Weak square sequences and special Aronszajn trees

by

John Krueger (Denton, TX)

Abstract. A classical theorem of set theory is the equivalence of the weak square principle \Box^*_{μ} with the existence of a special Aronszajn tree on μ^+ . We introduce the notion of a weak square sequence on any regular uncountable cardinal, and prove that the equivalence between weak square sequences and special Aronszajn trees holds in general.

Recall the weak square principle \Box^*_{μ} for an infinite cardinal μ , which asserts the existence of a sequence $\langle \mathcal{C}_{\alpha} : \alpha \in \mu^+ \cap \text{Lim} \rangle$ satisfying:

- (1) for all $c \in \mathcal{C}_{\alpha}$, c is a club subset of α with order type at most μ ;
- (2) $|\mathcal{C}_{\alpha}| \leq \mu;$
- (3) for all $c \in \mathcal{C}_{\alpha}$, if $\beta \in \lim(c)$ then $c \cap \beta \in \mathcal{C}_{\beta}$.

For a regular uncountable cardinal κ , a tree $(T, <_T)$ is a κ -tree if it has height κ and all its levels are of size less than κ . For a successor cardinal $\kappa = \mu^+$, a κ -tree $(T, <_T)$ is a special Aronszajn tree if T is the union of μ many antichains. Equivalently, T is special if there exists a function $f: T \to$ μ such that $t <_T u$ implies $f(t) \neq f(u)$.

The following classical theorem was originally noted by Jensen [2]. Let μ be an infinite cardinal. Then \Box^*_{μ} is equivalent to the existence of a special Aronszajn tree on μ^+ .

Todorčević [3] introduced a more general definition of a special Aronszajn tree. For a regular uncountable cardinal κ , a tree $(T, <_T)$ of height κ is said to be a *special Aronszajn tree* if there exists a function $g: T \to T$ satisfying:

- (1) $g(t) <_T t$ for all nonminimal $t \in T$;
- (2) for all $u \in T$, $g^{-1}(\{u\})$ is the union of fewer than κ many antichains.

This definition coincides with the classical definition of a special Aronszajn tree when κ is a successor cardinal.

²⁰¹⁰ Mathematics Subject Classification: Primary 03E05.

Key words and phrases: weak square sequence, special Aronszajn tree.

In this paper we introduce a definition of a weak square sequence which makes sense on any regular uncountable cardinal. We prove that the existence of such a sequence on a regular uncountable cardinal κ is equivalent to the existence of a special Aronszajn tree on κ in the sense of Todorčević.

NOTATION. Let Lim and Succ denote the classes of limit ordinals and successor ordinals respectively. Let $cof(\omega)$ denote the class of limit ordinals of countable cofinality, and let $cof(>\omega)$ denote the class of limit ordinals of uncountable cofinality. For a set *a* of ordinals, ot(a) is the order type of *a*, and lim(a) is the set of ordinals β such that $sup(a \cap \beta) = \beta$.

A tree is a strict partial order $(T, <_T)$ such that for every node $x \in T$, the set $\{y \in T : y <_T x\}$ is well ordered by $<_T$. The *height* of a node $x \in T$, denoted by ht(x), is the order type of $\{y \in T : y <_T x\}$. Let $T_{\alpha} = \{x \in T : ht(x) = \alpha\}$ denote level α of T, for any ordinal α . The *height* of the tree T is the least α such that T_{α} is empty. For finite sequences uand $v, u \sqsubseteq v$ means that u is an initial segment of v, and $u \sqsubset v$ means that u is a proper initial segment of v.

1. Weak square sequences. The next definition generalizes the idea of a weak square sequence to any regular uncountable cardinal.

DEFINITION 1.1. Let κ be a regular uncountable cardinal. A sequence $\langle c_{\alpha} : \alpha \in C \rangle$ is a *weak square sequence* on κ if:

- (1) $C \subseteq \kappa \cap \text{Lim is a club};$
- (2) for all $\alpha \in C$, c_{α} is a club subset of α with order type less than α ;
- (3) for every $\xi < \kappa$, $|\{c_{\alpha} \cap \xi : \alpha \in C\}| < \kappa$.

Note that if there exists a weak square sequence $\langle c_{\alpha} : \alpha \in C \rangle$ on κ , then κ is non-Mahlo. Indeed, (2) implies that every ordinal in the club C is singular.

The goal of this section is to show that for an infinite cardinal μ , the existence of a weak square sequence on μ^+ in the sense above is equivalent to the classical weak square principle \Box^*_{μ} . The main challenge lies in reducing the order type of the clubs on the sequence.

Let us note that for an infinite cardinal μ , \Box^*_{μ} is equivalent to the existence of a sequence $\langle c_{\alpha} : \alpha \in \mu^+ \cap \operatorname{Lim} \rangle$, where each c_{α} is a club subset of α with order type at most μ , and for every $\xi < \mu^+$, $|\{c_{\alpha} \cap \xi : \alpha \in \mu^+ \cap \operatorname{Lim}\}| \le \mu$. For if we have such a sequence, we can define for each limit ordinal α the set \mathcal{C}_{α} to be the collection of sets of the form $c_{\beta} \cap \alpha$, where $\beta \in \mu^+ \cap \operatorname{Lim}$ and $\alpha \in \lim(c_{\beta})$. Conversely, given $\langle \mathcal{C}_{\alpha} : \alpha \in \mu^+ \cap \operatorname{Lim} \rangle$, a sequence $\langle c_{\alpha} : \alpha \in \mu^+ \cap \operatorname{Lim} \rangle$ is obtained as required by choosing c_{α} to be any member of \mathcal{C}_{α} . LEMMA 1.2. Let κ be a regular uncountable cardinal. Suppose there exists a weak square sequence on κ . Then there exists a sequence $\langle c_{\alpha} : \alpha \in \kappa \cap \text{Lim} \rangle$ satisfying:

- (1) each c_{α} is a club subset of α ;
- (2) if α is singular then $\operatorname{ot}(c_{\alpha}) < \alpha$;
- (3) there is a club $C \subseteq \kappa$ such that for all $\alpha \in C$, $\operatorname{ot}(c_{\alpha}) < \min(c_{\alpha})$;
- (4) for all $\alpha \in (\kappa \cap \operatorname{Lim}) \setminus C$, $\min(c_{\alpha}) > \sup(C \cap \alpha)$;
- (5) for every $\xi < \kappa$, $|\{c_{\alpha} \cap \xi : \alpha \in \kappa \cap \operatorname{Lim}\}| < \kappa$.

Proof. Fix a sequence $\langle d_{\alpha} : \alpha \in C \rangle$ satisfying Definition 1.1. We define a sequence $\langle c_{\alpha} : \alpha \in \kappa \cap \text{Lim} \rangle$ as follows. If $\alpha \in C$, then $\operatorname{ot}(d_{\alpha}) < \alpha$. So let $c_{\alpha} = d_{\alpha} \setminus (\operatorname{ot}(d_{\alpha}) + 1)$. If $\alpha < \kappa$ is a limit ordinal not in C, then since C is a club, $\sup(C \cap \alpha) < \alpha$. Let c_{α} be any club subset of α with order type cf(α) such that $\min(c_{\alpha}) > \sup(C \cap \alpha)$. Clearly (1)–(4) are satisfied.

We claim that for every $\xi < \kappa$, $|\{c_{\alpha} \cap \xi : \alpha \in \kappa \cap \operatorname{Lim}\}| < \kappa$. Let $\gamma = \min(C \setminus \xi)$. Then for every limit ordinal $\beta \in \kappa \setminus C$ which is larger than γ , $\min(c_{\beta}) > \gamma$, so $c_{\beta} \cap \xi = \emptyset$. It follows that the nonempty members of the set $\{c_{\alpha} \cap \xi : \alpha \in \kappa \cap \operatorname{Lim}\}$ are in the set

$$\bigcup_{\delta < \xi} \{ d_{\alpha} \cap [\delta, \xi) : \alpha \in C \} \cup \{ c_{\beta} \cap \xi : \beta \in \gamma \setminus C \}.$$

There are fewer than κ many elements in the set on the left by assumption, and clearly there are no more than $|\gamma| < \kappa$ many elements in the set on the right.

LEMMA 1.3. Let κ be a regular uncountable cardinal. Suppose $\langle c_{\alpha} : \alpha \in \kappa \cap \text{Lim} \rangle$ is a sequence satisfying:

- (1) each c_{α} is a club subset of α ;
- (2) if α is singular then $\operatorname{ot}(c_{\alpha}) < \alpha$;
- (3) for every $\xi < \kappa$, $|\{c_{\alpha} \cap \xi : \alpha \in \kappa \cap \text{Lim}\}| < \kappa$.

For each limit ordinal $\alpha < \kappa$, let $f_{\alpha} : \operatorname{ot}(c_{\alpha}) \to c_{\alpha}$ be the increasing enumeration of c_{α} . Define a sequence $\langle d_{\alpha} : \alpha \in \kappa \cap \operatorname{Lim} \rangle$ by letting

$$d_{\alpha} = \begin{cases} c_{\alpha} & \text{if } \operatorname{ot}(c_{\alpha}) = \operatorname{cf}(\alpha), \\ f_{\alpha}[c_{\operatorname{ot}(c_{\alpha})}] & \text{if } \operatorname{ot}(c_{\alpha}) > \operatorname{cf}(\alpha). \end{cases}$$

Then $\langle d_{\alpha} : \alpha \in \kappa \cap \text{Lim} \rangle$ also satisfies conditions (1)–(3) above; moreover, in the case that $\operatorname{ot}(c_{\alpha}) > \operatorname{cf}(\alpha)$, we have $\operatorname{ot}(d_{\alpha}) < \operatorname{ot}(c_{\alpha})$.

