Weak square sequences and special Aronszajn trees

by

John Krueger (Denton, TX)

Abstract

A classical theorem of set theory is the equivalence of the weak square principle \square_{μ}^{*} with the existence of a special Aronszajn tree on μ^{+}. We introduce the notion of a weak square sequence on any regular uncountable cardinal, and prove that the equivalence between weak square sequences and special Aronszajn trees holds in general.

Recall the weak square principle \square_{μ}^{*} for an infinite cardinal μ, which asserts the existence of a sequence $\left\langle\mathcal{C}_{\alpha}: \alpha \in \mu^{+} \cap \operatorname{Lim}\right\rangle$ satisfying:
(1) for all $c \in \mathcal{C}_{\alpha}, c$ is a club subset of α with order type at most μ;
(2) $\left|\mathcal{C}_{\alpha}\right| \leq \mu$;
(3) for all $c \in \mathcal{C}_{\alpha}$, if $\beta \in \lim (c)$ then $c \cap \beta \in \mathcal{C}_{\beta}$.

For a regular uncountable cardinal κ, a tree $\left(T,<_{T}\right)$ is a κ-tree if it has height κ and all its levels are of size less than κ. For a successor cardinal $\kappa=\mu^{+}$, a κ-tree $\left(T,<_{T}\right)$ is a special Aronszajn tree if T is the union of μ many antichains. Equivalently, T is special if there exists a function $f: T \rightarrow$ μ such that $t<_{T} u$ implies $f(t) \neq f(u)$.

The following classical theorem was originally noted by Jensen [2]. Let μ be an infinite cardinal. Then \square_{μ}^{*} is equivalent to the existence of a special Aronszajn tree on μ^{+}.

Todorčević [3] introduced a more general definition of a special Aronszajn tree. For a regular uncountable cardinal κ, a tree ($T,<_{T}$) of height κ is said to be a special Aronszajn tree if there exists a function $g: T \rightarrow T$ satisfying:
(1) $g(t)<_{T} t$ for all nonminimal $t \in T$;
(2) for all $u \in T, g^{-1}(\{u\})$ is the union of fewer than κ many antichains.

This definition coincides with the classical definition of a special Aronszajn tree when κ is a successor cardinal.

[^0]In this paper we introduce a definition of a weak square sequence which makes sense on any regular uncountable cardinal. We prove that the existence of such a sequence on a regular uncountable cardinal κ is equivalent to the existence of a special Aronszajn tree on κ in the sense of Todorčević.

Notation. Let Lim and Succ denote the classes of limit ordinals and successor ordinals respectively. Let $\operatorname{cof}(\omega)$ denote the class of limit ordinals of countable cofinality, and let $\operatorname{cof}(>\omega)$ denote the class of limit ordinals of uncountable cofinality. For a set a of ordinals, ot (a) is the order type of a, and $\lim (a)$ is the set of ordinals β such that $\sup (a \cap \beta)=\beta$.

A tree is a strict partial order $\left(T,<_{T}\right)$ such that for every node $x \in T$, the set $\left\{y \in T: y<_{T} x\right\}$ is well ordered by $<_{T}$. The height of a node $x \in T$, denoted by $\operatorname{ht}(x)$, is the order type of $\left\{y \in T: y<_{T} x\right\}$. Let $T_{\alpha}=\{x \in T: \operatorname{ht}(x)=\alpha\}$ denote level α of T, for any ordinal α. The height of the tree T is the least α such that T_{α} is empty. For finite sequences u and $v, u \sqsubseteq v$ means that u is an initial segment of v, and $u \sqsubset v$ means that u is a proper initial segment of v.

1. Weak square sequences. The next definition generalizes the idea of a weak square sequence to any regular uncountable cardinal.

Definition 1.1. Let κ be a regular uncountable cardinal. A sequence $\left\langle c_{\alpha}: \alpha \in C\right\rangle$ is a weak square sequence on κ if:
(1) $C \subseteq \kappa \cap \operatorname{Lim}$ is a club;
(2) for all $\alpha \in C, c_{\alpha}$ is a club subset of α with order type less than α;
(3) for every $\xi<\kappa,\left|\left\{c_{\alpha} \cap \xi: \alpha \in C\right\}\right|<\kappa$.

Note that if there exists a weak square sequence $\left\langle c_{\alpha}: \alpha \in C\right\rangle$ on κ, then κ is non-Mahlo. Indeed, (2) implies that every ordinal in the club C is singular.

The goal of this section is to show that for an infinite cardinal μ, the existence of a weak square sequence on μ^{+}in the sense above is equivalent to the classical weak square principle \square_{μ}^{*}. The main challenge lies in reducing the order type of the clubs on the sequence.

Let us note that for an infinite cardinal μ, \square_{μ}^{*} is equivalent to the existence of a sequence $\left\langle c_{\alpha}: \alpha \in \mu^{+} \cap \operatorname{Lim}\right\rangle$, where each c_{α} is a club subset of α with order type at most μ, and for every $\xi<\mu^{+}, \mid\left\{c_{\alpha} \cap \xi: \alpha \in\right.$ $\left.\mu^{+} \cap \operatorname{Lim}\right\} \mid \leq \mu$. For if we have such a sequence, we can define for each limit ordinal α the set \mathcal{C}_{α} to be the collection of sets of the form $c_{\beta} \cap \alpha$, where $\beta \in \mu^{+} \cap \operatorname{Lim}$ and $\alpha \in \lim \left(c_{\beta}\right)$. Conversely, given $\left\langle\mathcal{C}_{\alpha}: \alpha \in \mu^{+} \cap \operatorname{Lim}\right\rangle$, a sequence $\left\langle c_{\alpha}: \alpha \in \mu^{+} \cap \operatorname{Lim}\right\rangle$ is obtained as required by choosing c_{α} to be any member of \mathcal{C}_{α}.

LEMMA 1.2. Let κ be a regular uncountable cardinal. Suppose there exists a weak square sequence on κ. Then there exists a sequence $\left\langle c_{\alpha}: \alpha \in \kappa \cap \operatorname{Lim}\right\rangle$ satisfying:
(1) each c_{α} is a club subset of α;
(2) if α is singular then $\operatorname{ot}\left(c_{\alpha}\right)<\alpha$;
(3) there is a club $C \subseteq \kappa$ such that for all $\alpha \in C$, ot $\left(c_{\alpha}\right)<\min \left(c_{\alpha}\right)$;
(4) for all $\alpha \in(\kappa \cap \operatorname{Lim}) \backslash C, \min \left(c_{\alpha}\right)>\sup (C \cap \alpha)$;
(5) for every $\xi<\kappa,\left|\left\{c_{\alpha} \cap \xi: \alpha \in \kappa \cap \operatorname{Lim}\right\}\right|<\kappa$.

Proof. Fix a sequence $\left\langle d_{\alpha}: \alpha \in C\right\rangle$ satisfying Definition 1.1. We define a sequence $\left\langle c_{\alpha}: \alpha \in \kappa \cap \operatorname{Lim}\right\rangle$ as follows. If $\alpha \in C$, then $\operatorname{ot}\left(d_{\alpha}\right)<\alpha$. So let $c_{\alpha}=d_{\alpha} \backslash\left(\operatorname{ot}\left(d_{\alpha}\right)+1\right)$. If $\alpha<\kappa$ is a limit ordinal not in C, then since C is a club, $\sup (C \cap \alpha)<\alpha$. Let c_{α} be any club subset of α with order type $\operatorname{cf}(\alpha)$ such that $\min \left(c_{\alpha}\right)>\sup (C \cap \alpha)$. Clearly (1)-(4) are satisfied.

We claim that for every $\xi<\kappa,\left|\left\{c_{\alpha} \cap \xi: \alpha \in \kappa \cap \operatorname{Lim}\right\}\right|<\kappa$. Let $\gamma=\min (C \backslash \xi)$. Then for every limit ordinal $\beta \in \kappa \backslash C$ which is larger than $\gamma, \min \left(c_{\beta}\right)>\gamma$, so $c_{\beta} \cap \xi=\emptyset$. It follows that the nonempty members of the set $\left\{c_{\alpha} \cap \xi: \alpha \in \kappa \cap \operatorname{Lim}\right\}$ are in the set

$$
\bigcup_{\delta<\xi}\left\{d_{\alpha} \cap[\delta, \xi): \alpha \in C\right\} \cup\left\{c_{\beta} \cap \xi: \beta \in \gamma \backslash C\right\}
$$

There are fewer than κ many elements in the set on the left by assumption, and clearly there are no more than $|\gamma|<\kappa$ many elements in the set on the right.

Lemma 1.3. Let κ be a regular uncountable cardinal. Suppose $\left\langle c_{\alpha}: \alpha \in\right.$ $\kappa \cap \operatorname{Lim}\rangle$ is a sequence satisfying:
(1) each c_{α} is a club subset of α;
(2) if α is singular then $\operatorname{ot}\left(c_{\alpha}\right)<\alpha$;
(3) for every $\xi<\kappa,\left|\left\{c_{\alpha} \cap \xi: \alpha \in \kappa \cap \operatorname{Lim}\right\}\right|<\kappa$.

For each limit ordinal $\alpha<\kappa$, let $f_{\alpha}: \operatorname{ot}\left(c_{\alpha}\right) \rightarrow c_{\alpha}$ be the increasing enumeration of c_{α}. Define a sequence $\left\langle d_{\alpha}: \alpha \in \kappa \cap \operatorname{Lim}\right\rangle$ by letting

$$
d_{\alpha}= \begin{cases}c_{\alpha} & \text { if } \operatorname{ot}\left(c_{\alpha}\right)=\operatorname{cf}(\alpha) \\ f_{\alpha}\left[c_{\mathrm{ot}\left(c_{\alpha}\right)}\right] & \text { if } \operatorname{ot}\left(c_{\alpha}\right)>\operatorname{cf}(\alpha)\end{cases}
$$

Then $\left\langle d_{\alpha}: \alpha \in \kappa \cap \operatorname{Lim}\right\rangle$ also satisfies conditions (1)-(3) above; moreover, in the case that $\operatorname{ot}\left(c_{\alpha}\right)>\operatorname{cf}(\alpha)$, we have $\operatorname{ot}\left(d_{\alpha}\right)<\operatorname{ot}\left(c_{\alpha}\right)$.

