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Abstract. We prove that the d-finite tuples in models of ARV are precisely the
discrete random variables. Then, we apply d-finite tuples to the work by Keisler, Hoover,
Fajardo, and Sun concerning saturated probability spaces. In particular, we strengthen a
result in Keisler and Sun’s recent paper.

1. Introduction. Continuous logic as in [BBHU] and [BU2] shares
many properties with classical model theory, such as the compactness theo-
rem, Löwenheim–Skolem theorems, existence of saturated and homogeneous
models, Beth’s definability theorem, the omitting types theorem, and fun-
damental results of stability theory.

On the other hand, there exist in continuous logic some phenomena not
appearing in classical model theory. For instance, for an ℵ0-categorical the-
ory T , the unique separable modelM might not necessarily be ℵ0-saturated,
instead,M is approximately ℵ0-saturated, i.e., for every tuple a ∈M , every
p(x, a) ∈ S1(a), and every ε > 0, there is a′ ∈M with d(a, a′) ≤ ε such that
p(x, a′) is realized in M . In [BU1], Ben Yaacov and Usvyatsov explained this
phenomenon by arguing that the notion of finite tuples is not always an ap-
propriate notion in continuous logic. They introduced the notion of d-finite
tuples (see Definition 2.1), which are continuous logic analogues of finite
tuples in classical model theory. They showed that in every approximately
ℵ0-saturated model, every type over a d-finite tuple is realized. Hence, un-
derstanding d-finite tuples is a first step toward thorough understanding of
the theory T , especially in the case when T is ℵ0-categorical.

Let (Ω,F , µ) be a probability space, which means that Ω is a sample
space, the σ-algebra F is the collection of events, and µ is a probability
measure on F . We say it is atomless if for every A ∈ F with µ(A) > 0,
there is a B ∈ F such that B ⊆ A and 0 < µ(B) < µ(A). Let
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L1((Ω,F , µ), [0, 1]), or simply L1(µ, [0, 1]), denote the L1-space of classes
of [0, 1]-valued F-measurable functions equipped with L1-metric. Let ARV
denote the class {L1(µ, [0, 1]) | (Ω,F , µ) is an atomless probability space}.
The theory Th(ARV) of atomless random variable structures, axiomatized
by ARV, was first studied via continuous logic by Ben Yaacov [BY], and
further studied in [BBH], [S1] and [S2]. Ben Yaacov proved that ARV is a
complete theory, has quantifier elimination, and the types (over parameters)
in ARV correspond precisely to (conditional) distributions in probability the-
ory (see [BY, Theorem 2.17]). Moreover, ARV is ℵ0-categorical, therefore it
is approximately ℵ0-saturated. However, it is not ℵ0-saturated; see Propo-
sition 4.1. For such a theory, as we stated in the preceding paragraph, it is
important to know what are the d-finite tuples in models of the theory. We
characterize the d-finite tuples in models of ARV as follows:

Main Theorem 1.1. Let M |= ARV and f = (f1, . . . , fn) ∈ Mn. Then
f is a d-finite tuple in M if and only if fi is a discrete random variable for
every 1 ≤ i ≤ n.

Furthermore, for arbitrary f ∈ Mn, let ARV(f) := Th(M, f). If f is
d-finite, then ARV(f) has only one separable model up to isomorphism.
Supposing f is not d-finite, we calculate the number of non-isomorphic sep-
arable models of ARV(f):

Proposition 1.2. Let M |= ARV and let f be a tuple in M . If f is
not d-finite, then ARV(f) has continuum many non-isomorphic separable
models.

Starting from 1980s, Keisler, Hoover, Fajardo, and Sun studied model-
theoretic properties concerning probability spaces and stochastic processes,
e.g., universality, homogeneity, and saturation; see [Ho], [HK], [FK], and
[KS]. All those results are closely related to the model theory of ARV, and
some of their results are related to d-finiteness.

For a probability space Ω and two random variables x, y on Ω, let dist(x)
denote the distribution of the random variable x and let dist(x, y) denote
the distribution of the pair (x, y) of random variables.