Proof. Consider a limit ordinal $\alpha < \kappa$. If $\operatorname{ot}(c_{\alpha}) = \operatorname{cf}(\alpha)$, then $d_{\alpha} = c_{\alpha}$ so (1) and (2) hold for d_{α} . Suppose $\operatorname{ot}(c_{\alpha}) > \operatorname{cf}(\alpha)$. Then, in particular, α is singular. Since $f_{\alpha} : \operatorname{ot}(c_{\alpha}) \to \alpha$ is normal and cofinal in α , $d_{\alpha} = f_{\alpha}[c_{\operatorname{ot}(c_{\alpha})}]$ is a club subset of α with order type equal to $\operatorname{ot}(c_{\operatorname{ot}(c_{\alpha})})$; but $\operatorname{ot}(c_{\operatorname{ot}(c_{\alpha})}) \leq \operatorname{ot}(c_{\alpha}) < \alpha$. So (1) and (2) hold. For the final comment, assume $\operatorname{ot}(c_{\alpha}) > \operatorname{cf}(\alpha)$. Note that $\operatorname{cf}(\operatorname{ot}(c_{\alpha})) = \operatorname{cf}(\alpha) < \operatorname{ot}(c_{\alpha})$, so $\operatorname{ot}(c_{\alpha})$ is singular. Therefore $\operatorname{ot}(c_{\operatorname{ot}(c_{\alpha})}) < \operatorname{ot}(c_{\alpha})$ by (2). So $\operatorname{ot}(d_{\alpha}) = \operatorname{ot}(c_{\operatorname{ot}(c_{\alpha})}) < \operatorname{ot}(c_{\alpha})$.

Let $\xi < \kappa$ be given; we prove $|\{d_{\alpha} \cap \xi : \alpha \in \kappa \cap \text{Lim}\}| < \kappa$. Note that

$$\{d_{\alpha} \cap \xi : \alpha \in \kappa \cap \operatorname{Lim}, \operatorname{ot}(c_{\alpha}) = \operatorname{cf}(\alpha)\} \subseteq \{c_{\alpha} \cap \xi : \alpha \in \kappa \cap \operatorname{Lim}\},\$$

so the set on the left has size less than κ . It remains to show that the set

 $\{d_{\alpha} \cap \xi : \alpha \in \kappa \cap \text{Lim}, \text{ ot}(c_{\alpha}) > \text{cf}(\alpha)\}$

has size less than κ .

Consider a limit ordinal α such that $\operatorname{ot}(c_{\alpha}) > \operatorname{cf}(\alpha)$. Then $d_{\alpha} = f_{\alpha}[c_{\operatorname{ot}(c_{\alpha})}]$. Since f_{α} is the increasing enumeration of c_{α} , clearly $c_{\alpha} \cap \xi = f_{\alpha}[\operatorname{ot}(c_{\alpha} \cap \xi)]$. As $d_{\alpha} \subseteq c_{\alpha}$ and f_{α} is injective, we have $d_{\alpha} \cap \xi = d_{\alpha} \cap c_{\alpha} \cap \xi = f_{\alpha}[c_{\operatorname{ot}(c_{\alpha})}] \cap f_{\alpha}[\operatorname{ot}(c_{\alpha} \cap \xi)] = f_{\alpha}[c_{\operatorname{ot}(c_{\alpha})} \cap \operatorname{ot}(c_{\alpha} \cap \xi)]$. Let $g_{\alpha} : \operatorname{ot}(c_{\alpha} \cap \xi) \to c_{\alpha} \cap \xi$ be the increasing enumeration of $c_{\alpha} \cap \xi$. Then $g_{\alpha} = f_{\alpha}[\operatorname{ot}(c_{\alpha} \cap \xi)]$. So we have

$$d_{\alpha} \cap \xi = g_{\alpha}[c_{\operatorname{ot}(c_{\alpha})} \cap \operatorname{ot}(c_{\alpha} \cap \xi)].$$

Now the function g_{α} is determined by $c_{\alpha} \cap \xi$, and there are fewer than κ many possibilities for $c_{\alpha} \cap \xi$. Once $c_{\alpha} \cap \xi$ is known, $d_{\alpha} \cap \xi$ is determined by $c_{\operatorname{ot}(c_{\alpha})} \cap \operatorname{ot}(c_{\alpha} \cap \xi)$, and again there are fewer than κ many possibilities for this set. So there are fewer than κ many possibilities for $d_{\alpha} \cap \xi$.

PROPOSITION 1.4. Let κ be a regular uncountable cardinal. Suppose $\langle c_{\alpha} : \alpha \in \kappa \cap \text{Lim} \rangle$ is a sequence satisfying:

- (1) each c_{α} is a club subset of α ;
- (2) if α is singular then $\operatorname{ot}(c_{\alpha}) < \alpha$;
- (3) for every $\xi < \kappa$, $|\{c_{\alpha} \cap \xi : \alpha \in \kappa \cap \operatorname{Lim}\}| < \kappa$.

Then there exists a sequence $\langle d_{\alpha} : \alpha \in \kappa \cap \text{Lim} \rangle$ satisfying (1)–(3), and moreover, each d_{α} has order type equal to $cf(\alpha)$.

Proof. By induction we define for each $n < \omega$ a sequence

$$\langle c_{\alpha}^n : \alpha \in \kappa \cap \operatorname{Lim} \rangle.$$

The inductive hypotheses are that the sequence of c_{α}^{n} 's satisfies (1)–(3), and moreover, if $\operatorname{ot}(c_{\alpha}^{n}) > \operatorname{cf}(\alpha)$, then $\operatorname{ot}(c_{\alpha}^{n+1}) < \operatorname{ot}(c_{\alpha}^{n})$. Let $c_{\alpha}^{0} = c_{\alpha}$ for all limit ordinals $\alpha < \kappa$.

Fix $n < \omega$ and suppose that $\langle c_{\alpha}^{n} : \alpha \in \kappa \cap \text{Lim} \rangle$ is defined as required. For each α let $f_{\alpha}^{n} : \text{ot}(c_{\alpha}^{n}) \to c_{\alpha}^{n}$ be the increasing enumeration of c_{α}^{n} . Define c_{α}^{n+1} by

$$c_{\alpha}^{n+1} = \begin{cases} c_{\alpha}^{n} & \text{if } \operatorname{ot}(c_{\alpha}^{n}) = \operatorname{cf}(\alpha), \\ f_{\alpha}^{n}[c_{\operatorname{ot}(c_{\alpha}^{n})}^{n}] & \text{if } \operatorname{ot}(c_{\alpha}^{n}) > \operatorname{cf}(\alpha). \end{cases}$$

Lemma 1.3 implies that $\langle c_{\alpha}^{n+1} : \alpha < \kappa \text{ limit} \rangle$ satisfies the inductive hypotheses. This completes the definition.

270

Now we define the sequence $\langle d_{\alpha} : \alpha \in \kappa \cap \operatorname{Lim} \rangle$. Consider a limit ordinal $\alpha < \kappa$. Since $\operatorname{ot}(c_{\alpha}^{n+1}) < \operatorname{ot}(c_{\alpha}^{n})$ provided that $\operatorname{ot}(c_{\alpha}^{n}) > \operatorname{cf}(\alpha)$, there must exist a least k such that $\operatorname{ot}(c_{\alpha}^{k}) = \operatorname{cf}(\alpha)$. Then by definition, for all $m \geq k$, $c_{\alpha}^{m} = c_{\alpha}^{k}$. Let $d_{\alpha} = c_{\alpha}^{k}$, which is the eventual value of the club attached to α . Clearly d_{α} is a club subset of α with order type $\operatorname{cf}(\alpha)$, and in particular, if α is singular then $\operatorname{ot}(c_{\alpha}) < \alpha$.

To show (3), consider $\xi < \kappa$. Then for all $n < \omega$, $|\{c_{\alpha}^n \cap \xi : \alpha \in \kappa \cap \text{Lim}\}| < \kappa$. But

$$\{d_{\alpha} \cap \xi : \alpha \in \kappa \cap \operatorname{Lim}\} \subseteq \bigcup_{n < \omega} \{c_{\alpha}^{n} \cap \xi : \alpha \in \kappa \cap \operatorname{Lim}\};\$$

so the set on the left is a subset of a countable union of sets each having cardinality less than $\kappa.$ \blacksquare

THEOREM 1.5. Let μ be an infinite cardinal. Then \Box^*_{μ} holds iff there exists a weak square sequence on μ^+ in the sense of Definition 1.1.

