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Abstract. A classical theorem of set theory is the equivalence of the weak square
principle �∗µ with the existence of a special Aronszajn tree on µ+. We introduce the
notion of a weak square sequence on any regular uncountable cardinal, and prove that the
equivalence between weak square sequences and special Aronszajn trees holds in general.

Recall the weak square principle �∗µ for an infinite cardinal µ, which
asserts the existence of a sequence 〈Cα : α ∈ µ+ ∩ Lim〉 satisfying:

(1) for all c ∈ Cα, c is a club subset of α with order type at most µ;
(2) |Cα| ≤ µ;
(3) for all c ∈ Cα, if β ∈ lim(c) then c ∩ β ∈ Cβ.

For a regular uncountable cardinal κ, a tree (T,<T ) is a κ-tree if it has
height κ and all its levels are of size less than κ. For a successor cardinal
κ = µ+, a κ-tree (T,<T ) is a special Aronszajn tree if T is the union of µ
many antichains. Equivalently, T is special if there exists a function f : T →
µ such that t <T u implies f(t) 6= f(u).

The following classical theorem was originally noted by Jensen [2]. Let
µ be an infinite cardinal. Then �∗µ is equivalent to the existence of a special
Aronszajn tree on µ+.

Todorčević [3] introduced a more general definition of a special Aronszajn
tree. For a regular uncountable cardinal κ, a tree (T,<T ) of height κ is said
to be a special Aronszajn tree if there exists a function g : T → T satisfying:

(1) g(t) <T t for all nonminimal t ∈ T ;
(2) for all u ∈ T , g−1({u}) is the union of fewer than κ many antichains.

This definition coincides with the classical definition of a special Aronszajn
tree when κ is a successor cardinal.
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In this paper we introduce a definition of a weak square sequence which
makes sense on any regular uncountable cardinal. We prove that the exis-
tence of such a sequence on a regular uncountable cardinal κ is equivalent
to the existence of a special Aronszajn tree on κ in the sense of Todorčević.

Notation. Let Lim and Succ denote the classes of limit ordinals and
successor ordinals respectively. Let cof(ω) denote the class of limit ordinals
of countable cofinality, and let cof(>ω) denote the class of limit ordinals of
uncountable cofinality. For a set a of ordinals, ot(a) is the order type of a,
and lim(a) is the set of ordinals β such that sup(a ∩ β) = β.

A tree is a strict partial order (T,<T ) such that for every node x ∈ T ,
the set {y ∈ T : y <T x} is well ordered by <T . The height of a node
x ∈ T , denoted by ht(x), is the order type of {y ∈ T : y <T x}. Let
Tα = {x ∈ T : ht(x) = α} denote level α of T , for any ordinal α. The height
of the tree T is the least α such that Tα is empty. For finite sequences u
and v, u v v means that u is an initial segment of v, and u @ v means that
u is a proper initial segment of v.

1. Weak square sequences. The next definition generalizes the idea
of a weak square sequence to any regular uncountable cardinal.

Definition 1.1. Let κ be a regular uncountable cardinal. A sequence
〈cα : α ∈ C〉 is a weak square sequence on κ if:

(1) C ⊆ κ ∩ Lim is a club;
(2) for all α ∈ C, cα is a club subset of α with order type less than α;
(3) for every ξ < κ, |{cα ∩ ξ : α ∈ C}| < κ.

Note that if there exists a weak square sequence 〈cα : α ∈ C〉 on κ,
then κ is non-Mahlo. Indeed, (2) implies that every ordinal in the club C is
singular.

The goal of this section is to show that for an infinite cardinal µ, the
existence of a weak square sequence on µ+ in the sense above is equivalent to
the classical weak square principle �∗µ. The main challenge lies in reducing
the order type of the clubs on the sequence.

Let us note that for an infinite cardinal µ, �∗µ is equivalent to the ex-
istence of a sequence 〈cα : α ∈ µ+ ∩ Lim〉, where each cα is a club subset
of α with order type at most µ, and for every ξ < µ+, |{cα ∩ ξ : α ∈
µ+∩Lim}| ≤ µ. For if we have such a sequence, we can define for each limit
ordinal α the set Cα to be the collection of sets of the form cβ ∩ α, where
β ∈ µ+ ∩ Lim and α ∈ lim(cβ). Conversely, given 〈Cα : α ∈ µ+ ∩ Lim〉, a
sequence 〈cα : α ∈ µ+ ∩ Lim〉 is obtained as required by choosing cα to be
any member of Cα.
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Lemma 1.2. Let κ be a regular uncountable cardinal. Suppose there exists
a weak square sequence on κ. Then there exists a sequence 〈cα : α ∈ κ∩Lim〉
satisfying:

(1) each cα is a club subset of α;
(2) if α is singular then ot(cα) < α;
(3) there is a club C ⊆ κ such that for all α ∈ C, ot(cα) < min(cα);
(4) for all α ∈ (κ ∩ Lim) \ C, min(cα) > sup(C ∩ α);
(5) for every ξ < κ, |{cα ∩ ξ : α ∈ κ ∩ Lim}| < κ.

Proof. Fix a sequence 〈dα : α ∈ C〉 satisfying Definition 1.1. We define
a sequence 〈cα : α ∈ κ ∩ Lim〉 as follows. If α ∈ C, then ot(dα) < α. So let
cα = dα \ (ot(dα) + 1). If α < κ is a limit ordinal not in C, then since C is a
club, sup(C ∩ α) < α. Let cα be any club subset of α with order type cf(α)
such that min(cα) > sup(C ∩ α). Clearly (1)–(4) are satisfied.