The probability space Ω is said to have the saturation property for
dist(x, y) if for all random variables x′ on Ω with dist(x) = dist(x′), there is
a random variable y′ on Ω such that dist(x, y) = dist(x′, y′). The probability
space Ω is said to be Hoover–Keisler saturated if it has the saturation prop-
erty for every such dist(x, y). In a recent paper [KS], Keisler and Sun gave
a local sufficient condition for the saturation property ([KS, Theorem 2.7]).
We strengthen their result as follows:

Theorem 1.3. Let f and g be two random variables valued in Polish
spaces X and Y respectively, where f is not a discrete random variable. If
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the probability space (Ω,F , µ) has the saturation property for dist(f, g) while
the standard Lebesgue unit interval ([0, 1],L, λ) does not, then (Ω,F , µ) is
Hoover–Keisler saturated.

Theorem 1.3 strengthens [KS, Theorem 2.7] so the conclusion is true for
non-atomic distributions dist(f) in place of atomless ones.

Outline of the paper. In Section 2, following [BU1] we give the defini-
tion of d-finite tuples and some of their properties, and recall some useful
results in measure theory. In Section 3, we characterize the d-finite tuples in
models of ARV and calculate the number of separable models of ARV(f). In
Section 4, we apply d-finite tuples to the work by Keisler, Hoover, Fajardo,
and Sun.

2. Preliminaries

Definition 2.1. Let a and c be tuples, and let p = tp(a/c). Then we
say a is d-finite over c, or the type p is d-finite, if for every tuple b and every

ε > 0, there is δ = δ
a/c
b,ε > 0 such that whenever a′ ≡c a and d(a, a′) ≤ δ,

there is b′ such that d(b, b′) ≤ ε and a′b′ ≡c ab. If c = ∅ we omit it.

For a general definition when a and c could be possibly infinite, see
[BU1].

Proposition 2.2 ([BU1, Corollary 2.5]). If M is an approximately
ℵ0-saturated model of T and a ∈ M is d-finite, then every type in at most
countably many variables over a is realized in M .

Therefore, for such a theory, it is of importance to understand the d-finite
tuples in models of the theory. The following result characterizes the d-finite
tuples in models of an ℵ0-categorical theory.

Proposition 2.3 ([BU1, Proposition 2.9]). Let M be a structure and
let a be a tuple in M . Let T = Th(M) and T (a) = Th(M, a). Sup-
pose T is ℵ0-categorical. Then a is d-finite (over ∅) if and only if T (a)
is ℵ0-categorical.

We need the following results in measure theory in the next section.

Theorem 2.4 ([Wa, Theorem 2.2]). Let X1 and X2 be complete separa-
ble metric spaces, let B(X1) and B(X2) be their σ-algebras of Borel subsets,
and let µ1 and µ2 be probability measures on B(X1) and B(X2) respectively.

Let Φ : B̂(X2) → B̂(X1) be an isomorphism of probability algebras. Then
there are M1 ∈ B(X1) and M2 ∈ B(X2) with µ1(M1) = µ2(M2) = 1, and
an invertible measure-preserving transformation ϕ : M1 → M2 such that
Φ([b]µ2) = [ϕ−1(b ∩M2)]µ1 for every b ∈ B(X2). If φ is any other isomor-
phism from (X1, B(X1), µ1) to (X2, B(X2), µ2) that induces Φ, then

µ1({x ∈ X1 | ϕ(x) 6= φ(x)}) = 0.
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Lemma 2.5. Suppose (X,B, µ) is an atomless probability space where
X is a complete separable metric space and B is the σ-algebra of Borel
subsets of X. For any two measurable partitions P1 and P2 of X where
P1 = (An)n∈N and P2 = (Bn)n∈N, if µ(Ai) = µ(Bi) for every i ∈ N, then
there is an automorphism φ of (X,B, µ) satisfying φ(Ai) = Bi up to a null
set for every i ∈ N.

Proof. Since B is atomless, B�Ai and B�Bi are atomless for every i ∈ N.
As µ(Ai) = µ(Bi) and using [BH, Corollary 6.2], there is an LPr-isomorphism

Φi : B̂�Bi → B̂�Ai for every i ∈ N.

We define Φ : B̂ → B̂ as follows:

Φ : B̂ → B̂, [C]µ 7→
⋃
i∈N

Φi([C ∩Bi]µ) for every C ∈ B.

Then Φ([Bi]µ) = [Ai]µ for every i ∈ N and Φ is an LPr-automorphism of B̂.
Then by Theorem 2.4, up to a null set, there is an automorphism φ of
(X,B, µ) satisfying φ(Ai) = Bi for every i ∈ N.