Proof. If \Box^*_{μ} holds, then as noted above there exists a sequence $\langle c_{\alpha} : \alpha \in \mu^+ \cap \operatorname{Lim} \rangle$ such that each c_{α} is a club subset of α with order type at most μ , and for every $\xi < \mu^+$, $|\{c_{\alpha} \cap \xi : \alpha \in \mu^+ \cap \operatorname{Lim}\}| \leq \mu$. Let *C* be the club set of limit ordinals α with $\mu < \alpha < \mu^+$. Then $\langle c_{\alpha} : \alpha \in C \rangle$ satisfies Definition 1.1. Conversely, suppose there exists a weak square sequence on μ^+ . Then by Lemma 1.2 and Proposition 1.4, there exists a sequence $\langle d_{\alpha} : \alpha \in \kappa \cap \operatorname{Lim} \rangle$ such that each d_{α} is a club subset of α with order type $\operatorname{cf}(\alpha) \leq \mu$, and for every $\xi < \kappa$, $|\{d_{\alpha} \cap \xi : \alpha \in \kappa \cap \operatorname{Lim}\}| < \kappa$. Therefore \Box^*_{μ} holds.

2. A special Aronszajn tree implies weak square. According to the classical definition, for an infinite cardinal μ , a tree $(T, <_T)$ of height μ^+ is a *special Aronszajn tree* if T is the union of μ many antichains, or equivalently, if there exists a function $f: T \to \mu$ such that for all $t, u \in T$, $t <_T u$ implies $f(t) \neq f(u)$.

Todorčević [3] introduced a more general definition of a special Aronszajn tree which makes sense for any regular uncountable cardinal. Recall that if $(T, <_T)$ is a tree, a function $g: T \to T$ is said to be *regressive* if $f(a) <_T a$ for all nonminimal $a \in T$.

DEFINITION 2.1. Let κ be a regular uncountable cardinal. A tree $(T, <_T)$ with height κ is a special Aronszajn tree if there exists a regressive function $g: T \to T$ such that for all $b \in T$, the set $g^{-1}(\{b\})$ is the union of fewer than κ many antichains.

We will sometimes abbreviate "special Aronszajn tree" to "special tree". A special Aronszajn tree on κ means a κ -tree which is special. Note that T is special iff there is a regressive function $g: T \to T$ such that for all $b \in T$, there is an ordinal $\lambda_b < \kappa$ and a function $f_b : g^{-1}(\{b\}) \to \lambda_b$ such that for all $t, u \in g^{-1}(\{b\}), t <_T u$ implies $f_b(t) \neq f_b(u)$.

The equivalence between the two definitions of "special" for successor cardinals was noted in [3] without proof.

PROPOSITION 2.2 (Todorčević). Let μ be an infinite cardinal and let $(T, <_T)$ be a tree of height μ^+ . Then T is a special Aronszajn tree in the classical sense iff T satisfies Definition 2.1.

Proof. The forward direction of the equivalence is trivial: just define a regressive function which maps every node to a minimal node. Now suppose there is a regressive function $g: T \to T$, and for each $b \in T$, some ordinal $\lambda_b < \mu^+$ and a function $f_b: g^{-1}(\{b\}) \to \lambda_b$ such that for all $t, u \in g^{-1}(\{b\})$, $t <_T u$ implies $f_b(t) \neq f_b(u)$. Without loss of generality, we can assume $\lambda_b = \mu$ for all b.

We define a function $f: T \to {}^{<\omega}\mu$ so that $c <_T d$ implies $f(c) \neq f(d)$ for all $c, d \in T$. Clearly this suffices since ${}^{<\omega}\mu$ has size μ . Consider a node $a \in T$. If a is minimal then let f(a) be the empty sequence. Suppose ais not minimal. Define g^k for $k < \omega$ by recursion, letting $g^0(a) = a$, and $g^{k+1}(a) = g(g^k(a))$ if $g^k(a)$ is not minimal. Since g is regressive, we have $\operatorname{ht}(g^1(a)) > \operatorname{ht}(g^2(a)) > \cdots > \operatorname{ht}(g^k(a))$. Let m be least such that $g^m(a)$ is minimal. Define f(a) by

$$f(a) = \langle f_{g(a)}(a), f_{g^2(a)}(g(a)), \dots, f_{g^m(a)}(g^{m-1}(a)) \rangle.$$

Suppose for a contradiction $c <_T d$ but f(c) = f(d). Since d is not minimal, f(c) = f(d) is not empty, so c is not minimal either. Let m > 0be least such that $g^m(c)$ is minimal. Since m is the length of the sequence f(c) = f(d), m is also least such that $g^m(d)$ is minimal. As $g^m(c) <_T c <_T d$, $g^m(c) <_T d$, and hence $g^m(c) = g^m(d)$. Let $0 < k \le m$ be least such that $g^k(c) = g^k(d)$.

Since $g^{k-1}(c) \leq_T c$, $g^{k-1}(d) \leq_T d$, and $c <_T d$, $g^{k-1}(c)$ and $g^{k-1}(d)$ are comparable and not equal. But $g(g^{k-1}(c)) = g^k(c) = g^k(d) = g(g^{k-1}(d))$. Therefore $f_{g^k(c)}(g^{k-1}(c)) \neq f_{g^k(d)}(g^{k-1}(d))$, which contradicts f(c) = f(d).

Recall the standard fact that for a strongly inaccessible cardinal κ , κ is weakly compact iff there does not exist an Aronszajn tree on κ . Todorčević [3] used his general definition of a special Aronszajn tree to provide an analogue of this result which characterizes Mahlo cardinals.

THEOREM 2.3 (Todorčević). Let κ be a strongly inaccessible cardinal. Then the following are equivalent:

- (1) κ is a Mahlo cardinal;
- (2) there does not exist a special Aronszajn tree on κ .

We will prove that for a regular uncountable cardinal κ , the existence of a special Aronszajn tree on κ is equivalent to the existence of a weak square sequence on κ . We first show the forward direction; the proof follows the lines of Section 5.2 in [1], which handles the case when κ is a successor cardinal.

First let us give a simpler characterization of a special Aronszajn tree on κ .

LEMMA 2.4. Let $(T, <_T)$ be a κ -tree, where κ is a regular uncountable cardinal. Then T is special iff there exists a function $g: T \to \kappa$ such that $g(t) < \operatorname{ht}(t)$ for all nonminimal t, and for all $\beta < \kappa$, $g^{-1}(\{\beta\})$ is the union of fewer than κ many antichains.

Proof. For the forward direction, given a regressive $f: T \to T$ witnessing that T is special, define $g(t) = \operatorname{ht}(f(t))$. Then $g^{-1}(\{\beta\}) = \bigcup\{f^{-1}(\{b\}) :$ $\operatorname{ht}(b) = \beta\}$. Each $f^{-1}(\{b\})$ is the union of fewer than κ many antichains, and there are fewer than κ many such b's since T is a κ -tree. Hence $g^{-1}(\{\beta\})$ is the union of fewer than κ many antichains. Conversely, given $g: T \to \kappa$ as described above, define $f(b) = b \restriction g(b)$ for nonminimal b.

THEOREM 2.5. Let κ be a regular uncountable cardinal. If there exists a special Aronszajn tree on κ , then there exists a weak square sequence on κ .

Proof. Let $(T, <_T)$ be a κ -tree and suppose that T is special. Fix a function $g: T \to \kappa$, where $g(t) < \operatorname{ht}(t)$ for all nonminimal t, and for each $\beta < \kappa$ a function $f_{\beta} : g^{-1}(\{\beta\}) \to \lambda_{\beta}$, where $\lambda_{\beta} < \kappa$, such that for all $c, d \in g^{-1}(\{\beta\}), c <_T d$ implies $f_{\beta}(c) \neq f_{\beta}(d)$.

For each limit ordinal α we define a family \mathcal{A}_{α} of cofinal subsets of α . Fix a limit ordinal α . Consider the following property which a node x in T_{α} may or may not satisfy: there exists $\beta < \alpha$ such that the set

$$\{\operatorname{ht}(y): y <_T x \land g(y) < \beta\}$$

is cofinal in α .

We claim that if α has uncountable cofinality, then this property is true for all $x \in T_{\alpha}$. Indeed, fix a sequence $\langle \alpha_i : i < \operatorname{cf}(\alpha) \rangle$ which is increasing, continuous, and cofinal in α . Since $g(t) < \operatorname{ht}(t)$ for all nonminimal t, there exists a regressive function $h : \operatorname{cf}(\alpha) \cap \operatorname{Lim} \to \operatorname{cf}(\alpha)$ so that for all limit ordinals $\gamma < \operatorname{cf}(\alpha)$, if $z <_T x$ has height α_{γ} , then $g(z) < \alpha_{h(\gamma)}$. Since $\operatorname{cf}(\alpha)$ is regular, there is some $\delta < \operatorname{cf}(\alpha)$ such that $h^{-1}(\{\delta\})$ is stationary in $\operatorname{cf}(\alpha)$. Let $X = \{\alpha_{\gamma} : \gamma \in h^{-1}(\{\delta\})\}$. Then X is cofinal in α and $X \subseteq \{\operatorname{ht}(y) : y <_T x \land g(y) < \alpha_{\delta}\}$.

