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Abstract. We study the action of G = SL(2,R), viewed as a group definable in the
structure M = (R,+,×), on its type space SG(M). We identify a minimal closed G-flow
I and an idempotent r ∈ I (with respect to the Ellis semigroup structure ∗ on SG(M)).
We also show that the “Ellis group” (r ∗ I, ∗) is nontrivial, in fact it is the group with two
elements, yielding a negative answer to a question of Newelski.

1. Introduction and preliminaries. Abstract topological dynamics
concerns the actions of (often discrete) groups G on compact Hausdorff
spaces X. Newelski has suggested in a number of papers [6], [7] that the
notions of topological dynamics may be useful for “generalized stable group
theory”, namely the understanding of definable groups in unstable settings,
but informed by methods of stable group theory.

Given a structure M and a group G definable in M , we have the (left)
action ofG on its type space SG(M). When Th(M) is stable, there is a unique
minimal closed G-invariant subset I of SG(M) which is precisely the set of
generic types of G. Moreover (still in the stable case) SG(M) is equipped
with a semigroup structure ∗: p ∗ q = tp(a · b/M) where a, b are independent
realizations of p, q respectively, and (I, ∗) is a compact Hausdorff topological
group which turns out to be isomorphic to G(M)/G(M)0 where M is a
saturated elementary extension of M . In fact this nice situation is more or
less characteristic of the stable case, so will not extend as such to unstable
settings (other than what has been called in [4] “generically stable groups”).

However, it was shown in [10] that for the much larger class of so-called fsg
groups definable in NIP theories, the situation is not so far from the stable
case. In the o-minimal context the fsg groups are precisely the definably
compact groups; for example working in the structure (R,+,×), these will
be the semialgebraic compact Lie groups. However, there is no general model-
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theoretic machinery (of a stability-theoretic nature) for understanding simple
noncompact real Lie groups (and their interpretations in arbitrary real closed
fields).

In this paper we try to initiate such a study, focusing on G = SL(2,R).
The reason we work over the standard model (R,+,×) rather than an ar-
bitrary or saturated model is that all types over the standard model are
definable, hence externally definable sets correspond to definable sets, and
the type space is equipped with an “Ellis semigroup structure” ∗. We expect
that analogues of our results hold over arbitrary models, expanded by the
externally definable sets, and also for arbitrary semialgebraic semisimple Lie
groups in place of SL(2,R). But we leave this for others to investigate.

In any case our main objective is to identify a minimal closed G-invariant
subset I of SG(M), to identify an idempotent element r ∈ I and to describe
the “Ellis group” r ∗ I. Now r ∗ I as an abstract group does not depend on
the choice of I or r. Newelski asked in [6] whether for groups G definable
in NIP theories, G(M)/G(M)00 is isomorphic to this r ∗ I as an abstract
group. In [10] we gave a positive answer for so-called fsg groups in NIP
theories. When G = SL(2,−) and K is a saturated real closed field then
G(K) is simple (modulo its finite centre) as an abstract group, whereby
G(K) = G(K)00. However, we will show that in the case of SL(2,R) acting
on its type space, the Ellis group r ∗ I is the group with two elements, in
particular nontrivial, so giving a negative answer to Newelski’s question.

Our idempotent will be obtained as an “independent” (with respect to
nonforking) product of realizations of a generic type of T 00 over R and an
H(R)-invariant type of H where T is a maximal compact and H is the con-
nected component of the standard Borel subgroup of SL(2,R). These results
have additional interest in the light of the theory of “definable” topological
dynamics, discussed briefly in the next paragraph.