Proof. Consider a limit ordinal $\alpha<\kappa$. If ot $\left(c_{\alpha}\right)=\operatorname{cf}(\alpha)$, then $d_{\alpha}=c_{\alpha}$ so (1) and (2) hold for d_{α}. Suppose ot $\left(c_{\alpha}\right)>\operatorname{cf}(\alpha)$. Then, in particular, α is singular. Since $f_{\alpha}:$ ot $\left(c_{\alpha}\right) \rightarrow \alpha$ is normal and cofinal in $\alpha, d_{\alpha}=$ $f_{\alpha}\left[c_{\mathrm{ot}\left(c_{\alpha}\right)}\right]$ is a club subset of α with order type equal to $\operatorname{ot}\left(c_{\mathrm{ot}\left(c_{\alpha}\right)}\right)$; but $\operatorname{ot}\left(c_{\mathrm{ot}\left(c_{\alpha}\right)}\right) \leq \operatorname{ot}\left(c_{\alpha}\right)<\alpha$. So (1) and (2) hold. For the final comment, assume
ot $\left(c_{\alpha}\right)>\operatorname{cf}(\alpha)$. Note that $\operatorname{cf}\left(\operatorname{ot}\left(c_{\alpha}\right)\right)=\operatorname{cf}(\alpha)<\operatorname{ot}\left(c_{\alpha}\right)$, so ot $\left(c_{\alpha}\right)$ is singular. Therefore $\operatorname{ot}\left(c_{\mathrm{ot}\left(c_{\alpha}\right)}\right)<\operatorname{ot}\left(c_{\alpha}\right)$ by (2). So ot $\left(d_{\alpha}\right)=\operatorname{ot}\left(c_{\mathrm{ot}\left(c_{\alpha}\right)}\right)<\operatorname{ot}\left(c_{\alpha}\right)$.

Let $\xi<\kappa$ be given; we prove $\left|\left\{d_{\alpha} \cap \xi: \alpha \in \kappa \cap \operatorname{Lim}\right\}\right|<\kappa$. Note that

$$
\left\{d_{\alpha} \cap \xi: \alpha \in \kappa \cap \operatorname{Lim}, \operatorname{ot}\left(c_{\alpha}\right)=\operatorname{cf}(\alpha)\right\} \subseteq\left\{c_{\alpha} \cap \xi: \alpha \in \kappa \cap \operatorname{Lim}\right\}
$$

so the set on the left has size less than κ. It remains to show that the set

$$
\left\{d_{\alpha} \cap \xi: \alpha \in \kappa \cap \operatorname{Lim}, \operatorname{ot}\left(c_{\alpha}\right)>\operatorname{cf}(\alpha)\right\}
$$

has size less than κ.
Consider a limit ordinal α such that ot $\left(c_{\alpha}\right)>\operatorname{cf}(\alpha)$. Then $d_{\alpha}=f_{\alpha}\left[c_{\text {ot }\left(c_{\alpha}\right)}\right]$. Since f_{α} is the increasing enumeration of c_{α}, clearly $c_{\alpha} \cap \xi=f_{\alpha}\left[\operatorname{ot}\left(c_{\alpha} \cap \xi\right)\right]$. As $d_{\alpha} \subseteq c_{\alpha}$ and f_{α} is injective, we have $d_{\alpha} \cap \xi=d_{\alpha} \cap c_{\alpha} \cap \xi=f_{\alpha}\left[c_{\text {ot }\left(c_{\alpha}\right)}\right] \cap$ $f_{\alpha}\left[\operatorname{ot}\left(c_{\alpha} \cap \xi\right)\right]=f_{\alpha}\left[c_{\mathrm{ot}\left(c_{\alpha}\right)} \cap \operatorname{ot}\left(c_{\alpha} \cap \xi\right)\right]$. Let $g_{\alpha}: \operatorname{ot}\left(c_{\alpha} \cap \xi\right) \rightarrow c_{\alpha} \cap \xi$ be the increasing enumeration of $c_{\alpha} \cap \xi$. Then $g_{\alpha}=f_{\alpha}\left\lceil\operatorname{ot}\left(c_{\alpha} \cap \xi\right)\right.$. So we have

$$
d_{\alpha} \cap \xi=g_{\alpha}\left[c_{\mathrm{ot}\left(c_{\alpha}\right)} \cap \operatorname{ot}\left(c_{\alpha} \cap \xi\right)\right] .
$$

Now the function g_{α} is determined by $c_{\alpha} \cap \xi$, and there are fewer than κ many possibilities for $c_{\alpha} \cap \xi$. Once $c_{\alpha} \cap \xi$ is known, $d_{\alpha} \cap \xi$ is determined by $c_{\mathrm{ot}\left(c_{\alpha}\right)} \cap \operatorname{ot}\left(c_{\alpha} \cap \xi\right)$, and again there are fewer than κ many possibilities for this set. So there are fewer than κ many possibilities for $d_{\alpha} \cap \xi$. -

Proposition 1.4. Let κ be a regular uncountable cardinal. Suppose $\left\langle c_{\alpha}: \alpha \in \kappa \cap \operatorname{Lim}\right\rangle$ is a sequence satisfying:
(1) each c_{α} is a club subset of α;
(2) if α is singular then $\operatorname{ot}\left(c_{\alpha}\right)<\alpha$;
(3) for every $\xi<\kappa,\left|\left\{c_{\alpha} \cap \xi: \alpha \in \kappa \cap \operatorname{Lim}\right\}\right|<\kappa$.

Then there exists a sequence $\left\langle d_{\alpha}: \alpha \in \kappa \cap \operatorname{Lim}\right\rangle$ satisfying (1)-(3), and moreover, each d_{α} has order type equal to $\operatorname{cf}(\alpha)$.

Proof. By induction we define for each $n<\omega$ a sequence

$$
\left\langle c_{\alpha}^{n}: \alpha \in \kappa \cap \operatorname{Lim}\right\rangle
$$

The inductive hypotheses are that the sequence of c_{α}^{n} 's satisfies (1)-(3), and moreover, if ot $\left(c_{\alpha}^{n}\right)>\operatorname{cf}(\alpha)$, then ot $\left(c_{\alpha}^{n+1}\right)<\operatorname{ot}\left(c_{\alpha}^{n}\right)$. Let $c_{\alpha}^{0}=c_{\alpha}$ for all limit ordinals $\alpha<\kappa$.

Fix $n<\omega$ and suppose that $\left\langle c_{\alpha}^{n}: \alpha \in \kappa \cap \operatorname{Lim}\right\rangle$ is defined as required. For each α let $f_{\alpha}^{n}: \operatorname{ot}\left(c_{\alpha}^{n}\right) \rightarrow c_{\alpha}^{n}$ be the increasing enumeration of c_{α}^{n}. Define c_{α}^{n+1} by

$$
c_{\alpha}^{n+1}= \begin{cases}c_{\alpha}^{n} & \text { if } \operatorname{ot}\left(c_{\alpha}^{n}\right)=\operatorname{cf}(\alpha) \\ f_{\alpha}^{n}\left[c_{\mathrm{ot}\left(c_{\alpha}^{n}\right)}^{n}\right] & \text { if } \operatorname{ot}\left(c_{\alpha}^{n}\right)>\operatorname{cf}(\alpha)\end{cases}
$$

Lemma 1.3 implies that $\left\langle c_{\alpha}^{n+1}: \alpha<\kappa\right.$ limit \rangle satisfies the inductive hypotheses. This completes the definition.

Now we define the sequence $\left\langle d_{\alpha}: \alpha \in \kappa \cap \operatorname{Lim}\right\rangle$. Consider a limit ordinal $\alpha<\kappa$. Since ot $\left(c_{\alpha}^{n+1}\right)<\operatorname{ot}\left(c_{\alpha}^{n}\right)$ provided that ot $\left(c_{\alpha}^{n}\right)>\operatorname{cf}(\alpha)$, there must exist a least k such that $\operatorname{ot}\left(c_{\alpha}^{k}\right)=\operatorname{cf}(\alpha)$. Then by definition, for all $m \geq k$, $c_{\alpha}^{m}=c_{\alpha}^{k}$. Let $d_{\alpha}=c_{\alpha}^{k}$, which is the eventual value of the club attached to α. Clearly d_{α} is a club subset of α with order type $\operatorname{cf}(\alpha)$, and in particular, if α is singular then $\operatorname{ot}\left(c_{\alpha}\right)<\alpha$.

To show (3), consider $\xi<\kappa$. Then for all $n<\omega,\left|\left\{c_{\alpha}^{n} \cap \xi: \alpha \in \kappa \cap \operatorname{Lim}\right\}\right|$ $<\kappa$. But

$$
\left\{d_{\alpha} \cap \xi: \alpha \in \kappa \cap \operatorname{Lim}\right\} \subseteq \bigcup_{n<\omega}\left\{c_{\alpha}^{n} \cap \xi: \alpha \in \kappa \cap \operatorname{Lim}\right\}
$$

so the set on the left is a subset of a countable union of sets each having cardinality less than κ.

Theorem 1.5. Let μ be an infinite cardinal. Then \square_{μ}^{*} holds iff there exists a weak square sequence on μ^{+}in the sense of Definition 1.1.

Proof. If \square_{μ}^{*} holds, then as noted above there exists a sequence $\left\langle c_{\alpha}: \alpha \in\right.$ $\left.\mu^{+} \cap \operatorname{Lim}\right\rangle$ such that each c_{α} is a club subset of α with order type at most μ, and for every $\xi<\mu^{+},\left|\left\{c_{\alpha} \cap \xi: \alpha \in \mu^{+} \cap \operatorname{Lim}\right\}\right| \leq \mu$. Let C be the club set of limit ordinals α with $\mu<\alpha<\mu^{+}$. Then $\left\langle c_{\alpha}: \alpha \in C\right\rangle$ satisfies Definition 1.1. Conversely, suppose there exists a weak square sequence on μ^{+}. Then by Lemma 1.2 and Proposition 1.4, there exists a sequence $\left\langle d_{\alpha}: \alpha \in \kappa \cap \operatorname{Lim}\right\rangle$ such that each d_{α} is a club subset of α with order type $\operatorname{cf}(\alpha) \leq \mu$, and for every $\xi<\kappa$, $\left|\left\{d_{\alpha} \cap \xi: \alpha \in \kappa \cap \operatorname{Lim}\right\}\right|<\kappa$. Therefore \square_{μ}^{*} holds.
2. A special Aronszajn tree implies weak square. According to the classical definition, for an infinite cardinal μ, a tree $\left(T,<_{T}\right)$ of height μ^{+}is a special Aronszajn tree if T is the union of μ many antichains, or equivalently, if there exists a function $f: T \rightarrow \mu$ such that for all $t, u \in T$, $t<_{T} u$ implies $f(t) \neq f(u)$.

