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Abstract. A (Hausdorff) topological group is said to have a G-base if it admits a
base of neighbourhoods of the unit, {Uα : α ∈ NN}, such that Uα ⊂ Uβ whenever β ≤ α
for all α, β ∈ NN. The class of all metrizable topological groups is a proper subclass of
the class TGG of all topological groups having a G-base. We prove that a topological
group is metrizable iff it is Fréchet–Urysohn and has a G-base. We also show that any
precompact set in a topological group G ∈ TGG is metrizable, and hence G is strictly
angelic. We deduce from this result that an almost metrizable group is metrizable iff it
has a G-base. Characterizations of metrizability of topological vector spaces, in particu-
lar of Cc(X), are given using G-bases. We prove that if X is a submetrizable kω-space,
then the free abelian topological group A(X) and the free locally convex topological space
L(X) have a G-base. Another class TGCR of topological groups with a compact reso-
lution swallowing compact sets appears naturally. We show that TGCR and TGG are
in some sense dual to each other. We conclude with a dozen open questions and various
(counter)examples.

1. Introduction. All topological spaces and groups in this paper are
assumed to be Hausdorff.

The classical metrization theorem of Birkhoff and Kakutani states that a
topological group G is metrizable if and only if G is first-countable (see [27]),
i.e., there exists a decreasing sequence {Un}n∈N which forms a base of neigh-
bourhoods at the unit e of G. Consider NN with the natural partial order,
i.e., α ≤ β if αi ≤ βi for all i ∈ N, where α = (αi)i∈N and β = (βi)i∈N. Then
it is easily seen that G admits the following base indexed by NN: Uα := Uα1

for α = (αi) ∈ NN. Evidently, Uα ⊆ Uβ whenever α ≤ β for α, β ∈ NN. This
simple remark motivates introducing a new class of topological groups which
contains all metrizable ones:
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Definition 1.1. Let G be a topological group. A family U = {Uα :
α ∈ NN} of neighbourhoods of the unit is called a G-base if U is a base of
neighbourhoods at the unit and Uβ ⊆ Uα whenever α ≤ β for all α, β ∈ NN.

Originally, the concept of a G-base has been formally introduced in [17]
in the framework of locally convex spaces (LCS for short) for studying (DF )-
spaces, C(X)-spaces, and spaces in the class G in the sense of Cascales and
Orihuela (see [10] and the monograph [29]). Recently a characterization of
spaces Cc(X) (of all continuous real-valued functions on a Tychonoff space
endowed with the compact-open topology) having a G-base has been ob-
tained in [16].

The main goal of the article is a thorough study of the class TGG of all
topological groups with a G-base.

The character of a topological group G will be denoted by χ(G). Denote
by d the cofinality of NN. The cardinal d was extensively studied, and it lies
between ℵ1 and the continuum c (see [14]). So, if G ∈ TGG, then it has a
small character in the sense that χ(G) ≤ d ≤ c. We provide a few classes of
topological groups in TGG which are non-metrizable. Moreover, there exists
a countable precompact abelian group G with χ(G) = ℵ1 which does not
admit a G-base (see Example 6.4). Thus the class of metrizable groups is a
proper subclass of TGG.

A natural generalization of metrizability is the Fréchet–Urysohn property.
There are many Fréchet–Urysohn topological groups which do not have a
G-base. On the other hand, one of the main results of our paper states the
following:

Theorem 1.2. A topological group G is metrizable if and only if it is
Fréchet–Urysohn and has a G-base.

So, Theorem 1.2 is closely related to the famous Malykhin problem
(1978) (see for example [3]): Is there a separable Fréchet–Urysohn topo-
logical group that is not metrizable? See recent papers [28, 33] discussing
this problem. Consequently, Malykhin’s problem can be reformulated as fol-
lows: Does every countable Fréchet–Urysohn group admit a G-base? Note
that the Fréchet–Urysohn property in Theorem 1.2 cannot be weakened to
sequentiality. We show that the free abelian group A(e) over the convergent
sequence e is a countable sequential non-Fréchet–Urysohn group having a
G-base (see Corollary 4.20). Recently the Pytkeev property which is strictly
weaker than the Fréchet–Urysohn property has been investigated in spaces
of continuous functions (see [43]). Example 4.11 of our paper shows that
there exists a non-metrizable topological group G ∈ TGG having the Pyt-
keev property. So, the Fréchet–Urysohn property in Theorem 1.2 cannot be
weakened to the Pytkeev property either.
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We provide a necessary condition for a topological group to have a
G-base; this extends [10, Theorem 2].

Theorem 1.3. If G ∈ TGG, then every precompact subset K in G is
metrizable.

However, we show that there are topological groups whose precompact
subsets are all metrizable but which do not have a G-base (see Examples 6.6
and 6.7). Applying Theorem 1.3, we prove that an almost metrizable group
is metrizable if and only if it has a G-base (see Theorem 3.10).

The class TVS of topological vector spaces (TVS for short) is one of
the most important subclasses of the class TG of all topological groups. We
denote by TVSG the class of TVS which admit a G-base. The next theorem
is an analogue of Theorem 1.2 for TVS with the Baire property.

Theorem 1.4. Let E ∈ TVSG. If E is Baire, then E is metrizable.

In the framework of locally convex spaces we also prove that a LCS E is
metrizable if and only if E has a G-base and E is b-Baire-like.

The class of free abelian topological groups A(X) over Tychonoff spaces
X is one of the most important classes of topological groups. For submetriz-
able kω-spaces we prove the following result.

Theorem 1.5. If X is a submetrizable kω-space, then A(X) has a G-base.
If, additionally, X is non-discrete, then χ(A(X)) = d.

Note that this theorem provides an alternative and simpler proof of the
equality χ(A(X)) = d for a non-discrete submetrizable kω-space X, which is
one of the principal results of [34]. Similar results are obtained for the free
locally convex spaces L(X) (see Theorem 4.16).

Using the concept of a G-base we extend a number of results from [11]
about the dual groups of abelian topological groups. Another class TGCR of
topological groups with a compact resolution swallowing compact sets ap-
pears naturally in the article. We show that the classes TGCR and TGG are
in some sense dual to each other. The class TGCR contains all hemicompact
groups.

We also provide many examples of topological groups with or without
G-bases and pose a dozen open questions.

2. Topological groups with G-bases. We denote by N (G) the filter
of all open neighbourhoods at the unit of a topological group G.

We define topological spaces with local G-bases.

Definition 2.1. We say that a point x of a topological space X has
a local G-base if there exists a base of neighbourhoods at x of the form
U(x) = {Uα(x) : α ∈ NN}, where Uβ(x) ⊆ Uα(x) whenever α ≤ β for all



132 S. Gabriyelyan et al.

α, β ∈ NN. The space X is said to have a local G-base if it has a G-base at
each point.

The class of all topological spaces having a local G-base is denoted byTG.
Every metrizable space has a local G-base. Clearly, a topological group has
a local G-base if and only if it has a local G-base at each point.

Remark 2.2. Note that Definition 2.1 can be generalized as follows. Let
X be a topological space and I be a partially ordered set with an order ≤. We
say that a family U = {Ui}i∈I is a local I-base at a point x ∈ X if U is a base
at x such that Ui ⊂ Uj for all i ≥ j in I. The authors of numerous papers
devoted to the study of LCS used the term “G-base” for a local NN-base
(see, for example, [10, 29]). We use this term for the more general setting of
topological groups.

In the next propositions we establish some properties of the class TGG.

Proposition 2.3. The class TGG contains all metrizable groups.

Proof. Let G be a metrizable group and let {Vn}n∈N be a decreasing base
for N (G). For every α ∈ NN, set Uα := Vα1 . Clearly, {Uα}α∈NN is a G-base
in G.

Proposition 2.3 shows that every topological group G of countable char-
acter (i.e., χ(G) ≤ ℵ0) belongs to TGG.

It is clear that, if G ∈ TGG, then χ(G) ≤ d. The next strengthening
of this remark was suggested to us by Taras Banakh. Recall that the small
cardinal b is the least cardinality of a subset of NN which cannot be covered
by a σ-compact subset of NN. Clearly, b ≤ d ≤ c. It is well known (see [14])
that the inequality ℵ1 < b is consistent with ZFC.

Proposition 2.4. If G ∈ TGG, then χ(G) ∈ {1,ℵ0} ∪ [b, d].

