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A universal planar completely regular continuum
by

Sophia Zafiridou (Patras)

Abstract. We construct a universal planar completely regular continuum. This gives
a positive answer to a problem posed by J. Krasinkiewicz (1986).

1. Introduction. We use the term continuum for any (nonempty) com-
pact and connected metric space. A continuum K is said to be

e completely regular if each subcontinuum (except single points) of K
has nonempty interior;

e regular if K has a basis consisting of open sets with finite boundaries;

e hereditarily locally connected if each subcontinuum of K is locally con-
nected.

Completely regular continua are studied in [4] under the name “continua
which contain no nowhere dense subcontinua (except single points)”. Every
completely regular continuum is regular and every regular continuum is
hereditarily locally connected [4, §51, IV]. Simple examples of completely
regular continua are connected graphs.

An arc is any space A homeomorphic to the segment I = [0,1]. The
points a and b of A which correspond to 0 and 1 under the homeomorphism
are called the endpoints of A and the arc A is written as ab. We denote
(ab) = ab\ {a,b}. An arc ab of a space X is called free (in X) if (ab) is open
in X.

We recall the following characterization of the completely regular con-
tinua [2, Lemma 2], [3, Theorem 1.3]:

THEOREM 1.1. A nondegenerate continuum K is completely regular if
and only if there exist a subset F' homeomorphic to the Cantor set and a
null sequence of free arcs a1by,agbs, ... of K such that
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(i) K =FUU;Z; anby;
(i) anby, N F = {an, by} for any n;
(iil) anbn Nambm =0 if n # m.

A triple (K, F, A), where K is a completely regular continuum, F' is
a zero-dimensional compact subset of K, and A is a sequence of arcs of
K satisfying the conditions of Theorem [I.1] is called a completely regular
continuum with structure.

A completely regular continuum with structure (f{ F ,./Zl) is said to be
universal for a family F of completely regular continua with structure if
(K,F,A) € F and for every (K, F, A) € F there exists a homeomorphism
h: K — K preserving the structure, that is, h(F) C F and h(A) € A for
every A € A ([1], [6]).

A continuum X is universal for a family F of continua provided that
X € F and each member of F can be homeomorphically embedded in X.
It is known that:

e There ezists a universal completely reqular continuum [2].

There exists a universal planar completely reqular dendrite [5].

There is no universal completely regular continuum with structure

m, @

e There is no universal element in the class of planar completely regular
continua with structure [6].

In this paper we construct a universal planar completely regular contin-
uum. This gives a positive answer to a problem posed by J. Krasinkiewicz [3].

2. Notations. All spaces considered in the paper are subspaces of the
plane E? with a system Ozy of orthogonal coordinates. By a disk is meant
any space homeomorphic to the standard disk {(z,y) | z? + y* < 1}.

For any set X we denote by | X| the cardinality of X.

We denote N ={0,1,...}.

For two points x and y of the plane we denote by Ty the segment joining
x and y. If ab is an arc and x € (ab), then we write a < z < b.

Given a finite family F of bounded subsets and a subset @) of the plane
we denote F* = |J{F : F € F}, st(Q,F) ={F € F: FNQ # 0}, and
mesh(F) = max{diam(F) : F € F}.

2.1. The family L, of ordered n-tuples. Put Ly = {}} and denote
by Ly, n € N\ {0}, the set of all ordered n-tuples i = iy ... iy, where i; = 0
or iy =1 for any t = 1,...,n. Also denote i0 = i ...7,0 and il = i1 ...4,1.
For i = () € Lo we set i0 = 0 and 71 = 1. We write i1...4,, < j1...Jn if
either m =0, or 1 <m <n and iy = j; for every 1 <t < m.
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For i = i1...i, € Ly, n > 1, we denote by I; the set of all points of
for which the tth digit of the triadic expansion, t = 1,...,n, is 0 if i, = 0,
and is 2 if iy = 1. For i = () € Ly we denote I; = Iy = I.

For each i € |J—, L,, we denote

a;=min{z:x €L}, b;=max{z:z€;}, a(i)=bs, b()=a;.

2.2. The family W, of squares. Let C' denote the Cantor ternary set.
For every n € N consider the finite cover Wy, = {; x I; | i,j € Ly} of C?
by squares. We denote by V(W,,) the set of all vertices of these squares.

Two elements Fy = I; X 131 and Fp = [;, X 1'52 of W, are called adjacent
if: () either i; = i3 or j1 = jo, and (B) no segment ab with a € Fy and
b € I, intersects any other element of W,.