Todorčević [3] introduced a more general definition of a special Aronszajn tree which makes sense for any regular uncountable cardinal. Recall that if $\left(T,<_{T}\right)$ is a tree, a function $g: T \rightarrow T$ is said to be regressive if $f(a)<_{T} a$ for all nonminimal $a \in T$.

Definition 2.1. Let κ be a regular uncountable cardinal. A tree $\left(T,<_{T}\right)$ with height κ is a special Aronszajn tree if there exists a regressive function $g: T \rightarrow T$ such that for all $b \in T$, the set $g^{-1}(\{b\})$ is the union of fewer than κ many antichains.

We will sometimes abbreviate "special Aronszajn tree" to "special tree". A special Aronszajn tree on κ means a κ-tree which is special. Note that T is special iff there is a regressive function $g: T \rightarrow T$ such that for all $b \in T$,
there is an ordinal $\lambda_{b}<\kappa$ and a function $f_{b}: g^{-1}(\{b\}) \rightarrow \lambda_{b}$ such that for all $t, u \in g^{-1}(\{b\}), t<_{T} u$ implies $f_{b}(t) \neq f_{b}(u)$.

The equivalence between the two definitions of "special" for successor cardinals was noted in [3] without proof.

Proposition 2.2 (Todorčević). Let μ be an infinite cardinal and let $\left(T,<_{T}\right)$ be a tree of height μ^{+}. Then T is a special Aronszajn tree in the classical sense iff T satisfies Definition 2.1.

Proof. The forward direction of the equivalence is trivial: just define a regressive function which maps every node to a minimal node. Now suppose there is a regressive function $g: T \rightarrow T$, and for each $b \in T$, some ordinal $\lambda_{b}<\mu^{+}$and a function $f_{b}: g^{-1}(\{b\}) \rightarrow \lambda_{b}$ such that for all $t, u \in g^{-1}(\{b\})$, $t<_{T} u$ implies $f_{b}(t) \neq f_{b}(u)$. Without loss of generality, we can assume $\lambda_{b}=\mu$ for all b.

We define a function $f: T \rightarrow{ }^{<\omega} \mu$ so that $c<_{T} d$ implies $f(c) \neq f(d)$ for all $c, d \in T$. Clearly this suffices since ${ }^{<\omega} \mu$ has size μ. Consider a node $a \in T$. If a is minimal then let $f(a)$ be the empty sequence. Suppose a is not minimal. Define g^{k} for $k<\omega$ by recursion, letting $g^{0}(a)=a$, and $g^{k+1}(a)=g\left(g^{k}(a)\right)$ if $g^{k}(a)$ is not minimal. Since g is regressive, we have $\operatorname{ht}\left(g^{1}(a)\right)>\operatorname{ht}\left(g^{2}(a)\right)>\cdots>\operatorname{ht}\left(g^{k}(a)\right)$. Let m be least such that $g^{m}(a)$ is minimal. Define $f(a)$ by

$$
f(a)=\left\langle f_{g(a)}(a), f_{g^{2}(a)}(g(a)), \ldots, f_{g^{m}(a)}\left(g^{m-1}(a)\right)\right\rangle
$$

Suppose for a contradiction $c<_{T} d$ but $f(c)=f(d)$. Since d is not minimal, $f(c)=f(d)$ is not empty, so c is not minimal either. Let $m>0$ be least such that $g^{m}(c)$ is minimal. Since m is the length of the sequence $f(c)=f(d), m$ is also least such that $g^{m}(d)$ is minimal. As $g^{m}(c)<_{T} c<_{T} d$, $g^{m}(c)<_{T} d$, and hence $g^{m}(c)=g^{m}(d)$. Let $0<k \leq m$ be least such that $g^{k}(c)=g^{k}(d)$.

Since $g^{k-1}(c) \leq_{T} c, g^{k-1}(d) \leq_{T} d$, and $c<_{T} d, g^{k-1}(c)$ and $g^{k-1}(d)$ are comparable and not equal. But $g\left(g^{k-1}(c)\right)=g^{k}(c)=g^{k}(d)=g\left(g^{k-1}(d)\right)$. Therefore $f_{g^{k}(c)}\left(g^{k-1}(c)\right) \neq f_{g^{k}(d)}\left(g^{k-1}(d)\right)$, which contradicts $f(c)=f(d)$.

Recall the standard fact that for a strongly inaccessible cardinal κ, κ is weakly compact iff there does not exist an Aronszajn tree on κ. Todorčević [3] used his general definition of a special Aronszajn tree to provide an analogue of this result which characterizes Mahlo cardinals.

Theorem 2.3 (Todorčević). Let κ be a strongly inaccessible cardinal. Then the following are equivalent:
(1) κ is a Mahlo cardinal;
(2) there does not exist a special Aronszajn tree on κ.

We will prove that for a regular uncountable cardinal κ, the existence of a special Aronszajn tree on κ is equivalent to the existence of a weak square sequence on κ. We first show the forward direction; the proof follows the lines of Section 5.2 in [1], which handles the case when κ is a successor cardinal.

First let us give a simpler characterization of a special Aronszajn tree on κ.

Lemma 2.4. Let $\left(T,<_{T}\right)$ be a κ-tree, where κ is a regular uncountable cardinal. Then T is special iff there exists a function $g: T \rightarrow \kappa$ such that $g(t)<\operatorname{ht}(t)$ for all nonminimal t, and for all $\beta<\kappa, g^{-1}(\{\beta\})$ is the union of fewer than κ many antichains.

Proof. For the forward direction, given a regressive $f: T \rightarrow T$ witnessing that T is special, define $g(t)=\operatorname{ht}(f(t))$. Then $g^{-1}(\{\beta\})=\bigcup\left\{f^{-1}(\{b\})\right.$: $\operatorname{ht}(b)=\beta\}$. Each $f^{-1}(\{b\})$ is the union of fewer than κ many antichains, and there are fewer than κ many such b 's since T is a κ-tree. Hence $g^{-1}(\{\beta\})$ is the union of fewer than κ many antichains. Conversely, given $g: T \rightarrow \kappa$ as described above, define $f(b)=b \upharpoonright g(b)$ for nonminimal b.

Theorem 2.5. Let κ be a regular uncountable cardinal. If there exists a special Aronszajn tree on κ, then there exists a weak square sequence on κ.

Proof. Let $\left(T,<_{T}\right)$ be a κ-tree and suppose that T is special. Fix a function $g: T \rightarrow \kappa$, where $g(t)<\operatorname{ht}(t)$ for all nonminimal t, and for each $\beta<\kappa$ a function $f_{\beta}: g^{-1}(\{\beta\}) \rightarrow \lambda_{\beta}$, where $\lambda_{\beta}<\kappa$, such that for all $c, d \in g^{-1}(\{\beta\}), c<_{T} d$ implies $f_{\beta}(c) \neq f_{\beta}(d)$.

For each limit ordinal α we define a family \mathcal{A}_{α} of cofinal subsets of α. Fix a limit ordinal α. Consider the following property which a node x in T_{α} may or may not satisfy: there exists $\beta<\alpha$ such that the set

$$
\left\{\operatorname{ht}(y): y<_{T} x \wedge g(y)<\beta\right\}
$$

is cofinal in α.
We claim that if α has uncountable cofinality, then this property is true for all $x \in T_{\alpha}$. Indeed, fix a sequence $\left\langle\alpha_{i}: i<\operatorname{cf}(\alpha)\right\rangle$ which is increasing, continuous, and cofinal in α. Since $g(t)<\operatorname{ht}(t)$ for all nonminimal t, there exists a regressive function $h: \operatorname{cf}(\alpha) \cap \operatorname{Lim} \rightarrow \operatorname{cf}(\alpha)$ so that for all limit ordinals $\gamma<\operatorname{cf}(\alpha)$, if $z<_{T} x$ has height α_{γ}, then $g(z)<\alpha_{h(\gamma)}$. Since $\operatorname{cf}(\alpha)$ is regular, there is some $\delta<\operatorname{cf}(\alpha)$ such that $h^{-1}(\{\delta\})$ is stationary in $\operatorname{cf}(\alpha)$. Let $X=\left\{\alpha_{\gamma}: \gamma \in h^{-1}(\{\delta\})\right\}$. Then X is cofinal in α and $X \subseteq\{\operatorname{ht}(y)$: $\left.y<_{T} x \wedge g(y)<\alpha_{\delta}\right\}$.

For each limit ordinal $\alpha<\kappa$ and each $x \in T_{\alpha}$, we define a set d_{x} which is a club in α. Let β_{x} be the least ordinal such that the set $\left\{\operatorname{ht}(y): y<_{T}\right.$ $\left.x \wedge g(y)<\beta_{x}\right\}$ is cofinal in α. Note that $\beta_{x} \leq \alpha$, and if $\operatorname{cf}(\alpha)>\omega$ then $\beta_{x}<\alpha$.

