A universal planar completely regular continuum

by
Sophia Zafiridou (Patras)

Abstract

We construct a universal planar completely regular continuum. This gives a positive answer to a problem posed by J. Krasinkiewicz (1986).

1. Introduction. We use the term continuum for any (nonempty) compact and connected metric space. A continuum K is said to be

- completely regular if each subcontinuum (except single points) of K has nonempty interior;
- regular if K has a basis consisting of open sets with finite boundaries;
- hereditarily locally connected if each subcontinuum of K is locally connected.

Completely regular continua are studied in 4] under the name "continua which contain no nowhere dense subcontinua (except single points)". Every completely regular continuum is regular and every regular continuum is hereditarily locally connected [4, §51, IV]. Simple examples of completely regular continua are connected graphs.

An arc is any space A homeomorphic to the segment $I=[0,1]$. The points a and b of A which correspond to 0 and 1 under the homeomorphism are called the endpoints of A and the $\operatorname{arc} A$ is written as $a b$. We denote $(a b)=a b \backslash\{a, b\}$. An arc $a b$ of a space X is called free (in X) if (ab) is open in X.

We recall the following characterization of the completely regular continua [2, Lemma 2], [3, Theorem 1.3]:

TheOrem 1.1. A nondegenerate continuum K is completely regular if and only if there exist a subset F homeomorphic to the Cantor set and a null sequence of free arcs $a_{1} b_{1}, a_{2} b_{2}, \ldots$ of K such that

[^0](i) $K=F \cup \bigcup_{n=1}^{\infty} a_{n} b_{n}$;
(ii) $a_{n} b_{n} \cap F=\left\{a_{n}, b_{n}\right\}$ for any n;
(iii) $a_{n} b_{n} \cap a_{m} b_{m}=\emptyset$ if $n \neq m$.

A triple (K, F, \mathcal{A}), where K is a completely regular continuum, F is a zero-dimensional compact subset of K, and \mathcal{A} is a sequence of arcs of K satisfying the conditions of Theorem 1.1, is called a completely regular continuum with structure.

A completely regular continuum with structure $(\tilde{K}, \tilde{F}, \tilde{\mathcal{A}})$ is said to be universal for a family \mathcal{F} of completely regular continua with structure if $(\tilde{K}, \tilde{F}, \tilde{\mathcal{A}}) \in \mathcal{F}$ and for every $(K, F, \mathcal{A}) \in \mathcal{F}$ there exists a homeomorphism $h: K \rightarrow \tilde{K}$ preserving the structure, that is, $h(F) \subseteq \tilde{F}$ and $h(A) \in \tilde{\mathcal{A}}$ for every $A \in \mathcal{A}$ ([1], [6).

A continuum X is universal for a family \mathcal{F} of continua provided that $X \in \mathcal{F}$ and each member of \mathcal{F} can be homeomorphically embedded in X. It is known that:

- There exists a universal completely regular continuum [2].
- There exists a universal planar completely regular dendrite 5.
- There is no universal completely regular continuum with structure [1], [6].
- There is no universal element in the class of planar completely regular continua with structure [6].

In this paper we construct a universal planar completely regular continuum. This gives a positive answer to a problem posed by J. Krasinkiewicz [3].
2. Notations. All spaces considered in the paper are subspaces of the plane \mathbb{E}^{2} with a system $O x y$ of orthogonal coordinates. By a disk is meant any space homeomorphic to the standard disk $\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.

For any set X we denote by $|X|$ the cardinality of X.
We denote $\mathbb{N}=\{0,1, \ldots\}$.
For two points x and y of the plane we denote by $\overline{x y}$ the segment joining x and y. If $a b$ is an arc and $x \in(a b)$, then we write $a<x<b$.

Given a finite family \mathcal{F} of bounded subsets and a subset Q of the plane we denote $\mathcal{F}^{*}=\bigcup\{F: F \in \mathcal{F}\}$, st $(Q, \mathcal{F})=\{F \in \mathcal{F}: F \cap Q \neq \emptyset\}$, and $\operatorname{mesh}(\mathcal{F})=\max \{\operatorname{diam}(F): F \in \mathcal{F}\}$.
2.1. The family L_{n} of ordered n-tuples. Put $L_{0}=\{\emptyset\}$ and denote by $L_{n}, n \in \mathbb{N} \backslash\{0\}$, the set of all ordered n-tuples $\bar{i}=i_{1} \ldots i_{n}$, where $i_{t}=0$ or $i_{t}=1$ for any $t=1, \ldots, n$. Also denote $\bar{i} 0=i_{1} \ldots i_{n} 0$ and $\bar{i} 1=i_{1} \ldots i_{n} 1$. For $\bar{i}=\emptyset \in L_{0}$ we set $\bar{i} 0=0$ and $\bar{i} 1=1$. We write $i_{1} \ldots i_{m} \leq j_{1} \ldots j_{n}$ if either $m=0$, or $1 \leq m \leq n$ and $i_{t}=j_{t}$ for every $1 \leq t \leq m$.

For $\bar{i}=i_{1} \ldots i_{n} \in L_{n}, n \geq 1$, we denote by $I_{\bar{i}}$ the set of all points of I for which the t th digit of the triadic expansion, $t=1, \ldots, n$, is 0 if $i_{t}=0$, and is 2 if $i_{t}=1$. For $\bar{i}=\emptyset \in L_{0}$ we denote $I_{\bar{i}}=I_{\emptyset}=I$.

For each $\bar{i} \in \bigcup_{n=0}^{\infty} L_{n}$ we denote

$$
a_{\bar{i}}=\min \left\{x: x \in I_{\bar{i}}\right\}, \quad b_{\bar{i}}=\max \left\{x: x \in I_{\bar{i}}\right\}, \quad a(\bar{i})=b_{\bar{i} 0}, \quad b(\bar{i})=a_{\bar{i} 1} .
$$

2.2. The family \mathcal{W}_{n} of squares. Let C denote the Cantor ternary set. For every $n \in \mathbb{N}$ consider the finite cover $\mathcal{W}_{n}=\left\{I_{\bar{i}} \times I_{\bar{j}} \mid \bar{i}, \bar{j} \in L_{n}\right\}$ of C^{2} by squares. We denote by $V\left(\mathcal{W}_{n}\right)$ the set of all vertices of these squares.

Two elements $F_{1}=I_{\bar{i}_{1}} \times I_{\bar{j}_{1}}$ and $F_{2}=I_{\bar{i}_{2}} \times I_{\bar{j}_{2}}$ of \mathcal{W}_{n} are called adjacent if: (α) either $\bar{i}_{1}=\bar{i}_{2}$ or $\bar{j}_{1}=\bar{j}_{2}$, and (β) no segment $\overline{a b}$ with $a \in F_{1}$ and $b \in F_{2}$ intersects any other element of \mathcal{W}_{n}.
2.3. Joining family of segments $\mathcal{A}(\bar{i}, \bar{j})$. Let $\bar{i}, \bar{j} \in L_{k}, k \in \mathbb{N}$. By a joining family of segments for $\operatorname{st}\left(I_{\bar{i}} \times I_{\bar{j}}, \mathcal{W}_{k+1}\right)$ is meant any finite collection $\mathcal{A}(\bar{i}, \bar{j})$ of disjoint segments $\overline{x y} \subseteq I_{\bar{i}} \times I_{\bar{j}}$ with the properties:
(α) for any adjacent $F_{1}, F_{2} \in \operatorname{st}\left(I_{\bar{i}} \times I_{\bar{j}}, \mathcal{W}_{k+1}\right)$ there exists $\overline{x y} \in \mathcal{A}(\bar{i}, \bar{j})$ such that one of the points x, y is in F_{1} and the other in F_{2},
(β) if $\overline{x y} \in \mathcal{A}(\bar{i}, \bar{j})$, then one of the following four cases holds:

$$
\begin{array}{lll}
x \in\{a(\bar{i})\} \times I_{\bar{j} 0} & \text { and } & y \in\{b(\bar{i})\} \times I_{\bar{j} 0}, \\
x \in\{a(\bar{i})\} \times I_{\bar{j} 1} \quad \text { and } & y \in\{b(\bar{i})\} \times I_{\bar{j} 1}, \\
x \in I_{\bar{i} 0} \times\{a(\bar{j})\} \quad \text { and } & y \in I_{\bar{i} 0} \times\{b(\bar{j})\}, \\
x \in I_{\bar{i} 1} \times\{a(\bar{j})\} & \text { and } & y \in I_{\bar{i} 1} \times\{b(\bar{j})\},
\end{array}
$$

(γ) if $\overline{x y} \in \mathcal{A}(\bar{i}, \bar{j})$, then $x, y \in C^{2} \backslash \bigcup_{n=0}^{\infty} V\left(\mathcal{W}_{n}\right)$.
2.4. Primary n-frames of I^{2}. In what follows, $\mathcal{A}(\bar{i}, \bar{j})$, where $\bar{i}, \bar{j} \in L_{k}$, $k \in \mathbb{N}$, denotes a (nonempty) joining family of segments for $\operatorname{st}\left(I_{\bar{i}} \times I_{\bar{j}}, \mathcal{W}_{k+1}\right)$.

By a primary n-frame of $I^{2}, n \in \mathbb{N} \backslash\{0\}$, is meant any continuum \mathcal{K}_{n} of the form

$$
\begin{aligned}
\mathcal{K}_{n} & =\mathcal{W}_{n}^{*} \cup \bigcup\left\{\mathcal{A}^{*}(\bar{i}, \bar{j}): \bar{i}, \bar{j} \in L_{k}, 0 \leq k \leq n-1\right\} \\
& =\mathcal{W}_{n}^{*} \cup \mathcal{A}^{*}\left(\mathcal{K}_{n}\right)
\end{aligned}
$$

where $\mathcal{A}\left(\mathcal{K}_{n}\right)=\bigcup\left\{\mathcal{A}(\bar{i}, \bar{j}): \bar{i}, \bar{j} \in L_{k}, 0 \leq k \leq n-1\right\}$.
Let $n \in \mathbb{N} \backslash\{0\}$ and $m \in \mathbb{N}$. By a primary n-frame of $F=I_{\bar{i}_{F}} \times I_{\bar{j}_{F}} \in \mathcal{W}_{m}$ is meant any continuum $\mathcal{K}_{n}(F)$ of the form $\operatorname{st}^{*}\left(F, \mathcal{W}_{m+n}\right) \cup \mathcal{A}^{*}\left(\mathcal{K}_{n}(F)\right)$, where

$$
\mathcal{A}\left(\mathcal{K}_{n}(F)\right)=\bigcup\left\{\mathcal{A}(\bar{i}, \bar{j}): \bar{i}, \bar{j} \in L_{k}, \bar{i}_{F} \leq \bar{i}, \bar{j}_{F} \leq \bar{j}, m \leq k \leq m+n-1\right\}
$$

We say that a primary $(m+n)$-frame \mathcal{K}_{m+n} of I^{2} is n-inscribed in a primary m-frame \mathcal{K}_{m} of I^{2} if $\mathcal{K}_{m+n}=\mathcal{A}^{*}\left(\mathcal{K}_{m}\right) \cup \bigcup\left\{\mathcal{K}_{n}(F): F \in \mathcal{W}_{m}\right\}$, where each $\mathcal{K}_{n}(F)$ is a primary n-frame of F.
2.5. The family \mathcal{C}. Let $\left\{n_{i}\right\}_{i=1}^{\infty}$ be an increasing sequence in $\mathbb{N} \backslash\{0\}$ and $\mathcal{K}_{n_{1}} \supseteq \mathcal{K}_{n_{2}} \supseteq \cdots$ a decreasing sequence of inscribed primary n_{i}-frames of I^{2}. From Theorem 1.1 it follows that $\mathcal{K}=\bigcap_{i=1}^{\infty} \mathcal{K}_{n_{i}}$ is a completely regular continuum.