After a preliminary version of the current paper was written, the three
authors developed a theory of definable topological dynamics [2]. That is,
given a first order structure M and a group G definable in M we gave an
appropriate definition of a “definable” action of G on a compact space, and
developed relative analogues of the classical theory [1] of the topological dy-
namics of a discrete group. A definability of types assumption was needed,
which explains the restriction to the field R in the current paper. The ana-
logue of the Stone–Čech compactification βG of G (from the discrete case) is
the type space SG(M) in the definable case. Moreover any minimal closed G-
invariant subspace of SG(M) will be the universal minimal definable G-flow.
So from the point of view of this definable topological dynamics, we have
described in this paper, among other things, the universal minimal definable
G-flow, where G is SL(2,R) considered as a group definable in the real field
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M = (R,+,×). Let us emphasize that the type space SG(M) is equipped
with its Stone space topology, so in particular it is totally disconnected.
When SL(2,R) is given its Euclidean topology, its action on SG(M) is not
(jointly) continuous. Nevertheless the invariants we obtain are related to in-
variants emanating from the dynamics of SL(2,R) as a topological group,
which we will mention at the end of the paper. In any case, to our knowledge
the current paper is the first study, from the points of view of model theory,
dynamics, or even semialgebraic geometry, of semisimple Lie groups acting
on their type spaces.

We will assume a basic knowledge of model theory (types, saturation,
definable types, heirs, coheirs, . . . ). References are [11] and [8]. Let us fix
a complete 1-sorted theory T , a saturated model M of T , and a model M
which is an elementary substructure of M . In the body of the paper, T will
be RCF, the theory of real closed fields, in the language of rings, and M will
be the “standard model” (R,+,×, 0, 1). By a definable set in M we mean
a subset of Mn definable (with parameters) in M , namely by a formula
φ(x1, . . . , xn, b̄) where we exhibit the parameters b̄ from M . Sn(M) is the
space of complete n-types over M , equivalently, ultrafilters on the Boolean
algebra of definable subsets ofMn (which we identify with the Boolean alge-
bra of formulas φ(x1, . . . , xn) with parameters from M , up to equivalence).
This is a compact Hausdorff space, under the Stone space topology. Although
not strictly needed, we will now discuss externally definable sets and types,
to situate our results in a broader context which allows for generalizations.

Definition 1.1.

(i) A subset X ⊆ Mn is externally definable if there is a formula
φ(x1, . . . , xn, b̄), where the parameters b̄ are from M , such that

X = {ā ∈Mn : M |= φ(ā, b̄)}.

(ii) By Sext,n(M) we mean the space of ultrafilters on the Boolean algebra
of externally definable subsets of Mn.

Fact 1.2. For any p(x̄) ∈ Sext,n(M), there is a unique p′(x̄) ∈ Sn(M)
which is finitely satisfiable in M and such that the “trace on M ” of any
formula in p′ is in p. This sets up a homeomorphism ι between Sext,n(M)
and the closed subspace of Sn(M) consisting of all types finitely satisfiable
in M .

Note that if all types over M are definable, then externally definable
subsets of Mn are definable and Sext,n(M) coincides with Sn(M).

Lemma 1.3. Suppose that all types over M are definable, and let p(x) ∈
Sn(M).
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(i) For any B ⊇ M , p has a unique coheir p′(x) ∈ Sn(B), namely an
extension of p to a complete type over B which is finitely satisfiable
in M .

(ii) For any B ⊇M , p has a unique heir over B, which we write as p|B
and which can also be characterized as the unique extension of p to
B which is definable over M . Moreover p|B is simply the result of
applying the defining schema for p to the set of parameters B.

(iii) For any tuples b, c from M , tp(b/M, c) is definable over M if and
only if tp(c/M, b) is finitely satisfiable in M .

Now suppose G is a group definable over M . We identify G with the
group G(M) and write G(M) for the points in the model M . We have the
spaces of types SG(M), Sext,G(M) and SG(M). For g, h ∈ G we write gh for
the product. G(M) acts (on the left) by homeomorphisms on SG(M) and
Sext,G(M).

Definition 1.4. Let p(x), q(x) ∈ Sext,G(M). Let b realize q in G, and
let a realize the unique p′ ∈ SG(M) given by 1.2. We define p ∗ q to be
the (external) type of ab over M . So in the case when all types over M are
definable, this just means: Let b ∈ G realize q and let a ∈ G realize the
unique coheir of p over M, b; then p ∗ q = tp(ab/M).

The following is contained in [6, Section 4] and [7]. Everything can be
proved directly, but it is a special case of the theory of abstract topological
dynamics, as treated in [1, Chapter 6] for example.

Lemma 1.5.