3. Main theorems

3.1. Characterization of d-finite tuples in ARV. The theory of
atomless random variable structures, axiomatized by ARV, was first studied
in [BY]. It is an ℵ0-categorical theory, so by the Ryll-Nardzewski theorem
for continuous logic due to C. Ward Henson (see Fact 1.14 in [BU1]), it is
approximately ℵ0-saturated. But it is not ℵ0-saturated: see Proposition 4.1
below.

LetM be a model of ARV. Then M is isomorphic to L1(µ, [0, 1]) for some
atomless probability space (Ω,F , µ). For the type spaces of ARV, there is
the following theorem:

Theorem 3.1 ([BY, Theorem 2.17]). Let M = L1((Ω,F , µ), [0, 1]) be a
model of ARV. Then two tuples f and g in Mn have the same type over a set
A ⊆M if and only if they have the same joint conditional distribution over
σ(A), the σ-algebra of measurable sets generated by the random variables
in A. Moreover, dcl(A) = acl(A) = L1((Ω, σ(A), µ), [0, 1]).

LetM |= ARV and let f = (f1, . . . , fn) ∈Mn be an n-tuple. Let ARV(f)
denote Th(M, f). By Proposition 2.3, f is d-finite (over ∅) if and only if
ARV(f) is ℵ0-categorical. We now use this result to prove our Main Theorem:

Proof of Main Theorem 1.1. ⇐: Let N = L1(λ, [0, 1]) |= ARV, where
([0, 1],L, λ) is the standard Lebesgue space. To show that ARV(f) is ℵ0-cate-
gorical, we need only show that for all g, h ∈ Nn with tp(f) = tp(g) = tp(h),
there exists ϕ ∈ Aut(N ) such that ϕ(g) = h.
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Let g = (g1, . . . , gn) ∈ Nn be such that tp(f) = tp(g), so dist(f) =
dist(g). Since all fi’s are discrete random variables, all gi’s are also dis-
crete. Therefore, we can write gi =

∑∞
j=1 rijχAij for all i = 1, . . . , n, where

rij ∈ [0, 1] for all j and (Ai1, . . . , Ain, . . . ) is a measurable partition of
[0, 1]. Then {A1i1 ∩ · · · ∩ Anin | ∀i1, . . . , in ∈ N} also forms a partition
of [0, 1], although some of its elements might be null sets. Take any other
h = (h1, . . . , hn) ∈ Nn such that tp(f) = tp(g) = tp(h), so dist(g) = dist(h).
Then for every i = 1, . . . , n, every hi can be written as

∑∞
j=1 rijχBij such

that (Bi1, . . . , Bin, . . . ) is a measurable partition of [0, 1] with µ(Aij) =
µ(Bij) for all j ∈ N and µ(A1i1 ∩ · · · ∩ Anin) = µ(B1i1 ∩ · · · ∩ Bnin) for
all i1, . . . , in ∈ N. Then by Lemma 2.5, there is an automorphism ϕ of
([0, 1],L, λ) such that ϕ(A1i1 ∩ · · · ∩ Anin) = B1i1 ∩ · · · ∩ Bnin (up to null
sets) for all i1, . . . , in ∈ N. We then extend ϕ to an automorphism ϕ̂ of N
such that ϕ̂(g) = h. Hence f is d-finite.
⇒: Assume that f is a d-finite element in N = L1(λ, [0, 1]) |= ARV,

where ([0, 1],L, λ) is the standard Lebesgue space. Then for all g ∈ N such
that tp(f) = tp(g), there is a ϕ ∈ Aut(N ) satisfying ϕ(f) = g. Suppose f
is not a discrete random variable; then f has a decomposition f = fd + fc,
where fd is a discrete random variable, and fc is a nonzero continuous ran-
dom variable. Note that fd · fc = 0. By Theorem 3.1, fc ∈ dcl(f) and
ARV(f) is ℵ0-categorical. Therefore, ARV(f, fc) is also ℵ0-categorical, so
that ARV(fc) is ℵ0-categorical by [BBHU, Corollary 12.13]. Hence fc is
d-finite, by Theorem 2.3.