Proof. By the definition of d we have χ(G) ≤ d. So it suffices to prove
that χ(G) < b implies χ(G) ≤ ℵ0. Since χ(G) < b, we can find a subset
B ⊂ NN of cardinality |B| = χ(G) < b such that {Uβ}β∈B is a local base at
the unit e. Since |B| < b, the set B can be covered by a σ-compact subset
of NN. The projection of each compact subset of NN onto any coordinate is
finite. Therefore there is an increasing countable sequence {αn}n∈N in NN

such that for every β ∈ B there is αn for which β ≤ αn. Then {Uαn}n∈N is
a countable local base at e. Indeed, let e ∈ Uβ for some β ∈ B. Then there
is αn for which β ≤ αn, and by the definition of a local G-base this means
that e ∈ Uαn ⊆ Uβ . Thus G is first countable.

Corollary 2.5. A topological group G with a G-base is metrizable if
and only if χ(G) < b.
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Proposition 2.4 and Examples 6.3 and 6.4 (showing that there are abelian
groups G with χ(G) = ℵ1 which do not have a G-base) suggest the following
question.

Question 2.6. Does there exist in ZFC without any additional set-theo-
retic assumptions a topological group G which has a G-base with χ(G) = b?

We show that the class TGG is closed under natural operations.
Proposition 2.7. The class TGG is closed under taking subgroups, quo-

tients, the (Răıkov) completion and countable products.

Proof. It is trivial that TGG is closed under taking subgroups and quo-
tients.

Assume that G ∈ TGG with an open base {Uα}α∈NN . In what follows we
use the notation and constructions of the Răıkov completion of a topological
group from [5, §3.6]. Let us show that the closure G∗ of G also has a G-base.
For every α ∈ NN, set U∗α := {η ∈ G∗ : Uα ∈ η}, where η is a canonical filter
on G (see [5, §3.6]). Now Fact 13 of [5, §3.6] implies that U∗α ∩G = Uα and
the family {U∗α}α∈NN is an open G-base in G∗.

We now show that TGG is countably productive. Let {Uα(ei) : α ∈ NN}
be a G-base at the unit ei of Gi for every i ∈ N. For each α = (αi)i∈N ∈ NN,
we set α∗ = (αi+1)i∈N and

Uα :=

α1∏
i=1

Uα∗(ei)×
∏
i>α1

Gi.

Clearly, {Uα : α ∈ NN} is a G-base in the product
∏
i∈NGi.

Recall that a property P is said to be a three-space property if for ev-
ery topological group G and a closed normal subgroup H of G, the fact that
both H and G/H have P implies that G also enjoys P. A classical result says
that metrizability is a three-space property (see [27, 5.38]). Several topolog-
ical properties have been investigated in this respect in [9]. In particular, it
was shown that P = {each compact subset is metrizable} is a three-space
property.

Question 2.8. Is the property of having a G-base a three-space property?

We obtain a partial answer.
Proposition 2.9. Let G be a topological group. If G has a normal

metrizable closed subgroup H such that G/H has a G-base, then G has a
G-base.

Proof. Let {Wn}n∈N be a decreasing sequence of open symmetric neigh-
bourhoods of the unit in G such that Wn+1 · Wn+1 ⊂ Wn for all n ∈ N,
and {Wn ∩ H}n is a base of open (symmetric) neighbourhoods of the unit
in H. By assumption, G/H has a symmetric G-base, say {Vα : α ∈ NN}.
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Set {Uα : α ∈ NN}, where Uα := q−1(Vα) and q : G → G/H is the quo-
tient map. For each n ∈ N and α = (αi) ∈ NN set Rβ := Wn ∩ Uα, where
β = (n, α1, α2, . . . ). Clearly, R := {Rβ : β ∈ N × NN} is a family of open
symmetric neighbourhoods of the unit in G such that Rβ ⊆ Rγ for β ≥ γ.

We show that R is a base for G. Let U ∈ U(G). Take a symmetric
V ∈ U(G) such that V V ⊂ U . Choose n ∈ N such thatWn∩H ⊂ V . Choose
α ∈ NN such that q(Uα) ⊂ q(V ∩Wn+1). Set Rβ = Wn+1∩Uα. We prove that
Rβ ⊂ U . Indeed, if g ∈ Rβ , then g ∈ Wn+1 and g ∈ Uα ⊂ (V ∩Wn+1) ·H.
Clearly, g = ab for some a ∈ V ∩ Wn+1 and b ∈ H. Since b = a−1g ∈
(Wn+1)

−1Wn+1 ⊂Wn, we have g ∈ (V ∩Wn+1)(H ∩Wn) ⊂ V V ⊂ U . Hence
R is a base. By the first paragraph of the proof, it is a G-base in G.

Let (Gn, τn)n∈N be a sequence of topological groups. The family of subsets
of the form

∏
n∈N Un, where Un ∈ N (Gn), forms a base for a group topology

in
∏
n∈NGn. This topology is called the box topology and denoted by τb.

The restricted direct product G of {(Gn, τn)}n∈N is the subgroup of
∏
n∈NGn

consisting all sequences with finite support. We will identify subsets A of∏n
k=1Gk with A × (eGn+1 , eGn+2 , . . . ) ⊂ G. The restriction of τb to G will

also be denoted by τb.
We will need the following natural construction. Divide N into a disjoint

union
⊔
n∈N In of infinite subsets. So In = {kni }i∈N, where kn1 < kn2 < · · · .

Define:

• s : N→ N by s(i) := n if i ∈ In;
• the bijection tn : N→ In by tn(i) := kni for all i ∈ N;
• ξ : N→ N by ξ(i) := t−1s(i)(i) for all i ∈ N.

Then, for all n, i ∈ N, we have
s(tn(i)) = n and ξ(tn(i)) = t−1n (tn(i)) = i.

For every n ∈ N, define pn : NN → NN by pn(α) := (αtn(i))i∈N. Clearly,
pn(α) ≤ pn(β) for all α, β ∈ NN such that α ≤ β. Finally, we define R :
(NN)N → NN by

R((αn)n∈N) := (α
s(i)
ξ(i))i∈N, where αn = (αni )i∈N ∈ NN,

and note that for every natural number n,

(2.1) pn ◦R((αn)n∈N) = pn((α
s(i)
ξ(i))i∈N) = (α

s(tn(i))
ξ(tn(i))

)i∈N = (αni )i∈N = αn.

Proposition 2.10. Every countable product of topological groups with a
G-base, endowed with the box topology, belongs to TGG.

Proof. Let {Gn}n∈N be a countable family of topological groups with
respective G-bases {Uα,n}α∈NN . We claim that G := (

∏
n∈NGn, τb) has a

G-base. For every α ∈ NN, set Wα =
∏
n∈N Upn(α),n. Clearly, Wβ ⊆ Wα

for all α, β ∈ NN such that α ≤ β. To show that W := {Wα}α∈NN is an
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open G-base in G, let U =
∏
n∈N Uαn,n ∈ N (G). Set α = R((αn)n∈N). Then

Wα = U by (2.1). Thus W is an open G-base in G.

Let G ∈ TGG and {Uα}α∈NN be a G-base in G. For α = (αi)i∈N ∈ NN

and k ∈ N, set

Dk(α) :=
⋂

β∈Ik(α)

Uβ, where Ik(α) = {β ∈ NN : βi = αi for i = 1, . . . , k}.

Clearly, {Dk(α)}k∈N is an increasing sequence of subsets of G containing the
unit.

We will use the following technical lemma.

Lemma 2.11. Let α = (αi)i∈N ∈ NN and βk = (βki )i∈N ∈ Ik(α) for every
k ∈ N. Then there is γ ∈ NN such that α ≤ γ and βk ≤ γ for every k ∈ N.

Proof. For every i ∈ N, set

γi = max{αi, βli : l = 1, . . . , i} = max{βli : l ∈ N}.
Clearly, γ := (γi)i∈N is as desired.

We now turn to Fréchet–Urysohn topological groups. Nyikos [36] found
several necessary and sufficient conditions for the Fréchet–Urysohn property
in topological groups. Further results in this direction were obtained in [11].
It has been shown [11, Lemma 1.3] (see also [29, Lemma 14.1]) that every
Fréchet–Urysohn topological group G satisfies the following condition:

(AS) For any family {xn,k : (n, k) ∈ N × N} ⊂ G with limn xn,k = x ∈ G,
k = 1, 2, . . . , there are strictly increasing sequences (ni)i∈N and (ki)i∈N
of natural numbers such that limi xni,ki = x.

The next theorem characterizes metrizability in the class TGG:

Theorem 2.12. If G ∈ TGG with a G-base {Uα : α ∈ NN}, then the
following are equivalent:

(i) G is metrizable.
(ii) G is Fréchet–Urysohn.
(iii) For every α ∈ NN there exists k ∈ N such that Dk(α) is a neigh-

bourhood of the unit e.