(i) (Sext,G(M), ∗) is a semigroup, which we call the Ellis semigroup, and
∗ is continuous in the first coordinate, namely for any q ∈ Sext,G(M)
the map taking p ∈ Sext,G(M) to p ∗ q ∈ Sext,G(M) is continuous [6,
Section 4], [7, Lemma 1.5].

(ii) Left ideals of Sext,G(M) (with respect to ∗) coincide with subflows,
that is, closed G(M)-invariant subsets [7, Sections 1, 4].

(iii) If I ⊆ Sext,G(M) is a minimal subflow, then I contains an idempo-
tent r such that r∗r = r, and (r∗I, ∗) is a group, whose isomorphism
type does not depend on I or r [6, Section 4], [7, Sections 1, 4].

As mentioned earlier, in the stable case there is a unique minimal subflow,
the space of generic types of G over M . We will, below, consider the case
where T is the theory of real closed fields, M = (R,+,×) is the standard
model and G = SL(2,−). Sometimes we write R forM to be consistent with
standard notation. So G(R) is the interpretation of G inM , namely SL(2,R),
and R as a structure is (R,+,×). It is well-known that all types over R are
definable [5, 9], hence Lemma 1.5 applies to G(R) acting on SG(R).
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2. SL(2,R). We review some basic and well-known facts about SL(2,R),
the group of 2×2 matrices over R with determinant 1. All the objects, maps
etc. we mention will be semialgebraic and so pass over to SL(2,K) where K
is a saturated real closed field. We sometimes write G for SL(2), so G(R) for
SL(2,R). Write I for the identity matrix. The centre of SL(2,R) is {I,−I}.
The quotient of SL(2,R) by this centre is denoted PSL(2,R).

H(R) will denote the connected component of the standard Borel sub-
group of G(R), namely the subgroup consisting of all matrices

(
b c
0 b−1

)
where

b ∈ R>0 and c ∈ R. The group H(R) is precisely the semidirect product of
(R>0,×) with (R,+). We let T (R) denote SO(2,R), the subgroup of G(R)
consisting of all matrices

(
x −y
y x

)
with x, y ∈ R and x2 + y2 = 1. The symbol

T here stands for torus. We have H(R) ∩ T (R) = {I} and any element of
G can be uniquely written in the form ht (as well as t1h1) for t, t1 ∈ T and
h, h1 ∈ H. The group T (R) is a maximal compact subgroup of G(R). Note
that −I ∈ T (R).

We write V (R) for the homogeneous space G(R)/H(R) (space of left
cosets {gH(R) : g ∈ G(R)}), and π (or π(R)) for the projection G(R) →
V (R). Note that π|T (R) : T (R) → V (R) is a homeomorphism. We indicate
the action of G(R) on V (R) by ·. Understanding this action will be quite
important for us. The usual action of G(R) on the real projective line by
Möbius transformations factors through the action of G(R) on V (R), and
we will try to describe what is going on.

Remark 2.1. The standard action of G(R) on P1(R) is(
a b

c d

)
·
[
x

y

]
=

[
ax+ by

cx+ dy

]
,

where
[ x
y

]
is a representative of an element of P1(R). We identify

[
x
1

]
with

x ∈ R, and treat
[
1
0

]
=∞ as the “point at infinity”. If c = 0, then(

a b

0 a−1

)
·
[
x

1

]
=

[
a2x+ ab

1

]
and

(
a b

0 a−1

)
·
[
1

0

]
=

[
1

0

]
.

It is easy to prove the following fact.

Remark 2.2.

(i) StabG(R)
[
1
0

]
= H1(R), where H1(R) = H(R)× {I,−I}.

(ii) Z(G(R)) = {I,−I} acts trivially on P1(R), and the resulting action
of PSL(2,R) = G(R)/Z(G(R)) on P1(R) is the usual faithful action.

Let π1 denote the map from G(R) to P1(R) taking g to g ·
[
1
0

]
. So

by Remark 2.2(i), π1 induces an isomorphism of G(R)-homogeneous spaces
G(R)/H1(R) and P1(R). Moreover we have:
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Remark 2.3. The restriction of π1 to T (R) induces a homeomorphism
between T (R)/{I,−I} and P1(R) such that the identity of T (R)/{I,−I}
goes to

[
1
0

]
.