Let \mathcal{C} denote the family of all completely regular continua which are intersections of some decreasing sequence of inscribed primary frames of I^{2}. Clearly, $\mathcal{K} \in \mathcal{C}$ if and only if $\mathcal{K}=C^{2} \cup \bigcup\left\{\mathcal{A}^{*}(\bar{i}, \bar{j}): \bar{i}, \bar{j} \in L_{k}, k=0,1, \ldots\right\}$.

We say that $\mathcal{K} \in \mathcal{C}$ is a \mathcal{C}-representation of a completely regular continuum X if X is homeomorphic to a subspace of \mathcal{K}. The following theorem is proved in [7, Theorem 4.2].

Theorem 2.1. For any planar completely regular continuum there exists a \mathcal{C}-representation.
2.6. Generalized frames. A generalized frame \mathcal{G} is any planar continuum that can be written in the form $\mathcal{O}^{*}(\mathcal{G}) \cup \mathcal{A}^{*}(\mathcal{G})$, where
(i) $\mathcal{O}(\mathcal{G})$ is a finite nonempty family of pairwise disjoint squares,
(ii) $\mathcal{A}(\mathcal{G})$ is a finite nonempty family of arcs,
(iii) $(a b) \cap \mathcal{O}^{*}(\mathcal{G})=\emptyset$ for any $a b \in \mathcal{A}(\mathcal{G})$.

A generalized frame \mathcal{F} is transitively inscribed in a generalized frame \mathcal{G} if:
(i) $\mathcal{F} \subseteq \mathcal{G}$.
(ii) For any $F \in \mathcal{O}(\mathcal{F})$ there exists $G \in \mathcal{O}(\mathcal{G})$ such that $F \subseteq \operatorname{Int}(G)$.
(iii) If $G \in \mathcal{O}(\mathcal{G}), F \in \mathcal{O}(\mathcal{F})$, and $F \subseteq \operatorname{Int}(G)$, then there exists a finite family $\mathcal{A}(F, G)=\left\{a_{i} b_{i}\right\}_{i=1}^{n}$ of pairwise disjoint arcs of \mathcal{F} such that $a_{i} \in \operatorname{Bd}(F),\left\{b_{i}\right\}_{i=1}^{n}=\operatorname{Bd}(G) \cap \mathcal{A}^{*}(\mathcal{G})$, and $\left(a_{i} b_{i}\right) \subseteq \operatorname{Int}(G) \backslash F$ for $i=1, \ldots, n$.

The following proposition is an easy consequence of the definition of a completely regular continuum.

Proposition 2.2. If $\left\{G_{n}\right\}_{n=1}^{\infty}$ is a sequence of generalized frames such that G_{n+1} is transitively inscribed in G_{n} for any n and $\lim _{n \rightarrow \infty} \operatorname{mesh}\left(\mathcal{O}\left(G_{n}\right)\right)$ $=0$, then the continuum $\bigcap_{n=1}^{\infty} G_{n}$ is completely regular.
2.7. n-frames. For $n \in \mathbb{N} \backslash\{0\}$, by n-frame is meant any generalized frame that is homeomorphic to some primary n-frame of I^{2}. If \mathcal{P}_{n} is an n-frame, then there exist a primary n-frame $\mathcal{K}_{n}=\mathcal{W}_{n}^{*} \cup \mathcal{A}^{*}\left(\mathcal{K}_{n}\right)$ of I^{2} and a homeomorphism $h: \mathcal{K}_{n} \rightarrow \mathcal{P}_{n}$. We denote

$$
\mathcal{O}\left(\mathcal{P}_{n}\right)=\left\{h(W): W \in \mathcal{W}_{n}\right\}, \quad \mathcal{A}\left(\mathcal{P}_{n}\right)=\left\{h(A): A \in \mathcal{A}\left(\mathcal{K}_{n}\right)\right\}
$$

Clearly, $\mathcal{P}_{n}=\mathcal{O}^{*}\left(\mathcal{P}_{n}\right) \cup \mathcal{A}^{*}\left(\mathcal{P}_{n}\right)$, where $\mathcal{O}\left(\mathcal{P}_{n}\right)$ is a finite family of pairwise disjoint squares and $\mathcal{A}\left(\mathcal{P}_{n}\right)$ is a finite family of pairwise disjoint arcs. We
denote

$$
S\left(\mathcal{O}\left(\mathcal{P}_{n}\right)\right)=\left\{s: s \text { is a side of a square } P \in \mathcal{O}\left(\mathcal{P}_{n}\right)\right\}
$$

Squares $P, P^{\prime} \in \mathcal{O}\left(\mathcal{P}_{n}\right)$ are called adjacent if the squares $h^{-1}(P)$ and $h^{-1}\left(P^{\prime}\right)$ of \mathcal{W}_{n} are adjacent. Given adjacent squares $P, P^{\prime} \in \mathcal{O}\left(\mathcal{P}_{n}\right)$ we denote

$$
\mathcal{A}_{\mathcal{P}_{n}}\left(P, P^{\prime}\right)=\operatorname{st}\left(P, \mathcal{A}\left(\mathcal{P}_{n}\right)\right) \cap \operatorname{st}\left(P^{\prime}, \mathcal{A}\left(\mathcal{P}_{n}\right)\right)
$$

3. Construction of a universal planar completely regular continuum \mathcal{Z}

Proposition 3.1. Let D be a disk of the plane, $n \geq 2$ be a natural number, and $e_{1}, \ldots, e_{n}, b_{n}, \ldots, b_{1}, a_{n}, \ldots, a_{1}$ be cyclically ordered points on $\operatorname{Bd}(D)$. There exist families of disjoint arcs $A=\left\{e_{1} a_{1}, \ldots, e_{n} a_{n}\right\}$ and $B=$ $\left\{e_{1} b_{1}, \ldots, e_{n} b_{n}\right\}$ such that:
(i) $\left(e_{i} a_{i}\right),\left(e_{i} b_{i}\right) \subseteq \operatorname{Int}(D)$ for any i,
(ii) $e_{i} a_{i} \cap e_{j} b_{j}=\emptyset$ for any $i<j$.

Proof. If D is the standard disk, then the segments $\overline{e_{i} a_{i}}$ and $\overline{e_{i} b_{i}}$ have properties (i) and (ii). In the other case it suffices to map D homeomorphically onto the standard disk and then take the inverse images of the corresponding segments.

Remark 3.2. From property (ii) of Proposition 3.1 it follows that for any $k, m \in \mathbb{N}$ such that $k+m \leq n$ and for any strongly increasing subsequence $\left\{i_{1}, \ldots, i_{k+m}\right\}$ of $\{1, \ldots, n\}$ the family $\left\{e_{i_{1}} a_{i_{1}}, \ldots, e_{i_{k}} a_{i_{k}}, e_{i_{k+1}} b_{i_{k+1}}, \ldots\right.$, $\left.e_{i_{k+m}} b_{i_{k+m}}\right\}$ consists of pairwise disjoint arcs.

We say that a subcontinuum F of a disk D is an n-frame of D if there exist a primary n-frame \mathcal{K}_{n} of I^{2} and a homeomorphism h of D onto I^{2} such that $F=h^{-1}\left(\mathcal{K}_{n}\right)$.

For any square P we can define a 1-frame $\mathcal{K}(P)$ of P in a way similar to the definition of a primary 1-frame for I^{2} (dividing P into nine equal squares, taking only the corner squares and joining any pair of adjacent corner squares by a finite number of disjoint segments).

We say that a frame $\mathcal{K}(P)$ is n-joined, $n \in \mathbb{N} \backslash\{0\}$, if any adjacent squares of $\mathcal{K}(P)$ are joined by exactly n disjoint segments.

In what follows, $\mathcal{K}^{n}(P)$ denotes an n-joined 1 -frame of the square P.
For any square $P=\left[p_{1}, p_{2}\right] \times\left[q_{1}, q_{2}\right]$ of the plane we denote

$$
\begin{aligned}
v_{1}(P)=\left(p_{1}, q_{1}\right), \quad v_{2}(P)=\left(p_{1}, q_{2}\right), & v_{3}(P)=\left(p_{2}, q_{2}\right), \quad v_{4}(P)=\left(p_{2}, q_{1}\right) \\
s_{1}(P)=\overline{v_{1}(P) v_{2}(P)}, & s_{2}(P)=\overline{v_{2}(P) v_{3}(P)} \\
s_{3}(P)=\overline{v_{3}(P) v_{4}(P)}, & s_{4}(P)=\overline{v_{4}(P) v_{1}(P)}
\end{aligned}
$$

Denoting $v_{5} \equiv v_{1}$ we obtain $s_{\ell}(P)=\overline{v_{\ell}(P) v_{\ell+1}(P)}$ for any $\ell \in\{1,2,3,4\}$.

Obviously, $V(P)=\left\{v_{1}(P), v_{2}(P), v_{3}(P), v_{4}(P)\right\}$ is the set of vertices of P, and $S(P)=\left\{s_{1}(P), s_{2}(P), s_{3}(P), s_{4}(P)\right\}$ is the set of sides of P.

Given a 1 -frame $\mathcal{K}(P)$ of P, we denote by $P_{\kappa}, \kappa \in\{1,2,3,4\}$, the unique element of $\mathcal{O}(\mathcal{K}(P))$ that contains the vertex $v_{\kappa}(P)$ (see Figure 1).
3.1. Grafting construction. Given a square $P=\left[p_{1}, p_{2}\right] \times\left[q_{1}, q_{2}\right]$, a finite set $E_{P} \subseteq \operatorname{Bd}(P) \backslash V(P)$ that intersects each side of P, and $n \in \mathbb{N} \backslash\{0\}$, we will define a corresponding generalized frame $G_{n}\left(P, E_{P}\right)$.