The process of defining the club d_{x} involves defining a limit ordinal $\delta_{x} \leq \alpha$ and sequences

$$
\left\langle\beta(x, i): i \in \delta_{x} \cap \operatorname{Succ}\right\rangle, \quad\left\langle\alpha(x, i): i<\delta_{x}\right\rangle, \quad\left\langle z(x, i): i \in \delta_{x} \cap \operatorname{Succ}\right\rangle
$$

which satisfy:
(1) $\beta(x, j) \leq \beta(x, i)<\beta_{x}$ for all successor ordinals $j<i<\delta_{x}$;
(2) $\left\langle\alpha(x, i): i<\delta_{x}\right\rangle$ is an increasing and continuous sequence of ordinals cofinal in α;
(3) $z(x, i)$ is the unique node with height $\alpha(x, i)$ such that $z(x, i)<_{T} x$ for all $i \in \delta_{x} \cap$ Succ;
(4) $g(z(x, i))=\beta(x, i)$ for all $i \in \delta_{x} \cap$ Succ;
(5) if $j<i<\delta_{x}$ are successor ordinals and $\beta(x, j)=\beta(x, i)$, then

$$
f_{\beta(x, j)}(z(x, j))<f_{\beta(x, j)}(z(x, i))
$$

After the construction is complete, we let $d_{x}=\left\{\alpha(x, i): i<\delta_{x}\right\}$, which is a club subset of α with order type δ_{x}.

Let i be given and suppose that the objects above are defined as required for all $j<i$. If $\sup _{j<i} \alpha(x, j)=\alpha$, then let $i=\delta_{x}$ and we are done. Now assume $\sup _{j<i} \alpha(x, j)<\alpha$. If $i=0$ then let $\alpha(x, i)=0$, and if i is a limit ordinal then let $\alpha(x, i)=\sup _{j<i} \alpha(x, j)$. Suppose that i is a successor ordinal.

Consider the set

$$
\left\{y<_{T} x: \operatorname{ht}(y)>\alpha(x, i-1)\right\}
$$

By the choice of β_{x}, there exists y in this set such that $g(y)<\beta_{x}$. Let $\beta(x, i)$ be the least ordinal such that there is $y<_{T} x$ with height greater than $\alpha(x, i-1)$ and $g(y)=\beta(x, i)$. Then $\beta(x, i)<\beta_{x}$. We claim that for all successor ordinals $j<i, \beta(x, j) \leq \beta(x, i)$. Since $\alpha(x, j-1)<\alpha(x, i-1)$, there exists z in the set $\left\{y<_{T} x: \operatorname{ht}(y)>\alpha(x, j-1)\right\}$ such that $g(z)=\beta(x, i)$. By the minimality of $\beta(x, j), \beta(x, j) \leq \beta(x, i)$.

To define $\alpha(x, i)$, consider the set

$$
\left\{y<_{T} x: \operatorname{ht}(y)>\alpha(x, i-1) \wedge g(y)=\beta(x, i)\right\}
$$

By the choice of $\beta(x, i)$, this set is nonempty. Moreover, since this set is a chain, $f_{\beta(x, i)}$ is injective on it. Let $z(x, i)$ be the unique element in this set with the minimal value under $f_{\beta(x, i)}$. Then let $\alpha(x, i)=\operatorname{ht}(z(x, i))$.

We claim that if $j<i$ is a successor ordinal and $\beta(x, i)=\beta(x, j)$, then

$$
f_{\beta(x, j)}(z(x, j))<f_{\beta(x, j)}(z(x, i))
$$

For since $\alpha(x, j-1)<\alpha(x, i-1)$ and $\beta(x, i)=\beta(x, j)$, the node $z(x, i)$ is in the set

$$
\left\{y<_{T} x: \operatorname{ht}(y)>\alpha(x, j-1) \wedge g(y)=\beta(x, j)\right\}
$$

Since $z(x, j)$ has the minimal value in this set under $f_{\beta(x, j)}, f_{\beta(x, j)}(z(x, j))<$ $f_{\beta(x, j)}(z(x, i))$ as desired.

This completes the construction. Let us consider the order type δ_{x} of d_{x} for a node $x \in T$. For any ordinal $\beta<\kappa$, let $\theta(\beta)$ denote the order type of the well-order whose underlying set is

$$
\bigcup_{\gamma<\beta} \gamma \times \lambda_{\gamma}
$$

and ordered by lexicographical order $<_{\text {lex }}$. Note that $\theta(\beta)<\kappa$. For each $x \in T$, (1) and (5) imply that the function

$$
i \mapsto\left\langle\beta(x, i), f_{\beta(x, i)}(z(x, i))\right\rangle
$$

which maps from $\delta_{x} \cap$ Succ into the well-order $\left(\bigcup_{\gamma<\beta_{x}} \gamma \times \lambda_{\gamma},<_{\text {lex }}\right)$, is increasing. Since δ_{x} is a limit ordinal, δ_{x} and $\delta_{x} \cap$ Succ have the same order type. It follows that $\delta_{x} \leq \theta\left(\beta_{x}\right)$.

Let C be the club set of limit ordinals $\alpha<\kappa$ greater than ω such that for all $\beta<\alpha, \theta(\beta)<\alpha$. If $\alpha \in C$ has uncountable cofinality and $x \in T_{\alpha}$, then $\beta_{x}<\alpha$ and so $\theta\left(\beta_{x}\right)<\alpha$. Therefore ot $\left(d_{x}\right)=\delta_{x} \leq \theta\left(\beta_{x}\right)<\alpha$.

Now we prove the following statement: for every limit ordinal $\alpha<\kappa$ and for every node x with height α, if $\xi \in \lim \left(d_{x}\right)$, then letting $w<_{T} x$ have height $\xi, d_{x} \cap \xi=d_{w}$. So let such α, x, ξ, and w be given. Recall that β_{w} is the least ordinal such that the set $\left\{\operatorname{ht}(y): y<_{T} w \wedge g(y)<\beta_{w}\right\}$ is cofinal in ξ. Since $d_{x} \cap \xi$ is cofinal in ξ and for all $\gamma \in d_{x}, g(\gamma)<\beta_{x}$, clearly $\beta_{w} \leq \beta_{x}$.

Let δ_{w}^{\prime} be the least ordinal such that $\left\{\alpha(x, i): i<\delta_{w}^{\prime}\right\}$ is cofinal in ξ. We will prove by induction that for all $i<\delta_{w}^{\prime}, \alpha(x, i)=\alpha(w, i)$. It follows immediately that $\delta_{w}^{\prime}=\delta_{w}$ and $d_{x} \cap \xi=d_{w}$.

So let $i<\delta_{w}^{\prime}$ be given and suppose that for all $j<i, \alpha(x, j)=\alpha(w, j)$. If $i=0$ then $\alpha(x, 0)=0=\alpha(w, 0)$, and if i is a limit ordinal then $\alpha(x, i)=$ $\sup _{j<i} \alpha(x, j)=\sup _{j<i} \alpha(w, j)=\alpha(w, i)$. Suppose i is a successor ordinal.

Recall that $\beta(x, i)$ is the least ordinal such that there is $y<_{T} x$ with $\operatorname{ht}(y)>\alpha(x, i-1)$ and $g(y)=\beta(x, i)$. And $z(x, i)$ is the element of the set

$$
\left\{y<_{T} x: \operatorname{ht}(y)>\alpha(x, i-1) \wedge g(y)=\beta(x, i)\right\} .
$$

with the least $f_{\beta(x, i)}$ value. Let us show that $\beta(x, i)=\beta(w, i)$. We have $g(z(x, i))=\beta(x, i)<\alpha(x, i)=\operatorname{ht}(z(x, i))<\xi$ and $z(x, i)<_{T} w$. So $z(x, i)$ is a witness to the statement that there is $y<_{T} w$ such that $\operatorname{ht}(y)>\alpha(w, i-1)$ and $g(y)=\beta(x, i)$. By minimality it follows that $\beta(w, i) \leq \beta(x, i)$. If $\beta(w, i)<\beta(x, i)$, then there is $y<_{T} w$ with height greater than $\alpha(w, i-1)=$ $\alpha(x, i-1)$ such that $g(w)<\beta(x, i)$. But then $y<_{T} x$ and we have a contradiction to the minimality of $\beta(x, i)$. So $\beta(x, i)=\beta(w, i)$.

Since $\operatorname{ht}(z(x, i))<\xi, z(x, i)<_{T} w$. So $z(x, i)$ is in the set

$$
\left\{y<_{T} w: \operatorname{ht}(y)>\alpha(w, i-1) \wedge g(y)=\beta(w, i)\right\}
$$

Since $z(w, i)$ is the element of this set with the least $f_{\beta(w, i)}$ value, $f_{\beta(w, i)}(z(w, i)) \leq f_{\beta(w, i)}(z(x, i))$. On the other hand, $z(w, i)$ is in the set $\left\{y<_{T} x: \operatorname{ht}(y)>\alpha(x, i-1) \wedge g(y)=\beta(x, i)\right\}$,
so for the same reason, $f_{\beta(w, i)}(z(x, i)) \leq f_{\beta(w, i)}(z(w, i))$. Therefore $f_{\beta(w, i)}(z(x, i))=f_{\beta(w, i)}(z(w, i))$. Since $z(x, i)$ and $z(w, i)$ are both below x, they are comparable. But $f_{\beta(w, i)}$ is injective on chains, so $z(x, i)=z(w, i)$. This completes the proof that $d_{x} \cap \xi=d_{w}$.

Now we are ready to define a weak square sequence on κ. Recall that C is a club subset of κ such that for all $\alpha \in C$ with uncountable cofinality and all $x \in T_{\alpha}$, ot $\left(d_{x}\right)<\alpha$. Define $\left\langle c_{\alpha}: \alpha \in C\right\rangle$ as follows. For α in C with uncountable cofinality, let $c_{\alpha}=d_{x}$ for some $x \in T_{\alpha}$. For α in C with cofinality ω, let c_{α} be a cofinal subset of α with order type ω.

It remains to show that for every $\xi<\kappa,\left|\left\{c_{\alpha} \cap \xi: \alpha \in C\right\}\right|<\kappa$. First note that if $\operatorname{cf}(\alpha)=\omega$, then $c_{\alpha} \cap \xi$ is either equal to c_{α} if $\alpha \leq \xi$, or is finite otherwise. Hence $\left|\left\{c_{\alpha} \cap \xi: \alpha \in C \cap \operatorname{cof}(\omega)\right\}\right|<\kappa$.