Finally, by virtue of the homeomorphism π|T (R) between T (R) and V (R)
and the action of G(R) on V (R), we have an action (also written ·) of G(R)
on T (R). Note that g · t is the unique t1 ∈ T (R) such that gt = t1h1 for some
(unique) h1 ∈ H(R). Likewise by virtue of Remark 2.3, and the action of
G(R) on P1(R), we obtain an action ·1 of G(R) on T (R)/{I,−I}. We clearly
have:

Remark 2.4. The action ·1 of G(R) on T (R)/{I,−I} is induced by the
action · of G(R) on T (R). In particular, for any g ∈ G(R) and t ∈ T (R), we
have g · t ∈ g ·1 (t/{I,−I}).

As remarked above, all this passes to a saturated model K of RCF in
place R. We write G for G(K) = SL(2,K), H for H(K), V for V (K) etc.
But now our groups and homogeneous spaces contain nonstandard points,
and the study of their types and interaction is what this paper is about.

3. Main results. We follow the conventions at the end of the last sec-
tion. (G = SL(2,−), K a saturated real closed field, etc.) We say that
a ∈ K is infinite if a > R, and negative infinite if a < R. We denote by
Fin(K) the elements of K which are neither infinite nor negative infinite.
Any a ∈ Fin(K) has a standard part st(a) ∈ R. Also given B ⊂ K, a is
infinite (resp. negative infinite) over B if a > dcl(B) (resp. a < dcl(B)).
Call a ∈ K positive infinitesimal if a > 0 and a < r for all positive r ∈ R.
Likewise for negative infinitesimal and for infinitesimal over B. Note that if
for example a ∈ K is positive infinitesimal, and p(x) = tp(a/R) and B ⊂ K,
then p|B is the type of an element which is positive infinitesimal over B.

We sometimes write g/H for the left coset gH. The projection π : G→ V
= G/H induces a surjective continuous map, which we also call π, from
SG(R) to SV (R). Both these type spaces are acted on (by homeomorphisms)
by G(R), and we clearly have:

Lemma 3.1. π is G(R)-invariant: for any p ∈ SG(R) and g ∈ G(R),
π(gp) = g · π(p).

Definition 3.2. Let p1 ∈ SG(R), and q ∈ SV (R). Define p1 ∗ q to be
tp(g · b/R) ∈ SV (R) where b realizes q, and g realizes the unique coheir of
p1 over R, b.

With the above notation, the following extends Lemma 3.1.

Lemma 3.3. For any p, p1 ∈ SG(R), π(p1 ∗ p) = p1 ∗ π(p).
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Proof. Fix p, p1 ∈ SG(R). Then p1 ∗ p = tp(g1g/R) where g1 realizes p1,
g realizes p and tp(g1/R, g) is finitely satisfiable in R. But then π(p1 ∗ p) =
tp((g1g/H)/R) = tp(g1 · (g/H)/R). Now tp(g1/R, g/H) is finitely satisfiable
in R and g/H realizes π(p). Hence tp(g1 ·(g/H)/R) = p1∗π(p), as required.

As above, the symbol g will range over elements of G. Also h ranges over
elements of H, and t over elements of T . If h =

(
b c
0 b−1

)
is in H we identify

it with the pair (b, c) ∈ R>0 × R. And if t =
(
x −y
y x

)
is an element of T we

identify it with the pair (x, y) (so T is identified with the unit circle under
complex multiplication).

We now fix some canonical types: p0 = tp(b, c/R) where b is infinite and
c is infinite over b. It is easy to check that p0 is left H(R)-invariant : if h
realizes p0 and h1 ∈ H(R), then h1h also realizes p0.

Note that all nonalgebraic types (over R) of elements of T are generic
in the sense of [4]. In fact, T is the simplest possible fsg group in RCF.
Let q0 = tp(x, y/R) (as the type of an element of T ) where y is positive
infinitesimal and x > 0 (so x is the positive square root of 1 − y2). We call
q0 the type of a “positive infinitesimal” of T : it is infinitesimally close to the
identity, on the “positive” side.

Likewise, for any t ∈ T (R) and t1 ∈ T , we will say that t1 is “infinitesi-
mally close, on the positive side” to t if t1t−1 realizes q0.