Let $\widetilde{P}=\left[\tilde{p}_{1}, \tilde{p}_{2}\right] \times\left[\tilde{q}_{1}, \tilde{q}_{2}\right]$ be a square such that $\widetilde{P} \subseteq \operatorname{Int}(P)$ and $\mathcal{K}^{n}(\widetilde{P})$ be any n-joined 1 -frame of \widetilde{P}. We denote by $D^{\ell}, \ell \in\{1,2,3,4\}$, the disk bounded by the closed curve (see Figure 2)

$$
\operatorname{Bd}\left(D^{\ell}\right)=\overline{v_{\ell}(\widetilde{P}) v_{\ell}(P)} \cup \overline{v_{\ell}(P) v_{\ell+1}(P)} \cup \overline{v_{\ell+1}(P) v_{\ell+1}(\widetilde{P})} \cup \overline{v_{\ell+1}(\widetilde{P}) v_{\ell}(\widetilde{P})}
$$

Fig. 1

Fig. 2

Construction of families $A_{\kappa}^{\ell}(P)$. To each side $s_{\ell}(P)$ of P we will associate two families $A_{\ell}^{\ell}(P)$ and $A_{\ell+1}^{\ell}(P)$ of pairwise disjoint arcs joining points of $s_{\ell}(P) \cap E_{P}$ to points of $s_{\ell}\left(\widetilde{P}_{\ell}\right)$ and of $s_{\ell}\left(\widetilde{P}_{\ell+1}\right)$, respectively (see Figure 3).

Let $s_{\ell}(P) \cap E_{P}=\left\{e_{1}^{\ell}, \ldots, e_{n_{\ell}}^{\ell}\right\}$ be cyclically ordered in $\operatorname{Bd}(P)$.
Note that $\operatorname{st}\left(s_{\ell}(\widetilde{P}), \mathcal{O}\left(\mathcal{K}^{n}(\widetilde{P})\right)\right)=\left\{\widetilde{P}_{\ell}, \widetilde{P}_{\ell+1}\right\}$.
Fix cyclically ordered (in $\operatorname{Bd}(\widetilde{P}))$ sets $\left\{a_{1}^{\ell}, \ldots, a_{n_{\ell}}^{\ell}\right\} \subseteq s_{\ell}\left(\widetilde{P}_{\ell}\right) \backslash V\left(\widetilde{P}_{\ell}\right)$ and $\left\{b_{1}^{\ell}, \ldots, b_{n_{\ell}}^{\ell}\right\} \subseteq s_{\ell}\left(\widetilde{P}_{\ell+1}\right) \backslash V\left(\widetilde{P}_{\ell+1}\right)$. Apply Proposition 3.1 to the disk D^{ℓ} and the points $e_{1}^{\ell}, \ldots, e_{n_{\ell}}^{\ell}, b_{n_{\ell}}^{\ell}, \ldots, b_{1}^{\ell}, a_{n_{\ell}}^{\ell}, \ldots, a_{1}^{\ell} \in \operatorname{Bd}\left(D^{\ell}\right)$ to obtain families $A_{\ell}^{\ell}(P)=\left\{e_{1}^{\ell} a_{1}^{\ell}, \ldots, e_{n_{\ell}}^{\ell} a_{n_{\ell}}^{\ell}\right\}$ and $A_{\ell+1}^{\ell}(P)=\left\{e_{1}^{\ell} b_{1}^{\ell}, \ldots, e_{n_{\ell}}^{\ell} b_{n_{\ell}}^{\ell}\right\}$ of pairwise disjoint arcs that satisfy conditions (i) and (ii) of Proposition 3.1.

Set $A^{\ell}(P)=A_{\ell}^{\ell}(P) \cup A_{\ell+1}^{\ell}(P)$ for any ℓ. It is easily seen that
(a) $\left(A^{\ell_{1}}(P)\right)^{*} \cap\left(A^{\ell_{2}}(P)\right)^{*}=\emptyset$ whenever $\ell_{1} \neq \ell_{2}$.

Fig. 3

Fig. 4
(b) If $a e \in A^{\ell}(P)$, then $a \in\left(s_{\ell}\left(\widetilde{P}_{\ell}\right) \backslash V\left(\widetilde{P}_{\ell}\right)\right) \cup\left(s_{\ell}\left(\widetilde{P}_{\ell+1}\right) \backslash V\left(\widetilde{P}_{\ell+1}\right)\right)$, $e \in s_{\ell}(P) \cap E_{P}$, and $(e a) \subseteq \operatorname{Int}(P) \backslash \widetilde{P}$.
(c) If $k, m \in \mathbb{N}, k+m \leq n_{\ell}$, and $\left\{i_{1}, \ldots, i_{k+m}\right\}$ is a strongly increasing subsequence of $\left\{1, \ldots, n_{\ell}\right\}$, then the families $A_{\ell, k}^{\ell}(P)=\left\{e_{i_{1}} a_{i_{1}}, \ldots, e_{i_{k}} a_{i_{k}}\right\}$ and $A_{\ell+1, m}^{\ell}(P)=\left\{e_{i_{k+1}} b_{i_{k+1}}, \ldots, e_{i_{k+m}} b_{i_{k+m}}\right\}$ have the following properties: $A_{k+m}^{\ell}(P)=A_{\ell, k}^{\ell}(P) \cup A_{\ell+1, m}^{\ell}(P)$ consists of pairwise disjoint $\operatorname{arcs},\left|\operatorname{st}\left(s_{\ell}\left(\widetilde{P}_{\ell}\right), A_{k+m}^{\ell}(P)\right)\right|=k$, and $\left|\operatorname{st}\left(s_{\ell}\left(\widetilde{P}_{\ell+1}\right), A_{k+m}^{\ell}(P)\right)\right|$ $=m$.

Construction of families $B^{\ell}\left(P_{\kappa}\right)$. To each side $s_{\ell}(P)$ of P we will associate a family $B^{\ell}\left(\widetilde{P}_{1}\right)$ of pairwise disjoint arcs joining points of $E_{P} \cap s_{\ell}(P)$ to points of the side $s_{\ell}\left(\widetilde{P}_{1}\right)$ of \widetilde{P}_{1} (the choice of \widetilde{P}_{1} is accidental, in place of \widetilde{P}_{1} we could take any other element of $\mathcal{O}\left(\mathcal{K}_{1}^{n}(\widetilde{P})\right)$) in such a way that (see Figure 4):
(d) $\left(B^{\ell_{1}}\left(\widetilde{P}_{1}\right)\right)^{*} \cap\left(B^{\ell_{2}}\left(\widetilde{P}_{1}\right)\right)^{*}=\emptyset$ whenever $\ell_{1} \neq \ell_{2}$.
(e) If $a e \in B^{\ell}\left(\widetilde{P}_{1}\right)$, then $a \in s_{\ell}\left(\widetilde{P}_{1}\right) \backslash V\left(\widetilde{P}_{1}\right), e \in s_{\ell}(P) \cap E_{P}$, and $(e a) \subseteq$ $\operatorname{Int}(P) \backslash \mathcal{O}^{*}\left(\mathcal{K}^{n}(\widetilde{P})\right)$.
Set $B^{1}\left(\widetilde{P}_{1}\right)=A_{1}^{1}$ and $B^{4}\left(\widetilde{P}_{1}\right)=A_{1}^{4}$, where the families A_{1}^{1} and A_{1}^{4} of pairwise disjoint arcs in $\operatorname{Int}\left(D^{1}\right)$ and $\operatorname{Int}\left(D^{2}\right)$, respectively, have already been defined.

Obviously, there are disks $D_{2}, D_{3} \subseteq P$ such that: (i) the interiors of D_{2}, D_{3}, D^{1}, and D^{4} are pairwise disjoint, (ii) $s_{2}(P), s_{2}\left(\widetilde{P}_{1}\right) \subseteq \operatorname{Bd}\left(D_{2}\right)$, and (iii) $s_{3}(P), s_{3}\left(\widetilde{P}_{1}\right) \subseteq \operatorname{Bd}\left(D_{3}\right)$.

Fix cyclically ordered $\left(\right.$ in $\left.\operatorname{Bd}\left(\widetilde{P}_{1}\right)\right)$ sets $\left\{a_{1}, \ldots, a_{n_{2}}\right\} \subseteq s_{2}\left(\widetilde{P}_{1}\right) \backslash V\left(\widetilde{P}_{1}\right)$ and $\left\{b_{1}, \ldots, b_{n_{3}}\right\} \subseteq s_{3}\left(\widetilde{P}_{1}\right) \backslash V\left(\widetilde{P}_{1}\right)$. Apply Proposition 3.1 to the disks
D_{2} and D_{3} to obtain families $B^{2}\left(\widetilde{P}_{1}\right)=\left\{e_{1}^{2} a_{1}, \ldots, e_{n_{2}}^{2} a_{n_{2}}\right\}$ and $B^{3}\left(\widetilde{P}_{1}\right)=$ $\left\{e_{1}^{2} b_{1}, \ldots, e_{n_{2}}^{2} b_{n_{3}}\right\}$ of pairwise disjoint arcs that satisfy conditions (d) and (e). Set

$$
\begin{aligned}
G_{n}\left(P, E_{P}\right) & =\mathcal{K}^{n}(\widetilde{P}) \cup\left(\bigcup_{\ell=1}^{4}\left(A^{\ell}(P)\right)^{*}\right) \cup\left(\bigcup_{\ell, \kappa=1}^{4}\left(B^{\ell}\left(P_{\kappa}\right)\right)^{*}\right), \\
\mathcal{A}\left(G_{n}\left(P, E_{P}\right)\right) & =\mathcal{A}\left(\mathcal{K}^{n}(\widetilde{P})\right) \cup\left(\bigcup_{\ell=1}^{4} A^{\ell}(P)\right) \cup\left(\bigcup_{\ell, \kappa=1}^{4} B^{\ell}\left(P_{\kappa}\right)\right) .
\end{aligned}
$$

Clearly, $\operatorname{mesh}\left(\mathcal{O}\left(G_{n}\left(P, E_{P}\right)\right)\right)=\operatorname{diam}(\widetilde{P}) / 9$.
3.2. Construction of \mathcal{Z}. We will define a sequence $\left\{\mathcal{G}_{n}\right\}_{n=1}^{\infty}$ of generalized frames such that \mathcal{G}_{n+1} is transitively inscribed in \mathcal{G}_{n} for all n.

Let $T=\left[t_{1}, t_{2}\right]^{2}$ be any square of the plane. In each side s_{ℓ} of T take a point $e_{\ell} \in s_{\ell}(T) \backslash V(T)$. Select $E_{T}=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\} \subseteq \operatorname{Bd}(T)$. We define

$$
\mathcal{G}_{1}=G_{1}\left(T, E_{T}\right) \quad \text { and } \quad \mathcal{A}\left(\mathcal{G}_{1}\right)=\mathcal{A}\left(G_{1}\left(T, E_{T}\right)\right)
$$

Clearly, $\mathcal{O}\left(\mathcal{G}_{1}\right)=\mathcal{O}\left(\mathcal{K}^{1}(\widetilde{P})\right)$. From the definition of $G_{1}\left(T, E_{T}\right)$ it follows that for any $P \in \mathcal{O}\left(\mathcal{G}_{1}\right)$ and for any side $s_{\ell}(P)$ of P the set $\mathcal{A}^{*}\left(\mathcal{G}_{1}\right) \cap s_{\ell}(P)$ is a nonempty subset of $s_{\ell}(P) \backslash V(P)$.