2.3. Joining family of segments A(7,j). Let i,j € Lg, k € N. By a
joining family of segments for st(l;x I 7 Whit1) is meant any finite collection
A(i, j) of disjoint segments Ty C I; x I; with the properties:

(a) for any adjacent Fy, Fy € st(f; x I3, Wy1) there exists 7y € A(i, j)

such that one of the points x,y is in F; and the other in Fy,

(B) if Ty € A(i, j), then one of the following four cases holds:

ze{a(i)} x I;; and y e {b(i)} x I,

zefa(i)} x I;; and ye {b(i)} x I,

v e Ly fa(i)) and ye Iy x (b))

z € Iy x{a(j)} and ye Iy x {b(5)},
(v) if 7y € A(i,J), then z,y € C?\ Uy V(Wy).

2.4. Primary n-frames of I2. In what follows, A(7, ), where 7, j € Ly,
k € N, denotes a (nonempty) joining family of segments for st([; x I3, Wi41).

By a primary n-frame of 12, n € N\ {0}, is meant any continuum k,, of
the form

o = Wi U (A )
=W, UA*(K,),
where A(K,,) = U{A(4,j) 14,5 € Ly, 0 <k <n—1}.
Let n € N\{0} and m € N. By a primary n-frame of F' = I;, XI5, € Wy,
is meant any continuum /C,,(F') of the form st*(F, Wy,4,) U A*(K,(F)),
where

Yii,j €Lk, 0<k<n-—1}

We say that a primary (m + n)-frame K., 1, of I? is n-inscribed in a
primary m-frame K,, of I? if Kpin = A*(Kp) UUKW(F) : F € Wy},
where each IC,,(F') is a primary n-frame of F'.
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2.5. The family C. Let {n;}3°; be an increasing sequence in N\ {0}
and K, O K, 2 --- a decreasing sequence of inscribed primary n;-frames
of I2. From Theorem 1.1 it follows that K = (2, K, is a completely regular
continuum.

Let C denote the family of all completely regular continua which are
intersections of some decreasing sequence of inscribed primary frames of I2.
Clearly, K € C if and only if K = C?2 UU{A*(i,j) : 4,7 € Ly, k=0,1,...}.

We say that IC € C is a C-representation of a completely regular contin-
uum X if X is homeomorphic to a subspace of K. The following theorem is
proved in [7, Theorem 4.2].

THEOREM 2.1. For any planar completely reqular continuum there exists
a C-representation.

2.6. Generalized frames. A generalized frame G is any planar contin-
uum that can be written in the form O*(G) U A*(G), where

(i) O(Q) is a finite nonempty family of pairwise disjoint squares,
(ii) A(G) is a finite nonempty family of arcs,
(iii) (ab) NO*(G) = 0 for any ab € A(G).

A generalized frame F is transitively inscribed in a generalized frame G
if:

(i) FCG.
(ii) For any F' € O(F) there exists G € O(G) such that F' C Int(G).
(iii) If G € O(G), F € O(F), and F C Int(G), then there exists a finite
family A(F,G) = {a;b;}}'_, of pairwise disjoint arcs of F such that
a; € BA(F), {b;i}Iy = Bd(G) N A*(G), and (a;b;) C Int(G) \ F for

1=1,...,n.

The following proposition is an easy consequence of the definition of a
completely regular continuum.

PRrROPOSITION 2.2. If {G,}5°, is a sequence of generalized frames such
that G411 is transitively inscribed in Gy, for any n and lim,,_,~omesh(O(G,,))
=0, then the continuum (\,-, Gy is completely reqular.

2.7. n-frames. For n € N\ {0}, by n-frame is meant any generalized
frame that is homeomorphic to some primary n-frame of I2. If P, is an
n-frame, then there exist a primary n-frame K,, = W} U A*(K,,) of I? and
a homeomorphism h : IC,, — P,,. We denote

O(Pn) = {h(W): W € Wa},  A(Pn) = {h(A) : A€ A(Ky)}.

Clearly, P,, = O*(P,) U A*(P,), where O(P,,) is a finite family of pairwise
disjoint squares and A(P,) is a finite family of pairwise disjoint arcs. We
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denote
S(O(P,)) = {s: s is a side of a square P € O(P,)}.

Squares P, P’ € O(P,) are called adjacent if the squares h=!(P) and
h=Y(P') of W, are adjacent. Given adjacent squares P,P’ € O(P,) w
denote

Ap, (P, P') = st(P, A(Py,)) Nst(P, A(Py)).

3. Construction of a universal planar completely regular
continuum Z

PRrROPOSITION 3.1. Let D be a disk of the plane, n > 2 be a natural
number, and ey, ...,ep,bn, ..., 01,0n,...,a1 be cyclically ordered points on
Bd(D). There exist families of disjoint arcs A = {e1a1,...,epnan} and B =
{e1b1,...,exbn} such that:

(1) (eiai), (€:b;) € Int(D) for any i,

(ii) eja; Nejb; =0 for any i < j.