For each $\xi<\kappa$, let $\mathcal{D}_{\xi}=\left\{c_{\alpha} \cap \xi: \alpha \in C \cap \operatorname{cof}(>\omega)\right\}$. We prove by induction on ξ that $\left|\mathcal{D}_{\xi}\right|<\kappa$. The successor case is easy, so assume that ξ is a limit ordinal. The set \mathcal{D}_{ξ} splits into two sets:

$$
\begin{aligned}
& \left\{c_{\alpha} \cap \xi: \alpha \in C \cap \operatorname{cof}(>\omega), \sup \left(c_{\alpha} \cap \xi\right)<\xi\right\} \\
& \left\{c_{\alpha} \cap \xi: \alpha \in C \cap \operatorname{cof}(>\omega), \sup \left(c_{\alpha} \cap \xi\right)=\xi\right\}
\end{aligned}
$$

The first set is contained in the union $\bigcup_{\xi^{\prime}<\xi} \mathcal{D}_{\xi^{\prime}}$, so has size less than κ by the inductive hypothesis. The second set is a subset of $\left\{d_{w}: w \in T_{\xi}\right\}$, which has size less than κ since $\left|T_{\xi}\right|<\kappa$.
3. The full code of a C-sequence. Fix a regular uncountable cardinal κ. A C-sequence on κ is a sequence $\left\langle c_{\alpha}: \alpha<\kappa\right\rangle$ satisfying:
(1) $c_{0}=\emptyset$;
(2) $c_{\alpha+1}=\{\alpha\}$;
(3) if α is a limit ordinal then c_{α} is a club subset of α.

We will review the full code ρ_{0} of Todorčević [3], defined from a given C-sequence on κ. We propose that ρ_{0} and its corresponding tree $T\left(\rho_{0}\right)$ can be developed most naturally in the context of weak square.

Fix a C-sequence $\left\langle c_{\alpha}: \alpha<\kappa\right\rangle$.
Definition 3.1. Let $\alpha \leq \beta<\kappa$.
(1) The walk from β to α is the unique sequence $\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle$ such that $\beta_{0}=\beta, \beta_{k+1}=\min \left(c_{\beta_{k}} \backslash \alpha\right)$ for $k<n$, and $\beta_{n}=\alpha$.
(2) $\rho_{0}(\alpha, \beta)=\left\langle\operatorname{ot}\left(c_{\beta_{0}} \cap \alpha\right), \ldots\right.$, ot $\left.\left(c_{\beta_{n-1}} \cap \alpha\right)\right\rangle$.

In (2) we mean $\rho_{0}(\alpha, \alpha)=\emptyset$ in the case $\alpha=\beta$. Note that the length of $\rho_{0}(\alpha, \beta)$ is 1 less than the length of the walk from β to α. If $\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle$ is
the walk from β to α, then obviously for all $i=0, \ldots, n,\left\langle\beta_{i}, \ldots, \beta_{n}\right\rangle$ is the walk from β_{i} to α. That $\left\langle\beta_{0}, \ldots, \beta_{i}\right\rangle$ is the walk from β to β_{i} follows from the next lemma.

Lemma 3.2. $\left(^{1}\right)$ Let $\alpha \leq \gamma \leq \beta$. Let $\left\langle\beta_{0}, \ldots, \beta_{m}\right\rangle$ be the walk from β to γ. Then the following are equivalent:
(1) the sequence $\left\langle\beta_{0}, \ldots, \beta_{m}\right\rangle$ is an initial segment of the walk from β to α;
(2) γ is in the walk from β to α;
(3) for all $i=0, \ldots, m-1, c_{\beta_{i}} \cap[\alpha, \gamma)=\emptyset$.

Proof. $(1) \Rightarrow(2)$ is immediate since $\beta_{m}=\gamma$. For $(3) \Rightarrow(1)$, it is easy to prove by induction on $i \leq m$ that β_{i} is the i th element in the walk from β to α; namely, $\beta_{0}=\beta$, and if β_{i} is as required for a fixed $i<m$, then $\beta_{i+1}=\min \left(c_{\beta_{i}} \backslash \gamma\right)=\min \left(c_{\beta_{i}} \backslash \alpha\right)$, which is the $i+1$ st element in the walk from β to α. To show $(2) \Rightarrow(3)$, assume (2) holds and (3) fails. Let $i<m$ be least such that $c_{\beta_{i}} \cap[\alpha, \gamma) \neq \emptyset$. Then by the implication $(3) \Rightarrow(1)$ just shown, $\left\langle\beta_{0}, \ldots, \beta_{i}\right\rangle$ is an initial segment of the walk from β to α, and the next step of this walk is $\min \left(c_{\beta_{i}} \backslash \alpha\right)$, which is less than γ by the choice of i. This contradicts that γ is in the walk from β to α.

Lemma 3.3. Let $\alpha \leq \gamma \leq \beta$. Then the following are equivalent:
(1) $\rho_{0}(\alpha, \beta)=\rho_{0}(\gamma, \beta)^{\wedge} \rho_{0}(\alpha, \gamma)$;
(2) $\rho_{0}(\gamma, \beta)$ is an initial segment of $\rho_{0}(\alpha, \beta)$;
(3) γ is in the walk from β to α.

Proof. $(1) \Rightarrow(2)$ is immediate. For $(2) \Rightarrow(3)$, let $\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle$ and $\left\langle\beta_{0}^{\prime}, \ldots, \beta_{m}^{\prime}\right\rangle$ be the walks from β to α and from β to γ. If γ is not in the walk from β to α, let $0<k \leq m$ be least such that $\beta_{k} \neq \beta_{k}^{\prime}$. Then $\beta_{k}=\min \left(c_{\beta_{k-1}} \backslash \alpha\right)<\gamma$. So $c_{\beta_{k-1}} \cap \alpha$ is a proper initial segment of $c_{\beta_{k-1}} \cap \gamma$. Therefore $\rho_{0}(\alpha, \beta)(k-1)=\operatorname{ot}\left(c_{\beta_{k-1}} \cap \alpha\right)<\operatorname{ot}\left(c_{\beta_{k-1}} \cap \gamma\right)=\rho_{0}(\gamma, \beta)(k-1)$. So (2) fails.

Now assume (3). Let $\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle$ be the walk from β to α. By Lemma 3.2, fix $k<n$ such that $\left\langle\beta_{0}, \ldots, \beta_{k}\right\rangle$ is the walk from β to γ. Also by Lemma 3.2 , for all $i \leq k-1, c_{\beta_{i}} \cap[\alpha, \gamma)$ is empty, and therefore $\rho_{0}(\gamma, \beta)(i)=$ $\operatorname{ot}\left(c_{\beta_{i}} \cap \gamma\right)=\operatorname{ot}\left(c_{\beta_{i}} \cap \alpha\right)=\rho_{0}(\alpha, \beta)(i)$. So $\rho_{0}(\gamma, \beta)=\rho_{0}(\alpha, \beta) \upharpoonright k$. By the definition of ρ_{0} and the fact that $\left\langle\beta_{k}, \ldots, \beta_{n}\right\rangle$ is the walk from γ to α, for all $i<n-k$ we have $\rho_{0}(\alpha, \beta)(k+i)=\operatorname{ot}\left(c_{\beta_{k+i}} \cap \alpha\right)=\rho_{0}(\alpha, \gamma)(i)$. Thus $\rho_{0}(\alpha, \beta)=\rho_{0}(\gamma, \beta) \wedge \rho_{0}(\alpha, \gamma)$.
$\left({ }^{1}\right)$ Lemmas 3.2-3.4 are due to Todorčević; they are discussed in Lemmas 2.1.6 and 2.1.16 of [4] in the case $\kappa=\omega_{1}$.

Define the right lexicographical order $<_{r}$ on ${ }^{<\omega} \kappa$ by letting $t<_{r} s$ if either s is a proper initial segment of t, or there is k such that $s(k) \neq t(k)$, and the least such k satisfies $t(k)<s(k)$.

Lemma 3.4. Let $\alpha<\gamma \leq \beta$. Then $\rho_{0}(\alpha, \beta)<_{r} \rho_{0}(\gamma, \beta)$.
Proof. Let $\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle$ and $\left\langle\beta_{0}^{\prime}, \ldots, \beta_{m}^{\prime}\right\rangle$ be the walks from β to γ and from β to α respectively. If γ is in the walk from β to α, then by Lemma 3.3, $\rho_{0}(\gamma, \beta)$ is a proper initial segment of $\rho_{0}(\alpha, \beta)$, so $\rho_{0}(\alpha, \beta)<_{r} \rho_{0}(\gamma, \beta)$. Otherwise let $k>0$ be least such that $\beta_{k} \neq \beta_{k}^{\prime}$. Since β_{k-1} is in both walks, $\rho_{0}\left(\beta_{k-1}, \beta\right)$ is an initial segment of both $\rho_{0}(\gamma, \beta)$ and $\rho_{0}(\alpha, \beta)$. In particular, the least place where $\rho_{0}(\gamma, \beta)$ and $\rho_{0}(\alpha, \beta)$ can differ is at $k-1$. Since $\beta_{k}^{\prime} \in c_{\beta_{k-1}} \cap[\alpha, \gamma)$, we see that $c_{\beta_{k-1}} \cap \alpha$ is a proper initial segment of $c_{\beta_{k-1}} \cap \gamma$. Therefore $\rho_{0}(\alpha, \beta)(k-1)=\operatorname{ot}\left(c_{\beta_{k-1}} \cap \alpha\right)<\operatorname{ot}\left(c_{\beta_{k-1}} \cap \gamma\right)=$ $\rho_{0}(\gamma, \beta)(k-1)$. Hence $\rho_{0}(\alpha, \beta)<_{r} \rho_{0}(\gamma, \beta)$.

In order to construct a special Aronszajn tree from a weak square sequence, we will need to analyze the following situation: suppose $\alpha \leq \beta, \gamma$, where α is a limit ordinal, and for all $\xi<\alpha, \rho_{0}(\xi, \beta)=\rho_{0}(\xi, \gamma)$. What can be said about the relationship between $\rho_{0}(\alpha, \beta)$ and $\rho_{0}(\alpha, \gamma)$? This relationship is described precisely in Proposition 3.6 below. If $\kappa=\omega_{1}$ then in the situation just described $\rho_{0}(\alpha, \beta)=\rho_{0}(\alpha, \gamma)$. But this is not true in general. For example, it is not true if $\alpha=\beta$ is a limit ordinal, $\alpha<\gamma$, and $c_{\alpha}=c_{\gamma} \cap \alpha$.