Define F (t) = λ(fc ≤ t) for all t ∈ [0, 1]. Because fc is nonzero, F (t) is
continuous and strictly increasing. Thus, the inverse function g(t) = F−1(t)
exists for all t ∈ [0, 1]. Because F : [0, 1] → [0, 1] is continuous and strictly
increasing, σ(g) is the set B of all Borel sets in [0, 1]. Also, note that
dist(g) = dist(fc), so tp(g) = tp(fc) by Theorem 3.1. We know that N =
L1(([0, 1],L, λ), [0, 1]) is isomorphic to N ′ = L1(([0, 1]2,L×L, λ×λ), [0, 1]),
since ARV is ℵ0-categorical. Let α be such an isomorphism. Let g1 = α(g).
Because σ(g) is the set of all Borel sets in [0, 1], we know that dcl(g) =
L1(([0, 1],L, λ), [0, 1]). Since α is an isomorphism and α(g) = g1, we know
that

dcl(g1) = L1(([0, 1]2, σ(g1), λ× λ), [0, 1]) = N ′.
We define g2 : [0, 1]×[0, 1]→ [0, 1] by g2(t, s) := g(t) for all t, s ∈ [0, 1]. Then
dist(g2) = dist(g), which implies tp(g2) = tp(g) by Theorem 3.1. But clearly,
the completion of σ(g2) is not L×L. Thus, dcl(g2) ( dcl(g1). If there is an
automorphism Φ of N ′ sending g1 to g2, then Φ(dcl(g1)) = dcl(g2). Since
dcl(g1) = N ′, we have Φ(dcl(g1)) = dcl(g1), and thus dcl(g2) = dcl(g1),
which contradicts dcl(g2) ( dcl(g1).

Therefore ARV(fc) is not ℵ0-categorical, which contradicts the fact that
fc is d-finite. Hence, f is a discrete random variable.
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If f = (f1, . . . , fn) is a d-finite tuple, then by the definition of d-finiteness,
fi is d-finite for every i = 1, . . . , n. Thus fi is a discrete random variable for
every i = 1, . . . , n.

3.2. Number of separable models of ARV(f). Let M |= ARV. If
f is not a d-finite tuple in M , then ARV(f) is not ℵ0-categorical, but how
many nonisomorphic separable models would it have?

Proposition 3.2. Let M |= ARV. Let f a tuple in M . Then:

(1) If f is d-finite, then ARV(f) has a unique separable model up to
isomorphism.

(2) If f is not d-finite, then ARV(f) has continuum many nonisomorphic
separable models.

Proof. We need only show (2).

Without loss of generality, we may assume thatM = L1(λ, [0, 1]), where
([0, 1],L, λ) is the standard Lebesgue space, and f is a finite tuple in M
which is not d-finite. By Theorem 1.1, f = (f1, . . . , fn) is not a discrete
random variable on [0, 1]n. Since σ(f) is countably σ-generated, there exists
g ∈ M such that σ(g) = σ(f). Next, we introduce some notations. For
all r, s ∈ [0, 1], let B([r, s]) denote the set of all Borel subsets of [r, s]. In
B([r, s]), we interpret 1 as [r, s]; then B([r, s]) also forms a σ-algebra. Let B
denote B([0, 1]), the set of all Borel subsets in [0, 1]. In [0, 1]× [0, 1], define
Br as σ({A1×[0, 1], A2×A3 : A1 ∈ B([0, r]), A2 ∈ B([r, 1]), A3 ∈ B}). Then
B0 is just the set of all Borel sets in [0, 1]× [0, 1]. Since g is not discrete, it
has a decomposition g = gc + gd, where gc is a nonzero continuous random
variable, gd is a discrete random variable, and gc · gd = 0. After rearranging
the values of g (but keeping the distribution of g), we may further assume
that the support of gc is [0, t] and σ(gc) = σ(B([0, t])) for some t ∈ [0, 1].
Let Bg denote σ(g) = σ(gc)∨σ(gd), the smallest σ-algebra containing σ(gc)
and σ(gd).

On ([0, 1]×[0, 1],Br), there is a natural probability measure λr satisfying:

• λr(A1 × [0, 1]) = λ(A1) for all A1 ∈ B([0, r]),
• λr(A2 ×A3) = λ(A2)λ(A3) for all A2 ∈ B([r, 1]) and all A3 ∈ B.