Proof. If D is the standard disk, then the segments €a; and e;b; have
properties (i) and (ii). In the other case it suffices to map D homeomor-
phically onto the standard disk and then take the inverse images of the
corresponding segments. m

REMARK 3.2. From property (ii) of Propositionit follows that for any
k,m € N such that £k +m < n and for any strongly increasing subsequence
{i1,. . iggm} of {1,...,n} the family {e; a;,..., e a;, b;

eik“ TERERRRE
biy... } consists of pairwise disjoint arcs.

Ciktm

We say that a subcontinuum F' of a disk D is an n-frame of D if there
exist a primary n-frame K,, of I? and a homeomorphism h of D onto I? such
that F = h=1(IC,,).

For any square P we can define a 1-frame IC(P) of P in a way similar
to the definition of a primary 1-frame for I? (dividing P into nine equal
squares, taking only the corner squares and joining any pair of adjacent
corner squares by a finite number of disjoint segments).

We say that a frame KC(P) is n-joined, n € N\ {0}, if any adjacent squares
of IC(P) are joined by exactly n disjoint segments.

In what follows, K™(P) denotes an n-joined 1-frame of the square P.

For any square P = [p1, p2] X [q1, ¢2] of the plane we denote

v1(P) = (p1,q1), v2(P)=(p1,92), v3(P)=(p2,q2), va(P)= (p2,q1),
s1(P) = vi(P)va(P),  s2(P) = va(P)vs(P),
s3(P) = v3(P)va(P),  s4(P) = va(P)v1(P).

Denoting vs = v; we obtain sy(P) = v(P)vgy1(P) for any £ € {1,2,3,4}.
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Obviously, V(P) = {vi(P),v2(P),v3(P),va(P)} is the set of vertices
of P, and S(P) = {s1(P), s2(P), s3(P), s4(P)} is the set of sides of P.

Given a 1-frame KC(P) of P, we denote by P, k € {1,2,3,4}, the unique
element of O(K(P)) that contains the vertex v, (P) (see Figure 1).

3.1. Grafting construction. Given a square P = [p1,p2] X [q1, 2], a
finite set Ep C Bd(P)\V(P) that intersects each side of P, and n € N\ {0},
we will define a corresponding generalized frame Gy (P, Ep).

Let P = [py, pa] X [G1, 2] be a square such that P C Int(P) and K"(P)
be any n-joined 1-frame of P. We denote by DY, ¢ € {1,2,3,4}, the disk
bounded by the closed curve (see Figure 2)

BA(D*) = vy(P)ve(P) U vg(P)vgs1(P) U vgs1(P)vgsr (P) Uwpr (P)og(P).

v2(P) s2(P) v3(P)
D2
P v2(P) vs(P)
Py Py
s1(P)| D* p D?| s3(P)
P
5 5 v (P) va(P)
D
v (P) s4(P) va(P)
Fig. 1 Fig. 2

Construction offamilies AL (P). To each side s¢(P) of P we will associate
two families AS(P) and A} +1( ) of pairwise disjoint arcs joining points of
s¢(P) N Ep to points of Sg(Pg) and of s¢(Py41), respectively (see Figure 3).
Let s¢(P) N Ep = {¢,..., w} be cyclically ordered in Bd(P).
Note that st(s:(P), O(K"(P)) = {Py, Pri1 ).
Fix cyclically ordered (in Bd( P)) sets {af,... a W} C so(P) \ V(P)

and {v4,..., W} - Sg(Pg+1) \ V(Pry1). Apply Proposition to the disk
D* and the points ef,... e b ... bl al ,...,af € Bd(D) to obtain

I nw nea 17 TL@’
families Aj(P) = {efaf,... ef,al,} and Aj L (P) = {e{be,...,ewbﬁ[} of

pairwise disjoint arcs that satisfy conditions (i) and (ii) of Proposition
Set AY(P) = AY(P)U A£+1(P) for any ¢. It is easily seen that

(a) (A% (P))* N (A% (P))* = () whenever ¢ # /s.
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2 2 2 2
€1 €3 €3 €4 6% e% e§ 6421
» b%
» b%
1
1 3 | D l
€9 €1 €9 |
1 3 1
€1 3 a% €2 e1
» a%
es es el
Fig. 3 Fig. 4

(b) Tf ac € AX(P), then a € (se(B) \ V(BD) U (s¢(Brsn) \ V(Brsn),
e € sg(P)N Ep, and (ea) C Int(P) \ P.