We claim that for every ξ < κ, |{cα ∩ ξ : α ∈ κ ∩ Lim}| < κ. Let
γ = min(C \ ξ). Then for every limit ordinal β ∈ κ \ C which is larger
than γ, min(cβ) > γ, so cβ ∩ ξ = ∅. It follows that the nonempty members
of the set {cα ∩ ξ : α ∈ κ ∩ Lim} are in the set⋃

δ<ξ

{dα ∩ [δ, ξ) : α ∈ C} ∪ {cβ ∩ ξ : β ∈ γ \ C}.

There are fewer than κ many elements in the set on the left by assumption,
and clearly there are no more than |γ| < κ many elements in the set on the
right.

Lemma 1.3. Let κ be a regular uncountable cardinal. Suppose 〈cα : α ∈
κ ∩ Lim〉 is a sequence satisfying:

(1) each cα is a club subset of α;
(2) if α is singular then ot(cα) < α;
(3) for every ξ < κ, |{cα ∩ ξ : α ∈ κ ∩ Lim}| < κ.

For each limit ordinal α < κ, let fα : ot(cα)→ cα be the increasing enumer-
ation of cα. Define a sequence 〈dα : α ∈ κ ∩ Lim〉 by letting

dα =

{
cα if ot(cα) = cf(α),

fα[cot(cα)] if ot(cα) > cf(α).

Then 〈dα : α ∈ κ ∩ Lim〉 also satisfies conditions (1)–(3) above; moreover,
in the case that ot(cα) > cf(α), we have ot(dα) < ot(cα).

Proof. Consider a limit ordinal α < κ. If ot(cα) = cf(α), then dα = cα
so (1) and (2) hold for dα. Suppose ot(cα) > cf(α). Then, in particular,
α is singular. Since fα : ot(cα) → α is normal and cofinal in α, dα =
fα[cot(cα)] is a club subset of α with order type equal to ot(cot(cα)); but
ot(cot(cα)) ≤ ot(cα) < α. So (1) and (2) hold. For the final comment, assume
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ot(cα) > cf(α). Note that cf(ot(cα)) = cf(α) < ot(cα), so ot(cα) is singular.
Therefore ot(cot(cα)) < ot(cα) by (2). So ot(dα) = ot(cot(cα)) < ot(cα).

Let ξ < κ be given; we prove |{dα ∩ ξ : α ∈ κ ∩ Lim}| < κ. Note that

{dα ∩ ξ : α ∈ κ ∩ Lim, ot(cα) = cf(α)} ⊆ {cα ∩ ξ : α ∈ κ ∩ Lim},
so the set on the left has size less than κ. It remains to show that the set

{dα ∩ ξ : α ∈ κ ∩ Lim, ot(cα) > cf(α)}
has size less than κ.

Consider a limit ordinal α such that ot(cα)> cf(α). Then dα = fα[cot(cα)].
Since fα is the increasing enumeration of cα, clearly cα ∩ ξ = fα[ot(cα ∩ ξ)].
As dα ⊆ cα and fα is injective, we have dα ∩ ξ = dα ∩ cα ∩ ξ = fα[cot(cα)] ∩
fα[ot(cα ∩ ξ)] = fα[cot(cα) ∩ ot(cα ∩ ξ)]. Let gα : ot(cα ∩ ξ) → cα ∩ ξ be the
increasing enumeration of cα ∩ ξ. Then gα = fα�ot(cα ∩ ξ). So we have

dα ∩ ξ = gα[cot(cα) ∩ ot(cα ∩ ξ)].

Now the function gα is determined by cα ∩ ξ, and there are fewer than κ
many possibilities for cα ∩ ξ. Once cα ∩ ξ is known, dα ∩ ξ is determined by
cot(cα) ∩ ot(cα ∩ ξ), and again there are fewer than κ many possibilities for
this set. So there are fewer than κ many possibilities for dα ∩ ξ.

Proposition 1.4. Let κ be a regular uncountable cardinal. Suppose
〈cα : α ∈ κ ∩ Lim〉 is a sequence satisfying:

(1) each cα is a club subset of α;
(2) if α is singular then ot(cα) < α;
(3) for every ξ < κ, |{cα ∩ ξ : α ∈ κ ∩ Lim}| < κ.

Then there exists a sequence 〈dα : α ∈ κ ∩ Lim〉 satisfying (1)–(3), and
moreover, each dα has order type equal to cf(α).

Proof. By induction we define for each n < ω a sequence

〈cnα : α ∈ κ ∩ Lim〉.
The inductive hypotheses are that the sequence of cnα’s satisfies (1)–(3), and
moreover, if ot(cnα) > cf(α), then ot(cn+1

α ) < ot(cnα). Let c0α = cα for all limit
ordinals α < κ.

Fix n < ω and suppose that 〈cnα : α ∈ κ ∩ Lim〉 is defined as required.
For each α let fnα : ot(cnα)→ cnα be the increasing enumeration of cnα. Define
cn+1
α by

cn+1
α =

{
cnα if ot(cnα) = cf(α),

fnα [cnot(cnα)
] if ot(cnα) > cf(α).

Lemma 1.3 implies that 〈cn+1
α : α < κ limit〉 satisfies the inductive hypothe-

ses. This completes the definition.



Weak square sequences 271

Now we define the sequence 〈dα : α ∈ κ∩ Lim〉. Consider a limit ordinal
α < κ. Since ot(cn+1

α ) < ot(cnα) provided that ot(cnα) > cf(α), there must
exist a least k such that ot(ckα) = cf(α). Then by definition, for all m ≥ k,
cmα = ckα. Let dα = ckα, which is the eventual value of the club attached to α.
Clearly dα is a club subset of α with order type cf(α), and in particular,
if α is singular then ot(cα) < α.