For each limit ordinal $\alpha < \kappa$ and each $x \in T_{\alpha}$, we define a set d_x which is a club in α . Let β_x be the least ordinal such that the set $\{\operatorname{ht}(y) : y <_T x \land g(y) < \beta_x\}$ is cofinal in α . Note that $\beta_x \leq \alpha$, and if $\operatorname{cf}(\alpha) > \omega$ then $\beta_x < \alpha$. The process of defining the club d_x involves defining a limit ordinal $\delta_x \leq \alpha$ and sequences

 $\langle \beta(x,i) : i \in \delta_x \cap \operatorname{Succ} \rangle, \quad \langle \alpha(x,i) : i < \delta_x \rangle, \quad \langle z(x,i) : i \in \delta_x \cap \operatorname{Succ} \rangle$

which satisfy:

- (1) $\beta(x, j) \leq \beta(x, i) < \beta_x$ for all successor ordinals $j < i < \delta_x$;
- (2) $\langle \alpha(x,i) : i < \delta_x \rangle$ is an increasing and continuous sequence of ordinals cofinal in α ;
- (3) z(x,i) is the unique node with height $\alpha(x,i)$ such that $z(x,i) <_T x$ for all $i \in \delta_x \cap \text{Succ}$;
- (4) $g(z(x,i)) = \beta(x,i)$ for all $i \in \delta_x \cap \text{Succ}$;
- (5) if $j < i < \delta_x$ are successor ordinals and $\beta(x, j) = \beta(x, i)$, then

 $f_{\beta(x,j)}(z(x,j)) < f_{\beta(x,j)}(z(x,i)).$

After the construction is complete, we let $d_x = \{\alpha(x, i) : i < \delta_x\}$, which is a club subset of α with order type δ_x .

Let *i* be given and suppose that the objects above are defined as required for all j < i. If $\sup_{j < i} \alpha(x, j) = \alpha$, then let $i = \delta_x$ and we are done. Now assume $\sup_{j < i} \alpha(x, j) < \alpha$. If i = 0 then let $\alpha(x, i) = 0$, and if *i* is a limit ordinal then let $\alpha(x, i) = \sup_{j < i} \alpha(x, j)$. Suppose that *i* is a successor ordinal.

Consider the set

$$\{y <_T x : \operatorname{ht}(y) > \alpha(x, i-1)\}.$$

By the choice of β_x , there exists y in this set such that $g(y) < \beta_x$. Let $\beta(x,i)$ be the least ordinal such that there is $y <_T x$ with height greater than $\alpha(x,i-1)$ and $g(y) = \beta(x,i)$. Then $\beta(x,i) < \beta_x$. We claim that for all successor ordinals $j < i, \beta(x,j) \le \beta(x,i)$. Since $\alpha(x,j-1) < \alpha(x,i-1)$, there exists z in the set $\{y <_T x : \operatorname{ht}(y) > \alpha(x,j-1)\}$ such that $g(z) = \beta(x,i)$. By the minimality of $\beta(x,j), \beta(x,j) \le \beta(x,i)$.

To define $\alpha(x, i)$, consider the set

$$\{y <_T x : ht(y) > \alpha(x, i-1) \land g(y) = \beta(x, i)\}.$$

By the choice of $\beta(x, i)$, this set is nonempty. Moreover, since this set is a chain, $f_{\beta(x,i)}$ is injective on it. Let z(x, i) be the unique element in this set with the minimal value under $f_{\beta(x,i)}$. Then let $\alpha(x, i) = \operatorname{ht}(z(x, i))$.

We claim that if j < i is a successor ordinal and $\beta(x, i) = \beta(x, j)$, then

$$f_{\beta(x,j)}(z(x,j)) < f_{\beta(x,j)}(z(x,i)).$$

For since $\alpha(x, j - 1) < \alpha(x, i - 1)$ and $\beta(x, i) = \beta(x, j)$, the node z(x, i) is in the set

$$\{y <_T x : \operatorname{ht}(y) > \alpha(x, j-1) \land g(y) = \beta(x, j)\}.$$

Since z(x, j) has the minimal value in this set under $f_{\beta(x,j)}$, $f_{\beta(x,j)}(z(x,j)) < f_{\beta(x,j)}(z(x,i))$ as desired.

This completes the construction. Let us consider the order type δ_x of d_x for a node $x \in T$. For any ordinal $\beta < \kappa$, let $\theta(\beta)$ denote the order type of the well-order whose underlying set is

$$\bigcup_{\gamma < \beta} \gamma \times \lambda_{\gamma}$$

and ordered by lexicographical order $<_{\text{lex}}$. Note that $\theta(\beta) < \kappa$. For each $x \in T$, (1) and (5) imply that the function

$$i \mapsto \langle \beta(x,i), f_{\beta(x,i)}(z(x,i)) \rangle$$

which maps from $\delta_x \cap \text{Succ}$ into the well-order $(\bigcup_{\gamma < \beta_x} \gamma \times \lambda_{\gamma}, <_{\text{lex}})$, is increasing. Since δ_x is a limit ordinal, δ_x and $\delta_x \cap \text{Succ}$ have the same order type. It follows that $\delta_x \leq \theta(\beta_x)$.

Let C be the club set of limit ordinals $\alpha < \kappa$ greater than ω such that for all $\beta < \alpha$, $\theta(\beta) < \alpha$. If $\alpha \in C$ has uncountable cofinality and $x \in T_{\alpha}$, then $\beta_x < \alpha$ and so $\theta(\beta_x) < \alpha$. Therefore $\operatorname{ot}(d_x) = \delta_x \leq \theta(\beta_x) < \alpha$.

Now we prove the following statement: for every limit ordinal $\alpha < \kappa$ and for every node x with height α , if $\xi \in \lim(d_x)$, then letting $w <_T x$ have height ξ , $d_x \cap \xi = d_w$. So let such α , x, ξ , and w be given. Recall that β_w is the least ordinal such that the set {ht(y) : $y <_T w \land g(y) < \beta_w$ } is cofinal in ξ . Since $d_x \cap \xi$ is cofinal in ξ and for all $\gamma \in d_x$, $g(\gamma) < \beta_x$, clearly $\beta_w \leq \beta_x$.

Let δ'_w be the least ordinal such that $\{\alpha(x,i) : i < \delta'_w\}$ is cofinal in ξ . We will prove by induction that for all $i < \delta'_w$, $\alpha(x,i) = \alpha(w,i)$. It follows immediately that $\delta'_w = \delta_w$ and $d_x \cap \xi = d_w$.

So let $i < \delta'_w$ be given and suppose that for all j < i, $\alpha(x, j) = \alpha(w, j)$. If i = 0 then $\alpha(x, 0) = 0 = \alpha(w, 0)$, and if i is a limit ordinal then $\alpha(x, i) = \sup_{j < i} \alpha(x, j) = \sup_{j < i} \alpha(w, j) = \alpha(w, i)$. Suppose i is a successor ordinal.

Recall that $\beta(x, i)$ is the least ordinal such that there is $y <_T x$ with $ht(y) > \alpha(x, i-1)$ and $g(y) = \beta(x, i)$. And z(x, i) is the element of the set

$$\{y <_T x : \operatorname{ht}(y) > \alpha(x, i-1) \land g(y) = \beta(x, i)\}.$$

with the least $f_{\beta(x,i)}$ value. Let us show that $\beta(x,i) = \beta(w,i)$. We have $g(z(x,i)) = \beta(x,i) < \alpha(x,i) = \operatorname{ht}(z(x,i)) < \xi$ and $z(x,i) <_T w$. So z(x,i) is a witness to the statement that there is $y <_T w$ such that $\operatorname{ht}(y) > \alpha(w,i-1)$ and $g(y) = \beta(x,i)$. By minimality it follows that $\beta(w,i) \leq \beta(x,i)$. If $\beta(w,i) < \beta(x,i)$, then there is $y <_T w$ with height greater than $\alpha(w,i-1) = \alpha(x,i-1)$ such that $g(w) < \beta(x,i)$. But then $y <_T x$ and we have a contradiction to the minimality of $\beta(x,i)$. So $\beta(x,i) = \beta(w,i)$.

Since $ht(z(x,i)) < \xi$, $z(x,i) <_T w$. So z(x,i) is in the set

$$\{y <_T w : \operatorname{ht}(y) > \alpha(w, i - 1) \land g(y) = \beta(w, i)\}.$$

Since z(w,i) is the element of this set with the least $f_{\beta(w,i)}$ value, $f_{\beta(w,i)}(z(w,i)) \leq f_{\beta(w,i)}(z(x,i))$. On the other hand, z(w,i) is in the set $\{y <_T x : \operatorname{ht}(y) > \alpha(x,i-1) \land g(y) = \beta(x,i)\},\$

so for the same reason, $f_{\beta(w,i)}(z(x,i)) \leq f_{\beta(w,i)}(z(w,i))$. Therefore $f_{\beta(w,i)}(z(x,i)) = f_{\beta(w,i)}(z(w,i))$. Since z(x,i) and z(w,i) are both below x, they are comparable. But $f_{\beta(w,i)}$ is injective on chains, so z(x,i) = z(w,i). This completes the proof that $d_x \cap \xi = d_w$.

Now we are ready to define a weak square sequence on κ . Recall that C is a club subset of κ such that for all $\alpha \in C$ with uncountable cofinality and all $x \in T_{\alpha}$, $\operatorname{ot}(d_x) < \alpha$. Define $\langle c_{\alpha} : \alpha \in C \rangle$ as follows. For α in C with uncountable cofinality, let $c_{\alpha} = d_x$ for some $x \in T_{\alpha}$. For α in C with cofinality ω , let c_{α} be a cofinal subset of α with order type ω .