(c) Ifk,meN, k—|—m§ng, and {i1,...,%k1m is a strongly increasing sub-
sequence of {1, ..., n,}, then the families Aﬁ c(P)={eiai, ... e a:}
and Az+1 m(P) = {ei iy € bi,,, } have the followmg

properties: Ak+m( )= Aﬁ p(P )UAg_H (P) consists of pairwise dis-
joint arcs, |st(se(Py), Al (P))] = k, and [st(se(Pr1), Af ., (P))]

=m.
Construction of families B(Py). To each side s¢(P) of P we will asso-
ciate a family B*(Py) of pairwise disjoint arcs joining points of Ep N se(P)
to points of the side sy(Py) of Py (the choice of P1 is accidental, in place of

P, we could take any other element of oKy (P P))) in such a way that (see
Figure 4):

(d) (BY(P))* N (B2(P1))* = 0 whenever ¢, # (.
() If ae € BY(P), then a € s¢(P)\ V(PL), e € s;(P)N Ep, and (ea) C
Int(P) \ O*(K™(P)).

Set BY(P1) = Al and BY(P)) = A%, where the families Al and A% of
pairwise disjoint arcs in Int(D') and Int(D?), respectively, have already
been defined.

Obviously, there are disks Da, D3 C P such that: (i) the interiors of Dy,
Ds, D', and D* are pairwise disjoint, (ii) s2(P), s2(P1) € Bd(Dy), and (i)
Sg(P), 83(P1) g Bd(Dg) _ _ _

Fix cyclically ordered (in Bd(Py)) sets {ai,...,an,} C s2(P1) \ V(P1)
and {by,...,by,} C s3(P1)\ V(P). Apply Proposition to the disks
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Dy and D3 to obtain families B2(P;) = {efa1,...,€2,an,} and B3(P)) =
{efbr, ..., €2 bn,} of pairwise disjoint arcs that satisfy conditions (d) and (e).
Set

Gul(P, Ep) = K"(P) U (CJ(A@(P))*) u( Q (B'(P)"),

=1 tr=1

A(Gn(P, Ep)) = A(KK™(P)) U (CJ AE(P)> U ( O Bf@)).

(=1 lr=1
Clearly, mesh(O(G,, (P, Ep))) = diam(P)/9.

3.2. Construction of Z. We will define a sequence {G,},~; of gener-
alized frames such that G, is transitively inscribed in G, for all n.

Let T = [t1, t2]2 be any square of the plane. In each side s, of T take a
point ey € s¢(T) \ V(T). Select Er = {e1,e2,€e3,e4} C Bd(T'). We define

gl = G1 (T, ET) and A(gl) = A(Gl (T, ET))

Clearly, O(G1) = O(K(P)). From the definition of G (T, Er) it follows that
for any P € O(Gy) and for any side s4(P) of P the set A*(G1) N s¢(P) is a
nonempty subset of sy(P) \ V(P).

Suppose that a generalized frame G, = O*(G,) U A*(G,), n € N\ {0}, is
defined and for any P € O(G,,) and any side s¢(P) of P the set A*(G,,)Ns¢(P)
is a nonempty subset of s;(P)\ V(P). Set Ep = A*(G,) NBd(P) and define

gn+1 - (gn N U GnJrl(Pv EP)) U A(gn)a

PeO(Gn)

AGni1) = AG)U | AGni1(P. Ep)).

PeO(Gy)

3.3. Properties of {G,,}>°,. For any n € N\ {0} the following prop-
erties are satisfied:

(1) gn+1 g gn
(2) mesh(O(Gn+1)) < mesh(O(Gn))/9.
(3) If P € O(Gy), then there exists P C Int(P) such that

4

4
P0Gas1 = Gu(P.Ep) = K™ (P)u(J @ () )u( U (B (P)):

/=1 k=1

(4) Gnyk is transitively inscribed in Gy, for any k € N\ {0}. Moreover,
if P € O(G,) and P € st(P, 0(gn+k)) then for each ¢ € {1,2,3,4}
there exists a finite family BZ(P P) consisting of pairwise disjoint
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arcs ab € G, 1 such that

a € se(P)NA*(Gn), besg(P)NA*(Gnyr), (ab) CInt(P)\ P.
Also, (BY(P, P))* N (B%(P, P))* = 0 for {1 # (5.

We define Z = (2, G,.. By Proposition Z is a planar completely regular
continuum.