To show (3), consider ξ < κ. Then for all n < ω, |{cnα ∩ ξ : α ∈ κ∩Lim}|
< κ. But

{dα ∩ ξ : α ∈ κ ∩ Lim} ⊆
⋃
n<ω

{cnα ∩ ξ : α ∈ κ ∩ Lim};

so the set on the left is a subset of a countable union of sets each having
cardinality less than κ.

Theorem 1.5. Let µ be an infinite cardinal. Then �∗µ holds iff there
exists a weak square sequence on µ+ in the sense of Definition 1.1.

Proof. If �∗µ holds, then as noted above there exists a sequence 〈cα : α ∈
µ+∩Lim〉 such that each cα is a club subset of α with order type at most µ,
and for every ξ < µ+, |{cα∩ξ : α ∈ µ+∩Lim}| ≤ µ. Let C be the club set of
limit ordinals α with µ < α < µ+. Then 〈cα : α ∈ C〉 satisfies Definition 1.1.
Conversely, suppose there exists a weak square sequence on µ+. Then by
Lemma 1.2 and Proposition 1.4, there exists a sequence 〈dα : α ∈ κ ∩ Lim〉
such that each dα is a club subset of α with order type cf(α) ≤ µ, and for
every ξ < κ, |{dα ∩ ξ : α ∈ κ ∩ Lim}| < κ. Therefore �∗µ holds.

2. A special Aronszajn tree implies weak square. According to
the classical definition, for an infinite cardinal µ, a tree (T,<T ) of height
µ+ is a special Aronszajn tree if T is the union of µ many antichains, or
equivalently, if there exists a function f : T → µ such that for all t, u ∈ T ,
t <T u implies f(t) 6= f(u).

Todorčević [3] introduced a more general definition of a special Aronszajn
tree which makes sense for any regular uncountable cardinal. Recall that if
(T,<T ) is a tree, a function g : T → T is said to be regressive if f(a) <T a
for all nonminimal a ∈ T .

Definition 2.1. Let κ be a regular uncountable cardinal. A tree (T,<T )
with height κ is a special Aronszajn tree if there exists a regressive function
g : T → T such that for all b ∈ T , the set g−1({b}) is the union of fewer
than κ many antichains.

We will sometimes abbreviate “special Aronszajn tree” to “special tree”.
A special Aronszajn tree on κ means a κ-tree which is special. Note that T
is special iff there is a regressive function g : T → T such that for all b ∈ T ,
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there is an ordinal λb < κ and a function fb : g−1({b}) → λb such that for
all t, u ∈ g−1({b}), t <T u implies fb(t) 6= fb(u).

The equivalence between the two definitions of “special” for successor
cardinals was noted in [3] without proof.

Proposition 2.2 (Todorčević). Let µ be an infinite cardinal and let
(T,<T ) be a tree of height µ+. Then T is a special Aronszajn tree in the
classical sense iff T satisfies Definition 2.1.

Proof. The forward direction of the equivalence is trivial: just define a
regressive function which maps every node to a minimal node. Now suppose
there is a regressive function g : T → T , and for each b ∈ T , some ordinal
λb < µ+ and a function fb : g−1({b})→ λb such that for all t,u ∈ g−1({b}),
t <T u implies fb(t) 6= fb(u). Without loss of generality, we can assume
λb = µ for all b.

We define a function f : T → <ωµ so that c <T d implies f(c) 6= f(d)
for all c, d ∈ T . Clearly this suffices since <ωµ has size µ. Consider a node
a ∈ T . If a is minimal then let f(a) be the empty sequence. Suppose a
is not minimal. Define gk for k < ω by recursion, letting g0(a) = a, and
gk+1(a) = g(gk(a)) if gk(a) is not minimal. Since g is regressive, we have
ht(g1(a)) > ht(g2(a)) > · · · > ht(gk(a)). Let m be least such that gm(a) is
minimal. Define f(a) by

f(a) = 〈fg(a)(a), fg2(a)(g(a)), . . . , fgm(a)(g
m−1(a))〉.

Suppose for a contradiction c <T d but f(c) = f(d). Since d is not
minimal, f(c) = f(d) is not empty, so c is not minimal either. Let m > 0
be least such that gm(c) is minimal. Since m is the length of the sequence
f(c) = f(d), m is also least such that gm(d) is minimal. As gm(c) <T c <T d,
gm(c) <T d, and hence gm(c) = gm(d). Let 0 < k ≤ m be least such that
gk(c) = gk(d).

Since gk−1(c) ≤T c, gk−1(d) ≤T d, and c <T d, gk−1(c) and gk−1(d) are
comparable and not equal. But g(gk−1(c)) = gk(c) = gk(d) = g(gk−1(d)).
Therefore fgk(c)(g

k−1(c)) 6= fgk(d)(g
k−1(d)), which contradicts f(c) = f(d).

Recall the standard fact that for a strongly inaccessible cardinal κ, κ is
weakly compact iff there does not exist an Aronszajn tree on κ. Todorčević
[3] used his general definition of a special Aronszajn tree to provide an
analogue of this result which characterizes Mahlo cardinals.

Theorem 2.3 (Todorčević). Let κ be a strongly inaccessible cardinal.
Then the following are equivalent:

(1) κ is a Mahlo cardinal;
(2) there does not exist a special Aronszajn tree on κ.
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We will prove that for a regular uncountable cardinal κ, the existence
of a special Aronszajn tree on κ is equivalent to the existence of a weak
square sequence on κ. We first show the forward direction; the proof follows
the lines of Section 5.2 in [1], which handles the case when κ is a successor
cardinal.