It remains to show that for every $\xi < \kappa$, $|\{c_{\alpha} \cap \xi : \alpha \in C\}| < \kappa$. First note that if $cf(\alpha) = \omega$, then $c_{\alpha} \cap \xi$ is either equal to c_{α} if $\alpha \leq \xi$, or is finite otherwise. Hence $|\{c_{\alpha} \cap \xi : \alpha \in C \cap cof(\omega)\}| < \kappa$.

For each $\xi < \kappa$, let $\mathcal{D}_{\xi} = \{c_{\alpha} \cap \xi : \alpha \in C \cap \operatorname{cof}(>\omega)\}$. We prove by induction on ξ that $|\mathcal{D}_{\xi}| < \kappa$. The successor case is easy, so assume that ξ is a limit ordinal. The set \mathcal{D}_{ξ} splits into two sets:

$$\{c_{\alpha} \cap \xi : \alpha \in C \cap \operatorname{cof}(>\omega), \sup(c_{\alpha} \cap \xi) < \xi\}, \\ \{c_{\alpha} \cap \xi : \alpha \in C \cap \operatorname{cof}(>\omega), \sup(c_{\alpha} \cap \xi) = \xi\}.$$

The first set is contained in the union $\bigcup_{\xi' < \xi} \mathcal{D}_{\xi'}$, so has size less than κ by the inductive hypothesis. The second set is a subset of $\{d_w : w \in T_{\xi}\}$, which has size less than κ since $|T_{\xi}| < \kappa$.

3. The full code of a *C*-sequence. Fix a regular uncountable cardinal κ . A *C*-sequence on κ is a sequence $\langle c_{\alpha} : \alpha < \kappa \rangle$ satisfying:

(1) $c_0 = \emptyset;$

(2)
$$c_{\alpha+1} = \{\alpha\};$$

(3) if α is a limit ordinal then c_{α} is a club subset of α .

We will review the full code ρ_0 of Todorčević [3], defined from a given C-sequence on κ . We propose that ρ_0 and its corresponding tree $T(\rho_0)$ can be developed most naturally in the context of weak square.

Fix a C-sequence $\langle c_{\alpha} : \alpha < \kappa \rangle$.

Definition 3.1. Let $\alpha \leq \beta < \kappa$.

- (1) The walk from β to α is the unique sequence $\langle \beta_0, \ldots, \beta_n \rangle$ such that $\beta_0 = \beta, \beta_{k+1} = \min(c_{\beta_k} \setminus \alpha)$ for k < n, and $\beta_n = \alpha$.
- (2) $\rho_0(\alpha,\beta) = \langle \operatorname{ot}(c_{\beta_0} \cap \alpha), \dots, \operatorname{ot}(c_{\beta_{n-1}} \cap \alpha) \rangle.$

In (2) we mean $\rho_0(\alpha, \alpha) = \emptyset$ in the case $\alpha = \beta$. Note that the length of $\rho_0(\alpha, \beta)$ is 1 less than the length of the walk from β to α . If $\langle \beta_0, \ldots, \beta_n \rangle$ is

the walk from β to α , then obviously for all i = 0, ..., n, $\langle \beta_i, ..., \beta_n \rangle$ is the walk from β_i to α . That $\langle \beta_0, ..., \beta_i \rangle$ is the walk from β to β_i follows from the next lemma.

LEMMA 3.2. (1) Let $\alpha \leq \gamma \leq \beta$. Let $\langle \beta_0, \ldots, \beta_m \rangle$ be the walk from β to γ . Then the following are equivalent:

- (1) the sequence $\langle \beta_0, \ldots, \beta_m \rangle$ is an initial segment of the walk from β to α ;
- (2) γ is in the walk from β to α ;
- (3) for all $i = 0, \ldots, m 1$, $c_{\beta_i} \cap [\alpha, \gamma) = \emptyset$.

Proof. $(1) \Rightarrow (2)$ is immediate since $\beta_m = \gamma$. For $(3) \Rightarrow (1)$, it is easy to prove by induction on $i \leq m$ that β_i is the *i*th element in the walk from β to α ; namely, $\beta_0 = \beta$, and if β_i is as required for a fixed i < m, then $\beta_{i+1} = \min(c_{\beta_i} \setminus \gamma) = \min(c_{\beta_i} \setminus \alpha)$, which is the i + 1st element in the walk from β to α . To show $(2) \Rightarrow (3)$, assume (2) holds and (3) fails. Let i < mbe least such that $c_{\beta_i} \cap [\alpha, \gamma) \neq \emptyset$. Then by the implication $(3) \Rightarrow (1)$ just shown, $\langle \beta_0, \ldots, \beta_i \rangle$ is an initial segment of the walk from β to α , and the next step of this walk is $\min(c_{\beta_i} \setminus \alpha)$, which is less than γ by the choice of i. This contradicts that γ is in the walk from β to α .

LEMMA 3.3. Let $\alpha \leq \gamma \leq \beta$. Then the following are equivalent:

- (1) $\rho_0(\alpha,\beta) = \rho_0(\gamma,\beta) \hat{\rho}_0(\alpha,\gamma);$
- (2) $\rho_0(\gamma,\beta)$ is an initial segment of $\rho_0(\alpha,\beta)$;
- (3) γ is in the walk from β to α .

Proof. $(1) \Rightarrow (2)$ is immediate. For $(2) \Rightarrow (3)$, let $\langle \beta_0, \ldots, \beta_n \rangle$ and $\langle \beta'_0, \ldots, \beta'_m \rangle$ be the walks from β to α and from β to γ . If γ is not in the walk from β to α , let $0 < k \leq m$ be least such that $\beta_k \neq \beta'_k$. Then $\beta_k = \min(c_{\beta_{k-1}} \setminus \alpha) < \gamma$. So $c_{\beta_{k-1}} \cap \alpha$ is a proper initial segment of $c_{\beta_{k-1}} \cap \gamma$. Therefore $\rho_0(\alpha, \beta)(k-1) = \operatorname{ot}(c_{\beta_{k-1}} \cap \alpha) < \operatorname{ot}(c_{\beta_{k-1}} \cap \gamma) = \rho_0(\gamma, \beta)(k-1)$. So (2) fails.

Now assume (3). Let $\langle \beta_0, \ldots, \beta_n \rangle$ be the walk from β to α . By Lemma 3.2, fix k < n such that $\langle \beta_0, \ldots, \beta_k \rangle$ is the walk from β to γ . Also by Lemma 3.2, for all $i \leq k - 1$, $c_{\beta_i} \cap [\alpha, \gamma)$ is empty, and therefore $\rho_0(\gamma, \beta)(i) = \operatorname{ot}(c_{\beta_i} \cap \gamma) = \operatorname{ot}(c_{\beta_i} \cap \alpha) = \rho_0(\alpha, \beta)(i)$. So $\rho_0(\gamma, \beta) = \rho_0(\alpha, \beta) \upharpoonright k$. By the definition of ρ_0 and the fact that $\langle \beta_k, \ldots, \beta_n \rangle$ is the walk from γ to α , for all i < n - k we have $\rho_0(\alpha, \beta)(k + i) = \operatorname{ot}(c_{\beta_{k+i}} \cap \alpha) = \rho_0(\alpha, \gamma)(i)$. Thus $\rho_0(\alpha, \beta) = \rho_0(\gamma, \beta) \widehat{\rho_0}(\alpha, \gamma)$.

^{(&}lt;sup>1</sup>) Lemmas 3.2–3.4 are due to Todorčević; they are discussed in Lemmas 2.1.6 and 2.1.16 of [4] in the case $\kappa = \omega_1$.

Define the right lexicographical order $<_r$ on ${}^{<\omega}\kappa$ by letting $t <_r s$ if either s is a proper initial segment of t, or there is k such that $s(k) \neq t(k)$, and the least such k satisfies t(k) < s(k).

LEMMA 3.4. Let $\alpha < \gamma \leq \beta$. Then $\rho_0(\alpha, \beta) <_r \rho_0(\gamma, \beta)$.

Proof. Let $\langle \beta_0, \ldots, \beta_n \rangle$ and $\langle \beta'_0, \ldots, \beta'_m \rangle$ be the walks from β to γ and from β to α respectively. If γ is in the walk from β to α , then by Lemma 3.3, $\rho_0(\gamma, \beta)$ is a proper initial segment of $\rho_0(\alpha, \beta)$, so $\rho_0(\alpha, \beta) <_r \rho_0(\gamma, \beta)$. Otherwise let k > 0 be least such that $\beta_k \neq \beta'_k$. Since β_{k-1} is in both walks, $\rho_0(\beta_{k-1}, \beta)$ is an initial segment of both $\rho_0(\gamma, \beta)$ and $\rho_0(\alpha, \beta)$. In particular, the least place where $\rho_0(\gamma, \beta)$ and $\rho_0(\alpha, \beta)$ can differ is at k - 1. Since $\beta'_k \in c_{\beta_{k-1}} \cap [\alpha, \gamma)$, we see that $c_{\beta_{k-1}} \cap \alpha$ is a proper initial segment of $c_{\beta_{k-1}} \cap \gamma$. Therefore $\rho_0(\alpha, \beta)(k-1) = \operatorname{ot}(c_{\beta_{k-1}} \cap \alpha) < \operatorname{ot}(c_{\beta_{k-1}} \cap \gamma) =$ $\rho_0(\gamma, \beta)(k-1)$. Hence $\rho_0(\alpha, \beta) <_r \rho_0(\gamma, \beta)$.