4. Main theorem

LEMMA 4.1. Let A, B, C be disks of the plane such that A C Int(B)
and B C Int(C). Let also {biai,...,bpan}, {c1b1,...,cpby} be families of

pairwise disjoint arcs such that for anyi=1,...,n:
(i) {a1,...,an} € Bd(A), {b1,...,bn} C Bd(B), and {c1,...,cn} C
Bd(C),
(i) (biai) CInt(B)\ A and (¢;b;) C Int(C) \ B.
Suppose also that for i = 1,...,n there are given homeomorphisms g; :

cibi — ¢;b; U bja; such that g;(¢;) = ¢; and g;(b;) = a;. Then for any hom-
eomorphism h : B — A such that h(b;) = a; for any i, there exists a
homeomorphism h : C — C such that

(iii) hlp = h,

(iv) hlpacc) is identity, and

(V) h|Cibi =9 fO’f’ any i

Proof. We denote b,11 = by and ¢p11 = ¢1. For any ¢ = 1,...,n we
consider the arc ¢;c;+1 in Bd(C) for which (¢;civ1) N{c1,...,cn} = 0, the
arc b;b;+1 in Bd(B) for which (b;bi+1) N{b1,...,b,} = 0, and the arc a;a;11
in Bd(B) for which (a;a;+1) N{a1,...,a,} = 0. Note that

(vi) €\ Int(B) is a union of disks DP, i = 1,...,n, bounded by the

closed curves Bd(DZB) = ¢;Ciy1 Ubibir1 Ucib; Ucir1bitt,
(vii) C\Int(A) is a union of disks D, i = 1,...,7n, bounded by the closed
curves Bd(DiA) = CiCi+1 Uaiai_HU(CibiUbiai)U(Ci+1bi+1 Ubi+1ai+1).

Let h; : Bd(DP) — Bd(D#') be a homeomorphism such that h;(b;) = a;,
hi(bi+1) = aiy1, hi(bibiv1) = a;aiv1, h; is the identity on cicit1, hilep, = i
and h;l, +1bi1 = gi+1- Then there is a homeomorphism h; : DZB — DZA such
that h;| Bd(pB) = hi- The required homeomorphism h:C — C is defined by

_ h(z) ifze B,
h(z) = - ] B
hi(z) ifxeD]. =
LEMMA 4.2. Let rp be an arc and {r;};2,, {pi};2, be sequences in (rp)

such that lim;_, oo p; = p and r; < p; < riy1 for any i € N. Then there is a
sequence of homeomorphisms g; : rpi—1 — Tpi, 1 = 1,2,..., such that
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(i) gi(r) =r and gi(pi-1) = pi,
(i) g; is the identity on rr;_q,
(iii) f =lim;o0(gi 0+ 0g1) is a homeomorphism of rpy onto rp.

Proof. Let {z;}3°; be a sequence of points of (rgpg) such that lim; . z;
=po and z; < x;41 < po for any 1.

We have r < rg < x1 < pg <11 < p1.

Let g1 : rpg — rp1 be a homeomorphism such that g; is the identity on
rTO, gl(roxl) = (7“07‘1), and g1($1p0) = r1p1. Note that {gl(a:i)}fiz - (T‘lpl).

Assume that for any 1 < j < ¢ homeomorphisms g; with properties (i)
and (ii) have been defined and that {gi(...g1(zx))}3Z,,1 € (rips).

For 27, = gi(... g91(%it1)) we have r <r; < i, < p; <7rit1 < Pit1-

Let gi+1 : rp; = Tpiy1 be a homeomorphism such that g;4; is the iden-
tity on 774, giy1(rixi ) = (ririp1), and gip1(2j, 1 pi) = riy1piv1. Note that
{gi+1(-- - 91(@)) 340 € (rig1pitr)-

Set fi = gio---0gi. Since lim;_,oo p; = p, {fi}2; converges uniformly
to f and since f is defined on the compact set rpg, we conclude that f is a
closed map. Obviously, f(r) =r and f(pg) = p. Hence, f(rpg) = rp.

In order to prove that f is one-to-one assume that r <z <y < p;.

If 2,y € rro, then f(z) = g1(z) # g1(y) = f(y), because each g; is the
identity on 7rg. In the other case r < x < z; < y < po for some k. Since
fr(xg) = 75, it follows that r < fr(z) < rp < fr(y) < f(y) < p. Since g; is
the identity on rry for each i > k, it follows that f(x) = fx(z) € rry and
f(y) & rri. Thus f(x) # f(y). =

MAIN THEOREM 4.3. For any K € C there exists a homeomorphism
H : E? — E? such that H(K) C 2.

Proof. Let I € C. Then
K=C*U| J{A*(5,)) i, € Ly, k=0,1,...}.