Proof. (i)⇒(ii) is trivial.
(ii)⇒(iii). Suppose for contradiction that there exists α ∈ NN such that

Dk(α) is not a neighbourhood of e, for any k ∈ N. So e belongs to the
closure of G \ Dk(α). Since G is Fréchet–Urysohn, for every natural k we
can choose a sequence {xn,k}n∈N in G \ Dk(α) converging to e. Applying
the property (AS) we can choose strictly increasing sequences (ni)i∈N and
(ki)i∈N of natural numbers such that limi xni,ki = e.
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For every i ∈ N, choose βki ∈ Iki(α) such that xni,ki 6∈ Uβki . By Lem-
ma 2.11 (with βk = α if k 6= ki for all i), take γ ∈ NN such that βki ≤ γ for
every i ∈ N. So xni,ki 6∈ Uγ for every i ∈ N. Thus xni,ki 9 e, a contradiction.

(iii)⇒(i). For every α ∈ NN choose the minimal natural kα such that
Dkα(α) is a neighbourhood of e. The family {Dkα(α) : α ∈ NN} is countable
because it is contained in

{Dk(α) : k ∈ N, α ∈ NN} = {Dk(α) : k ∈ N, α ∈ N(N)}.
Hence, by the construction of Dk(α), the family {int(Dkα(α)) : α ∈ NN} is
a countable base of open neighbourhoods at e. Thus X is metrizable.

Proof of Theorem 1.2. Immediately follows from Proposition 2.3 and
Theorem 2.12.

Example 2.13. The Σ-product G of uncountably many copies of Z(2) is
a Fréchet–Urysohn topological group which is not metrizable. Hence G does
not admit a G-base.

Note that Shakhmatov gave a survey of the metrization problem of topo-
logical groups with various convergence properties (see [42]).

It is known that, if G is a countably infinite topological group, then
χ(G) ≤ 2|G| = c.

Question 2.14. Is there a countable Fréchet–Urysohn group G with
χ(G) = c?

Both the hypotheses d < c and d = c are consistent with ZFC (see [14,
§5]). So, under d < c, the positive answer to Question 2.14 and Proposi-
tion 2.4 gives a negative answer to Malykhin’s aforementioned problem.

Recall that a topological space is called submetrizable if it admits a weaker
metrizable topology. In the light of Malykhin’s problem and Question 2.14, it
is interesting to note that every countable topological group is submetrizable,
by a result of Guran (see [5, 3.4.25]). We do not know whether the same holds
for every topological group with a G-base.

Question 2.15. Does every topological group with a G-base admit a
weaker metrizable group topology?

Recall that a topological group is minimal if it does not admit a strictly
weaker Hausdorff group topology (see [44]). On the other hand, by a result
of Prodanov and Stoyanov [39] every abelian minimal topological group is
precompact. Hence a minimal abelian topological group with a G-base must
be metrizable by Theorem 5.5 below. Therefore the above Question 2.15 is of
interest for non-minimal abelian or non-abelian minimal topological groups.

The rest of the section deals with sequential properties of restricted direct
products of metrizable groups. Recall that a topological space X is sequential
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if every sequentially closed subset of X is closed. Trivially every metrizable
space is sequential.

Let {(Xn, τn)}n∈N be a sequence of topological spaces with Xn ⊆ Xn+1

and τn+1|Xn = τn for all n ∈ N. The union X =
⋃
n∈NXn with the weak

topology τ (i.e., U ∈ τ if and only if U ∩ Xn ∈ τn for every n ∈ N) is
called the inductive limit of the sequence {(Xn, τn)}n∈N and it is denoted by
(X, τ) = lim

−→
(Xn, τn). Recall that a topological space X is called a kω-space if

it is the inductive limit of an increasing sequence of its compact subsets Kn,
and that

⋃
n∈NKn is called a kω-decomposition of X. A topological group is

called a kω-group if its underlying topological space is a kω-space.
Proposition 2.16. Let G be the restricted direct product of a sequence

{Gn}n∈N of metrizable groups endowed with the box topology τb. If G is a
k-space, then G is sequential.

Proof. According to [11, Lemma 1.5], if X is a topological k-space whose
compact subsets are all metrizable, then X is sequential. LetK be a compact
subset of G. It is well known that K is contained in some finite product∏n
k=1Gk. So K is metrizable and the claim of the proposition follows.
Corollary 2.17. Let G be the restricted direct product of a sequence

{Gn}n∈N of infinite locally compact metrizable groups endowed with the box
topology τb. Then:

(i) G is a sequential group;
(ii) G has a G-base;
(iii) G is not Fréchet–Urysohn.

Proof. (i) is a consequence of [36, Problem 1]. Note also that the se-
quentiality of G can be proved directly by showing that G has an open kω-
subgroup and applying Proposition 2.16. (ii) follows from Proposition 2.7.
(iii) follows from Theorem 2.12 and the well known fact that τb is non-
metrizable.

Remark 2.18. The assumption on Gn to be locally compact in Corol-
lary 2.17 is essential. Nyikos [36, Footnote 2] mentioned that van Douwen
has shown that if even one of the factors in the above sequence is not locally
compact, and infinitely many of the Gn are not discrete, then the resulting
space is not sequential. Therefore, (G, τb) is not even a k-space, by Proposi-
tion 2.16. On the other hand, every metrizable kω-group G is locally compact
(indeed, G is metrizable and complete by [5, 7.4.10], and hence locally com-
pact by [5, 4.3.b]). We prove a stronger claim in Proposition 3.18.

3. Topological groups with a compact resolution swallowing
compact sets. We start with the following definition (see [12] and [47],
where this concept has been studied under other names).
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Definition 3.1. A family {Kα : α ∈ NN} of compact sets of a topo-
logical space X is called a compact resolution if X =

⋃
{Kα : α ∈ NN} and

Kα ⊆ Kβ for all α ≤ β. If additionally every compact set in X is contained
in some Kα we will say that {Kα : α ∈ NN} swallows the compact sets of X.

Denote by TCR and TGCR the families of topological spaces and of
groups, respectively, having a compact resolution swallowing the compact
sets.

Remark 3.2. Note that Definition 3.1 can be generalized as follows. Let
X be a topological space and I be a set with a partial order ≤. We say that
a family A = {Ai}i∈I of subsets of X is I-increasing if Ai ⊂ Aj for all i ≤ j
in I. A family K = {Ki}i∈I of compact subsets of X is compact I-dominated
if K is I-increasing and compact dominated, i.e., for each compact subset K
of X there is i ∈ I such that K ⊂ Ki. Aiming to be consistent with [10, 29]
we call a compact NN-dominated family a compact resolution swallowing
compact sets.

Any Polish space X has a compact resolution swallowing the compact
sets of X. Indeed, let {xn : n ∈ N} be a countable dense subset in X. For
every α = (αk) ∈ NN, set Kα :=

⋂
k∈N

⋃αk
j=1B(xj , 1/k), where B(xj , 1/k) is

the closed ball in X with center at xj and radius 1/k. It is easy to prove that
the family {Kα : α ∈ NN} is as required. In fact, a stronger result is known:

Proposition 3.3 ([12, Theorem 3.3]). If X is a metrizable topological
space, then the following are equivalent:

(i) X is a Polish space.
(ii) X has a compact resolution swallowing the compact sets of X.

The following facts were noticed in [47].

Proposition 3.4 ([47]). The class TCR contains all hemicompact topo-
logical spaces. Thus TGCR contains all hemicompact groups.

Proposition 3.5 ([47]). The class TGCR is closed under taking closed
subgroups and countable cartesian products.

Recall that a continuous mapping q : G→ H is called compact-covering
if for every compact subset K of H there exists a compact subset C of G
such that q(C) = K.

Remark 3.6. If K is a compact subgroup of a topological group G, then
the quotient mapping q : G → G/K onto the left coset space is a compact
covering map. This immediately follows from [5, Theorem 1.5.7] and [15,
Theorem 3.7.2]. Note also that, if G is Čech-complete, then every quotient
homomorphism of G is compact-covering by [1, Theorem 1.2].
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Proposition 3.7. Let G ∈ TGCR and q : G→ H be a quotient compact-
covering map. Then H ∈ TGCR.

Proof. If {Kα : α ∈ NN} is a compact resolution swallowing the compact
sets of G, then {q(Kα) : α ∈ NN} is a compact resolution swallowing the
compact sets of H (since q is compact-covering).

We do not know any example of G ∈ TGCR such that G has a quotient
group H without a resolution swallowing the compact sets of H.