In order to construct a special Aronszajn tree from a weak square sequence, we will need to analyze the following situation: suppose $\alpha \leq \beta, \gamma$, where α is a limit ordinal, and for all $\xi < \alpha$, $\rho_0(\xi, \beta) = \rho_0(\xi, \gamma)$. What can be said about the relationship between $\rho_0(\alpha, \beta)$ and $\rho_0(\alpha, \gamma)$? This relationship is described precisely in Proposition 3.6 below. If $\kappa = \omega_1$ then in the situation just described $\rho_0(\alpha, \beta) = \rho_0(\alpha, \gamma)$. But this is not true in general. For example, it is not true if $\alpha = \beta$ is a limit ordinal, $\alpha < \gamma$, and $c_\alpha = c_\gamma \cap \alpha$.

We make some additional observations about ρ_0 in preparation for Proposition 3.6. Let $\langle \beta_0, \ldots, \beta_n \rangle$ be the walk from β to α , where $\alpha \leq \beta$. Then for all $i = 0, \ldots, n-2$, $\sup(c_{\beta_i} \cap \alpha) < \alpha$. Namely, if $\sup(c_{\beta_i} \cap \alpha) = \alpha$, then $\alpha \in c_{\beta_i}$, and hence $\alpha = \min(c_{\beta_i} \setminus \alpha)$. This is only possible if i = n - 1.

LEMMA 3.5. Let $\langle \beta_0, \ldots, \beta_n \rangle$ be the walk from β to α , where α is a limit ordinal and $\alpha \leq \beta$. Assume that $\xi < \alpha$ is larger than $\sup(c_{\beta_i} \cap \alpha)$ for all $i = 0, \ldots, n-2$. Then $\langle \beta_0, \ldots, \beta_{n-1} \rangle$ is an initial segment of the walk from β to ξ , namely, the part of the walk consisting of ordinals above α .

Proof. The proof is by induction on k < n. Assume $\langle \beta_0, \ldots, \beta_k \rangle$ is an initial segment of the walk from β to ξ , where k < n - 1. By assumption, $\sup(c_{\beta_k} \cap \alpha) < \xi$, and hence $\beta_{k+1} = \min(c_{\beta_k} \setminus \alpha) = \min(c_{\beta_k} \setminus \xi)$, which is the next step of the walk from β to ξ . Finally, $\alpha = \min(c_{\beta_{n-1}} \setminus \alpha) \ge \min(c_{\beta_{n-1}} \setminus \xi)$, and $\min(c_{\beta_{n-1}} \setminus \xi)$ is the next step of the walk from β to ξ after β_{n-1} .

Let $\langle \beta_0, \ldots, \beta_n \rangle$ be the walk from β to α , where α is a limit ordinal and $\alpha \leq \beta$. Suppose $\sup(c_{\beta_{n-1}} \cap \alpha) < \alpha$. Let $\xi < \alpha$ be larger than $\sup(c_{\beta_i} \cap \alpha)$ for all $i = 0, \ldots, n-1$. Then for $i = 0, \ldots, n-1$, $\sup(c_{\beta_i} \cap \alpha) < \xi$ implies $c_{\beta_i} \cap [\xi, \alpha) = \emptyset$. By Lemma 3.2, α is in the walk from β to ξ . Therefore $\rho_0(\alpha, \beta)$ is an initial segment of $\rho_0(\xi, \beta)$.

On the other hand, suppose $\sup(c_{\beta_{n-1}} \cap \alpha) = \alpha$. Let $\xi < \alpha$ be larger than $\sup(c_{\beta_i} \cap \alpha)$ for all $i = 0, \ldots, n-2$. By Lemma 3.5, $\langle \beta_0, \ldots, \beta_{n-1} \rangle$ is an

initial segment of the walk from β to ξ . But since $c_{\beta_{n-1}} \cap [\xi, \alpha)$ is nonempty, Lemma 3.2 implies that α is not in the walk from β to ξ . The next step of the walk from β to ξ after β_{n-1} is $\min(c_{\beta_{n-1}} \setminus \xi)$, which is less than α .

PROPOSITION 3.6. Let $\alpha < \beta, \gamma$ be given, where α is a limit ordinal. Suppose that for all $\xi < \alpha$, $\rho_0(\xi, \beta) = \rho_0(\xi, \gamma)$. Let $\langle \beta_0, \ldots, \beta_n \rangle$ be the walk from β to α and let $\langle \gamma_0, \ldots, \gamma_m \rangle$ be the walk from γ to α . Let $\alpha_0 = \sup(c_{\beta_{n-1}} \cap \alpha)$ and $\alpha_1 = \sup(c_{\gamma_{m-1}} \cap \alpha)$.

- (1) If $\alpha_0 < \alpha$ and $\alpha_1 < \alpha$, then $\rho_0(\alpha, \beta) = \rho_0(\alpha, \gamma)$.
- (2) If $\alpha_0 = \alpha_1 = \alpha$, then $\rho_0(\alpha, \beta) = \rho_0(\alpha, \gamma)$.
- (3) If $\alpha_0 < \alpha$ and $\alpha_1 = \alpha$, then $\rho_0(\alpha, \gamma) = \rho_0(\alpha, \beta) \operatorname{ot}(c_\alpha)$.

Proof. Note that for all $\xi < \alpha$, $\rho_0(\xi, \beta) = \rho_0(\xi, \gamma)$ implies that the walks from β to ξ and from γ to ξ have the same length.

Suppose $\alpha_0 < \alpha$ and $\alpha_1 < \alpha$. Then for all large enough $\xi < \alpha$, α is in the walk from β to ξ and in the walk from γ to ξ . So for all large enough $\xi < \alpha$,

 $\rho_0(\xi,\beta) = \rho_0(\alpha,\beta) \hat{\rho}_0(\xi,\alpha) \text{ and } \rho_0(\xi,\gamma) = \rho_0(\alpha,\gamma) \hat{\rho}_0(\xi,\alpha).$

Since $\rho_0(\xi,\beta) = \rho_0(\xi,\gamma)$, equating the sequences above and removing the common tails yields $\rho_0(\alpha,\beta) = \rho_0(\alpha,\gamma)$.

Now suppose $\alpha_0 = \alpha_1 = \alpha$. First we show that n = m. For all large enough $\xi < \alpha$, $\langle \beta_0, \ldots, \beta_{n-1} \rangle$ is an initial segment of the walk from β to ξ , and $\langle \gamma_0, \ldots, \gamma_{m-1} \rangle$ is an initial segment of the walk from γ to ξ . Consider a large enough ordinal $\xi \in c_{\beta_{n-1}} \cap \alpha$. Then the walk from β to ξ equals $\langle \beta_0, \ldots, \beta_{n-1}, \xi \rangle$, which has length n + 1. Since $\rho_0(\xi, \beta) = \rho_0(\xi, \gamma)$, the walk from γ to ξ has length n + 1 also. So the walk from γ to γ_{m-1} , namely $\langle \gamma_0, \ldots, \gamma_{m-1} \rangle$, has length less than n + 1. Hence $m \leq n$. A symmetric argument shows that $n \leq m$.

For all large enough ξ , β_{n-1} is in the walk from β to ξ , and hence $\rho_0(\beta_{n-1},\beta) \sqsubset \rho_0(\xi,\beta)$ by Lemma 3.3. Similarly, for all large enough ξ , $\rho_0(\gamma_{n-1},\gamma) \sqsubset \rho_0(\xi,\gamma)$. Since $\rho_0(\xi,\beta) = \rho_0(\xi,\gamma)$ and $\rho_0(\beta_{n-1},\beta)$ and $\rho_0(\gamma_{n-1},\gamma)$ have the same length, $\rho_0(\beta_{n-1},\beta) = \rho_0(\gamma_{n-1},\gamma)$. Since $\rho_0(\alpha,\beta) = \rho_0(\beta_{n-1},\beta) \stackrel{\circ}{\text{ot}}(c_{\beta_{n-1}}\cap\alpha)$ and $\rho_0(\alpha,\gamma) = \rho_0(\gamma_{n-1},\gamma) \stackrel{\circ}{\text{ot}}(c_{\gamma_{n-1}}\cap\alpha)$, it suffices to show that $\operatorname{ot}(c_{\beta_{n-1}}\cap\alpha) = \operatorname{ot}(c_{\gamma_{n-1}}\cap\alpha)$.

Since α is a limit ordinal, it is enough to show that for all large enough $\xi < \alpha$, $\operatorname{ot}(c_{\beta_{n-1}} \cap \xi) = \operatorname{ot}(c_{\gamma_{n-1}} \cap \xi)$. But for all large enough ξ , $\rho_0(\xi, \beta)(n-1) = \operatorname{ot}(c_{\beta_{n-1}} \cap \xi)$ and $\rho_0(\xi, \gamma)(n-1) = \operatorname{ot}(c_{\gamma_{n-1}} \cap \xi)$. Since $\rho_0(\xi, \beta) = \rho_0(\xi, \gamma)$, $\operatorname{ot}(c_{\beta_{n-1}} \cap \xi) = \operatorname{ot}(c_{\gamma_{n-1}} \cap \xi)$.