For any ¢ € N and for any F' € W; we denote by A(F") the joining family
of segments for st(F, Wit1). Then K(F) = st*(F, Wiy1)UA*(F) is a 1-frame.
Note that K(F) = (Uj_, Fr) U A*(F). We define

npg = max{|Ax ) (Fr, Fey1)| : Fr, Foyr are adjacent in st(F, Wiy1)}.
Set A(K;) = U{A(4,7) : 4,5 € Ly, 0 < k <i—1} and K; = WF U A*(K;).
Note that

Kiv1 = A*(K:) U {K(F) : F e Wi},

Clearly each IC; is a primary i-frame of I? which for any i > 1 is 1-inscribed
in ICZ‘_l and K = ﬂfil ]CZ

Let {n;}3°, be a sequence of natural numbers such that n;11 > n; + 2
and n; > max{ng : F' € W;} for any i. For each i > 1 we will define an
i-frame M; C G,,, and a homeomorphism h; : K; — M; such that:
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(17,) g i+1-

(2;) 1 F O(K;) and F’ € st(F,O(Kit1)), then h;j11(F') C Int(h;(F)).
(3;) hi(A) C hiy1(A) for all A € A(K;).

(4;) If z is an endpoint of an arc A € A(K;), then

st(hit1(2), O(Miy1)) = hipa(st(z, O(Kit1)))-

Construction of Mi. We begin by taking any P e O(Gn,—1). By prop-
erty (3) of the family {Gn};2, there are a square P C Int(P) and an ni-
joined 1-frame K™ (P) of P such that K™ (P) C Gy,.

Since K1 is an at most n1-joined 1-frame of [ 2 there exists an embedding
hi : K1 — K™ (P) such that

(1n,) hi(I2) = P, for all £ € {1,2,3,4}.
(2n,) h(sk(I})) = sx(P) for all £,k € {1,2,3,4}.
(3n,) If A€ Ax,(I7,1}), then hi(A) € A,Cn1 (hl(IZ ), hi(I2)).-

Let i« > 1 and suppose that for any 1 < j < i a j-frame M, and a
homeomorphism h; : £; — M; have been defined.

Construction of an i-frame N; that us transitively inscribed in M;. For
any P € O(M;) we fix any P € st(P,O(Gn,;,-1)) and denote it by w(P).
Since P € O(Gy,), from property (4) of {Qn >, it follows that for any
¢ € {1,2,3,4} there is a finite family BY(P, P) of pairwise disjoint arcs
pp C Qm+1 1 such that p € so(P) N A*(M;), p € s¢(P) N A* (Gn;1—1), and
(pp) C Int(P ) \ P.

Let pG € A(M;). Then there are adjacent elements P,Q of O(M;) and
Uy, € {1,2,3,4} such that p € Sgﬁ(ﬁ) and § € qu(@). Let d)(]g) = P and
5Q) =Q.

Consider the points p€ s¢, (P)NA*(Gn,,,-1) and g€ ¢, (Q)NA*(Gryyy—1)
such that pp,dq C G, -1, (Pp) C Int(ﬁ) \ P, and (4q) C Int(@) \ Q. We
denote 7i(pg) = pg U pp U 4q-

Set AWN;) = {7i(4) : A € AM;)} and O(N]) = {&(P): P € O(M;)}.
Clearly, 7; : A(M;) = A(N;) and @; : O(M;) — O(N;) are bijections.

Set Ny = O*(Ni) U A*(N;).

Construction of Mij1. Let P € M;. Then &;(P) = P € O(N;). Since
P € O(Gn;,,-1), by property (3) of {Qn °© | there exist a square P C Int(P)
and an n;y;-joined 1-frame K7 +1 (P) of P such that PNGp,,, = Knitt (P)U
Ur, (A4(P P))*, where the families of arcs A‘(P) have properties (a)—(c) of

Subsectlonn Clearly, to each P € M; corresponds a unique P. We denote
P =;(P).
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On the other hand P = h;(F), where F' € O(K;). Since K(F) = FNKi4
is an at most n;i1-joined 1-frame of F' and K™+1(P) is an n;41-joined 1-
frame of P, there is an embedding hp : K(F) — K"+ (P) such that:

(1n,) hp(Fy) = Py for all £ € {1,2,3,4}.
(2hp) hF(Sﬁ(Fg)) = SH(PE) for all K, K € {1,2,3,4}.
(Bnp) IfAG.A;C(F)(Fgl,FgQ), then hp(A) € A;Cn¢+1(ﬁ)(hF(F€1)7hF(FKQ))-

Let ¢ € {1,2,3,4} be such that s,(F) N A*(K;) # 0.
Note that st(s¢(F), O(Kit1)) = {Fe, Fr41}. We denote

k= |Fg N A*(O(’Cz)” and m = |Fg+1 N .A*(O(,Cz)”

Then |s¢(P) N A*(N})| =k +m < [s¢(P) N A (Gniyr )|
From property (c) of A*(P ( ) it follows that there are families of pairwise
disjoint arcs Agk( ) and Ag+1 m(P) of Gy, ., such that:

(i) Aﬁ’k( )U Aﬁﬂ . (P) consists of pairwise disjoint arcs.