Let Lr denote the completion of Br under λr. Define Mr := L1(([0, 1] ×
[0, 1],Lr, λr), [0, 1]). Then Mr |= ARV and it is separable. Define gr : [0, 1]×
[0, 1] → [0, 1] by gr(s, t) = g(s) for all s, t ∈ [0, 1]. Note that dist(gr) =
dist(g) = dist(f), which implies tp(gr) = tp(g) = tp(f) by Theorem 3.1.
Therefore, (Mr, gr) |= ARV(f) for all r ∈ [0, 1]. Since σ(g) = Bg, we have
σ(gr) = Bg × [0, 1] := {B × [0, 1] : B ∈ Bg}.

Now we show that for distinct r ≤ t, those models are not isomorphic to
each other. For r1, r2 ∈ [0, t] with r1 > r2, suppose (Mr1 , gr1) ∼= (Mr2 , gr2);
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let α denote such an isomorphism. Then α(gr1) = gr2 . Note that α is induced
by an isomorphism β between (Br1 , σ(gr1), λr1) and (Br2 , σ(gr2), λr2) such
that β(Br1) = Br2 , β(σ(gr1)) = σ(gr2), and β preserves the measure. Since
σ(gr1) = σ(gr2) = Bg × [0, 1], we have β(Bg × [0, 1]) = Bg × [0, 1].

For any two measure algebras A1 ⊆ A2, an element A ∈ A2 of positive
measure is called an atom over A1 if for every B ∈ A2 there exists C ∈ A1

such that A ∩ B = A ∩ C. If there is no element in A2 that is an atom
over A1, then we say that A2 is atomless over A1.

Note that [0, r] × [0, 1] ∈ Br is an atom over Bg × [0, 1] and
λr([0, r] × [0, 1]) = r. Suppose there is an atom C ∈ Br over Bg × [0, 1]
with λr(C) > r. Then C ′ := ([r, 1]× [0, 1]) ∩ C is a subset of positive mea-
sure. Note that σ({A1 × A2 : A1 ∈ B([r, 1]), A2 ∈ B}) is atomless over
B([r, 1]) × [0, 1] and B([r, 1]) × [0, 1] ⊇ (Bg × [0, 1]) ∩ (B([r, 1]) × [0, 1]).
By the definition, σ({A1 × A2 : A1 ∈ B([r, 1]), A2 ∈ B}) is atom-
less over (Bg × [0, 1]) ∩ (B([r, 1]) × [0, 1]). Hence C ′ is not an atom over
(Bg× [0, 1])∩(B([r, 1])× [0, 1]). Therefore, C is not an atom over Bg× [0, 1].
Thus, each atom in Br over Bg×[0, 1] has measure at most r. Because β is an
isomorphism, β([0, r1]×[0, 1]) is also an atom over β(Bg×[0, 1]) = Bg×[0, 1].
But λr2(β([0, r1] × [0, 1])) = λr1([0, r1] × [0, 1]) = r1 > r2. This contradicts
the fact that each atom in Br2 over Bg × [0, 1] has measure at most r2.

Therefore, ARV(f) has continuum many separable models.

4. Some applications. Keisler, Hoover, Fajardo, and Sun have pub-
lished several papers around model-theoretic results for probability spaces;
for example, see [HK], [Ho], [FK], and [KS]. Some of their results are closely
related to the d-finiteness in ARV.

Proposition 4.1. No separable model of ARV is ℵ0-saturated.

Proof. Let M be a separable model of ARV and let f be a non-d-finite
tuple of M . Then the theory ARV(f) is not ℵ0-categorical. By the omitting
types theorem [BU1, Theorem 1.11], M as a model of ARV(f) omits some
types in SARV

1 (f), so it is not ℵ0-saturated.

Fact 4.2 ([S2, Theorem 5.5.4]). A probability space (Ω,F , µ) is Hoover–
Keisler saturated if and only if L1(µ, [0, 1]) as a model of ARV is ℵ0-saturated.

Corollary 4.3 ([FK, Theorem 3B.1]). No ordinary probability space is
Hoover–Keisler saturated.

Proposition 4.4. Let M |= ARV. Then for every d-finite tuple f in M
and every type p(f, y) in S1(f), there is a g ∈M realizing p(f, y).

Proof. This follows from Proposition 2.2.
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Corollary 4.5. Let Ω be an atomless probability space, and let Γ be
another probability space. Let X and Y be Polish spaces. Then for every dis-
crete X -valued random variable x on Ω and every pair of random variables
(x′, y′) on Γ with values in X and Y such that dist(x′) = dist(x), there exists
a random variable y on Ω such that dist(x, y) = dist(x′, y′).