First let us give a simpler characterization of a special Aronszajn tree
on κ.

Lemma 2.4. Let (T,<T ) be a κ-tree, where κ is a regular uncountable
cardinal. Then T is special iff there exists a function g : T → κ such that
g(t) < ht(t) for all nonminimal t, and for all β < κ, g−1({β}) is the union
of fewer than κ many antichains.

Proof. For the forward direction, given a regressive f : T → T witnessing
that T is special, define g(t) = ht(f(t)). Then g−1({β}) =

⋃
{f−1({b}) :

ht(b) = β}. Each f−1({b}) is the union of fewer than κ many antichains,
and there are fewer than κ many such b’s since T is a κ-tree. Hence g−1({β})
is the union of fewer than κ many antichains. Conversely, given g : T → κ
as described above, define f(b) = b�g(b) for nonminimal b.

Theorem 2.5. Let κ be a regular uncountable cardinal. If there exists a
special Aronszajn tree on κ, then there exists a weak square sequence on κ.

Proof. Let (T,<T ) be a κ-tree and suppose that T is special. Fix a
function g : T → κ, where g(t) < ht(t) for all nonminimal t, and for each
β < κ a function fβ : g−1({β}) → λβ, where λβ < κ, such that for all
c, d ∈ g−1({β}), c <T d implies fβ(c) 6= fβ(d).

For each limit ordinal α we define a family Aα of cofinal subsets of α.
Fix a limit ordinal α. Consider the following property which a node x in Tα
may or may not satisfy: there exists β < α such that the set

{ht(y) : y <T x ∧ g(y) < β}
is cofinal in α.

We claim that if α has uncountable cofinality, then this property is true
for all x ∈ Tα. Indeed, fix a sequence 〈αi : i < cf(α)〉 which is increasing,
continuous, and cofinal in α. Since g(t) < ht(t) for all nonminimal t, there
exists a regressive function h : cf(α) ∩ Lim → cf(α) so that for all limit
ordinals γ < cf(α), if z <T x has height αγ , then g(z) < αh(γ). Since cf(α)

is regular, there is some δ < cf(α) such that h−1({δ}) is stationary in cf(α).
Let X = {αγ : γ ∈ h−1({δ})}. Then X is cofinal in α and X ⊆ {ht(y) :
y <T x ∧ g(y) < αδ}.

For each limit ordinal α < κ and each x ∈ Tα, we define a set dx which
is a club in α. Let βx be the least ordinal such that the set {ht(y) : y <T
x ∧ g(y) < βx} is cofinal in α. Note that βx ≤ α, and if cf(α) > ω then
βx < α.
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The process of defining the club dx involves defining a limit ordinal
δx ≤ α and sequences

〈β(x, i) : i ∈ δx ∩ Succ〉, 〈α(x, i) : i < δx〉, 〈z(x, i) : i ∈ δx ∩ Succ〉

which satisfy:

(1) β(x, j) ≤ β(x, i) < βx for all successor ordinals j < i < δx;
(2) 〈α(x, i) : i < δx〉 is an increasing and continuous sequence of ordinals

cofinal in α;
(3) z(x, i) is the unique node with height α(x, i) such that z(x, i) <T x

for all i ∈ δx ∩ Succ;
(4) g(z(x, i)) = β(x, i) for all i ∈ δx ∩ Succ;
(5) if j < i < δx are successor ordinals and β(x, j) = β(x, i), then

fβ(x,j)(z(x, j)) < fβ(x,j)(z(x, i)).

After the construction is complete, we let dx = {α(x, i) : i < δx}, which is a
club subset of α with order type δx.

Let i be given and suppose that the objects above are defined as required
for all j < i. If supj<i α(x, j) = α, then let i = δx and we are done. Now
assume supj<i α(x, j) < α. If i = 0 then let α(x, i) = 0, and if i is a
limit ordinal then let α(x, i) = supj<i α(x, j). Suppose that i is a successor
ordinal.

Consider the set

{y <T x : ht(y) > α(x, i− 1)}.

By the choice of βx, there exists y in this set such that g(y) < βx. Let
β(x, i) be the least ordinal such that there is y <T x with height greater
than α(x, i− 1) and g(y) = β(x, i). Then β(x, i) < βx. We claim that for all
successor ordinals j < i, β(x, j) ≤ β(x, i). Since α(x, j−1) < α(x, i−1), there
exists z in the set {y <T x : ht(y) > α(x, j − 1)} such that g(z) = β(x, i).
By the minimality of β(x, j), β(x, j) ≤ β(x, i).

To define α(x, i), consider the set

{y <T x : ht(y) > α(x, i− 1) ∧ g(y) = β(x, i)}.

By the choice of β(x, i), this set is nonempty. Moreover, since this set is a
chain, fβ(x,i) is injective on it. Let z(x, i) be the unique element in this set
with the minimal value under fβ(x,i). Then let α(x, i) = ht(z(x, i)).

We claim that if j < i is a successor ordinal and β(x, i) = β(x, j), then

fβ(x,j)(z(x, j)) < fβ(x,j)(z(x, i)).

For since α(x, j − 1) < α(x, i − 1) and β(x, i) = β(x, j), the node z(x, i) is
in the set

{y <T x : ht(y) > α(x, j − 1) ∧ g(y) = β(x, j)}.
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Since z(x, j) has the minimal value in this set under fβ(x,j), fβ(x,j)(z(x, j)) <
fβ(x,j)(z(x, i)) as desired.