(i) A7, (P)| =k and |Af,, , (P)| =m

(iii) If pp € AY,(P), then p € s,(P) N A*(N1), p € s¢(P,), and (pp) €
Int(P) \ P.

(iv) If pp € Af,,,,(P), then p € s,(P) N A*(N1), p € s¢(Pry1), and
(pp) € Int(P) \ P.

For any p € sy(P)NA*(N1) we denote 7(p) = st(p, Ag,k( )UAEJrl m(P)).

Let A =paga € AK;), p = hi(pa), and ¢ = hi(qa). Then pqg € A(M )
and 7;(pG) = pq € A(N;). There are adjacent elements P,Q of O(N;) and
lp,Lq € {1,2,3,4} such that p € s, (P) N A*(N;) and ¢ € s4,(Q) N A*(N;).
Let 7(p) = pp and 7(q) = pq. Set pg = 7(p) Upq U T(q).

Let ha : paga — pq be a homeomorphism such that ha(pa) = p and
ha(ga) = ¢. Set Miy1 = (Upeo,) hr(K(F)) U (Uacacc,) ha(A)).

We define h;y1 : Kip1 — ./\/lz+1 as follows:

hF( ) ifxreF e O(KZ),
hz—l—l( ) .
ha(x) ifxe Ae AK)).

Construction of a homeomorphism H : E?> — E? that carries K into Z.
Given a square P we denote by U[P, ] the square consisting of points that
are at distance < ¢ from P.

For each i = 1,2,..., we choose §; > 0 such that

(i) U[P &) NUIQ, 6 = - () for any distinct P,Q € O(M,).

(i) If Q € O(M;) and P € st(Q, O(Myz1)), then U[P, 5;11] C Int(Q).

Obviously, lim; s §; = 0.
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To each i-frame M; we associate the i-frame U; = O*(U;) UA*(U;), where

OU;) = {UP,8;) : P e O(M;)},
AU;) = {CUAN\ O*(Uy)) + A € A(M;)}.

For each A € |J2, A(K;) we will define an embedding H# : A — Z. The
final homeomorphism H will be such that H|4 = H4.

Let A = paga € Uiy A(K;). Since A(Ky) € A(Kg) € -+, there is
a least i4 such that A € A(K;,). Consider adjacent FPA Fi4 € O(K,;,)
such that py € FPA and g4 € F9. Set hj,+i(pa) = pi, hiy+i(ga) = ¢,
hi,4i(FPA) = P;, and h;,4(F4) = Q; for any i € N. Then p; € P;, ¢; € Q;,
and P;, Q; are adjacent in O(M, ;) for any i € N.

Since the sets P; and @Q; are compact and since, from (2;), we have
P11 C P and Q41 C @y, it follows that (2, P, = {p} and 2, Qi = {q}-

Let pigi = hi,1i(paga). Then pig; € piy1gita from (3;). It is easy to see
that (J;2, pigi = pq and pq is an arc of Z.

Note that p € Int(P;) C U[P;,0i,+i] and ¢ € Int(Q;) C U[Qs, i ,+4] for
all i € N. Denote r; = pg " BA(U[P;, d; ,+i]) and s; = pg N BA(U[Qs, 6i y+4])-

Fix any r € (rpso). Note that the sequences {r;}7°, and {p;}°, of (rp)
as well as the sequences {s;}°, and {¢;};2 of (rq) satisfy the conditions of
Lemma Since rp; U rq; = p;q;, there is a sequence of homeomorphisms
g;-A P Pi—1Gi—1 — Pigi, t = 1,2,..., such that:

(i) g (r) =7, g (pi1) = pi, and g{*(gi1) = ai-
(ii) glA is the identity on r;_18;_1.
(iii) fA = limiﬁoo(gf o---0g{) is a homeomorphism of pygg onto pq.

Obviously, HA = f4 o h; 4 is a homeomorphism of A onto pq.

Since K7 is a union of finitely many pairwise disjoint disks joined by
finitely many pairwise disjoint arcs and since hy : K1 — M is a homeomor-
phism, there exists a homeomorphism Hj : E? — E? such that Hilic, = h1.

Let P € O(M;) and st(P, A(M;)) = {AP ... AP}, Since M; =
h1(K1), there exist pairwise disjoint arcs Aj,..., A, € A(K1) such that

AP = hy(4;) for i = 1,...,n. Clearly,
St (U[P, 61, A@th)) = {CIAL\ 0% (@),

Also, for P = @1 (P) we have st(P, A(My)) = {ha(A;) m.
Obviously, we have CI(AP \ O*(t4)) € AP C hy(A;) for i = 1,...,n.