Suppose that a generalized frame $\mathcal{G}_{n}=\mathcal{O}^{*}\left(\mathcal{G}_{n}\right) \cup \mathcal{A}^{*}\left(\mathcal{G}_{n}\right), n \in \mathbb{N} \backslash\{0\}$, is defined and for any $P \in \mathcal{O}\left(\mathcal{G}_{n}\right)$ and any side $s_{\ell}(P)$ of P the set $\mathcal{A}^{*}\left(\mathcal{G}_{n}\right) \cap s_{\ell}(P)$ is a nonempty subset of $s_{\ell}(P) \backslash V(P)$. Set $E_{P}=\mathcal{A}^{*}\left(\mathcal{G}_{n}\right) \cap \operatorname{Bd}(P)$ and define

$$
\begin{aligned}
\mathcal{G}_{n+1} & =\left(\mathcal{G}_{n} \cap \bigcup_{P \in \mathcal{O}\left(\mathcal{G}_{n}\right)} G_{n+1}\left(P, E_{P}\right)\right) \cup \mathcal{A}\left(\mathcal{G}_{n}\right), \\
\mathcal{A}\left(\mathcal{G}_{n+1}\right) & =\mathcal{A}\left(\mathcal{G}_{n}\right) \cup \bigcup_{P \in \mathcal{O}\left(\mathcal{G}_{n}\right)} \mathcal{A}\left(G_{n+1}\left(P, E_{P}\right)\right)
\end{aligned}
$$

3.3. Properties of $\left\{\mathcal{G}_{n}\right\}_{n=1}^{\infty}$. For any $n \in \mathbb{N} \backslash\{0\}$ the following properties are satisfied:
(1) $\mathcal{G}_{n+1} \subseteq \mathcal{G}_{n}$.
(2) $\operatorname{mesh}\left(\mathcal{O}\left(\mathcal{G}_{n+1}\right)\right)<\operatorname{mesh}\left(\mathcal{O}\left(\mathcal{G}_{n}\right)\right) / 9$.
(3) If $P \in \mathcal{O}\left(\mathcal{G}_{n}\right)$, then there exists $\widetilde{P} \subseteq \operatorname{Int}(P)$ such that

$$
P \cap \mathcal{G}_{n+1}=G_{n}\left(P, E_{P}\right)=\mathcal{K}^{n+1}(\widetilde{P}) \cup\left(\bigcup_{\ell=1}^{4}\left(A^{\ell}(P)\right)^{*}\right) \cup\left(\bigcup_{\ell, \kappa=1}^{4}\left(B^{\ell}\left(P_{\kappa}\right)\right)^{*}\right)
$$

(4) \mathcal{G}_{n+k} is transitively inscribed in \mathcal{G}_{n} for any $k \in \mathbb{N} \backslash\{0\}$. Moreover, if $\widehat{P} \in \mathcal{O}\left(\mathcal{G}_{n}\right)$ and $P \in \operatorname{st}\left(\widehat{P}, \mathcal{O}\left(\mathcal{G}_{n+k}\right)\right)$, then for each $\ell \in\{1,2,3,4\}$ there exists a finite family $B^{\ell}(\widehat{P}, P)$ consisting of pairwise disjoint
$\operatorname{arcs} a b \in \mathcal{G}_{n+k}$ such that

$$
a \in s_{\ell}(\widehat{P}) \cap \mathcal{A}^{*}\left(\mathcal{G}_{n}\right), \quad b \in s_{\ell}(P) \cap \mathcal{A}^{*}\left(\mathcal{G}_{n+k}\right), \quad(a b) \subseteq \operatorname{Int}(\widehat{P}) \backslash P
$$

Also, $\left(B^{\ell_{1}}(\widehat{P}, P)\right)^{*} \cap\left(B^{\ell_{2}}(\widehat{P}, P)\right)^{*}=\emptyset$ for $\ell_{1} \neq \ell_{2}$.
We define $\mathcal{Z}=\bigcap_{n=1}^{\infty} \mathcal{G}_{n}$. By Proposition $2.2, \mathcal{Z}$ is a planar completely regular continuum.

4. Main theorem

Lemma 4.1. Let A, B, C be disks of the plane such that $A \subseteq \operatorname{Int}(B)$ and $B \subseteq \operatorname{Int}(C)$. Let also $\left\{b_{1} a_{1}, \ldots, b_{n} a_{n}\right\},\left\{c_{1} b_{1}, \ldots, c_{n} b_{n}\right\}$ be families of pairwise disjoint arcs such that for any $i=1, \ldots, n$:
(i) $\left\{a_{1}, \ldots, a_{n}\right\} \subseteq \operatorname{Bd}(A),\left\{b_{1}, \ldots, b_{n}\right\} \subseteq \operatorname{Bd}(B)$, and $\left\{c_{1}, \ldots, c_{n}\right\} \subseteq$ $\operatorname{Bd}(C)$,
(ii) $\left(b_{i} a_{i}\right) \subseteq \operatorname{Int}(B) \backslash A$ and $\left(c_{i} b_{i}\right) \subseteq \operatorname{Int}(C) \backslash B$.

Suppose also that for $i=1, \ldots, n$ there are given homeomorphisms g_{i} : $c_{i} b_{i} \rightarrow c_{i} b_{i} \cup b_{i} a_{i}$ such that $g_{i}\left(c_{i}\right)=c_{i}$ and $g_{i}\left(b_{i}\right)=a_{i}$. Then for any homeomorphism $h: B \rightarrow A$ such that $h\left(b_{i}\right)=a_{i}$ for any i, there exists a homeomorphism $\bar{h}: C \rightarrow C$ such that
(iii) $\left.\bar{h}\right|_{B}=h$,
(iv) $\left.\bar{h}\right|_{\operatorname{Bd}(C)}$ is identity, and
(v) $\left.\bar{h}\right|_{c_{i} b_{i}}=g_{i}$ for any i.

Proof. We denote $b_{n+1}=b_{1}$ and $c_{n+1}=c_{1}$. For any $i=1, \ldots, n$ we consider the arc $c_{i} c_{i+1}$ in $\operatorname{Bd}(C)$ for which $\left(c_{i} c_{i+1}\right) \cap\left\{c_{1}, \ldots, c_{n}\right\}=\emptyset$, the $\operatorname{arc} b_{i} b_{i+1}$ in $\operatorname{Bd}(B)$ for which $\left(b_{i} b_{i+1}\right) \cap\left\{b_{1}, \ldots, b_{n}\right\}=\emptyset$, and the arc $a_{i} a_{i+1}$ in $\operatorname{Bd}(B)$ for which $\left(a_{i} a_{i+1}\right) \cap\left\{a_{1}, \ldots, a_{n}\right\}=\emptyset$. Note that
(vi) $C \backslash \operatorname{Int}(B)$ is a union of disks $D_{i}^{B}, i=1, \ldots, n$, bounded by the closed curves $\operatorname{Bd}\left(D_{i}^{B}\right)=c_{i} c_{i+1} \cup b_{i} b_{i+1} \cup c_{i} b_{i} \cup c_{i+1} b_{i+1}$,
(vii) $C \backslash \operatorname{Int}(A)$ is a union of disks $D_{i}^{A}, i=1, \ldots, n$, bounded by the closed curves $\operatorname{Bd}\left(D_{i}^{A}\right)=c_{i} c_{i+1} \cup a_{i} a_{i+1} \cup\left(c_{i} b_{i} \cup b_{i} a_{i}\right) \cup\left(c_{i+1} b_{i+1} \cup b_{i+1} a_{i+1}\right)$.
Let $h_{i}: \operatorname{Bd}\left(D_{i}^{B}\right) \rightarrow \operatorname{Bd}\left(D_{i}^{A}\right)$ be a homeomorphism such that $h_{i}\left(b_{i}\right)=a_{i}$, $h_{i}\left(b_{i+1}\right)=a_{i+1}, h_{i}\left(b_{i} b_{i+1}\right)=a_{i} a_{i+1}, h_{i}$ is the identity on $c_{i} c_{i+1},\left.h_{i}\right|_{c_{i} b_{i}}=g_{i}$, and $\left.h_{i}\right|_{c_{i+1} b_{i+1}}=g_{i+1}$. Then there is a homeomorphism $\bar{h}_{i}: D_{i}^{B} \rightarrow D_{i}^{A}$ such that $\left.\bar{h}_{i}\right|_{\operatorname{Bd}\left(D_{i}^{B}\right)}=h_{i}$. The required homeomorphism $\bar{h}: C \rightarrow C$ is defined by

$$
\bar{h}(x)= \begin{cases}h(x) & \text { if } x \in B \\ \bar{h}_{i}(x) & \text { if } x \in D_{i}^{B}\end{cases}
$$

Lemma 4.2. Let $r p$ be an arc and $\left\{r_{i}\right\}_{i=0}^{\infty}$, $\left\{p_{i}\right\}_{i=0}^{\infty}$ be sequences in (rp) such that $\lim _{i \rightarrow \infty} p_{i}=p$ and $r_{i}<p_{i}<r_{i+1}$ for any $i \in \mathbb{N}$. Then there is a sequence of homeomorphisms $g_{i}: r p_{i-1} \rightarrow r p_{i}, i=1,2, \ldots$, such that
(i) $g_{i}(r)=r$ and $g_{i}\left(p_{i-1}\right)=p_{i}$,
(ii) g_{i} is the identity on $r r_{i-1}$,
(iii) $f=\lim _{i \rightarrow \infty}\left(g_{i} \circ \cdots \circ g_{1}\right)$ is a homeomorphism of $r p_{0}$ onto $r p$.

Proof. Let $\left\{x_{i}\right\}_{i=1}^{\infty}$ be a sequence of points of $\left(r_{0} p_{0}\right)$ such that $\lim _{i \rightarrow \infty} x_{i}$ $=p_{0}$ and $x_{i}<x_{i+1}<p_{0}$ for any i.

We have $r<r_{0}<x_{1}<p_{0}<r_{1}<p_{1}$.
Let $g_{1}: r p_{0} \rightarrow r p_{1}$ be a homeomorphism such that g_{1} is the identity on $r r_{0}, g_{1}\left(r_{0} x_{1}\right)=\left(r_{0} r_{1}\right)$, and $g_{1}\left(x_{1} p_{0}\right)=r_{1} p_{1}$. Note that $\left\{g_{1}\left(x_{i}\right)\right\}_{i=2}^{\infty} \subseteq\left(r_{1} p_{1}\right)$.