The proof of the next theorem uses the following:

Proposition 3.8 ([10, Theorem 1]). A compact space K is metrizable
if and only if (K ×K) \∆ has a compact resolution swallowing its compact
sets, where ∆ := {(x, x) : x ∈ K}.

Recall that a topological space X is angelic (see [20]) if every relatively
countably compact set A in X is relatively compact and for each x ∈ A there
exists a sequence in A converging to x. A topological space X is strictly an-
gelic ifX is angelic and each separable compact subset ofX is first countable.
Now Theorem 1.3 can be formulated more precisely.

Theorem 3.9. If G ∈ TGG, then every precompact subset K in G is
metrizable. Consequently, G is strictly angelic.

Proof. Having in mind Proposition 2.7 and [5, Theorem 3.7.10], we as-
sume that G is complete and that K is compact. Let {Uα : α ∈ NN} be an
open G-base in G. We may assume that all sets Uα are symmetric. We have
to show that K is metrizable. To prove this, by Proposition 3.8, it is enough
to show that the set W := (K × K) \ ∆ has a compact resolution which
swallows its compact sets.

For each α ∈ NN, set

Wα := {(x, y) ∈W : xy−1 /∈ Uα}.
Then Wα is closed in K ×K, and hence it is compact for every α ∈ NN. Let
us show thatW := {Wα : α ∈ NN} is a compact resolution in W . Indeed, for
each compact subset C of W , the set q(C) = {xy−1 : (x, y) ∈ C} is compact
and does not contain the unit e of G. Since {Uα : α ∈ NN} is a local base at e,
for some α ∈ NN we obtain Uα∩q(C) = ∅. Hence C ⊂Wα. ThusW swallows
the compact sets in W . Therefore K is metrizable by Proposition 3.8.

Since in uniform spaces every relatively countably compact set is precom-
pact (see [20, 1.1.2]), the above conclusion shows that G is angelic. Moreover,
as we have proved that every compact set in G is metrizable, it follows that
G is strictly angelic.

However, Example 6.7 below shows that there is a topological group G
whose precompact subsets are all metrizable but G does not have a G-base.
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Recall that a topological group G is called almost metrizable (or feath-
ered) if it contains a non-empty compact set K of countable character in G
(see [5]). All Čech-complete groups, in particular locally compact groups, are
almost metrizable (see [5, p. 235]). By Choban’s theorem [5, 4.3.16], every al-
most metrizable group can be embedded as a subgroup into a Čech-complete
group. Applying Theorem 3.9 we have the following result.

Theorem 3.10. Let G be an almost metrizable group. Then G has a
G-base if and only if G is metrizable.

Proof. Suppose G has a G-base. By Pasynkov’s theorem (see [5, 4.3.20]),
G contains a compact subgroup H such that the left coset space G/H is
metrizable. By Proposition 2.7 and Theorem 3.9, the subgroup H is metriz-
able. Thus G is metrizable by [27, 5.38]. The converse is clear.

Corollary 3.11. A locally precompact group G has a G-base if and only
if G is metrizable.

Proof. Let G be a locally precompact group with a G-base. The comple-
tion G of G is locally compact and has a G-base (by Proposition 2.7). Now
Theorem 3.10 implies that G is metrizable. Thus G is also metrizable. The
converse is clear.

Following [25], a family N of subsets of a topological space X is called a
cs∗-network at a point x ∈ X if for each sequence (xn)n∈N in X convergent
to x and for each neighborhood Ox of x there is a set N ∈ N such that
x ∈ N ⊂ Ox and the set {n ∈ N : xn ∈ N} is infinite. The cs∗-character
of a topological group G is the least cardinality of cs∗-networks at the unit
e of G. Topological groups having countable cs∗-character are thoroughly
studied in [8].

Theorem 3.12. Each topological group G with a G-base has countable
cs∗-character.

Proof. Let {Uα}α∈NN be a G-base in G. It is enough to show that the
countable family D = {Dk(α) : α ∈ NN, k ∈ N} is a cs∗-network at the
unit e. Take a sequence S := (gn)n∈N in G converging to e and a neighbor-
hood Uα of e. We have to show that there is k ∈ N such that S ∩Dk(α) is
infinite.

Suppose for a contradiction that S ∩Dk(α) is finite for every k ∈ N. By
induction, for every k ∈ N we can choose nk ∈ N and βk ∈ Ik(α) such that
n1 < n2 < · · · and gnk 6∈ Uβk . Clearly, gnk → e. By Lemma 2.11, there is
γ ∈ NN such that α ≤ γ and βk ≤ γ for every k ∈ N. By construction,
gnk 6∈ Uγ for every k ∈ N. So gnk 9 e, a contradiction. Hence S ∩Dk(α) is
infinite for some k ∈ N. Thus D is a cs∗-network at e.

As a corollary of Theorems 3.12 and 3.9 and [8, Theorem 1] we obtain:
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Corollary 3.13. Let G ∈ TGG. Then the following are equivalent:

(i) G is a k-space.
(ii) G is sequential.
(iii) G is metrizable or contains a submetrizable open kω-subgroup.

Proof. (i)⇒(ii). Let G be a k-space. By Theorem 3.9, each compact sub-
set K of G is metrizable. Thus G is sequential by [11, Lemma 1.5].

(ii)⇒(iii). By Theorem 3.12, the group G has countable cs∗-character.
Since G is sequential, [8, Theorem 1] implies (iii).

(iii)⇒(i) is clear.

It would be interesting to know whether the k-property and sequentiality
are equivalent for topological groups with countable cs∗-character.

Theorem 3.12, Corollary 3.13 and [8, Theorems 2 and 3] immediately
imply

Corollary 3.14. Let G ∈ TGG. Then G is metrizable if and only if G
is a k-space and one of the following conditions holds:

(i) χ(G) < d;
(ii) G is Baire;
(iii) G is not Weil complete.

Remark 3.15. Note that Theorems 2.12 and 3.10 follow also from Corol-
lary 3.13 and [8, Theorem 3]. However, our methods are much simpler and
straightforward.

For almost metrizable groups with compact resolutions swallowing com-
pact sets we have the following:

Theorem 3.16. If G is an almost metrizable topological group, then the
following are equivalent:

(i) G belongs to TGCR.
(ii) G has a compact subgroup K such that the left coset space G/K is

Polish.

Consequently, if (i) holds, then G is Čech-complete.

Proof. (i)⇒(ii). It is well known that G contains a compact subgroup
K such that G/K is metrizable [5, 4.3.20]. Assume that G has a compact
resolution swallowing the compact subsets of G, say K = {Kα : α ∈ NN}. Set
K′ = {q(Kα) : α ∈ NN}, where q : G→ G/K is the quotient map. We claim
that K′ swallows the compact subsets of G/K. Indeed, if K ′ is compact in
G/K, then q−1(K ′) is compact in G by Remark 3.6. So there exists α ∈ NN

such that q−1(K ′) ⊆ Kα, and hence K ′ ⊆ q(Kα). Now Proposition 3.3
implies that G/K is Polish.
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(ii)⇒(i). By Proposition 3.3, G/K has a compact resolution swallowing
the compact sets of G/K, say K′ = {K ′α : α ∈ NN}. For every α ∈ NN,
set Kα := q−1(K ′α) where q : G→ G/K is the quotient map. Then Kα is a
compact subset of G by Remark 3.6. Hence K = {Kα : α ∈ NN} is a compact
resolution. Let now C be a compact subset of G. Then there exists α ∈ NN

such that q(C) ⊆ K ′α. So C ⊆ Kα. Hence K swallows the compact sets of G.
Thus G ∈ TGCR.

If (i) or (ii) holds, then the group G is Čech-complete by [5, 4.3.20].

Tkachuk [47] showed that a locally compact space X ∈ TCR need not be
Lindelöf. For locally compact groups the situation changes.

Corollary 3.17. Let G be a locally compact group. Then G ∈ TGCR
if and only if G is a hemicompact space. In particular, G is Lindelöf.

Proof. Assume that G ∈ TGCR. Since any locally compact group G
is almost metrizable (see [5, p. 235]), Theorem 3.16 implies that G has a
compact subgroup K such that the locally compact space G/K is second
countable. Therefore G/K is hemicompact. Thus G is hemicompact as well
by Remark 3.6.

If G is hemicompact, it belongs to TGCR by Proposition 3.4.

We know that every hemicompact group G belongs to TGCR (see Propo-
sition 3.4). If in addition G is Fréchet–Urysohn, we prove the following:

Proposition 3.18. Every Fréchet–Urysohn hemicompact topological
group G is a separable locally compact metrizable group.