The bijection (homeomorphism) between T and V given by π|T induces
a homeomorphism (still called π) between ST (R) and SV (R), so we will
sometimes identify them below, although we distinguish between q and π(q)
(for q ∈ ST (R)).

Definition 3.4. We define r0 to be tp(th/R) ∈ SG(R) where h ∈ H
realizes p0 and t ∈ T realizes the unique coheir of q0 over R, h.

Note that π(r0) = π(q0). Our first aim is to show that cl(G(R)r0) = I
is a minimal G(R)-flow, and that r0 is an idempotent. Note that cl(G(R)r0)
is precisely the set of p ∗ r0 ∈ SG(R) for p ranging over SG(R). Likewise for
cl(G(R) · π(r0)).

Lemma 3.5. For any p ∈ SG(R), p ∗ π(q0) = π(q0) if and only if p is of
the form tp(t1h1/R) with h1 ∈ H and t1 ∈ T the identity or a realization
of q0.

Proof. Let tp(t1, h1/R, t) be finitely satisfiable in R with h1 ∈ H, t1 ∈ T
and t realizing q0 (so t/H realizes π(q0)). Then tp(t/R, t1, h1) is the unique
heir of q0 over (R, t1, h1) (Lemma 1.3(iii)). In particular t ∈ T is positive
infinitesimal over (R, t1, h1) as is t/H ∈ V . Now h1 · (1/H) = 1/H, hence
clearly h1 · (t/H) is also infinitesimally close (over R, t1, h1) to 1/H.

Claim. h1 ·(t/H) is on the “positive” side of 1/H and realizes the unique
heir of π(q0) over R, t1, h1.
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Proof of Claim. When we mention “positive side” we are identifying V
and T . Now the map π1 from T to P1 is a “local homeomorphism” taking the
identity to

[
1
0

]
=∞ (Remarks 2.1–2.3) and taking positive infinitesimals in

T to infinite x ∈ K (because by Remark 2.1,
(
x −y
y x

)
·
[
1
0

]
=
[
x/y
1

]
, where

x/y is infinite) and (by definition) respects the action of G. Hence it suffices
to show that for h1 = (b, c) ∈ H and x ∈ K infinite such that tp(h1/R, x)
is finitely satisfiable in R, the element h1 · x = b2x+ bc is (positive) infinite
over R, b, c. This is clear: Firstly, x is infinite over R, b, c (as tp(x/R, b, c) is
definable over R, 1.3(iii)). Now as b2 > 0, b2x is positive infinite over R, b, c,
as is b2x+ bc.

By the claim, tp(h1 · (t/H)/R, t1, h1) = tp((t/H)/R, t1, h1). So without
loss of generality h1 = 1. So we are in the situation where t, t1 ∈ T , t realizes q0
and tp(t1/R, t) is finitely satisfiable in R. It is then clear that t1t realizes q0 if
and only if t1 is the identity, or itself realizes q0. As t1 · (t/H) = (t1t/H), and
by virtue of π inducing a homeomorphism between ST (R) and SV (R), we see
that t1 · (t/H) realizes π(q0) if and only if t1 is the identity or a realization
of q0. This proves the lemma.

Corollary 3.6. Let t ∈ T realize q0 and let h1 ∈ H be such that
tp(h1/R, t) is finitely satisfiable in R. Then h1t = t1h2 for t1 ∈ T realiz-
ing q0 and h2 ∈ H.

Proof. We have just seen in the first part of the proof of 3.5 that h1 ·(t/H)
realizes π(q0), which suffices.

Lemma 3.7. For any p ∈ SG(R), p∗r0 = r0 if and only if p = tp(t1h1/R)
with h1 ∈ H and t1 ∈ T the identity or a realization of q0.

Proof. If p ∗ r0 = r0 then by Lemma 3.3, p ∗ π(r0) = π(r0). As π(r0) =
π(q0), by Lemma 3.5, p is of the required form.