We make some additional observations about ρ_{0} in preparation for Proposition 3.6. Let $\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle$ be the walk from β to α, where $\alpha \leq \beta$. Then for all $i=0, \ldots, n-2, \sup \left(c_{\beta_{i}} \cap \alpha\right)<\alpha$. Namely, if $\sup \left(c_{\beta_{i}} \cap \alpha\right)=\alpha$, then $\alpha \in c_{\beta_{i}}$, and hence $\alpha=\min \left(c_{\beta_{i}} \backslash \alpha\right)$. This is only possible if $i=n-1$.

Lemma 3.5. Let $\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle$ be the walk from β to α, where α is a limit ordinal and $\alpha \leq \beta$. Assume that $\xi<\alpha$ is larger than $\sup \left(c_{\beta_{i}} \cap \alpha\right)$ for all $i=0, \ldots, n-2$. Then $\left\langle\beta_{0}, \ldots, \beta_{n-1}\right\rangle$ is an initial segment of the walk from β to ξ, namely, the part of the walk consisting of ordinals above α.

Proof. The proof is by induction on $k<n$. Assume $\left\langle\beta_{0}, \ldots, \beta_{k}\right\rangle$ is an initial segment of the walk from β to ξ, where $k<n-1$. By assumption, $\sup \left(c_{\beta_{k}} \cap \alpha\right)<\xi$, and hence $\beta_{k+1}=\min \left(c_{\beta_{k}} \backslash \alpha\right)=\min \left(c_{\beta_{k}} \backslash \xi\right)$, which is the next step of the walk from β to ξ. Finally, $\alpha=\min \left(c_{\beta_{n-1}} \backslash \alpha\right) \geq \min \left(c_{\beta_{n-1}} \backslash \xi\right)$, and $\min \left(c_{\beta_{n-1}} \backslash \xi\right)$ is the next step of the walk from β to ξ after β_{n-1}.

Let $\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle$ be the walk from β to α, where α is a limit ordinal and $\alpha \leq \beta$. Suppose $\sup \left(c_{\beta_{n-1}} \cap \alpha\right)<\alpha$. Let $\xi<\alpha$ be larger than $\sup \left(c_{\beta_{i}} \cap \alpha\right)$ for all $i=0, \ldots, n-1$. Then for $i=0, \ldots, n-1$, $\sup \left(c_{\beta_{i}} \cap \alpha\right)<\xi$ implies $c_{\beta_{i}} \cap[\xi, \alpha)=\emptyset$. By Lemma 3.2, α is in the walk from β to ξ. Therefore $\rho_{0}(\alpha, \beta)$ is an initial segment of $\rho_{0}(\xi, \beta)$.

On the other hand, suppose $\sup \left(c_{\beta_{n-1}} \cap \alpha\right)=\alpha$. Let $\xi<\alpha$ be larger than $\sup \left(c_{\beta_{i}} \cap \alpha\right)$ for all $i=0, \ldots, n-2$. By Lemma $3.5,\left\langle\beta_{0}, \ldots, \beta_{n-1}\right\rangle$ is an
initial segment of the walk from β to ξ. But since $c_{\beta_{n-1}} \cap[\xi, \alpha)$ is nonempty, Lemma 3.2 implies that α is not in the walk from β to ξ. The next step of the walk from β to ξ after β_{n-1} is $\min \left(c_{\beta_{n-1}} \backslash \xi\right)$, which is less than α.

Proposition 3.6. Let $\alpha<\beta, \gamma$ be given, where α is a limit ordinal. Suppose that for all $\xi<\alpha, \rho_{0}(\xi, \beta)=\rho_{0}(\xi, \gamma)$. Let $\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle$ be the walk from β to α and let $\left\langle\gamma_{0}, \ldots, \gamma_{m}\right\rangle$ be the walk from γ to α. Let $\alpha_{0}=$ $\sup \left(c_{\beta_{n-1}} \cap \alpha\right)$ and $\alpha_{1}=\sup \left(c_{\gamma_{m-1}} \cap \alpha\right)$.
(1) If $\alpha_{0}<\alpha$ and $\alpha_{1}<\alpha$, then $\rho_{0}(\alpha, \beta)=\rho_{0}(\alpha, \gamma)$.
(2) If $\alpha_{0}=\alpha_{1}=\alpha$, then $\rho_{0}(\alpha, \beta)=\rho_{0}(\alpha, \gamma)$.
(3) If $\alpha_{0}<\alpha$ and $\alpha_{1}=\alpha$, then $\rho_{0}(\alpha, \gamma)=\rho_{0}(\alpha, \beta) \wedge \operatorname{ot}\left(c_{\alpha}\right)$.

Proof. Note that for all $\xi<\alpha, \rho_{0}(\xi, \beta)=\rho_{0}(\xi, \gamma)$ implies that the walks from β to ξ and from γ to ξ have the same length.

Suppose $\alpha_{0}<\alpha$ and $\alpha_{1}<\alpha$. Then for all large enough $\xi<\alpha, \alpha$ is in the walk from β to ξ and in the walk from γ to ξ. So for all large enough $\xi<\alpha$,

$$
\rho_{0}(\xi, \beta)=\rho_{0}(\alpha, \beta)^{\wedge} \rho_{0}(\xi, \alpha) \quad \text { and } \quad \rho_{0}(\xi, \gamma)=\rho_{0}(\alpha, \gamma)^{\wedge} \rho_{0}(\xi, \alpha)
$$

Since $\rho_{0}(\xi, \beta)=\rho_{0}(\xi, \gamma)$, equating the sequences above and removing the common tails yields $\rho_{0}(\alpha, \beta)=\rho_{0}(\alpha, \gamma)$.

Now suppose $\alpha_{0}=\alpha_{1}=\alpha$. First we show that $n=m$. For all large enough $\xi<\alpha,\left\langle\beta_{0}, \ldots, \beta_{n-1}\right\rangle$ is an initial segment of the walk from β to ξ, and $\left\langle\gamma_{0}, \ldots, \gamma_{m-1}\right\rangle$ is an initial segment of the walk from γ to ξ. Consider a large enough ordinal $\xi \in c_{\beta_{n-1}} \cap \alpha$. Then the walk from β to ξ equals $\left\langle\beta_{0}, \ldots, \beta_{n-1}, \xi\right\rangle$, which has length $n+1$. Since $\rho_{0}(\xi, \beta)=\rho_{0}(\xi, \gamma)$, the walk from γ to ξ has length $n+1$ also. So the walk from γ to γ_{m-1}, namely $\left\langle\gamma_{0}, \ldots, \gamma_{m-1}\right\rangle$, has length less than $n+1$. Hence $m \leq n$. A symmetric argument shows that $n \leq m$.

For all large enough ξ, β_{n-1} is in the walk from β to ξ, and hence $\rho_{0}\left(\beta_{n-1}, \beta\right) \sqsubset \rho_{0}(\xi, \beta)$ by Lemma 3.3. Similarly, for all large enough ξ, $\rho_{0}\left(\gamma_{n-1}, \gamma\right) \sqsubset \rho_{0}(\xi, \gamma)$. Since $\rho_{0}(\xi, \beta)=\rho_{0}(\xi, \gamma)$ and $\rho_{0}\left(\beta_{n-1}, \beta\right)$ and $\rho_{0}\left(\gamma_{n-1}, \gamma\right)$ have the same length, $\rho_{0}\left(\beta_{n-1}, \beta\right)=\rho_{0}\left(\gamma_{n-1}, \gamma\right)$. Since $\rho_{0}(\alpha, \beta)$ $=\rho_{0}\left(\beta_{n-1}, \beta\right) \wedge \operatorname{ot}\left(c_{\beta_{n-1}} \cap \alpha\right)$ and $\rho_{0}(\alpha, \gamma)=\rho_{0}\left(\gamma_{n-1}, \gamma\right) \wedge \operatorname{ot}\left(c_{\gamma_{n-1}} \cap \alpha\right)$, it suffices to show that ot $\left(c_{\beta_{n-1}} \cap \alpha\right)=\operatorname{ot}\left(c_{\gamma_{n-1}} \cap \alpha\right)$.

Since α is a limit ordinal, it is enough to show that for all large enough $\xi<\alpha, \operatorname{ot}\left(c_{\beta_{n-1}} \cap \xi\right)=\operatorname{ot}\left(c_{\gamma_{n-1}} \cap \xi\right)$. But for all large enough $\xi, \rho_{0}(\xi, \beta)(n-1)$ $=\operatorname{ot}\left(c_{\beta_{n-1}} \cap \xi\right)$ and $\rho_{0}(\xi, \gamma)(n-1)=\operatorname{ot}\left(c_{\gamma_{n-1}} \cap \xi\right)$. Since $\rho_{0}(\xi, \beta)=\rho_{0}(\xi, \gamma)$, $\operatorname{ot}\left(c_{\beta_{n-1}} \cap \xi\right)=\operatorname{ot}\left(c_{\gamma_{n-1}} \cap \xi\right)$.

Finally, suppose that $\alpha_{0}<\alpha$ and $\alpha_{1}=\alpha$. First we prove that $m=n+1$. If we take a large enough $\xi \in c_{\alpha}$, then the walk from β to ξ is equal to $\left\langle\beta_{0}, \ldots, \beta_{n}, \xi\right\rangle$, and $\left\langle\gamma_{0}, \ldots, \gamma_{m-1}\right\rangle$ is a proper initial segment of the walk from γ to ξ. Since $\rho_{0}(\xi, \beta)=\rho_{0}(\xi, \gamma)$, the walks from β to ξ and from γ to ξ
have the same length, namely $n+2$. Therefore the walk $\left\langle\gamma_{0}, \ldots, \gamma_{m-1}\right\rangle$ has length at most $n+1$, that is, $m \leq n+1$.