Proof. Let G =
⋃
n∈NKn, where {Kn}n is an increasing sequence of

compact subsets of K containing the unit e such that every compact set in
G is contained in some Kn.

Step 1. There is n ∈ N such that Kn is a neighbourhood of the unit.

Suppose for contradiction that there is no n for which Kn is a neigh-
bourhood of e. Then for each n ∈ N and each U ∈ N (X) there exists
xU,n ∈ U \Kn. For each n ∈ N we set

Bn := {xU,n : U ∈ N (G)}.
Then e ∈ Bn. Since G is Fréchet–Urysohn, for each n ∈ N there exists
a sequence {Un(k)}k in N (X) such that xUn(k),n → e at k → ∞. On
the other hand, every Fréchet–Urysohn group satisfies the condition (AS).
Therefore there exist strictly increasing sequences (kp)p and (np)p such that
xUnp(kp),np → e as p → ∞. The set B := {xUnp(kp),np : p ∈ N} ∪ {e} is com-
pact in G, so there exists m ∈ N such that B ⊂ Km, a contradiction (since
{Kn}n is increasing).

Step 2. G is a separable locally compact metrizable group.
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Indeed, by Step 1, the group G is locally compact. It is also well known
(see [2]) that every Fréchet–Urysohn locally compact group is metrizable.
So G, being metrizable and hemicompact, must be separable.

We do not know whether hemicompactness of G in Proposition 3.18 can
be replaced by the existence inG of a compact resolution swallowing compact
sets.

Conjecture 3.19. Every Fréchet–Urysohn topological group with a com-
pact resolution swallowing compact sets is metrizable.

We complete this section with the following remark.

Remark 3.20. Let X be a locally compact space and X̄ := X ∪ {e} a
one-point compactification of X. Then X ∈ TCR if and only if e has a local
G-base. Indeed, by construction, a family {Uα(e) : α ∈ NN} is a local G-base
at e if and only if {X \ Uα(e) : α ∈ NN} is a compact resolution swallowing
the compact sets in X.

4. Topological vector spaces and free abelian groups with a
G-base. Recall that a subset A of a TVS E is called bounded if each
neighbourhood of zero absorbs A. If B is a subset of E and k ∈ N, we
set kB := {kx : x ∈ B}.

We need:

Lemma 4.1. Let E be a TVS and {Uα : α ∈ NN} be a G-base in E
consisting of closed and symmetric subsets. For each α = (αi) ∈ NN and
k ∈ N, set

Dk(α) :=
⋂

β∈Ik(α)

Uβ, where Ik(α) = {β ∈ NN : βi = αi for i = 1, . . . , k}.

Then, for each bounded subset B ⊂ E and every α ∈ NN, there exists k ∈ N
such that B ⊆ kDk(α). In particular, E =

⋃
k kDk(α) for every α ∈ NN.

Proof. Assume there exists a bounded set B in E such that B 6⊆ kDk(α)
for all k ∈ N. For each k ∈ N, choose xk ∈ B such that k−1xk /∈ Dk(α). Since
B is bounded, k−1xk → 0. Now, for every k ∈ N, take βk ∈ Ik(α) such that
k−1xk 6∈ Uβk . By Lemma 2.11, we can choose γ ∈ NN such that α ≤ γ and
βk ≤ γ for every k ∈ N. Since Uγ ⊆ Uβk for each k ∈ N, we have k−1xk 6∈ Uγ .
Thus k−1xk 9 0, a contradiction.

Now we are in a position to prove Theorem 1.4.

Proof of Theorem 1.4. Let {Uα : α ∈ NN} be a G-base in E. We may
assume that all sets Uα are closed and symmetric.

We use the notation from Lemma 4.1. Since E is Baire, we apply Lem-
ma 4.1 to show that for each α ∈ NN there exists k(α) ∈ N such that for
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every k ≥ k(α) the set Dk(α) = 1
k · kDk(α) has a non-empty interior. Set

D := {Dk(α)−Dk(α) : α ∈ NN and k ≥ k(α)}.
Then D is a countable family of neighbourhoods of zero in E. We have to
show that D is a base. Take a neighbourhood of zero V in E. Choose Uα
such that Uα − Uα ⊆ V . Then, for k ≥ k(α),

Dk(α)−Dk(α) ⊆ Uα − Uα ⊆ V.
So D is a base in E. Thus E is metrizable.

We do not know whether Theorem 1.4 remains true for topological groups
which are not k-spaces (see Proposition 3.14).

Question 4.2. Let X ∈ TGG be Baire and not a k-space. Is X metriz-
able?

We denote by Cp(X) the space C(X) endowed with the pointwise con-
vergence topology τp. For Cp(X) we have the following:

Proposition 4.3. Let X be a Tychonoff space. Then the following are
equivalent:

(i) Cp(X) is metrizable.
(ii) Cp(X) has a G-base.
(iii) X is countable.

Proof. (i)⇒(ii) follows from Proposition 2.3.
(ii)⇒(iii). It is well known that Cp(X) is dense in the Tychonoff

product RX . Since Cp(X) has a G-base, Proposition 2.7 implies that RX
also has a G-base. Hence every precompact subset of RX is metrizable by
Theorem 3.9. So, in particular, the compact space [0, 1]X is metrizable. This
implies that X is countable.

(iii)⇒(i). If X is countable, then the space RX is metrizable, so Cp(X)
is metrizable.

Remark 4.4. Note that, if a Tychonoff spaceX has a countable network,
then every compact subset K of Cp(X) is metrizable. (Indeed, since Cp(X)
has a countable network, [3, I.1.3] implies that so does every compact subset
K of Cp(X). Thus K is metrizable by [15, 3.1.19].) So, each compact subset
of Cp[0, 1] is metrizable, but the space Cp[0, 1] does not admit a G-base by
Proposition 4.3.

Remark 4.5. Note that Cp(X) ∈ TGCR if and only if X is countable
and discrete [47].

Recall that a LCS E is called Baire-like (Saxon) if every increasing se-
quence {An}n∈N of absolutely convex closed subsets covering E contains a
member which is a neighbourhood of zero. The space E is called b-Baire-like
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(Ruess) if every increasing sequence {An}n∈N of absolutely convex and closed
sets covering E which is bornivorous (i.e., every bounded set in E is con-
tained in some Am) contains a member which is a neighbourhood of zero.
Clearly, Baire LCS⇒ Baire-like⇒ b-Baire-like, and the converses fail. Every
barrelled metrizable LCS is Baire-like (Saxon).

Applying the argument of the proof of Theorem 1.4, we can also prove
the following:

Theorem 4.6. Let E be a LCS. Then E is metrizable if and only if E
has a G-base and it is b-Baire-like.

Proof. Let E be metrizable. So E has a G-base (see Proposition 2.3). By
[29, Proposition 2.11], E is b-Baire-like.

Assume now that E has a G-base and is b-Baire-like. Since E is a LCS,
elements of its G-base can be chosen to be absolutely convex symmetric
closed sets. Clearly every neighbourhood of zero in E absorbs bounded sets
of E. We use the notation from Lemma 4.1. Note that the sets kDk(α) are
absolutely convex symmetric and closed for all k ∈ N and α ∈ NN.

Lemma 4.1 implies that the sequence {kDk(α)}k∈N is bornivorous. Since
E is b-Baire-like, we derive that for each α ∈ NN there exists k(α) ∈ N such
that the set Dk(α) = 1

k ·kDk(α) has a non-empty interior for every k ≥ k(α).
Now we repeat word for word the arguments in the proof of Theorem 1.4 in
order to show that E is metrizable.

Since Cc(X) is trivially a LCS, Theorems 4.6 and 2.12 immediately imply:

Corollary 4.7. Let X be a Tychonoff space. Then the following are
equivalent:

(i) Cc(X) is metrizable.
(ii) Cc(X) is b-Baire-like and has a G-base.
(iii) Cc(X) is Fréchet–Urysohn and has a G-base.

A characterization of the space Cc(X) admitting a G-base has been ob-
tained by Ferrando and Kąkol [16]. Modifying their proof and using our
terminology from Remarks 2.2 and 3.2 we generalize this characterization as
follows.

Theorem 4.8. Let X be a Tychonoff space and M a partially ordered
set. Then:

(i) If Cc(X) has a local M-base, then X has a compact M-dominated
family.

(ii) If X has a compact M-dominated family, then Cc(X) has a local
N×M-base.
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Proof. For A ⊆ X, ε > 0 and B ⊆ Cc(X), we define

[A, ε] =
{
f ∈ C(X) : sup

x∈A
|f(x)| < ε

}
,

B♦ = {x ∈ X : |f(x)| ≤ 1 ∀f ∈ B}.
Clearly, if A is compact in X, then [A, ε] is open in Cc(X).