This completes the construction. Let us consider the order type δx of dx
for a node x ∈ T . For any ordinal β < κ, let θ(β) denote the order type of
the well-order whose underlying set is⋃

γ<β

γ × λγ

and ordered by lexicographical order <lex. Note that θ(β) < κ. For each
x ∈ T , (1) and (5) imply that the function

i 7→ 〈β(x, i), fβ(x,i)(z(x, i))〉,
which maps from δx ∩ Succ into the well-order (

⋃
γ<βx

γ × λγ , <lex), is in-
creasing. Since δx is a limit ordinal, δx and δx ∩ Succ have the same order
type. It follows that δx ≤ θ(βx).

Let C be the club set of limit ordinals α < κ greater than ω such that
for all β < α, θ(β) < α. If α ∈ C has uncountable cofinality and x ∈ Tα,
then βx < α and so θ(βx) < α. Therefore ot(dx) = δx ≤ θ(βx) < α.

Now we prove the following statement: for every limit ordinal α < κ and
for every node x with height α, if ξ ∈ lim(dx), then letting w <T x have
height ξ, dx ∩ ξ = dw. So let such α, x, ξ, and w be given. Recall that βw is
the least ordinal such that the set {ht(y) : y <T w ∧ g(y) < βw} is cofinal
in ξ. Since dx∩ξ is cofinal in ξ and for all γ ∈ dx, g(γ) < βx, clearly βw ≤ βx.

Let δ′w be the least ordinal such that {α(x, i) : i < δ′w} is cofinal in ξ.
We will prove by induction that for all i < δ′w, α(x, i) = α(w, i). It follows
immediately that δ′w = δw and dx ∩ ξ = dw.

So let i < δ′w be given and suppose that for all j < i, α(x, j) = α(w, j).
If i = 0 then α(x, 0) = 0 = α(w, 0), and if i is a limit ordinal then α(x, i) =
supj<i α(x, j) = supj<i α(w, j) = α(w, i). Suppose i is a successor ordinal.

Recall that β(x, i) is the least ordinal such that there is y <T x with
ht(y) > α(x, i− 1) and g(y) = β(x, i). And z(x, i) is the element of the set

{y <T x : ht(y) > α(x, i− 1) ∧ g(y) = β(x, i)}.
with the least fβ(x,i) value. Let us show that β(x, i) = β(w, i). We have
g(z(x, i)) = β(x, i) < α(x, i) = ht(z(x, i)) < ξ and z(x, i) <T w. So z(x, i) is
a witness to the statement that there is y <T w such that ht(y)>α(w, i−1)
and g(y) = β(x, i). By minimality it follows that β(w, i) ≤ β(x, i). If
β(w, i) < β(x, i), then there is y <T w with height greater than α(w, i−1) =
α(x, i− 1) such that g(w) < β(x, i). But then y <T x and we have a contra-
diction to the minimality of β(x, i). So β(x, i) = β(w, i).

Since ht(z(x, i)) < ξ, z(x, i) <T w. So z(x, i) is in the set

{y <T w : ht(y) > α(w, i− 1) ∧ g(y) = β(w, i)}.
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Since z(w, i) is the element of this set with the least fβ(w,i) value,
fβ(w,i)(z(w, i)) ≤ fβ(w,i)(z(x, i)). On the other hand, z(w, i) is in the set

{y <T x : ht(y) > α(x, i− 1) ∧ g(y) = β(x, i)},
so for the same reason, fβ(w,i)(z(x, i)) ≤ fβ(w,i)(z(w, i)). Therefore
fβ(w,i)(z(x, i)) = fβ(w,i)(z(w, i)). Since z(x, i) and z(w, i) are both below x,
they are comparable. But fβ(w,i) is injective on chains, so z(x, i) = z(w, i).
This completes the proof that dx ∩ ξ = dw.

Now we are ready to define a weak square sequence on κ. Recall that
C is a club subset of κ such that for all α ∈ C with uncountable cofinality
and all x ∈ Tα, ot(dx) < α. Define 〈cα : α ∈ C〉 as follows. For α in C
with uncountable cofinality, let cα = dx for some x ∈ Tα. For α in C with
cofinality ω, let cα be a cofinal subset of α with order type ω.

It remains to show that for every ξ < κ, |{cα ∩ ξ : α ∈ C}| < κ. First
note that if cf(α) = ω, then cα ∩ ξ is either equal to cα if α ≤ ξ, or is finite
otherwise. Hence |{cα ∩ ξ : α ∈ C ∩ cof(ω)}| < κ.

For each ξ < κ, let Dξ = {cα ∩ ξ : α ∈ C ∩ cof(> ω)}. We prove by
induction on ξ that |Dξ| < κ. The successor case is easy, so assume that ξ
is a limit ordinal. The set Dξ splits into two sets:

{cα ∩ ξ : α ∈ C ∩ cof(>ω), sup(cα ∩ ξ) < ξ},
{cα ∩ ξ : α ∈ C ∩ cof(>ω), sup(cα ∩ ξ) = ξ}.

The first set is contained in the union
⋃
ξ′<ξ Dξ′ , so has size less than κ by

the inductive hypothesis. The second set is a subset of {dw : w ∈ Tξ}, which
has size less than κ since |Tξ| < κ.

3. The full code of a C-sequence. Fix a regular uncountable cardi-
nal κ. A C-sequence on κ is a sequence 〈cα : α < κ〉 satisfying:

(1) c0 = ∅;
(2) cα+1 = {α};
(3) if α is a limit ordinal then cα is a club subset of α.