Assume that for any $1 \leq j \leq i$ homeomorphisms g_{j} with properties (i) and (ii) have been defined and that $\left\{g_{i}\left(\ldots g_{1}\left(x_{k}\right)\right)\right\}_{k=i+1}^{\infty} \subseteq\left(r_{i} p_{i}\right)$.

For $x_{i+1}^{\prime}=g_{i}\left(\ldots g_{1}\left(x_{i+1}\right)\right)$ we have $r<r_{i}<x_{i+1}^{\prime}<p_{i}<r_{i+1}<p_{i+1}$.
Let $g_{i+1}: r p_{i} \rightarrow r p_{i+1}$ be a homeomorphism such that g_{i+1} is the identity on $r r_{i}, g_{i+1}\left(r_{i} x_{i+1}^{\prime}\right)=\left(r_{i} r_{i+1}\right)$, and $g_{i+1}\left(x_{i+1}^{\prime} p_{i}\right)=r_{i+1} p_{i+1}$. Note that $\left\{g_{i+1}\left(\ldots g_{1}\left(x_{k}\right)\right)\right\}_{k=i+2}^{\infty} \subseteq\left(r_{i+1} p_{i+1}\right)$.

Set $f_{i}=g_{i} \circ \cdots \circ g_{1}$. Since $\lim _{i \rightarrow \infty} p_{i}=p,\left\{f_{i}\right\}_{i=1}^{\infty}$ converges uniformly to f and since f is defined on the compact set $r p_{0}$, we conclude that f is a closed map. Obviously, $f(r)=r$ and $f\left(p_{0}\right)=p$. Hence, $f\left(r p_{0}\right)=r p$.

In order to prove that f is one-to-one assume that $r \leq x<y \leq p_{1}$.
If $x, y \in r_{0}$, then $f(x)=g_{1}(x) \neq g_{1}(y)=f(y)$, because each g_{i} is the identity on $r r_{0}$. In the other case $r \leq x \leq x_{k}<y \leq p_{0}$ for some k. Since $f_{k}\left(x_{k}\right)=r_{k}$, it follows that $r \leq f_{k}(x) \leq r_{k}<f_{k}(y) \leq f(y) \leq p$. Since g_{i} is the identity on $r r_{k}$ for each $i \geq k$, it follows that $f(x)=f_{k}(x) \in r r_{k}$ and $f(y) \notin r r_{k}$. Thus $f(x) \neq f(y)$.

Main Theorem 4.3. For any $\mathcal{K} \in \mathcal{C}$ there exists a homeomorphism $H: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$ such that $H(\mathcal{K}) \subseteq \mathcal{Z}$.

Proof. Let $\mathcal{K} \in \mathcal{C}$. Then

$$
\mathcal{K}=C^{2} \cup \bigcup\left\{\mathcal{A}^{*}(\bar{i}, \bar{j}): \bar{i}, \bar{j} \in L_{k}, k=0,1, \ldots\right\}
$$

For any $i \in \mathbb{N}$ and for any $F \in \mathcal{W}_{i}$ we denote by $\mathcal{A}(F)$ the joining family of segments for $\operatorname{st}\left(F, \mathcal{W}_{i+1}\right)$. Then $\mathcal{K}(F)=\operatorname{st}^{*}\left(F, \mathcal{W}_{i+1}\right) \cup \mathcal{A}^{*}(F)$ is a 1-frame. Note that $\mathcal{K}(F)=\left(\bigcup_{\ell=1}^{4} F_{\ell}\right) \cup \mathcal{A}^{*}(F)$. We define

$$
n_{F}=\max \left\{\left|\mathcal{A}_{\mathcal{K}(F)}\left(F_{\ell}, F_{\ell+1}\right)\right|: F_{\ell}, F_{\ell+1} \text { are adjacent in } \operatorname{st}\left(F, \mathcal{W}_{i+1}\right)\right\}
$$

Set $\mathcal{A}\left(\mathcal{K}_{i}\right)=\bigcup\left\{\mathcal{A}(\bar{i}, \bar{j}): \bar{i}, \bar{j} \in L_{k}, 0 \leq k \leq i-1\right\}$ and $\mathcal{K}_{i}=\mathcal{W}_{i}^{*} \cup \mathcal{A}^{*}\left(\mathcal{K}_{i}\right)$. Note that

$$
\mathcal{K}_{i+1}=\mathcal{A}^{*}\left(\mathcal{K}_{i}\right) \cup \bigcup\left\{\mathcal{K}(F): F \in \mathcal{W}_{i}\right\}
$$

Clearly each \mathcal{K}_{i} is a primary i-frame of I^{2} which for any $i>1$ is 1 -inscribed in \mathcal{K}_{i-1} and $\mathcal{K}=\bigcap_{i=1}^{\infty} \mathcal{K}_{i}$.

Let $\left\{n_{i}\right\}_{i=1}^{\infty}$ be a sequence of natural numbers such that $n_{i+1}>n_{i}+2$ and $n_{i}>\max \left\{n_{F}: F \in \mathcal{W}_{i}\right\}$ for any i. For each $i \geq 1$ we will define an i-frame $\mathcal{M}_{i} \subseteq \mathcal{G}_{n_{i}}$ and a homeomorphism $h_{i}: \mathcal{K}_{i} \rightarrow \mathcal{M}_{i}$ such that:
$\left(1_{i}\right) \mathcal{M}_{i} \subseteq \mathcal{M}_{i+1}$.
$\left(2_{i}\right)$ If $F \in \mathcal{O}\left(\mathcal{K}_{i}\right)$ and $F^{\prime} \in \operatorname{st}\left(F, \mathcal{O}\left(\mathcal{K}_{i+1}\right)\right)$, then $h_{i+1}\left(F^{\prime}\right) \subseteq \operatorname{Int}\left(h_{i}(F)\right)$.
$\left(3_{i}\right) h_{i}(A) \subseteq h_{i+1}(A)$ for all $A \in \mathcal{A}\left(\mathcal{K}_{i}\right)$.
(4i) If x is an endpoint of an $\operatorname{arc} A \in \mathcal{A}\left(\mathcal{K}_{i}\right)$, then

$$
\operatorname{st}\left(h_{i+1}(x), \mathcal{O}\left(\mathcal{M}_{i+1}\right)\right)=h_{i+1}\left(\operatorname{st}\left(x, \mathcal{O}\left(\mathcal{K}_{i+1}\right)\right)\right) .
$$

Construction of \mathcal{M}_{1}. We begin by taking any $P \in \mathcal{O}\left(\mathcal{G}_{n_{1}-1}\right)$. By property (3) of the family $\left\{\mathcal{G}_{n}\right\}_{n=1}^{\infty}$ there are a square $\widetilde{P} \subseteq \operatorname{Int}(P)$ and an n_{1} joined 1-frame $\mathcal{K}^{n_{1}}(\widetilde{P})$ of \widetilde{P} such that $\mathcal{K}^{n_{1}}(\widetilde{P}) \subseteq \mathcal{G}_{n_{1}}$.

Since \mathcal{K}_{1} is an at most n_{1}-joined 1 -frame of I^{2}, there exists an embedding $h_{1}: \mathcal{K}_{1} \rightarrow \mathcal{K}^{n_{1}}(\widetilde{P})$ such that
$\left(1_{h_{1}}\right) h_{1}\left(I_{\ell}^{2}\right)=\widetilde{P}_{\ell}$ for all $\ell \in\{1,2,3,4\}$.
$\left(2_{h_{1}}\right) h_{1}\left(s_{\kappa}\left(I_{\ell}^{2}\right)\right)=s_{\kappa}\left(\widetilde{P}_{\ell}\right)$ for all $\ell, \kappa \in\{1,2,3,4\}$.
$\left(3_{h_{1}}\right)$ If $A \in \mathcal{A}_{\mathcal{K}_{1}}\left(I_{\ell_{1}}^{2}, I_{\ell_{2}}^{2}\right)$, then $h_{1}(A) \in \mathcal{A}_{\mathcal{K}^{n_{1}}(\widetilde{P})}\left(h_{1}\left(I_{\ell_{1}}^{2}\right), h_{1}\left(I_{\ell_{2}}^{2}\right)\right)$.
Let $i \geq 1$ and suppose that for any $1 \leq j \leq i$ a j-frame \mathcal{M}_{j} and a homeomorphism $h_{j}: \mathcal{K}_{j} \rightarrow \mathcal{M}_{j}$ have been defined.

Construction of an i-frame \mathcal{N}_{i} that is transitively inscribed in \mathcal{M}_{i}. For any $\widehat{P} \in \mathcal{O}\left(\mathcal{M}_{i}\right)$ we fix any $P \in \operatorname{st}\left(\widehat{P}, \mathcal{O}\left(\mathcal{G}_{n_{i+1}-1}\right)\right)$ and denote it by $\hat{\omega}(\widehat{P})$. Since $\widehat{P} \in \mathcal{O}\left(\mathcal{G}_{n_{i}}\right)$, from property (4) of $\left\{\mathcal{G}_{n}\right\}_{n=1}^{\infty}$ it follows that for any $\ell \in\{1,2,3,4\}$ there is a finite family $B^{\ell}(\widehat{P}, P)$ of pairwise disjoint arcs $\hat{p} p \subseteq \mathcal{G}_{n_{i+1}-1}$ such that $\hat{p} \in s_{\ell}(\widehat{P}) \cap \mathcal{A}^{*}\left(\mathcal{M}_{i}\right), p \in s_{\ell}(P) \cap \mathcal{A}^{*}\left(\mathcal{G}_{n_{i+1}-1}\right)$, and $(\hat{p} p) \subseteq \operatorname{Int}(\widehat{P}) \backslash P$.

Let $\hat{p} \hat{q} \in \mathcal{A}\left(\mathcal{M}_{i}\right)$. Then there are adjacent elements \widehat{P}, \widehat{Q} of $\mathcal{O}\left(\mathcal{M}_{i}\right)$ and $\ell_{\hat{p}}, \ell_{\hat{q}} \in\{1,2,3,4\}$ such that $\hat{p} \in s_{\ell_{\hat{p}}}(\widehat{P})$ and $\hat{q} \in s_{\ell_{\hat{q}}}(\widehat{Q})$. Let $\hat{\omega}(\widehat{P})=P$ and $\hat{\omega}(\widehat{Q})=Q$.

Consider the points $p \in s_{\ell_{\hat{p}}}(P) \cap \mathcal{A}^{*}\left(\mathcal{G}_{n_{i+1}-1}\right)$ and $q \in s_{\ell_{\hat{q}}}(Q) \cap \mathcal{A}^{*}\left(\mathcal{G}_{n_{i+1}-1}\right)$ such that $\hat{p} p, \hat{q} q \subseteq \mathcal{G}_{n_{i+1}-1},(\hat{p} p) \subseteq \operatorname{Int}(\widehat{P}) \backslash P$, and $(\hat{q} q) \subseteq \operatorname{Int}(\widehat{Q}) \backslash Q$. We denote $\widehat{\tau}_{i}(\hat{p} \hat{q})=\hat{p} \hat{q} \cup \hat{p} p \cup \hat{q} q$.