(i) Assume that Cc(X) has a local M-base {Uα : α ∈ M}. For every
α ∈ M set Cα := U♦α . Let us show that the family C := {Cα : α ∈ M} is
compact M-dominated.

Clearly, Cα is closed in X and α ≤ β implies that Cα ⊆ Cβ . So C is
M-increasing.

Let us show that Cα is compact in X. Indeed, take a compact subset K
of X and 0 < ε < 1 such that [K, ε] ⊆ Uα. Note that [K, ε]♦ ⊆ K since, if
x ∈ X \K, there is f ∈ C(X) with f(x) = 2 and f(K) = 0. Now we have

Cα = U♦α ⊆ [K, ε]♦ ⊆ K.
Hence Cα, being closed, is compact for every α ∈ NN.

We claim that C is compact M-dominated. Indeed, let K be a compact
subset in X. Take α ∈ NN such that Uα⊆ [K, 1]. Then K⊆ [K, 1]♦⊆U♦α =Cα.

(ii) Let K := {Kα : α ∈ M} be a compact M-dominated family in X.
For each α = (k, α∗) ∈ N×M, set

Uα := [Kα∗ , k
−1] and U := {Uα : α ∈ N×M}.

Clearly, U is a family of symmetric absolutely convex and absorbing open
sets in C(X) such that Uk,β∗ ⊆ Uk,α∗ for all k ∈ N and α ≤ β.

We claim that U is a base of a locally convex topology τ on C(X). To
prove this we have to check three conditions (see [30, §15.2]):

(a) For each U ∈ U there is a V ∈ U with V + V ⊆ U .
(b) For each U ∈ U there is a V ∈ U for which λV ⊆ U for all λ with
|λ| ≤ 1.

(c) For each U ∈ U and each f ∈ Cc(X) there is an m ∈ N for which
f ∈ kU .

For α = (k, α∗) ∈ N ×M, we set β = (2k, α∗). Then Uβ + Uβ ⊆ Uα, which
gives (a). The conditions (b) and (c) are fulfilled trivially.

If we prove that τ = τc, we infer that U is a G-base in Cc(X), as desired.
Clearly, τ ≤ τc. Conversely, let K be a compact set in X and ε > 0. Since
K is compact M-dominated, we can choose α∗ ∈ M and k ∈ N such that
K ⊆ Kα∗ and k−1 < ε. Clearly, U(k,α∗) ⊆ [K, ε]. Thus τ ≥ τc and U is a local
N×M-base at zero in Cc(X).

Since NN ∼= N × NN, the next result immediately follows from Theo-
rem 4.8.
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Theorem 4.9 (Ferrando–Kąkol [16]). For a Tychonoff space X, the
space Cc(X) has a G-base if and only if X has a compact resolution that
swallows compact sets.

Corollary 4.10. Let X be a Polish non-locally compact space. Then
Cc(X) has a G-base and is barrelled, but Cc(X) is not b-Baire-like (hence
not Baire).

Proof. By Proposition 3.3 and Theorem 4.9, Cc(X) has a G-base. Since
X is not hemicompact, Cc(X) is not metrizable. Thus, by Corollary 4.7,
Cc(X) is not b-Baire-like.

Recall (see [43]) that a topological space X is said to have the Pytkeev
property if for each A ⊂ X and each x ∈ A \ A, there exist infinite subsets
A1, A2, . . . of A such that each neighbourhood of x contains some An.

Example 4.11. There is a non-metrizable LCS E ∈ TVSG having the
Pytkeev property. So, the Fréchet–Urysohn property in Theorem 1.2 cannot
be weakened to the Pytkeev property. Indeed, by [48, Theorem 2.1] the
space Cc(NN) has the Pytkeev property. Since NN is a Polish space, and
hence has a compact resolution that swallows compact sets, Theorem 4.9
implies that Cc(NN) has a G-base. As NN is not hemicompact, Cc(NN) is not
metrizable.

The last part of this section deals with free topological groups and free
locally convex spaces. The following concept is due to Markov [31] (see also
Graev [26]).

Definition 4.12. Let X be a Tychonoff space. A topological group
F (X) (respectively, A(X)) is called the (Markov) free (respectively, abelian)
topological group over X if F (X) (respectively, A(X)) satisfies the following
conditions:

(i) There is a continuous mapping i : X → F (X) (respectively, i : X →
A(X)) such that i(X) algebraically generates F (X) (respectively,
A(X)).

(ii) If f : X → G is a continuous mapping to a topological (respectively,
abelian topological) group G, then there exists a continuous homo-
morphism f̄ : F (X) → G (respectively, f̄ : A(X) → G) such that
f = f̄ ◦ i.

The topological groups F (X) and A(X) always exist and are essentially
unique. Note that i is a topological embedding [31, 26]. Let us also men-
tion that when X is a Hausdorff topological group (respectively, an Abelian
Hausdorff topological group) and f : X → X is the identical mapping, then
the canonical mapping f̄ : F (X) → X (respectively, f̄ : A(X) → X) is
open.
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If X is locally compact and second countable we have the following:

Lemma 4.13. Let X be a locally compact second countable space. Then
A(X) and F (X) are sequential groups.

Proof. By [4], A(X) and F (X) are k-spaces. Now let K be a compact
subset of A(X) or F (X). By [45] there exist a compact subset C of X and
n ∈ N such that K is a continuous image of a compact subspace in Cn.
Hence K is metrizable [15, 3.1.22]. Thus A(X) and F (X) are sequential [11,
Lemma 1.5].

Analogously we can define free LCS:

Definition 4.14 ([31, 41, 18, 19, 49]). Let X be a Tychonoff space. The
free LCS L(X) on X is a pair consisting of a LCS L(X) and a continuous
mapping i : X → L(X) such that for every continuous mapping f from X
to a LCS E there is a unique continuous linear operator f̄ : L(X)→ E with
f = f̄ ◦ i.

Also the free LCS L(X) always exists and is unique. The set X forms a
Hamel basis for L(X), and i is a topological embedding [41, 18, 19, 49]. The
identity map idX : X → X extends to a canonical homomorphism idA(X) :
A(X) → L(X). It is known that idA(X) is an embedding of topological
groups [46, 50]. For example, if X is a countably infinite discrete space, then
L(X) = φ, where φ is the restricted direct product of the sequence {Rn}n∈N.
It is well known that φ is a sequential non-Fréchet–Urysohn kω-space.

The following question arises naturally.

Question 4.15. For which X do the groups A(X), F (X) and L(X) have
a G-base?

It is well known that L(X) admits a canonical continuous monomorphism
L(X)→ Cc(Cc(X)). If X is a k-space, this monomorphism is an embedding
of LCS [18, 19, 49]. So, for k-spaces, we obtain a chain of topological embed-
dings

(4.1) A(X) ↪→ L(X) ↪→ Cc(Cc(X)).

This argument helps us to provide a partial answer to Question 4.15. The
next theorem generalizes Theorem 1.5

Theorem 4.16. If X is a submetrizable kω-space, then A(X) and L(X)
have a G-base. Moreover,

(i) if X is not discrete, then χ(A(X)) = χ(L(X)) = d;
(ii) if X is discrete, then χ(A(X)) = 1, and χ(L(X)) = ℵ0 for X finite

and χ(L(X)) = d for X infinite.

Proof. Since X is a submetrizable kω-space, Cc(X) is a Polish space by
[32, 4.2.2 and 5.8.1]. Hence Cc(X) has a compact resolution that swallows
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the compact sets of Cc(X) by Proposition 3.3. Thus Cc(Cc(X)) has a G-base
by Theorem 4.9. Now Proposition 2.7 and (4.1) imply that A(X) and L(X)
each have a G-base.

(i) It is well known that, if X is not discrete, then A(X) is not even
Fréchet–Urysohn. Since A(X) is a k-space, Proposition 2.4 and Corol-
lary 3.14(i) imply that d ≤ χ(A(X)) ≤ χ(L(X)) ≤ d.

(ii) If X is discrete, then A(X) is discrete, and hence χ(A(X)) = 1. If
X is finite, then L(X) = R|X| is metrizable, and hence χ(L(X)) = ℵ0. If
X is infinite, then X is countably infinite as a submetrizable kω-space. So
L(X) = φ. Now Corollary 3.14 implies that χ(L(X)) = d.

Also the following question is well motivated.

Question 4.17. Let X be a submetrizable kω-space. Does F (X) have a
G-base?