We will review the full code ρ0 of Todorčević [3], defined from a given
C-sequence on κ. We propose that ρ0 and its corresponding tree T (ρ0) can
be developed most naturally in the context of weak square.

Fix a C-sequence 〈cα : α < κ〉.
Definition 3.1. Let α ≤ β < κ.

(1) The walk from β to α is the unique sequence 〈β0, . . . , βn〉 such that
β0 = β, βk+1 = min(cβk \ α) for k < n, and βn = α.

(2) ρ0(α, β) = 〈ot(cβ0 ∩ α), . . . , ot(cβn−1 ∩ α)〉.
In (2) we mean ρ0(α, α) = ∅ in the case α = β. Note that the length of

ρ0(α, β) is 1 less than the length of the walk from β to α. If 〈β0, . . . , βn〉 is
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the walk from β to α, then obviously for all i = 0, . . . , n, 〈βi, . . . , βn〉 is the
walk from βi to α. That 〈β0, . . . , βi〉 is the walk from β to βi follows from
the next lemma.

Lemma 3.2. (1) Let α ≤ γ ≤ β. Let 〈β0, . . . , βm〉 be the walk from β
to γ. Then the following are equivalent:

(1) the sequence 〈β0, . . . , βm〉 is an initial segment of the walk from β
to α;

(2) γ is in the walk from β to α;
(3) for all i = 0, . . . ,m− 1, cβi ∩ [α, γ) = ∅.

Proof. (1)⇒(2) is immediate since βm = γ. For (3)⇒(1), it is easy to
prove by induction on i ≤ m that βi is the ith element in the walk from β
to α; namely, β0 = β, and if βi is as required for a fixed i < m, then
βi+1 = min(cβi \ γ) = min(cβi \ α), which is the i+ 1st element in the walk
from β to α. To show (2)⇒(3), assume (2) holds and (3) fails. Let i < m
be least such that cβi ∩ [α, γ) 6= ∅. Then by the implication (3)⇒(1) just
shown, 〈β0, . . . , βi〉 is an initial segment of the walk from β to α, and the
next step of this walk is min(cβi \α), which is less than γ by the choice of i.
This contradicts that γ is in the walk from β to α.

Lemma 3.3. Let α ≤ γ ≤ β. Then the following are equivalent:

(1) ρ0(α, β) = ρ0(γ, β)̂ρ0(α, γ);
(2) ρ0(γ, β) is an initial segment of ρ0(α, β);
(3) γ is in the walk from β to α.

Proof. (1)⇒(2) is immediate. For (2)⇒(3), let 〈β0, . . . , βn〉 and
〈β′0, . . . , β′m〉 be the walks from β to α and from β to γ. If γ is not in
the walk from β to α, let 0 < k ≤ m be least such that βk 6= β′k. Then
βk = min(cβk−1

\α) < γ. So cβk−1
∩α is a proper initial segment of cβk−1

∩γ.
Therefore ρ0(α, β)(k − 1) = ot(cβk−1

∩ α) < ot(cβk−1
∩ γ) = ρ0(γ, β)(k − 1).

So (2) fails.

Now assume (3). Let 〈β0, . . . , βn〉 be the walk from β to α. By Lemma
3.2, fix k < n such that 〈β0, . . . , βk〉 is the walk from β to γ. Also by Lemma
3.2, for all i ≤ k − 1, cβi ∩ [α, γ) is empty, and therefore ρ0(γ, β)(i) =
ot(cβi ∩ γ) = ot(cβi ∩ α) = ρ0(α, β)(i). So ρ0(γ, β) = ρ0(α, β)�k. By the
definition of ρ0 and the fact that 〈βk, . . . , βn〉 is the walk from γ to α, for
all i < n − k we have ρ0(α, β)(k + i) = ot(cβk+i ∩ α) = ρ0(α, γ)(i). Thus
ρ0(α, β) = ρ0(γ, β)̂ρ0(α, γ).

(1) Lemmas 3.2–3.4 are due to Todorčević; they are discussed in Lemmas 2.1.6 and
2.1.16 of [4] in the case κ = ω1.
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Define the right lexicographical order <r on <ωκ by letting t <r s if
either s is a proper initial segment of t, or there is k such that s(k) 6= t(k),
and the least such k satisfies t(k) < s(k).

Lemma 3.4. Let α < γ ≤ β. Then ρ0(α, β) <r ρ0(γ, β).

Proof. Let 〈β0, . . . , βn〉 and 〈β′0, . . . , β′m〉 be the walks from β to γ and
from β to α respectively. If γ is in the walk from β to α, then by Lemma 3.3,
ρ0(γ, β) is a proper initial segment of ρ0(α, β), so ρ0(α, β) <r ρ0(γ, β). Oth-
erwise let k > 0 be least such that βk 6= β′k. Since βk−1 is in both walks,
ρ0(βk−1, β) is an initial segment of both ρ0(γ, β) and ρ0(α, β). In particu-
lar, the least place where ρ0(γ, β) and ρ0(α, β) can differ is at k − 1. Since
β′k ∈ cβk−1

∩ [α, γ), we see that cβk−1
∩ α is a proper initial segment of

cβk−1
∩ γ. Therefore ρ0(α, β)(k − 1) = ot(cβk−1

∩ α) < ot(cβk−1
∩ γ) =

ρ0(γ, β)(k − 1). Hence ρ0(α, β) <r ρ0(γ, β).