Set $\mathcal{A}\left(\mathcal{N}_{i}\right)=\left\{\widehat{\tau}_{i}(A): A \in \mathcal{A}\left(\mathcal{M}_{i}\right)\right\}$ and $\mathcal{O}\left(\mathcal{N}_{i}\right)=\left\{\hat{\omega}(\widehat{P}): \widehat{P} \in \mathcal{O}\left(\mathcal{M}_{i}\right)\right\}$. Clearly, $\widehat{\tau}_{i}: \mathcal{A}\left(\mathcal{M}_{i}\right) \rightarrow \mathcal{A}\left(\mathcal{N}_{i}\right)$ and $\widehat{\omega}_{i}: \mathcal{O}\left(\mathcal{M}_{i}\right) \rightarrow \mathcal{O}\left(\mathcal{N}_{i}\right)$ are bijections.

Set $\mathcal{N}_{i}=\mathcal{O}^{*}\left(\mathcal{N}_{i}\right) \cup \mathcal{A}^{*}\left(\mathcal{N}_{i}\right)$.
Construction of \mathcal{M}_{i+1}. Let $\widehat{P} \in \mathcal{M}_{i}$. Then $\widehat{\omega}_{i}(\widehat{P})=P \in \mathcal{O}\left(\mathcal{N}_{i}\right)$. Since $P \in \mathcal{O}\left(\mathcal{G}_{n_{i+1}-1}\right)$, by property (3) of $\left\{\mathcal{G}_{n}\right\}_{n=1}^{\infty}$ there exist a square $\widetilde{P} \subseteq \operatorname{Int}(P)$ and an n_{i+1}-joined 1-frame $\mathcal{K}^{n_{i+1}}(\widetilde{P})$ of \widetilde{P} such that $P \cap \mathcal{G}_{n_{i+1}}=\mathcal{K}^{n_{i+1}}(\widetilde{P}) \cup$ $\bigcup_{\ell=1}^{4}\left(A^{\ell}(\widetilde{P})\right)^{*}$, where the families of $\operatorname{arcs} A^{\ell}(P)$ have properties (a)-(c) of Subsection 3.1. Clearly, to each $\widehat{P} \in \mathcal{M}_{i}$ corresponds a unique \widetilde{P}. We denote $\widetilde{P}=\widetilde{\omega}_{i}(\widehat{P})$.

On the other hand $\widehat{P}=h_{i}(F)$, where $F \in \mathcal{O}\left(\mathcal{K}_{i}\right)$. Since $\mathcal{K}(F)=F \cap \mathcal{K}_{i+1}$ is an at most n_{i+1}-joined 1 -frame of F and $\mathcal{K}^{n_{i+1}}(\widetilde{P})$ is an n_{i+1}-joined 1frame of P, there is an embedding $h_{F}: \mathcal{K}(F) \rightarrow \mathcal{K}^{n_{i+1}}(\widetilde{P})$ such that:

$$
\begin{aligned}
& \left(1_{h_{F}}\right) h_{F}\left(F_{\ell}\right)=\widetilde{P}_{\ell} \text { for all } \ell \in\{1,2,3,4\} . \\
& \left(2_{h_{F}}\right) h_{F}\left(s_{\kappa}\left(F_{\ell}\right)\right)=s_{\kappa}\left(\widetilde{P}_{\ell}\right) \text { for all } \ell, \kappa \in\{1,2,3,4\} . \\
& \left(3_{h_{F}}\right) \text { If } A \in \mathcal{A}_{\mathcal{K}(F)}\left(F_{\ell_{1}}, F_{\ell_{2}}\right) \text {, then } h_{F}(A) \in \mathcal{A}_{\mathcal{K}^{n_{i+1}}(\widetilde{P})}\left(h_{F}\left(F_{\ell_{1}}\right), h_{F}\left(F_{\ell_{2}}\right)\right) .
\end{aligned}
$$

Let $\ell \in\{1,2,3,4\}$ be such that $s_{\ell}(F) \cap \mathcal{A}^{*}\left(\mathcal{K}_{i}\right) \neq \emptyset$.
Note that $\operatorname{st}\left(s_{\ell}(F), \mathcal{O}\left(\mathcal{K}_{i+1}\right)\right)=\left\{F_{\ell}, F_{\ell+1}\right\}$. We denote

$$
k=\left|F_{\ell} \cap \mathcal{A}^{*}\left(\mathcal{O}\left(\mathcal{K}_{i}\right)\right)\right| \quad \text { and } \quad m=\left|F_{\ell+1} \cap \mathcal{A}^{*}\left(\mathcal{O}\left(\mathcal{K}_{i}\right)\right)\right| .
$$

Then $\left|s_{\ell}(P) \cap \mathcal{A}^{*}\left(\mathcal{N}_{i}\right)\right|=k+m \leq\left|s_{\ell}(P) \cap \mathcal{A}^{*}\left(\mathcal{G}_{n_{i+1}}\right)\right|$.
From property (c) of $A^{\ell}(P)$ it follows that there are families of pairwise disjoint arcs $A_{\ell, k}^{\ell}(P)$ and $A_{\ell+1, m}^{\ell}(P)$ of $\mathcal{G}_{n_{i+1}}$ such that:
(i) $A_{\ell, k}^{\ell}(P) \cup A_{\ell+1, m}^{\ell}(P)$ consists of pairwise disjoint arcs.
(ii) $\left|A_{\ell, k}^{\ell}(P)\right|=k$ and $\left|A_{\ell+1, m}^{\ell}(P)\right|=m$.
(iii) If $p \tilde{p} \in A_{\ell, k}^{\ell}(P)$, then $p \in s_{\ell}(P) \cap \mathcal{A}^{*}\left(\mathcal{N}_{1}\right), \tilde{p} \in s_{\ell}\left(\widetilde{P}_{\ell}\right)$, and $(p \tilde{p}) \subseteq$ $\operatorname{Int}(P) \backslash \widetilde{P}$.
(iv) If $p \tilde{p} \in A_{\ell+1, m}^{\ell}(P)$, then $p \in s_{\ell}(P) \cap \mathcal{A}^{*}\left(\mathcal{N}_{1}\right), \tilde{p} \in s_{\ell}\left(\widetilde{P}_{\ell+1}\right)$, and $(p \tilde{p}) \subseteq \operatorname{Int}(P) \backslash \widetilde{P}$.
For any $p \in s_{\ell}(P) \cap \mathcal{A}^{*}\left(\mathcal{N}_{1}\right)$ we denote $\widetilde{\tau}(p)=\operatorname{st}\left(p, A_{\ell, k}^{\ell}(P) \cup A_{\ell+1, m}^{\ell}(P)\right)$.
Let $A=p_{A} q_{A} \in \mathcal{A}\left(\mathcal{K}_{i}\right), \hat{p}=h_{i}\left(p_{A}\right)$, and $\hat{q}=h_{i}\left(q_{A}\right)$. Then $\hat{p} \hat{q} \in \mathcal{A}\left(\mathcal{M}_{i}\right)$ and $\widehat{\tau}_{i}(\hat{p} \hat{q})=p q \in \mathcal{A}\left(\mathcal{N}_{i}\right)$. There are adjacent elements P, Q of $\mathcal{O}\left(\mathcal{N}_{i}\right)$ and $\ell_{p}, \ell_{q} \in\{1,2,3,4\}$ such that $p \in s_{\ell_{p}}(P) \cap \mathcal{A}^{*}\left(\mathcal{N}_{i}\right)$ and $q \in s_{\ell_{q}}(Q) \cap \mathcal{A}^{*}\left(\mathcal{N}_{i}\right)$. Let $\widetilde{\tau}(p)=p \tilde{p}$ and $\widetilde{\tau}(q)=p \tilde{q}$. Set $\tilde{p} \tilde{q}=\widetilde{\tau}(p) \cup p q \cup \widetilde{\tau}(q)$.

Let $h_{A}: p_{A} q_{A} \rightarrow \tilde{p} \tilde{q}$ be a homeomorphism such that $h_{A}\left(p_{A}\right)=\tilde{p}$ and $h_{A}\left(q_{A}\right)=\tilde{q}$. Set $\mathcal{M}_{i+1}=\left(\bigcup_{F \in \mathcal{O}\left(\mathcal{K}_{i}\right)} h_{F}(\mathcal{K}(F))\right) \cup\left(\bigcup_{A \in \mathcal{A}\left(\mathcal{K}_{i}\right)} h_{A}(A)\right)$.

We define $h_{i+1}: \mathcal{K}_{i+1} \rightarrow \mathcal{M}_{i+1}$ as follows:

$$
h_{i+1}(x)= \begin{cases}h_{F}(x) & \text { if } x \in F \in \mathcal{O}\left(\mathcal{K}_{i}\right), \\ h_{A}(x) & \text { if } x \in A \in \mathcal{A}\left(\mathcal{K}_{i}\right) .\end{cases}
$$

Construction of a homeomorphism $H: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$ that carries \mathcal{K} into \mathcal{Z}. Given a square P we denote by $U[P, \delta]$ the square consisting of points that are at distance $\leq \delta$ from P.

For each $i=1,2, \ldots$, we choose $\delta_{i}>0$ such that
(i) $U\left[\widehat{P}, \delta_{i}\right] \cap U\left[\widehat{Q}, \delta_{i}\right]=\emptyset$ for any distinct $\widehat{P}, \widehat{Q} \in \mathcal{O}\left(\mathcal{M}_{i}\right)$.
(ii) If $\widehat{Q} \in \mathcal{O}\left(\mathcal{M}_{i}\right)$ and $\widehat{P} \in \operatorname{st}\left(Q, \mathcal{O}\left(\mathcal{M}_{i+1}\right)\right)$, then $U\left[\widehat{P}, \delta_{i+1}\right] \subseteq \operatorname{Int}(\widehat{Q})$.

Obviously, $\lim _{i \rightarrow \infty} \delta_{i}=0$.

To each i-frame \mathcal{M}_{i} we associate the i-frame $\mathcal{U}_{i}=\mathcal{O}^{*}\left(\mathcal{U}_{i}\right) \cup \mathcal{A}^{*}\left(\mathcal{U}_{i}\right)$, where

$$
\begin{aligned}
\mathcal{O}\left(\mathcal{U}_{i}\right) & =\left\{U\left[\widehat{P}, \delta_{i}\right]: \widehat{P} \in \mathcal{O}\left(\mathcal{M}_{i}\right)\right\} \\
\mathcal{A}\left(\mathcal{U}_{i}\right) & =\left\{\operatorname{Cl}\left(A \backslash \mathcal{O}^{*}\left(\mathcal{U}_{i}\right)\right): A \in \mathcal{A}\left(\mathcal{M}_{i}\right)\right\} .
\end{aligned}
$$

For each $A \in \bigcup_{i=1}^{\infty} \mathcal{A}\left(\mathcal{K}_{i}\right)$ we will define an embedding $H^{A}: A \rightarrow \mathcal{Z}$. The final homeomorphism H will be such that $\left.H\right|_{A}=H^{A}$.

