P̂ ) ∩H1(K2) and pi1 ∈ Bd(P̃ ) ∩M2 for all i, there exists

a homeomorphism g
P̂

: P̂ → P̃ such that g
P̂

(H1(K2) ∩ P̂ ) = M2 ∩ P̃ and

g
P̂

(pi0) = pi1.

By Lemma 4.1 there is a homeomorphism g
P̂

: U [P̂ , δ1]→ U [P̂ , δ1] such

that g
P̂
|
Bd(U [P̂ ,δ1])

is the identity, g|
P̂

= g
P̂

, and g
P̂
|ri0pi0 = gAi

1 |ri0pi0 for any i.

Let g1 : E2 → E2 be a homeomorphism such that

g1|E2\O∗(U1) = H1|E2\O∗(U1) and g1|P̂ = g
P̂

for all P̂ ∈ O(M1). We set H2 = g1 ◦H1. Clearly, H2 sends K2 onto M2.
By induction the homeomorphisms gi : E2 → E2 and Hi : E2 → E2,

i ∈ N \ {0}, can be defined so that the following conditions are satisfied:

(1) Hi(Ki) = hi(Ki) =Mi.
(2) gi|E2\O∗(Ui) = Hi|E2\O∗(Ui).

(3) gi|Bd(U [P̂ ,δi])
= Hi|Bd(U [P̂ ,δi])

for all P̂ ∈ O(Mi).

(4) If P̂ ∈ O(Mi), then gi(U [P̂ , δi]) = U [P̂ , δi] and gi|P̂ maps P̂ onto

P̃ = ω̃i(P̂ ) in such a way that gi(Hi(Ki+1) ∩ P̂ ) =Mi+1 ∩ P̃ .
(5) If A ∈ A(Ki) and hiA+j(A) = pjqj ∈ A(Mi), then gi|pjqj = gAj+1.
(6) Hi+1 = gi ◦Hi.

Let H : E2 → E2 be the limit of the sequence {Hi}∞i=1 of homeomor-
phisms.

We will prove that H is a homeomorphism and H(K) ⊆
⋂∞
i=1Mi.

Note that Hi(K) ⊆ Hi(Ki) and Hi+1(Ki+1) ⊆ Hi(Ki) for all i. Since
Hi(Ki) =Mi for all i, we obtain

H(K) = lim
i→∞

Hi(K) ⊆
∞⋂

i=1

Hi(Ki) =

∞⋂

i=1

Mi.

Let Ĥ : E2 → E2 be the limit of the sequence {Hi}∞i=2. Since H = H1 ◦Ĥ
and H1 is a homeomorphism, it suffices to show that Ĥ is a homeomorphism.

From properties (2) and (6) it follows that Ĥi+1 ≡ Ĥi on E2 \ O∗(Ui).
Since in addition limi→∞mesh(O∗(Ui)) = 0, the homeomorphisms Ĥi con-

verge uniformly to Ĥ. Thus Ĥ is continuous.
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Since Ĥ|E2\U1 = H2|E2\U1 , it remains to prove that Ĥ is one-to-one on
the compact set U1. From U1 ⊇ U2 ⊇ · · · , it follows that U1 = (

⋃∞
i=1(Ui \

Ui+1)) ∪ (
⋂∞
i=1 Ui). Since Ĥ|Ui\Ui+1

= Hi+1|Ui\Ui+1
is a homeomorphism and

the family {Ui \ Ui+1}∞i=1 consists of pairwise disjoint sets, it suffices to

show that Ĥ is one-to-one on
⋂∞
i=1 Ui. It is easy to verify that

⋂∞
i=1 Ui =⋂∞

i=1Mi = (
⋂∞
i=1O∗(Mi)) ∪ (

⋃∞
i=1A∗(Mi)).

By (4) for any i and for any P̂ ∈ O(Mi) it follows that Hi(P̂ ) = P̃ ⊆
Int(P̂ ). Since limi→∞mesh(O(Mi)) = 0, we conclude that Ĥ is one-to-one
on
⋂∞
i=1O(Mi).

Let x, y ∈
⋃∞
i=1A∗(Mi) and x 6= y. Then H1(x) 6= H1(y).

If there exist i ∈ N\{0} and A ∈ A(Ki) such that x, y ∈ hi(A) ∈ A(Mi),

then (5) yields H|A = HA = Ĥ|H1(A) ◦H1|A. Thus Ĥ(x) 6= Ĥ(y).
In the other case there exist ix, iy ∈ N \ {0}, Ax ∈ A(Kix), and Ay ∈

A(Kiy) with Ax ∩ Ay = ∅, x ∈ hix(Ax) ∈ A(Mix), and y ∈ hiy(Ay) ∈
A(Miy).

Without loss of generality we can assume iAx ≤ iAy . ThenAx, Ay ∈ A(Ki)
for any i ≥ iAy . Thus hiA+i(Ax) ∩ hiA+i(Ay) = ∅ for each i ≥ iAy .

Since the endpoints of the arcs Ax and Ay are in O∗(Ki) for each i ≥ iAy

and limi→∞mesh(O∗(Ki)) = 0, there is i0 ≥ iAy such that the endpoints of
arcs Ax and Ay are separated in O(KiA+i0). From (4i) it follows that the
endpoints of arcs hiA+i(Ax) and hiA+i(Ay) are separated in O(MiA+i0) for
each i ≥ i0.

Since Ĥ(H1(Ax)) =
⋃∞
i=1 hiA+i(Ax) and Ĥ(H1(Ay)) =

⋃∞
i=1 hiA+i(Ay),

it follows that Ĥ(Ax) ∩ Ĥ(Ay) = ∅. Hence, Ĥ(x) 6= Ĥ(y).

Theorems 2.1 and 4.3 imply the following corollary.

Corollary 4.4. Z is a universal planar completely regular continuum.
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