Now let p = tp(t1h1/R) with t1 the identity or a realization of q0. Sup-
pose th realizes r0 and tp(t1, h1/R, t, h) is finitely satisfiable in R. Note that
(as tp(t/R, h) is finitely satisfiable in R) tp(t1, h1, t/R, h) is finitely satis-
fiable in R, so by Lemma 1.3(iii), tp(h/R, t1, h1, t) = p0|(R, t1, h1, t). Now
by Corollary 3.6, h1t = t2h2 for t2 realizing q0 and h2 ∈ H. We still have
tp(h/R, t1, t2, h2) = p0|(R, t1, t2, h2), because (h2, t2) is interdefinable with
(h1, t). Now p0 is a (definable) leftH(R)-invariant type ofH, so for any model
K ′ ⊃ R, p0|K ′ is also a left H(K ′)-invariant type of H. Hence h3 = h2h re-
alizes p0|(R, t1, t2, h2).

Now t1h1th = t1t2h3. As t1, t2 both realize q0, or t1 is the identity, their
product t1t2 realizes q0, and we have just seen that tp(t1t2/R, h3) is the
unique coheir over (R, h3) of q0. So t1t2h3 realizes r0 as required.

From Lemmas 3.5 and 3.7 we conclude easily:
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Corollary 3.8. The restriction of π : SG(R)→ SV (R) to cl(G(R)r0) is
a homeomorphism betweeen cl(G(R)r0) and cl(G(R) · π(r0))

Lemma 3.9. The set SV,na(R) of nonalgebraic types in SV (R) is the
unique minimal closed G(R)-invariant subset of SV (R).

Proof. Let for now S denote the set of nonalgebraic types in SV (R),
a closed subspace. It is obviously G(R)-invariant. To show minimality it
is enough to note that, identifying (via π) S with the space of nonalge-
braic types in ST (R), it is minimal closed T (R)-invariant. If U is a basic
open subset of ST (R) which is not a finite set (of isolated points), then by
o-minimality, U contains an “interval” in ST (R), namely the set of types
containing a formula defining an interval, with endpoints in T (R), in T with
respect to the circular ordering on T . But clearly if s ∈ S then for some
g ∈ T (R), gs ∈ U . So S contains no proper T (R)-invariant closed sub-
set, whereby S is minimal closed T (R)-invariant, as required. Uniqueness is
clear.

From 3.8 and 3.9 we deduce:

Proposition 3.10. I = cl(G(R)r0) is a minimal G(R)-invariant closed
subspace of SG(R) and is homeomorphic as a G(R)-flow to SV,na(R) under π.

Lemma 3.11. r0 ∗ r0 = r0, that is, r0 is an idempotent in I.

Proof. This is a special case of Lemma 3.7.

We have so far accomplished the first aim: description of a minimal
(closed) subflow I of SG(R) and an idempotent r0 ∈ I. We now want to
describe the “Ellis group” r0 ∗ I. Note first:

Lemma 3.12. The restriction of π to r0∗I is a bijection with r0∗SV,na(R).

Proof. By 3.3 and 3.10.

We first consider the action of H < G on P1 from Section 2. Note that H
fixes

(
1
0

)
. We identify any other element

(
x
1

)
of P1 with x ∈ K. With this

notation:

Lemma 3.13. Let x ∈ P1, and let h realize p0 such that tp(h/R, x) is
finitely satisfiable in R. Then h · x is positive infinite or negative infinite (in
particular infinitesimally close to

(
1
0

)
in P1).

Proof. We have h = (b, c) with b (positive) infinite, and c (positive)
infinite over b. Moreover, h · x = b2x+ bc. There are three cases to consider.

If x is finite (positive or negative), then clearly b2x+bc is positive infinite
(as bc is infinite over |b2x|).

If x is positive infinite, then clearly b2x+ bc is positive infinite.
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Finally, suppose x is negative infinite. Now as tp(x/b, c) is definable
over R, x is negative infinite over {b, c}, i.e. x < dcl(b, c). Hence b2x <
dcl(b, c), whereby b2 + bc is still negative infinite.

Now we consider the homeomorphism (induced by π1) between T/{I,−I}
and P1 given in 2.3 and the corresponding action ·1 of G on T/{I,−I}. As
the identity of T/{I,−I} goes to

(
1
0

)
under π1, we deduce from Lemma 3.13:

Corollary 3.14. Let t/{I,−I} ∈ T/{I,−I} and let h realize p0 such
that tp(h/R, t) is finitely satisfiable in R. Then h·1(t/{I,−I}) is infinitesimal
in T/{I,−I}, namely infinitesimally close to the identity or equal to the
identity.