On the other hand, choosing a large enough ξ in $c_{\gamma_{m-1}} \cap \alpha,\left\langle\gamma_{0}, \ldots, \gamma_{m-1}, \xi\right\rangle$ is the walk from γ to ξ, and α is in the walk from β to ξ. So the walk from γ to ξ has length $m+1$. Since $\rho_{0}(\xi, \beta)=\rho_{0}(\xi, \gamma)$, the walk from β to ξ has length $m+1$. But the sequence $\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle$ is a proper initial segment of the walk from β to ξ, so the length of this sequence is less than $m+1$, that is, $n+1 \leq m$. So $m=n+1$.

Now we show that $\rho_{0}(\alpha, \beta)=\rho_{0}\left(\gamma_{m-1}, \gamma\right)$. Since $m=n+1$, the walks from β to α and from γ to γ_{m-1} have the same length, so $\rho_{0}(\alpha, \beta)$ and $\rho_{0}\left(\gamma_{m-1}, \gamma\right)$ have the same length. To show they are equal, it suffices to show they are initial segments of the same sequence. Choose a large enough ξ so that α is in the walk from β to ξ and γ_{m-1} is in the walk from γ to ξ. Then $\rho_{0}(\alpha, \beta) \sqsubset \rho_{0}(\xi, \beta)$ and $\rho_{0}\left(\gamma_{m-1}, \gamma\right) \sqsubset \rho_{0}(\xi, \gamma)$ by Lemma 3.3. Since $\rho_{0}(\xi, \beta)=\rho_{0}(\xi, \gamma), \rho_{0}(\alpha, \beta)=\rho_{0}\left(\gamma_{m-1}, \gamma\right)$.

Now $\rho_{0}(\alpha, \gamma)=\rho_{0}\left(\gamma_{m-1}, \gamma\right) \wedge \operatorname{ot}\left(c_{\gamma_{m-1}} \cap \alpha\right)=\rho_{0}(\alpha, \beta) \wedge \operatorname{ot}\left(c_{\gamma_{m-1}} \cap \alpha\right)$. So to complete the proof, it suffices to show that ot $\left(c_{\gamma_{m-1}} \cap \alpha\right)=\operatorname{ot}\left(c_{\alpha}\right)$. Since α is a limit ordinal, it suffices to show that for all large enough $\xi<\alpha$, $\operatorname{ot}\left(c_{\gamma_{m-1}} \cap \xi\right)=\operatorname{ot}\left(c_{\alpha} \cap \xi\right)$. Choose ξ large enough so that α is in the walk from β to ξ and γ_{m-1} is in the walk from γ to ξ. Then $\rho_{0}(\xi, \beta)(n)=\operatorname{ot}\left(c_{\alpha} \cap \xi\right)$ and $\rho_{0}(\xi, \gamma)(m-1)=\operatorname{ot}\left(c_{\gamma_{m-1}} \cap \xi\right)$. Since $\rho_{0}(\xi, \beta)=\rho_{0}(\xi, \gamma)$ and $n=m-1$, we are done.
4. Weak square implies a special Aronszajn tree. We prove now that the existence of a weak square sequence on a regular uncountable cardinal κ implies the existence of a special Aronszajn tree on κ. Fix a C-sequence $\left\langle c_{\alpha}: \alpha<\kappa\right\rangle$, and let ρ_{0} be the full code. For each $\beta<\kappa$, define $\rho_{0 \beta}: \beta \rightarrow{ }^{<\omega} \beta$ by letting $\rho_{0 \beta}(\xi)=\rho_{0}(\xi, \beta)$ for $\xi<\beta$. Recall the tree $T\left(\rho_{0}\right)$ of Todorčević [3]: for each $\alpha<\kappa$, level α of $T\left(\rho_{0}\right)$ consists of functions of the form $\rho_{0 \beta} \upharpoonright \alpha$, where $\alpha \leq \beta<\kappa$. For $u, v \in T\left(\rho_{0}\right), u<_{T\left(\rho_{0}\right)} v$ if $v\lceil\operatorname{dom}(u)=u$.

Our goal is to prove that under some additional assumptions on the C-sequence, the tree $T\left(\rho_{0}\right)$ is a special Aronszajn tree. The existence of a C-sequence satisfying these assumptions follows from the existence of a weak square sequence. Our proof is based on the proof of Todorčević [4] that there exists a special Aronszajn tree on κ for any non-Mahlo strongly inaccessible cardinal $\kappa\left({ }^{2}\right)$.

It is clear that $T\left(\rho_{0}\right)$ is a tree of height κ. The next lemma will imply that if $\left|\left\{c_{\beta} \cap \xi: \beta<\kappa\right\}\right|<\kappa$ for every $\xi<\kappa$, then $T\left(\rho_{0}\right)$ is a κ-tree. The

[^1]proof is based on the argument in [1] that \square_{μ}^{*} implies the existence of a special Aronszajn tree on μ^{+}for any infinite cardinal μ.

Lemma 4.1. Let $\alpha<\kappa$ be a limit ordinal, and let $\alpha \leq \beta, \gamma$. Let $\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle$ be the walk from β to α and let $\left\langle\gamma_{0}, \ldots, \gamma_{m}\right\rangle$ be the walk from γ to α. Suppose that the sequences $\left\langle c_{\beta_{0}} \cap \alpha, \ldots, c_{\beta_{n}} \cap \alpha\right\rangle$ and $\left\langle c_{\gamma_{0}} \cap \alpha, \ldots, c_{\gamma_{m}} \cap \alpha\right\rangle$ are equal. Then $\rho_{0 \beta}\left\lceil\alpha=\rho_{0 \gamma}\lceil\alpha\right.$.

Proof. Note that $n=m$. Let $\xi<\alpha$ be given. Let $i \leq n$ be least such that $c_{\beta_{i}} \cap[\xi, \alpha)$ is nonempty. By Lemma 3.2, β_{i} is in the walk from β to ξ. The next step of the walk from β to ξ after β_{i} is $\beta^{*}=\min \left(c_{\beta_{i}} \backslash \xi\right)<\alpha$. Due to the agreement described in the assumptions, i is also least such that $c_{\gamma_{i}} \cap[\xi, \alpha)$ is nonempty, γ_{i} is in the walk from γ to ξ, and $\gamma^{*}=\min \left(c_{\gamma_{i}} \backslash \xi\right)=\beta^{*}$ is the next step of the walk from γ to ξ after γ_{i}. By the agreement we have $\rho_{0}(\xi, \beta)=\left\langle\operatorname{ot}\left(c_{\beta_{0}} \cap \xi\right), \ldots, \operatorname{ot}\left(c_{\beta_{i}} \cap \xi\right)\right\rangle^{\wedge} \rho_{0}\left(\xi, \beta^{*}\right)=\left\langle\operatorname{ot}\left(c_{\gamma_{0}} \cap \xi\right), \ldots\right.$ $\left.\ldots, \operatorname{ot}\left(c_{\gamma_{i}} \cap \xi\right)\right\rangle \wedge \rho_{0}\left(\xi, \gamma^{*}\right)=\rho_{0}(\xi, \gamma)$.

Proposition 4.2. Suppose the C-sequence $\left\langle c_{\alpha}: \alpha<\kappa\right\rangle$ is such that for every $\xi<\kappa$, $\left|\left\{c_{\beta} \cap \xi: \beta<\kappa\right\}\right|<\kappa$. Then $T\left(\rho_{0}\right)$ is a κ-tree.

Proof. Let $\xi<\kappa$ be given; we show that level ξ of the tree $T\left(\rho_{0}\right)$ has size less than κ. Note that it suffices to prove this statement for limit ordinals ξ. For in general, level γ of the tree is equal to $\left\{\rho_{0 \gamma+n} \upharpoonright \gamma: n<\omega\right\} \cup$ $\left\{t \upharpoonright \gamma: t \in T\left(\rho_{0}\right)_{\gamma+\omega}\right\}$.

So let ξ be a limit ordinal. By the previous lemma, for all $\beta \geq \xi$, the function $\rho_{0 \beta} \backslash \xi$ is determined from the finite sequence $\left\langle c_{\beta_{0}} \cap \xi, \ldots, c_{\beta_{n}} \cap \xi\right\rangle$, where $\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle$ is the walk from β to ξ. By assumption, there are fewer than κ many possibilities for such a sequence. So there are fewer than κ many functions of the form $\rho_{0 \beta} \backslash \xi$ for $\beta<\kappa$.

Assume that there exists a weak square sequence on κ. Then by Lemma 1.2 , we can fix a C-sequence $\left\langle c_{\alpha}: \alpha<\kappa\right\rangle$ satisfying the following conditions:
(1) there exists a club $C \subseteq \kappa \cap \operatorname{Lim}$ such that for all α in C, ot $\left(c_{\alpha}\right)<$ $\min \left(c_{\alpha}\right)$;
(2) for all $\alpha \in(\kappa \cap \operatorname{Lim}) \backslash C, \min \left(c_{\alpha}\right)>\sup (C \cap \alpha)$;
(3) for every $\xi<\kappa,\left|\left\{c_{\alpha} \cap \xi: \alpha<\kappa\right\}\right|<\kappa$.

Let ρ_{0} be the full code defined from this C-sequence. We will prove that $T\left(\rho_{0}\right)$ is a special Aronszajn tree.

Let $\left\langle\alpha_{0}, \ldots, \alpha_{n}\right\rangle \mapsto\left\ulcorner\left\langle\alpha_{0}, \ldots, \alpha_{n}\right\rangle\right\urcorner$ be some coding of finite sequences of ordinals in κ by ordinals in κ. Let D be the club set of ordinals $\alpha \in C$ which are closed under this mapping.

Lemma 4.3. For all $\alpha \in C$ and $\beta \geq \alpha$, ot $\left(c_{\beta} \cap \alpha\right)<\alpha$. Hence for all $\alpha \in D$ and $\gamma \geq \alpha,\left\ulcorner\rho_{0}(\alpha, \gamma)\right\urcorner<\alpha$.

Proof. Fix $\alpha \in C$ and $\beta \geq \alpha$. If β is a successor ordinal then $c_{\beta} \cap \alpha=\emptyset$. Suppose β is a limit ordinal. If β is not in C, then $\alpha \leq \sup (C \cap \beta)<\min \left(c_{\beta}\right)$. Therefore $c_{\beta} \cap \alpha=\emptyset$. Now suppose that β is in C. If $c_{\beta} \cap \alpha=\emptyset$ then we are done. Otherwise ot $\left(c_{\beta} \cap \alpha\right) \leq \operatorname{ot}\left(c_{\beta}\right)<\min \left(c_{\beta}\right)<\alpha$.