Finally, suppose that $\alpha_0 < \alpha$ and $\alpha_1 = \alpha$. First we prove that m = n+1. If we take a large enough $\xi \in c_{\alpha}$, then the walk from β to ξ is equal to $\langle \beta_0, \ldots, \beta_n, \xi \rangle$, and $\langle \gamma_0, \ldots, \gamma_{m-1} \rangle$ is a proper initial segment of the walk from γ to ξ . Since $\rho_0(\xi, \beta) = \rho_0(\xi, \gamma)$, the walks from β to ξ and from γ to ξ have the same length, namely n + 2. Therefore the walk $\langle \gamma_0, \ldots, \gamma_{m-1} \rangle$ has length at most n + 1, that is, $m \leq n + 1$.

On the other hand, choosing a large enough ξ in $c_{\gamma_{m-1}} \cap \alpha, \langle \gamma_0, \ldots, \gamma_{m-1}, \xi \rangle$ is the walk from γ to ξ , and α is in the walk from β to ξ . So the walk from γ to ξ has length m + 1. Since $\rho_0(\xi, \beta) = \rho_0(\xi, \gamma)$, the walk from β to ξ has length m + 1. But the sequence $\langle \beta_0, \ldots, \beta_n \rangle$ is a proper initial segment of the walk from β to ξ , so the length of this sequence is less than m + 1, that is, $n + 1 \leq m$. So m = n + 1.

Now we show that $\rho_0(\alpha,\beta) = \rho_0(\gamma_{m-1},\gamma)$. Since m = n + 1, the walks from β to α and from γ to γ_{m-1} have the same length, so $\rho_0(\alpha,\beta)$ and $\rho_0(\gamma_{m-1},\gamma)$ have the same length. To show they are equal, it suffices to show they are initial segments of the same sequence. Choose a large enough ξ so that α is in the walk from β to ξ and γ_{m-1} is in the walk from γ to ξ . Then $\rho_0(\alpha,\beta) \sqsubset \rho_0(\xi,\beta)$ and $\rho_0(\gamma_{m-1},\gamma) \sqsubset \rho_0(\xi,\gamma)$ by Lemma 3.3. Since $\rho_0(\xi,\beta) = \rho_0(\xi,\gamma), \rho_0(\alpha,\beta) = \rho_0(\gamma_{m-1},\gamma).$

Now $\rho_0(\alpha, \gamma) = \rho_0(\gamma_{m-1}, \gamma) \circ \operatorname{ot}(c_{\gamma_{m-1}} \cap \alpha) = \rho_0(\alpha, \beta) \circ \operatorname{ot}(c_{\gamma_{m-1}} \cap \alpha)$. So to complete the proof, it suffices to show that $\operatorname{ot}(c_{\gamma_{m-1}} \cap \alpha) = \operatorname{ot}(c_{\alpha})$. Since α is a limit ordinal, it suffices to show that for all large enough $\xi < \alpha$, $\operatorname{ot}(c_{\gamma_{m-1}} \cap \xi) = \operatorname{ot}(c_{\alpha} \cap \xi)$. Choose ξ large enough so that α is in the walk from β to ξ and γ_{m-1} is in the walk from γ to ξ . Then $\rho_0(\xi, \beta)(n) = \operatorname{ot}(c_{\alpha} \cap \xi)$ and $\rho_0(\xi, \gamma)(m-1) = \operatorname{ot}(c_{\gamma_{m-1}} \cap \xi)$. Since $\rho_0(\xi, \beta) = \rho_0(\xi, \gamma)$ and n = m-1, we are done.

4. Weak square implies a special Aronszajn tree. We prove now that the existence of a weak square sequence on a regular uncountable cardinal κ implies the existence of a special Aronszajn tree on κ . Fix a *C*-sequence $\langle c_{\alpha} : \alpha < \kappa \rangle$, and let ρ_0 be the full code. For each $\beta < \kappa$, define $\rho_{0\beta} : \beta \rightarrow {}^{<\omega}\beta$ by letting $\rho_{0\beta}(\xi) = \rho_0(\xi,\beta)$ for $\xi < \beta$. Recall the tree $T(\rho_0)$ of Todorčević [3]: for each $\alpha < \kappa$, level α of $T(\rho_0)$ consists of functions of the form $\rho_{0\beta} \upharpoonright \alpha$, where $\alpha \leq \beta < \kappa$. For $u, v \in T(\rho_0), u <_{T(\rho_0)} v$ if $v \upharpoonright dom(u) = u$.

Our goal is to prove that under some additional assumptions on the C-sequence, the tree $T(\rho_0)$ is a special Aronszajn tree. The existence of a C-sequence satisfying these assumptions follows from the existence of a weak square sequence. Our proof is based on the proof of Todorčević [4] that there exists a special Aronszajn tree on κ for any non-Mahlo strongly inaccessible cardinal κ (²).

It is clear that $T(\rho_0)$ is a tree of height κ . The next lemma will imply that if $|\{c_\beta \cap \xi : \beta < \kappa\}| < \kappa$ for every $\xi < \kappa$, then $T(\rho_0)$ is a κ -tree. The

^{(&}lt;sup>2</sup>) In that proof it is claimed that for a limit ordinal α and $\alpha \leq \beta, \gamma$, if $\rho_0(\xi, \beta) = \rho_0(\xi, \gamma)$ for all $\xi < \alpha$, then $\rho_0(\alpha, \beta) = \rho_0(\alpha, \gamma)$. This claim appears to be incorrect even with the *C*-sequence used there. We replace this claim with Proposition 3.6.

proof is based on the argument in [1] that \Box^*_{μ} implies the existence of a special Aronszajn tree on μ^+ for any infinite cardinal μ .

LEMMA 4.1. Let $\alpha < \kappa$ be a limit ordinal, and let $\alpha \leq \beta, \gamma$. Let $\langle \beta_0, \ldots, \beta_n \rangle$ be the walk from β to α and let $\langle \gamma_0, \ldots, \gamma_m \rangle$ be the walk from γ to α . Suppose that the sequences $\langle c_{\beta_0} \cap \alpha, \ldots, c_{\beta_n} \cap \alpha \rangle$ and $\langle c_{\gamma_0} \cap \alpha, \ldots, c_{\gamma_m} \cap \alpha \rangle$ are equal. Then $\rho_{0\beta} \upharpoonright \alpha = \rho_{0\gamma} \upharpoonright \alpha$.

Proof. Note that n = m. Let $\xi < \alpha$ be given. Let $i \leq n$ be least such that $c_{\beta_i} \cap [\xi, \alpha)$ is nonempty. By Lemma 3.2, β_i is in the walk from β to ξ . The next step of the walk from β to ξ after β_i is $\beta^* = \min(c_{\beta_i} \setminus \xi) < \alpha$. Due to the agreement described in the assumptions, i is also least such that $c_{\gamma_i} \cap [\xi, \alpha)$ is nonempty, γ_i is in the walk from γ to ξ , and $\gamma^* = \min(c_{\gamma_i} \setminus \xi) = \beta^*$ is the next step of the walk from γ to ξ after γ_i . By the agreement we have $\rho_0(\xi, \beta) = \langle \operatorname{ot}(c_{\beta_0} \cap \xi), \ldots, \operatorname{ot}(c_{\beta_i} \cap \xi) \rangle \cap \rho_0(\xi, \beta^*) = \langle \operatorname{ot}(c_{\gamma_0} \cap \xi), \ldots, \operatorname{ot}(c_{\gamma_i} \cap \xi) \rangle \cap \rho_0(\xi, \gamma^*) = \rho_0(\xi, \gamma).$

PROPOSITION 4.2. Suppose the C-sequence $\langle c_{\alpha} : \alpha < \kappa \rangle$ is such that for every $\xi < \kappa$, $|\{c_{\beta} \cap \xi : \beta < \kappa\}| < \kappa$. Then $T(\rho_0)$ is a κ -tree.

Proof. Let $\xi < \kappa$ be given; we show that level ξ of the tree $T(\rho_0)$ has size less than κ . Note that it suffices to prove this statement for limit ordinals ξ . For in general, level γ of the tree is equal to $\{\rho_{0\gamma+n} | \gamma : n < \omega\} \cup \{t | \gamma : t \in T(\rho_0)_{\gamma+\omega}\}.$

So let ξ be a limit ordinal. By the previous lemma, for all $\beta \geq \xi$, the function $\rho_{0\beta} | \xi$ is determined from the finite sequence $\langle c_{\beta_0} \cap \xi, \ldots, c_{\beta_n} \cap \xi \rangle$, where $\langle \beta_0, \ldots, \beta_n \rangle$ is the walk from β to ξ . By assumption, there are fewer than κ many possibilities for such a sequence. So there are fewer than κ many functions of the form $\rho_{0\beta} | \xi$ for $\beta < \kappa$.

Assume that there exists a weak square sequence on κ . Then by Lemma 1.2, we can fix a *C*-sequence $\langle c_{\alpha} : \alpha < \kappa \rangle$ satisfying the following conditions:

- (1) there exists a club $C \subseteq \kappa \cap$ Lim such that for all α in C, $\operatorname{ot}(c_{\alpha}) < \min(c_{\alpha})$;
- (2) for all $\alpha \in (\kappa \cap \operatorname{Lim}) \setminus C$, $\min(c_{\alpha}) > \sup(C \cap \alpha)$;
- (3) for every $\xi < \kappa$, $|\{c_{\alpha} \cap \xi : \alpha < \kappa\}| < \kappa$.