Question 4.18. Let X be a k-space and L(X) ∈ TGG. Does Cc(Cc(X))
have a G-base?

If L(X) has a G-base, then A(X) ∈ TGG (see Proposition 2.7). It is not
clear whether the converse is also true.

Question 4.19. Let A(X) ∈ TGG. Does L(X) have a G-base?

According to Theorem 2.12, if a topological group G is Fréchet–Urysohn
and has a G-base, then G is metrizable. Proposition 2.17 shows that we
cannot replace “Fréchet–Urysohn” by “sequential”. The next corollary shows
the existence of even a countable sequential abelian group with a G-base
which is not Fréchet–Urysohn.

Denote by e = {en}N the sequence in the direct sum Z(N) with e1 =
(1, 0, 0, . . . ), e2 = (0, 1, 0, . . . ), . . . . Then e converges to zero in the topology
induced by the product topology on (Zd)N. Denote by τe the finest group
topology on Z(N) in which en → 0 (the topology τe is described in [21]
explicitly). In [21] it is pointed out that A(e) = (Z(N), τe).

Corollary 4.20. The free abelian group A(e) is a countable sequential
group with a G-base which is not Fréchet–Urysohn.

Proof. By Theorem 4.16, A(e) is a countable group with a G-base. This
group is sequential and is not Fréchet–Urysohn by [40, Theorem 2.3.10].

It seems of interest to study the class TG(CRG) of all topological groups
having both a G-base and a compact resolution swallowing compact sets,
i.e., TG(CRG) = TGG ∩ TGCR. This class contains all Polish groups (see
Proposition 3.3) and all dual groups of abelian Polish groups, in particular
A(e), by Theorem 5.1.
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Proposition 4.21. Let G be a topological group and a k-space. Then
G ∈ TG(CRG) if and only if G is either Polish or a submetrizable kω-group.

Proof. Assume that G ∈ TG(CRG). Then, by Corollary 3.13, G is either
metrizable or has an open submetrizable kω-subgroup. SinceG has a compact
resolution swallowing the compact subsets of G, Propositions 3.3 and 3.7
imply that G is either Polish or a submetrizable kω-group.

Conversely, if G is Polish, then G ∈ TG(CRG) by Propositions 2.3
and 3.7. If G is a submetrizable kω-group, then G ∈ TG(CRG) by Proposi-
tions 3.4 and 3.7 and Theorem 4.16.

5. Abelian topological groups with a G-base and duality. For
an abelian topological group G we denote by Ĝ the group of all continuous
characters on G. The group Ĝ endowed with the compact-open topology is
denoted by G∧. The homomorphism αG : G → G∧∧, x 7→ (χ 7→ (χ, x)), is
called the canonical homomorphism. If αG is a topological isomorphism, the
group G is called reflexive. The Pontryagin–van Kampen duality theorem
states that every locally compact abelian group is reflexive.

For a subset A of an abelian topological group G, the polar of A is
AB := {χ ∈ G∧ : χ(A) ⊆ T+}, where T+ := {z ∈ T : Re(z) ≥ 0}. The set
A is called locally quasi-convex if for every x ∈ G \ A, there is a χ ∈ AB

such that Re(χ, x) < 0. For B ⊆ X∧, the inverse polar of B is BC :=
{x ∈ X : x(B) ⊆ T+}. Obviously, A is quasi-convex [10, Theorem 2] if
and only if (AB)C = A. The group G is called locally quasi-convex if it has a
base at zero whose elements are quasi-convex. Every locally compact abelian
group is reflexive and hence locally quasi-convex. Note also that the family
of sets of the form

P (K, ε) := {χ ∈ Ĝ : |1− (χ, x)| < ε, ∀x ∈ K},
where K is compact in G and ε > 0, forms a base of open neighbourhoods at
zero of the compact-open topology on Ĝ. For a subset D of G, set (1)D := D
and (n+ 1)D := (n)D +D for n ∈ N.

The next theorem gives the duality between the classes TGG and TGCR
in the framework of abelian groups.

Theorem 5.1. Let G be an abelian topological group.

(1) Suppose G has an open G-base U = {Uα : α ∈ NN}. Denote W =
{Wα : α ∈ NN}, where Wα := UBα , the dual family of compact sets
in G∧. Then W is a compact resolution in G∧.

(2) The following are equivalent:
(a) The dual compact resolutionW swallows the compact sets in G∧.
(b) Every compact subset of G∧ is equicontinuous.
(c) The canonical homomorphism αG is continuous.
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(3) If G has a compact resolution W = {Wα : α ∈ NN} swallowing the
compact sets in G, then the dual family U = {Uα : α ∈ NN}, where
Uα := WB

α , is a G-base in G∧.

Proof. (1) Note that Wα is a compact subset of G∧ by [6, 3.5]. Clearly,
G∧ =

⋃
{Wα : α ∈ NN} and Wα ⊂ Wβ whenever α ≤ β. Hence G∧ has a

compact resolution.
(2) (a)⇒(b). Suppose W swallows the compact sets in G∧ and K is a

compact subset of G∧. Take α ∈ NN such that K ⊆ UBα .
Fix ε > 0 and choose n ∈ N such that 1/n < ε/20. Choose β ∈ NN such

that (n)Uβ ⊆ Uα. Then, for every x ∈ Uβ and each 0 ≤ k ≤ n, we have
χ(kx) ∈ T+ for all χ ∈ K. Hence arg(χ(x)) ∈

[
− π

2n ,
π
2n

]
. This means that

|1− χ(x)| ≤
∣∣∣∣1− exp

{
i
π

2n

}∣∣∣∣ ≤ 2π · π
2n

< ε, ∀x ∈ Uβ.

Thus K is equicontinuous.
(b)⇒(a). Fix a compact subset K of G∧. Since by the assumption K is

equicontinuous, there is α ∈ NN such that χ(Uα) ⊂ T+ for every χ ∈ K.
This means that K ⊆ UBα = Wα. Thus W swallows the compact sets in G∧.

The equivalence of (b) and (c) is proved in [6, 5.10].
(3) For each α ∈ NN, set Uα := WB

α . Then Uα is a neighbourhood of the
unit element of G∧ by the definition of the compact-open topology. Clearly,
Uβ ⊆ Uα whenever α ≤ β. Since W swallows the compact subsets of X,
for every compact subset K of G there is α ∈ NN such that K ⊂ Wα. This
means that {Uα : α ∈ NN} is a G-base in G.

Remark 5.2. Note that, if G is a k-space, then αG is continuous [35].

As an immediate corollary of Theorem 5.1 we obtain:

Corollary 5.3. Let G be a reflexive abelian topological group. Then G
has a compact resolution swallowing the compact sets in G if and only if G∧
has a G-base.

Remark 5.4. By [21, Theorem 1], the free abelian group A(e) is reflexive
and its dual group is Polish. Now Proposition 3.3 and Corollary 5.3 give an
alternative proof of Corollary 4.20.

Remark 5.5. In our opinion, it would be useful to provide an alternative
proof of Corollary 3.11 for abelian locally precompact groups using duality
theory arguments.

Assume that a locally precompact abelian group G has a G-base. We have
to show that G is metrizable. Proposition 2.7 implies that the completion G
also has a G-base. It is well known that G ∼= Rn ×G0, where n ∈ ω and G0

has an open compact subgroup H [27, 24.30]. So, by Proposition 2.7, it is
enough to show that H is metrizable.
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Proposition 2.7 also implies that H has a G-base. By Theorem 5.1 the
space H∧ has a compact resolution swallowing its compact sets and it is
discrete and hence metrizable. Now Proposition 3.3 shows that the space
H∧ is Polish, hence H∧ is countable. Thus H is metrizable by [27, 24.15].

Conversely, if G is metrizable, then it has a G-base by Proposition 2.3.

The group G is called maximally almost periodic (MAP) if Ĝ separates
the points of G. For a MAP abelian group G we denote by σ(G, Ĝ) or τ+ the
weak topology on G, i.e., the smallest topology in G for which the elements
of Ĝ are continuous. The topology τ+ is called the Bohr modification of τ .
Set G+ := (G, τ+). It is well known that the groups G and G+ have the same
set of continuous characters, and G+ = G if and only if G is precompact
(see [5]).

Now we obtain a complete description of MAP abelian groups G for
which the group G+ has a G-base.

Corollary 5.6. For a MAP abelian group G the following assertions
are equivalent:

(i) G+ has a G-base.
(ii) G+ is metrizable.
(iii) Ĝ is countable.

Proof. (i)⇔(ii) follows from Corollary 3.11 since G+ is a precompact
group.