Let $A=p_{A} q_{A} \in \bigcup_{i=1}^{\infty} \mathcal{A}\left(\mathcal{K}_{i}\right)$. Since $\mathcal{A}\left(\mathcal{K}_{1}\right) \subsetneq \mathcal{A}\left(\mathcal{K}_{2}\right) \subsetneq \cdots$, there is a least i_{A} such that $A \in \mathcal{A}\left(\mathcal{K}_{i_{A}}\right)$. Consider adjacent $F^{p_{A}}, F^{q_{A}} \in \mathcal{O}\left(\mathcal{K}_{i_{A}}\right)$ such that $p_{A} \in F^{p_{A}}$ and $q_{A} \in F^{q_{A}}$. Set $h_{i_{A}+i}\left(p_{A}\right)=p_{i}, h_{i_{A}+i}\left(q_{A}\right)=q_{i}$, $h_{i_{A}+i}\left(F^{p_{A}}\right)=P_{i}$, and $h_{i_{A}+i}\left(F^{q_{A}}\right)=Q_{i}$ for any $i \in \mathbb{N}$. Then $p_{i} \in P_{i}, q_{i} \in Q_{i}$, and P_{i}, Q_{i} are adjacent in $\mathcal{O}\left(\mathcal{M}_{i_{A}+i}\right)$ for any $i \in \mathbb{N}$.

Since the sets P_{i} and Q_{i} are compact and since, from $\left(2_{i}\right)$, we have $P_{i+1} \subseteq P_{i}$ and $Q_{i+1} \subseteq Q_{i}$, it follows that $\bigcap_{i=1}^{\infty} P_{i}=\{p\}$ and $\bigcap_{i=1}^{\infty} Q_{i}=\{q\}$.

Let $p_{i} q_{i}=h_{i_{A}+i}\left(p_{A} q_{A}\right)$. Then $p_{i} q_{i} \subseteq p_{i+1} q_{i+1}$ from $\left(3_{i}\right)$. It is easy to see that $\bigcup_{i=1}^{\infty} p_{i} q_{i}=p q$ and $p q$ is an arc of \mathcal{Z}.

Note that $p \in \operatorname{Int}\left(P_{i}\right) \subseteq U\left[P_{i}, \delta_{i_{A}+i}\right]$ and $q \in \operatorname{Int}\left(Q_{i}\right) \subseteq U\left[Q_{i}, \delta_{i_{A}+i}\right]$ for all $i \in \mathbb{N}$. Denote $r_{i}=p q \cap \operatorname{Bd}\left(U\left[P_{i}, \delta_{i_{A}+i}\right]\right)$ and $s_{i}=p q \cap \operatorname{Bd}\left(U\left[Q_{i}, \delta_{i_{A}+i}\right]\right)$.

Fix any $r \in\left(r_{0} s_{0}\right)$. Note that the sequences $\left\{r_{i}\right\}_{i=0}^{\infty}$ and $\left\{p_{i}\right\}_{i=0}^{\infty}$ of $(r p)$ as well as the sequences $\left\{s_{i}\right\}_{i=0}^{\infty}$ and $\left\{q_{i}\right\}_{i=0}^{\infty}$ of (rq) satisfy the conditions of Lemma 4.2. Since $r p_{i} \cup r q_{i}=p_{i} q_{i}$, there is a sequence of homeomorphisms $g_{i}^{A}: p_{i-1} q_{i-1} \rightarrow p_{i} q_{i}, i=1,2, \ldots$, such that:
(i) $g_{i}^{A}(r)=r, g_{i}^{A}\left(p_{i-1}\right)=p_{i}$, and $g_{i}^{A}\left(q_{i-1}\right)=q_{i}$.
(ii) g_{i}^{A} is the identity on $r_{i-1} s_{i-1}$.
(iii) $f^{A}=\lim _{i \rightarrow \infty}\left(g_{i}^{A} \circ \cdots \circ g_{1}^{A}\right)$ is a homeomorphism of $p_{0} q_{0}$ onto $p q$.

Obviously, $H^{A}=f^{A} \circ h_{i_{A}}$ is a homeomorphism of A onto $p q$.
Since \mathcal{K}_{1} is a union of finitely many pairwise disjoint disks joined by finitely many pairwise disjoint arcs and since $h_{1}: \mathcal{K}_{1} \rightarrow \mathcal{M}_{1}$ is a homeomorphism, there exists a homeomorphism $H_{1}: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$ such that $\left.H_{1}\right|_{\mathcal{K}_{1}}=h_{1}$.

Let $\widehat{P} \in \mathcal{O}\left(\mathcal{M}_{1}\right)$ and $\operatorname{st}\left(\widehat{P}, \mathcal{A}\left(\mathcal{M}_{1}\right)\right)=\left\{A_{1}^{\widehat{P}}, \ldots, A_{n}^{\widehat{P}}\right\}$. Since $\mathcal{M}_{1}=$ $h_{1}\left(\mathcal{K}_{1}\right)$, there exist pairwise disjoint $\operatorname{arcs} A_{1}, \ldots, A_{n} \in \mathcal{A}\left(\mathcal{K}_{1}\right)$ such that $A_{i}^{\widehat{P}}=h_{1}\left(A_{i}\right)$ for $i=1, \ldots, n$. Clearly,

$$
\operatorname{st}\left(U\left[\widehat{P}, \delta_{1}\right], \mathcal{A}\left(\mathcal{U}_{1}\right)\right)=\left\{\operatorname{Cl}\left(A_{i}^{\widehat{P}} \backslash \mathcal{O}^{*}\left(\mathcal{U}_{1}\right)\right)\right\}_{i=1}^{n}
$$

Also, for $\widetilde{P}=\widetilde{\omega}_{1}(\widehat{P})$ we have $\operatorname{st}\left(\widetilde{P}, \mathcal{A}\left(\mathcal{M}_{2}\right)\right)=\left\{h_{2}\left(A_{i}\right)\right\}_{i=1}^{n}$.
Obviously, we have $\mathrm{Cl}\left(A_{i}^{\widehat{P}} \backslash \mathcal{O}^{*}\left(\mathcal{U}_{1}\right)\right) \subseteq A_{i}^{\widehat{P}} \subseteq h_{2}\left(A_{i}\right)$ for $i=1, \ldots, n$. We denote $r_{0}^{i}=\operatorname{Bd}\left(U\left[\widehat{P}, \delta_{1}\right]\right) \cap \mathrm{Cl}\left(A_{i}^{\widehat{P}} \backslash \mathcal{O}^{*}\left(\mathcal{U}_{1}\right)\right), p_{0}^{i}=\operatorname{Bd}(\widehat{P}) \cap A_{i}^{\widehat{P}}$, and
$p_{1}^{i}=\operatorname{Bd}(\widetilde{P}) \cap h_{2}\left(A_{i}\right)$. Then

$$
\begin{aligned}
\left\{r_{0}^{1}, \ldots, r_{0}^{n}\right\} & =\operatorname{Bd}\left(U\left[\widehat{P}, \delta_{1}\right]\right) \cap \mathcal{A}^{*}\left(\mathcal{M}_{1}\right) \\
\left\{p_{0}^{1}, \ldots, p_{0}^{n}\right\} & =\operatorname{Bd}(\widehat{P}) \cap \mathcal{A}^{*}\left(\mathcal{M}_{1}\right) \\
\left\{p_{1}^{1}, \ldots, p_{1}^{n}\right\} & =\operatorname{Bd}(\widetilde{P}) \cap \mathcal{A}^{*}\left(\mathcal{M}_{2}\right)
\end{aligned}
$$

Observe that $\widetilde{P}, \widehat{P}$, and $U\left[\widehat{P}, \delta_{1}\right]$ are disks such that $\widetilde{P} \subseteq \operatorname{Int}(\widehat{P})$ and $\widehat{P} \subseteq \operatorname{Int}\left(U\left[\widehat{P}, \delta_{1}\right]\right)$.

Since $p_{0}^{i} \in \operatorname{Bd}(\widehat{P}) \cap H_{1}\left(\mathcal{K}_{2}\right)$ and $p_{1}^{i} \in \operatorname{Bd}(\widetilde{P}) \cap \mathcal{M}_{2}$ for all i, there exists a homeomorphism $g_{\widehat{P}}: \widehat{P} \rightarrow \widetilde{P}$ such that $g_{\widehat{P}}\left(H_{1}\left(\mathcal{K}_{2}\right) \cap \widehat{P}\right)=\mathcal{M}_{2} \cap \widetilde{P}$ and $g_{\widehat{P}}\left(p_{0}^{i}\right)=p_{1}^{i}$.

By Lemma 4.1 there is a homeomorphism $\bar{g}_{\widehat{P}}: U\left[\widehat{P}, \delta_{1}\right] \rightarrow U\left[\widehat{P}, \delta_{1}\right]$ such that $\left.\bar{g}_{\widehat{P}}\right|_{\operatorname{Bd}\left(U\left[\widehat{P}, \delta_{1}\right]\right)}$ is the identity, $\left.\bar{g}\right|_{\widehat{P}}=g_{\widehat{P}}$, and $\left.\bar{g}_{\widehat{P}}\right|_{r_{0}^{i} p_{0}^{i}}=\left.g_{1}^{A_{i}}\right|_{r_{0}^{i} p_{0}^{i}}$ for any i.