Theorem 4.4. The tree $T\left(\rho_{0}\right)$ is a special Aronszajn tree.
Proof. Let $U=\left\{t \in T\left(\rho_{0}\right): \operatorname{ht}(t) \in D\right\}$. We will define a function $g: U \rightarrow \kappa$ satisfying:
(a) $g(t)<\operatorname{ht}(t)$ for all $t \in U$;
(b) $t \sqsubset u$ in U implies $g(t) \neq g(u)$.

Let us note that the existence of such a function g implies that $T\left(\rho_{0}\right)$ is special. For in that case, define $h: T\left(\rho_{0}\right) \rightarrow \kappa$ as follows. For $t \in U$, let $h(t)=g(t)$. For $t \in T\left(\rho_{0}\right) \backslash U$, let $h(t)=\sup (D \cap \operatorname{ht}(t))$. Then $h(t)<\operatorname{ht}(t)$ for all nonminimal t. Consider $\nu<\kappa$; we show that $h^{-1}(\{\nu\})$ is the union of fewer than κ many antichains. If $h(t)=\nu$ and $t \notin U$, then $\nu<\operatorname{ht}(t)<$ $\min (D \backslash \nu+1)$. There are fewer than κ many such nodes t. Enumerate them as $\left\{t_{i}: i<\lambda\right\}$ where $\lambda<\kappa$. Define $f_{\nu}: h^{-1}(\{\nu\}) \rightarrow \lambda+1$ by letting $f_{\nu}\left(t_{i}\right)=i$ for $i<\lambda$ and $f_{\nu}(t)=\lambda$ if $h(t)=\nu$ and $t \in U$. If $f_{\nu}(t)=f_{\nu}(u)$ then clearly $t, u \in U$. Hence $h(t)=g(t)=\nu$ and $h(u)=g(u)=\nu$, so $t \sqsubset u$ is not possible by the properties of g.

Now we define the function $g: U \rightarrow \kappa$. Consider $t \in T\left(\rho_{0}\right)$ with $\operatorname{ht}(t) \in D$. Let $\alpha=\operatorname{ht}(t)$. Define $A(t, 0)$ as the set of $\beta \geq \alpha$ with $\rho_{0 \beta} \upharpoonright \alpha=t$ such that, letting $\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle$ be the walk from β to $\alpha, \sup \left(c_{\beta_{n-1}} \cap \alpha\right)<\alpha$. Define $A(t, 1)$ as the set of $\gamma \geq \alpha$ with $\rho_{0 \gamma} \upharpoonright \alpha=t$ such that, letting $\left\langle\gamma_{0}, \ldots, \gamma_{m}\right\rangle$ be the walk from γ to $\alpha, \sup \left(c_{\gamma_{m-1}} \cap \alpha\right)=\alpha$. By Proposition 3.6 we have:
(1) for all $\beta, \beta^{\prime} \in A(t, 0), \rho_{0}(\alpha, \beta)=\rho_{0}\left(\alpha, \beta^{\prime}\right)$;
(2) for all $\gamma, \gamma^{\prime} \in A(t, 1), \rho_{0}(\alpha, \gamma)=\rho_{0}\left(\alpha, \gamma^{\prime}\right)$;
(3) for all $\beta \in A(t, 0)$ and $\gamma \in A(t, 1), \rho_{0}(\alpha, \gamma)=\rho_{0}(\alpha, \beta) \wedge \operatorname{ot}\left(c_{\alpha}\right)$.

The definition of $g(t)$ splits into cases. First assume that one of $A(t, 0)$ or $A(t, 1)$ is empty. Fix any $\gamma \geq \alpha$ with $t=\rho_{0 \gamma} \upharpoonright \alpha$, and let

$$
g(t)=\left\ulcorner\left\langle\left\ulcorner\rho_{0}(\alpha, \gamma)\right\urcorner, 0\right\rangle\right\urcorner .
$$

Note that by (1) and (2) and the case assumption, the definition of $g(t)$ is independent of γ. Secondly, assume that $A(t, 0)$ and $A(t, 1)$ are both nonempty. Fix any $\gamma \in A(t, 1)$, and define

$$
g(t)=\left\ulcorner\left\langle\left\ulcorner\rho_{0}(\alpha, \gamma)\right\urcorner, 1\right\rangle\right\urcorner .
$$

By (2), the definition of $g(t)$ is independent of γ. Note that $g(t)<h t(t)$ by Lemma 4.3.

To complete the proof, we show that if $t, u \in U$, then $t \sqsubset u$ implies $g(t) \neq g(u)$. So let $t \sqsubset u$ be given, and let $\alpha=\operatorname{ht}(t)$ and $\delta=\operatorname{ht}(u)$. So $\alpha<\delta$. Assume for a contradiction that $g(t)=g(u)$. Note that $g(t)$ and $g(u)$ are defined by the same case, since the case is coded by a 0 or 1 in the definition of g.

First suppose $g(t)$ and $g(u)$ are defined as in the first case. Fix $\gamma \geq \delta$ such that $u=\rho_{0 \gamma} \backslash \delta$. Since $t \sqsubset u, t=\rho_{0 \gamma} \backslash \alpha$. So

$$
\left\ulcorner\left\langle\left\ulcorner\rho_{0}(\alpha, \gamma)\right\urcorner, 0\right\rangle\right\urcorner=g(t)=g(u)=\left\ulcorner\left\langle\left\ulcorner\rho_{0}(\delta, \gamma)\right\urcorner, 0\right\rangle\right\urcorner .
$$

Therefore $\rho_{0}(\alpha, \gamma)=\rho_{0}(\delta, \gamma)$. But by Lemma 3.4, $\alpha<\delta$ implies that $\rho_{0}(\alpha, \gamma)<_{r} \rho_{0}(\delta, \gamma)$, and in particular these sequences are different. So we have a contradiction.

Now suppose $g(t)$ and $g(u)$ are defined as in the second case. Fix $\gamma \in$ $A(u, 1)$. Then $u=\rho_{0 \gamma} \upharpoonright \delta$ and

$$
g(u)=\left\ulcorner\left\langle\left\ulcorner\rho_{0}(\delta, \gamma)\right\urcorner, 1\right\rangle\right\urcorner .
$$

Since $t \sqsubset u, t=\rho_{0 \gamma} \upharpoonright \alpha$. Now there are two cases, depending on whether γ is in $A(t, 0)$ or $A(t, 1)$. If $\gamma \in A(t, 1)$, then

$$
g(t)=\left\ulcorner\left\langle\left\ulcorner\rho_{0}(\alpha, \gamma)\right\urcorner, 1\right\rangle\right\urcorner .
$$

But $g(t)=g(u)$ implies $\rho_{0}(\alpha, \gamma)=\rho_{0}(\delta, \gamma)$. This contradicts Lemma 3.4.
If $\gamma \in A(t, 0)$, then fix some $\gamma^{\prime} \in A(t, 1)$. Then

$$
g(t)=\left\ulcorner\left\langle\left\ulcorner\rho_{0}\left(\alpha, \gamma^{\prime}\right)\right\urcorner, 1\right\rangle\right\urcorner .
$$

Since $g(t)=g(u)$, we have $\rho_{0}\left(\alpha, \gamma^{\prime}\right)=\rho_{0}(\delta, \gamma)$. But by Proposition 3.6(3),

$$
\rho_{0}(\delta, \gamma)=\rho_{0}\left(\alpha, \gamma^{\prime}\right)=\rho_{0}(\alpha, \gamma)^{\wedge} \operatorname{ot}\left(c_{\alpha}\right)
$$

So $\rho_{0}(\alpha, \gamma)$ is a proper initial segment of $\rho_{0}(\delta, \gamma)$, which implies $\rho_{0}(\delta, \gamma)<_{r}$ $\rho_{0}(\alpha, \gamma)$. But by Lemma 3.4, $\alpha<\delta$ implies $\rho_{0}(\alpha, \gamma)<_{r} \rho_{0}(\delta, \gamma)$, and we have a contradiction.

REMARK. If κ is a strongly inaccessible non-Mahlo cardinal, then there exists a weak square sequence on κ. Namely, let C be a club set of singular cardinals, and for each $\alpha \in C$, choose c_{α} as a club subset of α with order type $\operatorname{cf}(\alpha)$. Then for every $\xi<\kappa,\left|\left\{c_{\alpha} \cap \xi: \alpha<\kappa\right\}\right| \leq 2^{|\xi|}<\kappa$. We pose the following question: is it consistent that there is a weakly inaccessible non-Mahlo cardinal which does not carry a weak square sequence?

References

[1] J. Cummings, Notes on singular cardinal combinatorics, Notre Dame J. Formal Logic 46 (2005), 251-282.
[2] R. Jensen, The fine structure of the constructible hierarchy, Ann. Math. Logic 4 (1972), 229-308.
[3] S. Todorčević, Partitioning pairs of countable ordinals, Acta Math. 159 (1987), 261294.
[4] S. Todorčević, Walks on Ordinals and Their Characteristics, Progr. Math. 263, Birkhäuser, Basel, 2007.

John Krueger

Department of Mathematics
University of North Texas
1155 Union Circle \#311430
Denton, TX 76203, U.S.A.
E-mail: jkrueger@unt.edu

Received September 3, 2012;
in revised form March 17, 2013

[^0]: 2010 Mathematics Subject Classification: Primary 03E05.
 Key words and phrases: weak square sequence, special Aronszajn tree.

[^1]: $\left(^{2}\right)$ In that proof it is claimed that for a limit ordinal α and $\alpha \leq \beta, \gamma$, if $\rho_{0}(\xi, \beta)=$ $\rho_{0}(\xi, \gamma)$ for all $\xi<\alpha$, then $\rho_{0}(\alpha, \beta)=\rho_{0}(\alpha, \gamma)$. This claim appears to be incorrect even with the C-sequence used there. We replace this claim with Proposition 3.6.