Note that G and G+ have the same set of continuous characters. Now
the equivalence of (ii) and (iii) follows from [13].

We provide a few topological properties of dual groups. We start with
the following fact (compare also with [11, Theorem 2.2]).

Proposition 5.7. Let G be an abelian topological group. If G has a
compact resolution swallowing the compact sets in G, then the following are
equivalent:

(i) G∧ is Fréchet–Urysohn.
(ii) G∧ is metrizable.

Proof. (i)⇒(ii) follows from Theorems 2.12 and 5.1(3).
(ii)⇒(i) is trivial.

The next proposition generalizes [11, Theorem 2.2].

Proposition 5.8. Let G be an abelian topological group. If G∧ is a
Fréchet–Urysohn hemicompact group, then G∧ is a separable and metriz-
able locally compact group. If in addition, αG is continuous and G is locally
quasi-convex, then G is a separable and metrizable locally precompact abelian
group.
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Proof. The first assertion is an immediate corollary of Proposition 3.18.
In particular, G∧∧ is a separable metrizable LCA group. If αG is continuous
and G is locally quasi-convex, then αG is an embedding [6, 6.10]. Thus G is
a separable metrizable locally precompact group.

The next proposition is a direct consequence of Theorems 3.9 and 5.1(3),
and also partially extends [11, Theorem 1.7].

Proposition 5.9. Let G be an abelian topological group. If G ∈ TGCR,
then every precompact set of G∧ is metrizable. Thus G∧ is strictly angelic.

As an application we extend Theorem 2.8 of [11]. Let E be a LCS. Denote
by E∗β the strong dual of E, i.e. the space of all continuous linear functionals
on E endowed with the topology of uniform convergence on bounded subsets
of E. Note that, if E is metrizable, then E∗β is metrizable if and only if E is
normable. By the definition of the strong dual we obtain: E∗β has a G-base
if and only if there exists a family {Aα : α ∈ NN} of bounded subsets of E
which swallows all bounded sets in E. We show that this holds, for example,
if E is a locally complete (in particular, complete) Quasi-(LB)-space in the
sense of Valdivia [51]; for example, E can be the space of distributions D′(Ω)
over an open Ω ⊂ Rn. A LCS E is said to be a Quasi-(LB)-space if E
admits a resolution consisting of Banach discs (a subset A of E is called a
Banach disk if it is a bounded absolutely convex set in E such that EA :=⋃
n nA, endowed with the norm ‖ · ‖A given by the Minkowski gauge of

A, is a Banach space). Every (LF )-space (in particular, every metrizable
and complete LCS) is a Quasi-(LB)-space, as also is its strong dual [51,
Propositions 5, 6].

Proposition 5.10. Let E be a locally complete Quasi-(LB)-space. Then
E∗β admits a G-base. Therefore, E∗β is Fréchet–Urysohn if and only if E∗β is
metrizable.

Proof. By [51, Proposition 22] there is a resolution {Aα : α ∈ NN} in E
consisting of Banach discs such that every Banach disc B of E is contained
in some Aα. Since E is locally complete, the closure of any bounded set in
E is a Banach disc [37, 5.1.6]. Hence {Aα : α ∈ NN} swallows all bounded
sets in E. Then the polars in E∗β of the sets Aα form a G-base in E∗β . Now
we apply Theorem 2.12 to complete the proof.

6. Concluding examples and open questions. Now we provide some
(counter-)examples which clarify relations between topological properties in
the classes TG(CRG), TGG and TGCR, respectively.

Example 6.1. There exists a countable abelian hemicompact group X
with a G-base (and hence X ∈ TG(CRG)) which is not a k-space.
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Our example uses [7, Theorem 6]. Consider the metrizable topology τ ′
on Z(N) generated by the base {Un}n∈ω, where

Un = {(ni)i∈N ∈ ZN : ni ∈ 2n · Z for i ≥ 1}, n ∈ ω.
Set G = A(e) × (Z(N), τ ′). By Proposition 2.7 and Corollary 4.20, G has
a G-base. Let X be the diagonal subgroup of G. Then X is a countable
abelian non-discrete group [7]. Further, X has a G-base by Proposition 2.7.
Since every compact subset of X is finite [22, Example 4.1], the group X is
hemicompact. Being non-discrete,X is not a k-space by [22, Proposition 4.6].

Example 6.2. There exists a countable abelian reflexive hemicompact
group G with a G-base which is a sequential non-Fréchet–Urysohn space.
Let G = A(e). Then A(e) is a countable, reflexive [38, 21], kω (and hence
hemicompact) [40, 4.1.5], sequential non-Fréchet–Urysohn group [40, 2.3.10].
By Corollary 4.20, the space A(e) has a G-base. Thus A(e) ∈ TG(CRG).

The next example shows that the converse in Proposition 2.4 fails in
general.

Example 6.3. Let G =
∏
i∈I Gi, where |I| = ℵ1 and Gi is a metrizable

non-trivial compact group for every i ∈ I. Then G is a compact abelian
group of character χ(G) = ℵ1 [27, 24.15]. The group G does not have a
G-base by Theorem 3.9.

In the next example we show that there exists even a countable precom-
pact abelian group (G, τ) with χ(G) = ℵ1 which does not admit a G-base.

Example 6.4. Let G = Z. Take an independent subset E of T of car-
dinality ℵ1 without torsion elements. Set τ := σ(G, 〈E〉), where 〈E〉 is a
subgroup of T generated by E. Since |〈E〉| = ℵ1 we have χ(G, τ) = ℵ1.
Since (G, τ) is a precompact non-metrizable group, we conclude that it has
no G-base by Remark 5.5.

The last two examples and Theorem 3.9 suggest the following question:

Question 6.5. Let G be a topological group of character χ(G) ≤ d and
such that all precompact subsets in G are metrizable. Does G admit a G-base?

In other words, does the metrizability of all precompact subsets and
the condition χ(G) ≤ d characterize the class TGG? Each compact subset
of a countable group is metrizable. Therefore, in view of Example 6.4, the
metrizability assumption of all precompact sets in Question 6.5 is essential.

The next two examples show that the converse in Theorem 3.9 fails in
general.

Example 6.6. It is known [5, 7.9.6] that the free abelian group A(X) is
(Răıkov) complete if and only if X is Dieudonné complete. If every compact
subset of X is metrizable, then by the same arguments as in Lemma 4.13,
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every compact subset of A(X) is also metrizable. For example, let X =
T ∪ {e}, where T is discrete and the complement of any neighbourhood of e
is countable. Then X is Lindelöf and each compact subset of X is finite.
Now, if |X| > c, each precompact subset of A(X) is finite (and metrizable),
but A(X) does not have a G-base by Proposition 2.4.

Example 6.7. There exists a complete reflexive abelian group G such
that each of its precompact subsets is finite (and hence metrizable) but G
does not have a G-base. Indeed, let H be a reflexive abelian P -group of
character χ(H) > c (see [23, Theorem 4.8]). Then its completion G is also
a reflexive abelian P -group of character χ(G) > c [24, Proposition 4.10].
By Proposition 2.4, G has no G-base. Since every precompact subset of G
is finite, the group G is as desired. Note that the dual group G∧ of G is
a precompact non-compact non-metrizable reflexive abelian group (by [24])
which does not have a compact resolution swallowing compact sets by Corol-
lary 5.3.

We conclude the paper with the following remark. Assume that G is
a metrizable group and {Un}n∈N is a decreasing base of open symmetric
neighbourhoods of the unit e. For every k ∈ N, there is f(k) ∈ N such that
Ukf(k)·k ⊆ Uk (where Uk+1 = Uk ·U). Being motivated by this fact we try to
consider a G-base on G enjoying the following condition:

(∗) there exists f : N→ NN such that Ukf(k)·α ⊆ Uα for every k ∈ N and
each α ∈ NN, where f(k) · α := (f(k)n · αn).

However, condition (∗) does not in general imply metrizability of G, as the
next example shows.

Example 6.8. Let φ be the restricted direct product of the sequence
(Rn). It is well known that φ is a sequential non-Fréchet–Urysohn space. Set
Bn := {x ∈ R : |x| < 1/n}. Then the family of sets of the form

Uα = φ ∩
∏
i∈N

Bαi , where α = (αi) ∈ NN,

is a G-base for φ. For every k ∈ N, set f(k) = (fki )i∈N ∈ NN, where fki = k
for every i ∈ N. Since Bk

k·n = Bn we obtain Ukf(k)·α = Uα for every k ∈ N
and each α ∈ NN, and hence condition (∗) holds.
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