Let $g_{1}: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$ be a homeomorphism such that

$$
\left.g_{1}\right|_{\mathbb{E}^{2} \backslash \mathcal{O}^{*}\left(\mathcal{U}_{1}\right)}=\left.H_{1}\right|_{\mathbb{E}^{2} \backslash \mathcal{O}^{*}\left(\mathcal{U}_{1}\right)} \quad \text { and }\left.\quad g_{1}\right|_{\widehat{P}}=\bar{g}_{\widehat{P}}
$$

for all $\widehat{P} \in \mathcal{O}\left(\mathcal{M}_{1}\right)$. We set $H_{2}=g_{1} \circ H_{1}$. Clearly, H_{2} sends \mathcal{K}_{2} onto \mathcal{M}_{2}.
By induction the homeomorphisms $g_{i}: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$ and $H_{i}: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$, $i \in \mathbb{N} \backslash\{0\}$, can be defined so that the following conditions are satisfied:
(1) $H_{i}\left(\mathcal{K}_{i}\right)=h_{i}\left(\mathcal{K}_{i}\right)=\mathcal{M}_{i}$.
(2) $\left.g_{i}\right|_{\mathbb{E}^{2} \backslash \mathcal{O}^{*}\left(\mathcal{U}_{i}\right)}=\left.H_{i}\right|_{\mathbb{E}^{2} \backslash \mathcal{O}^{*}\left(\mathcal{U}_{i}\right)}$.
(3) $\left.g_{i}\right|_{\operatorname{Bd}\left(U\left[\widehat{P}, \delta_{i}\right]\right)}=\left.H_{i}\right|_{\operatorname{Bd}\left(U\left[\widehat{P}, \delta_{i}\right]\right)}$ for all $\widehat{P} \in O\left(\mathcal{M}_{i}\right)$.
(4) If $\widehat{P} \in \mathcal{O}\left(\mathcal{M}_{i}\right)$, then $g_{i}\left(U\left[\widehat{P}, \delta_{i}\right]\right)=U\left[\widehat{P}, \delta_{i}\right]$ and $\left.g_{i}\right|_{\widehat{P}}$ maps \widehat{P} onto $\widetilde{P}=\widetilde{\omega}_{i}(\widehat{P})$ in such a way that $g_{i}\left(H_{i}\left(\mathcal{K}_{i+1}\right) \cap \widehat{P}\right)=\mathcal{M}_{i+1} \cap \widetilde{P}$.
(5) If $A \in \mathcal{A}\left(\mathcal{K}_{i}\right)$ and $h_{i_{A}+j}(A)=p_{j} q_{j} \in \mathcal{A}\left(\mathcal{M}_{i}\right)$, then $\left.g_{i}\right|_{p_{j} q_{j}}=g_{j+1}^{A}$.
(6) $H_{i+1}=g_{i} \circ H_{i}$.

Let $H: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$ be the limit of the sequence $\left\{H_{i}\right\}_{i=1}^{\infty}$ of homeomorphisms.

We will prove that H is a homeomorphism and $H(\mathcal{K}) \subseteq \bigcap_{i=1}^{\infty} \mathcal{M}_{i}$.
Note that $H_{i}(\mathcal{K}) \subseteq H_{i}\left(\mathcal{K}_{i}\right)$ and $H_{i+1}\left(\mathcal{K}_{i+1}\right) \subseteq H_{i}\left(\mathcal{K}_{i}\right)$ for all i. Since $H_{i}\left(\mathcal{K}_{i}\right)=\mathcal{M}_{i}$ for all i, we obtain

$$
H(\mathcal{K})=\lim _{i \rightarrow \infty} H_{i}(\mathcal{K}) \subseteq \bigcap_{i=1}^{\infty} H_{i}\left(\mathcal{K}_{i}\right)=\bigcap_{i=1}^{\infty} \mathcal{M}_{i}
$$

Let $\widehat{H}: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$ be the limit of the sequence $\left\{H_{i}\right\}_{i=2}^{\infty}$. Since $H=H_{1} \circ \widehat{H}$ and H_{1} is a homeomorphism, it suffices to show that \widehat{H} is a homeomorphism.

From properties (2) and (6) it follows that $\widehat{H}_{i+1} \equiv \widehat{H}_{i}$ on $\mathbb{E}^{2} \backslash \mathcal{O}^{*}\left(\mathcal{U}_{i}\right)$. Since in addition $\lim _{i \rightarrow \infty} \operatorname{mesh}\left(\mathcal{O}^{*}\left(\mathcal{U}_{i}\right)\right)=0$, the homeomorphisms \widehat{H}_{i} converge uniformly to \widehat{H}. Thus \widehat{H} is continuous.

Since $\left.\widehat{H}\right|_{\mathbb{E}^{2} \backslash \mathcal{U}_{1}}=\left.H_{2}\right|_{\mathbb{E}^{2} \backslash \mathcal{U}_{1}}$, it remains to prove that \widehat{H} is one-to-one on the compact set \mathcal{U}_{1}. From $\mathcal{U}_{1} \supseteq \mathcal{U}_{2} \supseteq \cdots$, it follows that $\mathcal{U}_{1}=\left(\bigcup_{i=1}^{\infty}\left(\mathcal{U}_{i} \backslash\right.\right.$ $\left.\left.\mathcal{U}_{i+1}\right)\right) \cup\left(\bigcap_{i=1}^{\infty} \mathcal{U}_{i}\right)$. Since $\left.\widehat{H}\right|_{\mathcal{U}_{i} \backslash \mathcal{U}_{i+1}}=\left.H_{i+1}\right|_{\mathcal{U}_{i} \backslash \mathcal{U}_{i+1}}$ is a homeomorphism and the family $\left\{\mathcal{U}_{i} \backslash \mathcal{U}_{i+1}\right\}_{i=1}^{\infty}$ consists of pairwise disjoint sets, it suffices to show that \widehat{H} is one-to-one on $\bigcap_{i=1}^{\infty} \mathcal{U}_{i}$. It is easy to verify that $\bigcap_{i=1}^{\infty} \mathcal{U}_{i}=$ $\bigcap_{i=1}^{\infty} \mathcal{M}_{i}=\left(\bigcap_{i=1}^{\infty} \mathcal{O}^{*}\left(\mathcal{M}_{i}\right)\right) \cup\left(\bigcup_{i=1}^{\infty} \mathcal{A}^{*}\left(\mathcal{M}_{i}\right)\right)$.

By (4) for any i and for any $\widehat{P} \in \mathcal{O}\left(\mathcal{M}_{i}\right)$ it follows that $H_{i}(\widehat{P})=\widetilde{P} \subseteq$ $\operatorname{Int}(\widehat{P})$. Since $\lim _{i \rightarrow \infty} \operatorname{mesh}\left(\mathcal{O}\left(\mathcal{M}_{i}\right)\right)=0$, we conclude that \widehat{H} is one-to-one on $\bigcap_{i=1}^{\infty} \mathcal{O}\left(\mathcal{M}_{i}\right)$.

Let $x, y \in \bigcup_{i=1}^{\infty} \mathcal{A}^{*}\left(\mathcal{M}_{i}\right)$ and $x \neq y$. Then $H_{1}(x) \neq H_{1}(y)$.
If there exist $i \in \mathbb{N} \backslash\{0\}$ and $A \in \mathcal{A}\left(\mathcal{K}_{i}\right)$ such that $x, y \in h_{i}(A) \in \mathcal{A}\left(\mathcal{M}_{i}\right)$, then (5) yields $\left.H\right|_{A}=H^{A}=\left.\left.\widehat{H}\right|_{H_{1}(A)} \circ H_{1}\right|_{A}$. Thus $\widehat{H}(x) \neq \widehat{H}(y)$.

In the other case there exist $i_{x}, i_{y} \in \mathbb{N} \backslash\{0\}, A_{x} \in \mathcal{A}\left(\mathcal{K}_{i_{x}}\right)$, and $A_{y} \in$ $\mathcal{A}\left(\mathcal{K}_{i_{y}}\right)$ with $A_{x} \cap A_{y}=\emptyset, x \in h_{i_{x}}\left(A_{x}\right) \in \mathcal{A}\left(\mathcal{M}_{i_{x}}\right)$, and $y \in h_{i_{y}}\left(A_{y}\right) \in$ $\mathcal{A}\left(\mathcal{M}_{i_{y}}\right)$.

Without loss of generality we can assume $i_{A_{x}} \leq i_{A_{y}}$. Then $A_{x}, A_{y} \in \mathcal{A}\left(\mathcal{K}_{i}\right)$ for any $i \geq i_{A_{y}}$. Thus $h_{i_{A}+i}\left(A_{x}\right) \cap h_{i_{A}+i}\left(A_{y}\right)=\emptyset$ for each $i \geq i_{A_{y}}$.

Since the endpoints of the arcs A_{x} and A_{y} are in $\mathcal{O}^{*}\left(\mathcal{K}_{i}\right)$ for each $i \geq i_{A_{y}}$ and $\lim _{i \rightarrow \infty} \operatorname{mesh}\left(\mathcal{O}^{*}\left(\mathcal{K}_{i}\right)\right)=0$, there is $i_{0} \geq i_{A_{y}}$ such that the endpoints of $\operatorname{arcs} A_{x}$ and A_{y} are separated in $\mathcal{O}\left(\mathcal{K}_{i_{A}+i_{0}}\right)$. From $\left(4_{i}\right)$ it follows that the endpoints of arcs $h_{i_{A}+i}\left(A_{x}\right)$ and $h_{i_{A}+i}\left(A_{y}\right)$ are separated in $\mathcal{O}\left(\mathcal{M}_{i_{A}+i_{0}}\right)$ for each $i \geq i_{0}$.

Since $\widehat{H}\left(H_{1}\left(A_{x}\right)\right)=\bigcup_{i=1}^{\infty} h_{i_{A}+i}\left(A_{x}\right)$ and $\widehat{H}\left(H_{1}\left(A_{y}\right)\right)=\bigcup_{i=1}^{\infty} h_{i_{A}+i}\left(A_{y}\right)$, it follows that $\widehat{H}\left(A_{x}\right) \cap \widehat{H}\left(A_{y}\right)=\emptyset$. Hence, $\widehat{H}(x) \neq \widehat{H}(y)$.

Theorems 2.1 and 4.3 imply the following corollary.
Corollary 4.4. \mathcal{Z} is a universal planar completely regular continuum.
Acknowledgements. I thank the anonymous referee who indicated a different way to construct a universal planar completely regular continuum \mathcal{Z} and noted that the embedding of a \mathcal{C}-representation of a planar completely regular continuum into \mathcal{Z} can be defined as the restriction of a homeomorphism of the whole plane. The instructions of the referee simplified the previous form of the paper and significantly reduced its size.

References

[1] S. D. Iliadis, Rim-finite spaces and the property of universality, Houston J. Math. 12 (1986), 55-78.
[2] S. D. Iliadis, Universal continuum for the class of completely regular continua, Bull. Acad. Polon. Sci. Sér. Sci. Math. 28 (1980), 603-607.
[3] J. Krasinkiewicz, On two theorems of Dyer, Colloq. Math. 50 (1986), 201-208.
[4] K. Kuratowski, Topology, Vol. II, New York, 1968.
[5] K. Omiljanowski and S. Zafiridou, Universal completely regular dendrites, Colloq. Math. 103 (2005), 149-154.
[6] S. Zafiridou, A note about planar completely regular continua with structure, Topology Appl. 123 (2002), 199-203.
[7] S. Zafiridou, Planar completely regular continua and the problem of universality, Questions Answers Gen. Topology 22 (2004), 61-72.

Sophia Zafiridou
Department of Mathematics
University of Patras
26500 Patras, Greece
E-mail: zafeirid@math.upatras.gr

Received 8 January 2013;
in revised form 4 April 2014

[^0]: 2010 Mathematics Subject Classification: Primary 54C25; Secondary 54F50.
 Key words and phrases: planar spaces, completely regular continuum, universal space.