Proof. By the Borel Isomorphism Theorem [K, Theorem 15.6], we may
assume X = Y = [0, 1]. The rest follows from Theorem 1.1, Theorem 3.1,
and Proposition 4.4.

Remark 4.6. Corollary 4.5 is a generalization of [FK, Proposition 3B.3],
where x is a simple X -valued random variable instead of being discrete.

Let M be a model of a theory T . Let p(x, y) and q(x) be two complete
types in T such that q(x) ⊆ p(x, y). We say M has the saturation property
for p(x, y) if for every a ∈ M with a |= q(x) there is b ∈ M such that
(a, b) |= p(x, y).

Theorem 4.7. Let M be L1(λ, [0, 1]), where ([0, 1],L, λ) is the standard
Lebesgue space. For every non-d-finite type p(x) in ARV, there is a complete
type q(x, y) ⊇ p(x) in ARV such that M does not have the saturation property
for q(x, y). For every model N of ARV, if N has the saturation property for
q(x, y), then N is ℵ0-saturated.

Proof. If p(x) is not d-finite, then for every a ∈M with a |= p(x) we find
that ARV(a) is not ℵ0-categorical, and thus there is a type r ∈ S(ARV(a))
such that r is not realized in (M,a). Hence, there is a complete type q(x, y) ⊇
p(x) in ARV such that M does not have the saturation property for q(x, y).

Let N = L1((Ω,F , µ), [0, 1]). Suppose N is not ℵ0-saturated. By Fact
4.2, (Ω,F , µ) is Hoover–Keisler saturated. By [FK, Theorem 3B.7] and Ma-
haram’s Theorem, (Ω,F , µ) is a convex combination of (Ωc,Fc, µc) and
(Ωu,Fu, µu), where the Maharam spectrum of Ωu is a set of uncountable
cardinals, while (Ωc,Fc, µc) is isomorphic to ([0, 1],L, λ). We assume that
Ω = rΩc + (1− r)Ωu, where 0 < r < 1.

Take (f ′, g′) ∈M2 such that tp(f ′, g′) = q(x, y), and thus tp(f ′) = p(x).
By Theorem 1.1, f ′ = f ′c + f ′d, where f ′d is discrete, σ(f ′c) is atomless, and
f ′d · f ′c = 0. Since M does not have the saturation property for q(x, y), we
infer that g′ /∈ acl(f ′). Thus, g′ /∈ acl(f ′c). By Theorem 3.1, g′ is not σ(f ′c)-
measurable. Hence there is a σ(f ′c)-measurable set A with µ(A) = r such
that g′�A is not σ(f ′c�A)-measurable. By Theorem 3.1, we have 1A ∈ acl(f ′)
with µ(A) = r such that g′ · 1A /∈ acl(f ′ · 1A). Since ARV is ℵ0-categorical,
there is fc : (Ωc, rµc)→ [0, 1] such that dist(fc) = dist(f ′c�A) and σ(fc) = Fc,
and there is fu : (Ωu, (1 − r)µu) → [0, 1] such that dist(fu) = dist(f ′�A{).
Define f : Ω → [0, 1] as fc t fu. Then dist(f,1Ωc) = dist(f ′,1A), and thus
tp(f,1Ωc) = tp(f ′,1A). Since N has the saturation property for q(x, y),
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there is g : Ω → [0, 1] such that tp(f, g) = q(x, y) = tp(f ′, g′). Then as
tp(f,1Ωc) = tp(f ′,1A), 1A ∈ acl(f ′), and g′ · 1A /∈ acl(f ′ · 1A), we have
g · 1Ωc /∈ acl(f · 1Ωc). But σ(fc) = Fc implies that g�Ωc

is σ(fc)-measurable,
which contradicts the fact that g · 1Ωc /∈ acl(f · 1Ωc). Hence, N is ℵ0-
saturated.

Now Theorem 1.3 follows from the Borel Isomorphism Theorem, Theo-
rem 1.1, Theorem 4.7, and Fact 4.2.

Remark 4.8. Theorem 1.3 is an extension of [KS, Theorem 2.7], where
dist(f) is atomless instead of non-atomic.
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