Let ρ_0 be the full code defined from this *C*-sequence. We will prove that $T(\rho_0)$ is a special Aronszajn tree.

Let $\langle \alpha_0, \ldots, \alpha_n \rangle \mapsto \lceil \langle \alpha_0, \ldots, \alpha_n \rangle \rceil$ be some coding of finite sequences of ordinals in κ by ordinals in κ . Let D be the club set of ordinals $\alpha \in C$ which are closed under this mapping.

LEMMA 4.3. For all $\alpha \in C$ and $\beta \geq \alpha$, $\operatorname{ot}(c_{\beta} \cap \alpha) < \alpha$. Hence for all $\alpha \in D$ and $\gamma \geq \alpha$, $\lceil \rho_0(\alpha, \gamma) \rceil < \alpha$.

Proof. Fix $\alpha \in C$ and $\beta \geq \alpha$. If β is a successor ordinal then $c_{\beta} \cap \alpha = \emptyset$. Suppose β is a limit ordinal. If β is not in C, then $\alpha \leq \sup(C \cap \beta) < \min(c_{\beta})$. Therefore $c_{\beta} \cap \alpha = \emptyset$. Now suppose that β is in C. If $c_{\beta} \cap \alpha = \emptyset$ then we are done. Otherwise $\operatorname{ot}(c_{\beta} \cap \alpha) \leq \operatorname{ot}(c_{\beta}) < \min(c_{\beta}) < \alpha$.

THEOREM 4.4. The tree $T(\rho_0)$ is a special Aronszajn tree.

Proof. Let $U = \{t \in T(\rho_0) : ht(t) \in D\}$. We will define a function $g: U \to \kappa$ satisfying:

(a) g(t) < ht(t) for all $t \in U$;

(b) $t \sqsubset u$ in U implies $g(t) \neq g(u)$.

Let us note that the existence of such a function g implies that $T(\rho_0)$ is special. For in that case, define $h: T(\rho_0) \to \kappa$ as follows. For $t \in U$, let h(t) = g(t). For $t \in T(\rho_0) \setminus U$, let $h(t) = \sup(D \cap \operatorname{ht}(t))$. Then $h(t) < \operatorname{ht}(t)$ for all nonminimal t. Consider $\nu < \kappa$; we show that $h^{-1}(\{\nu\})$ is the union of fewer than κ many antichains. If $h(t) = \nu$ and $t \notin U$, then $\nu < \operatorname{ht}(t) < \min(D \setminus \nu + 1)$. There are fewer than κ many such nodes t. Enumerate them as $\{t_i : i < \lambda\}$ where $\lambda < \kappa$. Define $f_{\nu} : h^{-1}(\{\nu\}) \to \lambda + 1$ by letting $f_{\nu}(t_i) = i$ for $i < \lambda$ and $f_{\nu}(t) = \lambda$ if $h(t) = \nu$ and $t \in U$. If $f_{\nu}(t) = f_{\nu}(u)$ then clearly $t, u \in U$. Hence $h(t) = g(t) = \nu$ and $h(u) = g(u) = \nu$, so $t \sqsubset u$ is not possible by the properties of g.

Now we define the function $g : U \to \kappa$. Consider $t \in T(\rho_0)$ with $\operatorname{ht}(t) \in D$. Let $\alpha = \operatorname{ht}(t)$. Define A(t, 0) as the set of $\beta \geq \alpha$ with $\rho_{0\beta} \upharpoonright \alpha = t$ such that, letting $\langle \beta_0, \ldots, \beta_n \rangle$ be the walk from β to α , $\operatorname{sup}(c_{\beta_{n-1}} \cap \alpha) < \alpha$. Define A(t, 1) as the set of $\gamma \geq \alpha$ with $\rho_{0\gamma} \upharpoonright \alpha = t$ such that, letting $\langle \gamma_0, \ldots, \gamma_m \rangle$ be the walk from γ to α , $\operatorname{sup}(c_{\gamma_{m-1}} \cap \alpha) = \alpha$. By Proposition 3.6 we have:

(1) for all
$$\beta, \beta' \in A(t, 0), \rho_0(\alpha, \beta) = \rho_0(\alpha, \beta');$$

(2) for all
$$\gamma, \gamma' \in A(t, 1), \rho_0(\alpha, \gamma) = \rho_0(\alpha, \gamma');$$

(3) for all $\beta \in A(t,0)$ and $\gamma \in A(t,1)$, $\rho_0(\alpha,\gamma) = \rho_0(\alpha,\beta)$ (c_α) .

The definition of g(t) splits into cases. First assume that one of A(t, 0) or A(t, 1) is empty. Fix any $\gamma \geq \alpha$ with $t = \rho_{0\gamma} \upharpoonright \alpha$, and let

$$g(t) = \lceil \langle \lceil \rho_0(\alpha, \gamma) \rceil, 0 \rangle \rceil.$$

Note that by (1) and (2) and the case assumption, the definition of g(t) is independent of γ . Secondly, assume that A(t, 0) and A(t, 1) are both nonempty. Fix any $\gamma \in A(t, 1)$, and define

$$g(t) = \lceil \langle \lceil \rho_0(\alpha, \gamma) \rceil, 1 \rangle \rceil.$$

By (2), the definition of g(t) is independent of γ . Note that g(t) < ht(t) by Lemma 4.3.

To complete the proof, we show that if $t, u \in U$, then $t \sqsubset u$ implies $g(t) \neq g(u)$. So let $t \sqsubset u$ be given, and let $\alpha = \operatorname{ht}(t)$ and $\delta = \operatorname{ht}(u)$. So $\alpha < \delta$. Assume for a contradiction that g(t) = g(u). Note that g(t) and g(u) are defined by the same case, since the case is coded by a 0 or 1 in the definition of g.

First suppose g(t) and g(u) are defined as in the first case. Fix $\gamma \geq \delta$ such that $u = \rho_{0\gamma} \upharpoonright \delta$. Since $t \sqsubset u$, $t = \rho_{0\gamma} \upharpoonright \alpha$. So

$$\lceil \langle \lceil \rho_0(\alpha, \gamma) \rceil, 0 \rangle \rceil = g(t) = g(u) = \lceil \langle \lceil \rho_0(\delta, \gamma) \rceil, 0 \rangle \rceil.$$

Therefore $\rho_0(\alpha, \gamma) = \rho_0(\delta, \gamma)$. But by Lemma 3.4, $\alpha < \delta$ implies that $\rho_0(\alpha, \gamma) <_r \rho_0(\delta, \gamma)$, and in particular these sequences are different. So we have a contradiction.

Now suppose g(t) and g(u) are defined as in the second case. Fix $\gamma \in A(u, 1)$. Then $u = \rho_{0\gamma} \upharpoonright \delta$ and

$$g(u) = \lceil \langle \lceil \rho_0(\delta, \gamma) \rceil, 1 \rangle \rceil.$$

Since $t \sqsubset u$, $t = \rho_{0\gamma} \upharpoonright \alpha$. Now there are two cases, depending on whether γ is in A(t, 0) or A(t, 1). If $\gamma \in A(t, 1)$, then

$$g(t) = \lceil \langle \lceil \rho_0(\alpha, \gamma) \rceil, 1 \rangle \rceil.$$

But g(t) = g(u) implies $\rho_0(\alpha, \gamma) = \rho_0(\delta, \gamma)$. This contradicts Lemma 3.4.

If $\gamma \in A(t,0)$, then fix some $\gamma' \in A(t,1)$. Then

$$g(t) = \lceil \langle \lceil \rho_0(\alpha, \gamma') \rceil, 1 \rangle \rceil.$$

Since g(t) = g(u), we have $\rho_0(\alpha, \gamma') = \rho_0(\delta, \gamma)$. But by Proposition 3.6(3),

$$\rho_0(\delta,\gamma) = \rho_0(\alpha,\gamma') = \rho_0(\alpha,\gamma) \operatorname{\widehat{o}t}(c_\alpha).$$

So $\rho_0(\alpha, \gamma)$ is a proper initial segment of $\rho_0(\delta, \gamma)$, which implies $\rho_0(\delta, \gamma) <_r \rho_0(\alpha, \gamma)$. But by Lemma 3.4, $\alpha < \delta$ implies $\rho_0(\alpha, \gamma) <_r \rho_0(\delta, \gamma)$, and we have a contradiction.

REMARK. If κ is a strongly inaccessible non-Mahlo cardinal, then there exists a weak square sequence on κ . Namely, let C be a club set of singular cardinals, and for each $\alpha \in C$, choose c_{α} as a club subset of α with order type cf(α). Then for every $\xi < \kappa$, $|\{c_{\alpha} \cap \xi : \alpha < \kappa\}| \leq 2^{|\xi|} < \kappa$. We pose the following question: is it consistent that there is a weakly inaccessible non-Mahlo cardinal which does not carry a weak square sequence?

References

- J. Cummings, Notes on singular cardinal combinatorics, Notre Dame J. Formal Logic 46 (2005), 251–282.
- [2] R. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229–308.

- S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261– 294.
- [4] S. Todorčević, Walks on Ordinals and Their Characteristics, Progr. Math. 263, Birkhäuser, Basel, 2007.

John Krueger Department of Mathematics University of North Texas 1155 Union Circle #311430 Denton, TX 76203, U.S.A. E-mail: jkrueger@unt.edu

> Received September 3, 2012; in revised form March 17, 2013

284