In order to construct a special Aronszajn tree from a weak square se-
quence, we will need to analyze the following situation: suppose α ≤ β, γ,
where α is a limit ordinal, and for all ξ < α, ρ0(ξ, β) = ρ0(ξ, γ). What can
be said about the relationship between ρ0(α, β) and ρ0(α, γ)? This relation-
ship is described precisely in Proposition 3.6 below. If κ = ω1 then in the
situation just described ρ0(α, β) = ρ0(α, γ). But this is not true in general.
For example, it is not true if α = β is a limit ordinal, α < γ, and cα = cγ∩α.

We make some additional observations about ρ0 in preparation for Pro-
position 3.6. Let 〈β0, . . . , βn〉 be the walk from β to α, where α ≤ β. Then
for all i = 0, . . . , n− 2, sup(cβi ∩ α) < α. Namely, if sup(cβi ∩ α) = α, then
α ∈ cβi , and hence α = min(cβi \ α). This is only possible if i = n− 1.

Lemma 3.5. Let 〈β0, . . . , βn〉 be the walk from β to α, where α is a limit
ordinal and α ≤ β. Assume that ξ < α is larger than sup(cβi ∩ α) for all
i = 0, . . . , n− 2. Then 〈β0, . . . , βn−1〉 is an initial segment of the walk from
β to ξ, namely, the part of the walk consisting of ordinals above α.

Proof. The proof is by induction on k < n. Assume 〈β0, . . . , βk〉 is an
initial segment of the walk from β to ξ, where k < n − 1. By assumption,
sup(cβk ∩α) < ξ, and hence βk+1 = min(cβk \α) = min(cβk \ξ), which is the
next step of the walk from β to ξ. Finally, α = min(cβn−1\α) ≥ min(cβn−1\ξ),
and min(cβn−1 \ ξ) is the next step of the walk from β to ξ after βn−1.

Let 〈β0, . . . , βn〉 be the walk from β to α, where α is a limit ordinal and
α ≤ β. Suppose sup(cβn−1 ∩ α) < α. Let ξ < α be larger than sup(cβi ∩ α)
for all i = 0, . . . , n − 1. Then for i = 0, . . . , n − 1, sup(cβi ∩ α) < ξ implies
cβi ∩ [ξ, α) = ∅. By Lemma 3.2, α is in the walk from β to ξ. Therefore
ρ0(α, β) is an initial segment of ρ0(ξ, β).

On the other hand, suppose sup(cβn−1 ∩ α) = α. Let ξ < α be larger
than sup(cβi ∩α) for all i = 0, . . . , n−2. By Lemma 3.5, 〈β0, . . . , βn−1〉 is an
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initial segment of the walk from β to ξ. But since cβn−1 ∩ [ξ, α) is nonempty,
Lemma 3.2 implies that α is not in the walk from β to ξ. The next step of
the walk from β to ξ after βn−1 is min(cβn−1 \ ξ), which is less than α.

Proposition 3.6. Let α < β, γ be given, where α is a limit ordinal.
Suppose that for all ξ < α, ρ0(ξ, β) = ρ0(ξ, γ). Let 〈β0, . . . , βn〉 be the
walk from β to α and let 〈γ0, . . . , γm〉 be the walk from γ to α. Let α0 =
sup(cβn−1 ∩ α) and α1 = sup(cγm−1 ∩ α).

(1) If α0 < α and α1 < α, then ρ0(α, β) = ρ0(α, γ).
(2) If α0 = α1 = α, then ρ0(α, β) = ρ0(α, γ).
(3) If α0 < α and α1 = α, then ρ0(α, γ) = ρ0(α, β)̂ot(cα).

Proof. Note that for all ξ < α, ρ0(ξ, β) = ρ0(ξ, γ) implies that the walks
from β to ξ and from γ to ξ have the same length.

Suppose α0 < α and α1 < α. Then for all large enough ξ < α, α is in
the walk from β to ξ and in the walk from γ to ξ. So for all large enough
ξ < α,

ρ0(ξ, β) = ρ0(α, β)̂ρ0(ξ, α) and ρ0(ξ, γ) = ρ0(α, γ)̂ρ0(ξ, α).

Since ρ0(ξ, β) = ρ0(ξ, γ), equating the sequences above and removing the
common tails yields ρ0(α, β) = ρ0(α, γ).

Now suppose α0 = α1 = α. First we show that n = m. For all large
enough ξ < α, 〈β0, . . . , βn−1〉 is an initial segment of the walk from β to ξ,
and 〈γ0, . . . , γm−1〉 is an initial segment of the walk from γ to ξ. Consider
a large enough ordinal ξ ∈ cβn−1 ∩ α. Then the walk from β to ξ equals
〈β0, . . . , βn−1, ξ〉, which has length n+ 1. Since ρ0(ξ, β) = ρ0(ξ, γ), the walk
from γ to ξ has length n + 1 also. So the walk from γ to γm−1, namely
〈γ0, . . . , γm−1〉, has length less than n + 1. Hence m ≤ n. A symmetric
argument shows that n ≤ m.

For all large enough ξ, βn−1 is in the walk from β to ξ, and hence
ρ0(βn−1, β) @ ρ0(ξ, β) by Lemma 3.3. Similarly, for all large enough ξ,
ρ0(γn−1, γ) @ ρ0(ξ, γ). Since ρ0(ξ, β) = ρ0(ξ, γ) and ρ0(βn−1, β) and
ρ0(γn−1, γ) have the same length, ρ0(βn−1, β) = ρ0(γn−1, γ). Since ρ0(α, β)
= ρ0(βn−1, β)̂ot(cβn−1 ∩ α) and ρ0(α, γ) = ρ0(γn−1, γ)̂ot(cγn−1 ∩ α), it
suffices to show that ot(cβn−1 ∩ α) = ot(cγn−1 ∩ α).