We denote ri = BA(U[P,5,]) N CI(AP \ O*(4y)), pi, = Bd(P) N AP, and
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pi = Bd(P) N hy(A;). Then
{rb,...,m0} = BA(U[P, &1)) N A*(My),
{péa s 7p8} = Bd(P) N A*(Ml)a

Observe that P, P, and U[P,d] are disks such that P C Int(P) and
P C Int(U[P, 61)).

Since pjy € Bd(P) N Hy(K2) and pi € Bd(P) N My for all i, there exists
a homeomorphism gp : P — P such that gs(H;(K2) N P) = MaN P and
9p(Po) = pi- ~ R

By Lemma there is a homeomorphism g5 : U[P, 1] — U[P, d1] such

- . . L _ A; .

that 913|Bd(U[13,61]) is the identity, g/ = gp, and 913|r3p3 =g ]répé for any 1.

Let g1 : E? — E? be a homeomorphism such that

glhE?\O*(ul) = th@\o*(ul) and 91\13 =Jp

for all P € O(M;). We set Hy = g1 o Hy. Clearly, Hy sends Ko onto M.

By induction the homeomorphisms ¢; : E? — E? and H; : E? — E2,
i € N\ {0}, can be defined so that the following conditions are satisfied:

(1) Hi(Ki) = hi(K;) = M.

(2) gile2\o+ ;) = Hile2\0+@)- R

(3) gi’]%gl(U[ﬁ,&i]) = Hi’Bd(U[?,&])/\for all P 6/\0(./\/11) )

(4) If P € O(M;), then g;(U[P,d;]) = U[P,d;] and g;| maps P onto

P = &Z(ﬁ) in such a way that g;(H;(KCi+1) N ﬁ) =M;11 N P.

(5) T A € A(K;) and hi,45(A) = pyg; € ACM,), then gily g, = g2,

(6) Hiy1 = gi 0 H;.

Let H : E? — [E? be the limit of the sequence {H;}3°; of homeomor-
phisms.

We will prove that H is a homeomorphism and H(K) C (72, M,.

Note that Hz(K:) - HZ(ICZ) and Hi+1(IC¢+1) - HzUCz) for all 7. Since
H;(K;) = M, for all i, we obtain

1—>00

H(K) = lim H;(K) € ﬁ H;(K;) = ﬁ M;.
=1 =1

Let H : E2 — E2 be the limit of the sequence {H;},. Since H = H; oH
and Hy is a homeomorphism, it suffices to show that Hisa homeomorphism.

From properties (2) and (6) it follows that H;yy = H; on E2\ O*(U;).
Since in addition lim;_,o, mesh(O*(Y;)) = 0, the homeomorphisms H; con-
verge uniformly to H. Thus H is continuous.
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Since H lE2\u, = Halg2\y,, it remains to prove that H is one-to-one on
the compact set U;. From Uy D Uy D -- -, it follows that Uy = (U;2, (Ui \
Uir1)) U (N2 Us). Since I/-j\ui\uiﬂ = Hit1ly;\u,,, 18 @ homeomorphism and
the family {U; \ Ui+1}2, consists of pairwise disjoint sets, it suffices to
show that H is one-to-one on Mo, Ui. Tt is easy to verify that (2, U =
N2 M = (N2, 0 (M) U (U, A (M), i

By (4) for any i and for any P € O(M,) it follows that H;(P) = P C
Int(P). Since lim;_,oo mesh(O(M;)) = 0, we conclude that H is one-to-one
on ;2 O(M).

Let 2,y € ;2 A*(M;) and = # y. Then Hy(z) # Hi(y).

If there exist ¢ € N\{0} and A € A(K;) such that z,y € hi(A) € A(M;),
then (5) yields H|4 = H* = H|g, 4y © Hi|a. Thus H(z) # H(y).

In the other case there exist i,,i, € N\ {0}, A, € A(K;,), and A, €
A(K;,) with A, N Ay = 0, x € hi,(Ay) € AM,,), and y € h;,(4y) €
A(M,,).

Without loss of generality we can assumeis, < ia,. Then A,, A, € A(K;)
for any i > ia,. Thus h;,i(Az) N hi,4i(Ay) =0 for each i > iy,

Since the endpoints of the arcs A, and A, are in O*(K;) for each i > i,
and lim; o mesh(O*(K;)) = 0, there is i9 > ia, such that the endpoints of
arcs A, and A, are separated in O(K;,44,). From (4;) it follows that the
endpoints of arcs h;,4i(Az) and h;,4i(Ay) are separated in O(M;,44,) for
each ¢ > ig\. R

Since H(Hy(A,)) = U, hiysi(As) and H(H1(A) = U, hiar(4,),
it follows that H(A,) N H(A y) = 0. Hence, H(z) # H(y). =

Theorems [2.1] and [£.3] imply the following corollary.

COROLLARY 4.4. Z is a universal planar completely regular continuum.

T
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