We now consider the action · of G on T induced by the action of G on V
and the homeomorphism between T and V induced by π. We use Remark
2.4 to conclude:

Lemma 3.15. Let t ∈ T and let h realize p0 such that tp(h/R, t) is finitely
satisfiable in R. Then h ·t is infinitesimally close to the identity I (i.e. (1, 0))
or to −I (i.e. (−1, 0)). Moreover both possibilities happen. Namely if t is
infinitesimally close to −I then so is h · t, and if t is infinitesimally close to
I then so is h · t.

Proof. The first part follows from Corollary 3.14. The rest follows by
continuity and the fact that h · I = I and h · −I = −I (as −I commutes
with h).

Remember q0 is the type of a “positive infinitesimal” in T . We let q1
denote the type of an element of T infinitesimally close to −I and on the
“positive side”. Now we can conclude:

Proposition 3.16. r0 ∗ SV,na(R) has two elements, π(q0) and π(q1).

Proof. We will work instead with the action · of G on ST (R) induced
by the homeomorphism induced by π between ST (R) and SV (R). So for a
type q of an element of T , by r0 ∗ q we mean tp(g · t/R) where t realizes q
and g realizes r0 such that tp(g/R, t) is finitely satisfiable in R.

So let t1 ∈ T \ T (R) (i.e. t1 realizes a nonalgebraic type in ST (R)).
And let th realize r0 such that tp(th/R, t1) is finitely satisfiable in R. Then
tp(h/R, t1) is finitely satisfiable in R, and we may assume that tp(t/R, h, t1)
is finitely satisfiable in R. (And remember that t realizes q0 and h realizes p0).
By Lemma 3.15, h · t1 = t2, say, is infinitesimally close to either I or −I (and
each can happen for suitable choice of t1). Note also that t · t2 is just tt2
(product in T ). Now as t realizes q0 and its type over (R, t2) is finitely
satisfiable in R, it is easy to see that tt2 realizes q0 if t2 is infinitesimally
close to I, and realizes q1 if t2 is infinitesimally close to −I. This concludes
the proof.
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Putting this together with earlier results we summarize (where r0 is as
in Definition 3.4):

Theorem 3.17.

(i) I=cl(G(R)r0) is a minimal closed G(R)-invariant subset of SG(M).
(ii) r0 is an idempotent with respect to the Ellis semigroup structure ∗

on SG(R).
(iii) The Ellis group (r0 ∗ I, ∗) has two elements.

Proof. (i) is Proposition 3.10. (ii) is Lemma 3.11. And (iii) follows from
Proposition 3.16 and Lemma 3.12.

We finish the paper with some remarks on routine extensions of our
results and comparisons with the literature. See [3] for additional notions
from topological dynamics.

Firstly, it is natural to also ask about the case where G = ˜SL(2,R), the
universal cover of SL(2,R). Now G can be naturally interpreted (defined) in
the two-sorted structure M = ((Z,+), (R,+,×)). Again all types over this
standard model are definable, the Z-sort being stable. H will be as before,
and the role of the maximal compact T is now played by the universal cover
of SO(2,R), interpreted naturally on the set Z× SO(2,R). We leave it as an
exercise to check that the above analysis goes through to show, among other
things, that the Ellis group is Ẑ, the profinite completion of (Z,+), which is
in fact precisely the set of generic types of Z.

Secondly, we can compare Theorem 3.17(iii) with Example 3.7 in Chapter
VIII of [3] which says that the generalized strong Bohr compactification
of SL(2,R) considered as a topological group is the product of the Bohr
compactification of the real line with Z/2Z.

Thirdly, the proof of Proposition 3.16 shows that r0 ∗ SP1,na(R) has a
unique element, implying that the G(R)-flow SP1,na(R) is proximal. In fact
according to our theory of definable topological dynamics, SP1,na(R) will be
the universal definable minimal proximal G(R)-flow. Again compare this to
IV.4.1 of [3] where the universal minimal strongly proximal flow of SL(2,R)
as a topological group is given as P1(R).
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