Since α is a limit ordinal, it is enough to show that for all large enough
ξ < α, ot(cβn−1∩ξ) = ot(cγn−1∩ξ). But for all large enough ξ, ρ0(ξ, β)(n− 1)
= ot(cβn−1 ∩ ξ) and ρ0(ξ, γ)(n− 1) = ot(cγn−1 ∩ ξ). Since ρ0(ξ, β) = ρ0(ξ, γ),
ot(cβn−1 ∩ ξ) = ot(cγn−1 ∩ ξ).

Finally, suppose that α0 < α and α1 = α. First we prove that m = n+1.
If we take a large enough ξ ∈ cα, then the walk from β to ξ is equal to
〈β0, . . . , βn, ξ〉, and 〈γ0, . . . , γm−1〉 is a proper initial segment of the walk
from γ to ξ. Since ρ0(ξ, β) = ρ0(ξ, γ), the walks from β to ξ and from γ to ξ
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have the same length, namely n+ 2. Therefore the walk 〈γ0, . . . , γm−1〉 has
length at most n+ 1, that is, m ≤ n+ 1.

On the other hand, choosing a large enough ξ in cγm−1∩α, 〈γ0, . . . , γm−1, ξ〉
is the walk from γ to ξ, and α is in the walk from β to ξ. So the walk from
γ to ξ has length m+ 1. Since ρ0(ξ, β) = ρ0(ξ, γ), the walk from β to ξ has
length m + 1. But the sequence 〈β0, . . . , βn〉 is a proper initial segment of
the walk from β to ξ, so the length of this sequence is less than m+ 1, that
is, n+ 1 ≤ m. So m = n+ 1.

Now we show that ρ0(α, β) = ρ0(γm−1, γ). Since m = n + 1, the walks
from β to α and from γ to γm−1 have the same length, so ρ0(α, β) and
ρ0(γm−1, γ) have the same length. To show they are equal, it suffices to show
they are initial segments of the same sequence. Choose a large enough ξ so
that α is in the walk from β to ξ and γm−1 is in the walk from γ to ξ.
Then ρ0(α, β) @ ρ0(ξ, β) and ρ0(γm−1, γ) @ ρ0(ξ, γ) by Lemma 3.3. Since
ρ0(ξ, β) = ρ0(ξ, γ), ρ0(α, β) = ρ0(γm−1, γ).

Now ρ0(α, γ) = ρ0(γm−1, γ)̂ot(cγm−1 ∩ α) = ρ0(α, β)̂ot(cγm−1 ∩ α).
So to complete the proof, it suffices to show that ot(cγm−1 ∩ α) = ot(cα).
Since α is a limit ordinal, it suffices to show that for all large enough ξ < α,
ot(cγm−1 ∩ ξ) = ot(cα ∩ ξ). Choose ξ large enough so that α is in the walk
from β to ξ and γm−1 is in the walk from γ to ξ. Then ρ0(ξ, β)(n) = ot(cα∩ξ)
and ρ0(ξ, γ)(m−1) = ot(cγm−1 ∩ξ). Since ρ0(ξ, β) = ρ0(ξ, γ) and n = m−1,
we are done.

4. Weak square implies a special Aronszajn tree. We prove now
that the existence of a weak square sequence on a regular uncountable cardi-
nal κ implies the existence of a special Aronszajn tree on κ. Fix a C-sequence
〈cα : α < κ〉, and let ρ0 be the full code. For each β < κ, define ρ0β : β → <ωβ
by letting ρ0β(ξ) = ρ0(ξ, β) for ξ < β. Recall the tree T (ρ0) of Todorčević
[3]: for each α < κ, level α of T (ρ0) consists of functions of the form ρ0β�α,
where α ≤ β < κ. For u, v ∈ T (ρ0), u <T (ρ0) v if v�dom(u) = u.

Our goal is to prove that under some additional assumptions on the
C-sequence, the tree T (ρ0) is a special Aronszajn tree. The existence of a
C-sequence satisfying these assumptions follows from the existence of a weak
square sequence. Our proof is based on the proof of Todorčević [4] that there
exists a special Aronszajn tree on κ for any non-Mahlo strongly inaccessible
cardinal κ (2).

It is clear that T (ρ0) is a tree of height κ. The next lemma will imply
that if |{cβ ∩ ξ : β < κ}| < κ for every ξ < κ, then T (ρ0) is a κ-tree. The

(2) In that proof it is claimed that for a limit ordinal α and α ≤ β, γ, if ρ0(ξ, β) =
ρ0(ξ, γ) for all ξ < α, then ρ0(α, β) = ρ0(α, γ). This claim appears to be incorrect even
with the C-sequence used there. We replace this claim with Proposition 3.6.
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proof is based on the argument in [1] that �∗µ implies the existence of a
special Aronszajn tree on µ+ for any infinite cardinal µ.

Lemma 4.1. Let α < κ be a limit ordinal, and let α ≤ β, γ. Let
〈β0, . . . , βn〉 be the walk from β to α and let 〈γ0, . . . , γm〉 be the walk from γ
to α. Suppose that the sequences 〈cβ0∩α, . . . , cβn∩α〉 and 〈cγ0∩α, . . . , cγm∩α〉
are equal. Then ρ0β�α = ρ0γ�α.

Proof. Note that n = m. Let ξ < α be given. Let i ≤ n be least such that
cβi ∩ [ξ, α) is nonempty. By Lemma 3.2, βi is in the walk from β to ξ. The
next step of the walk from β to ξ after βi is β∗ = min(cβi \ξ) < α. Due to the
agreement described in the assumptions, i is also least such that cγi ∩ [ξ, α)
is nonempty, γi is in the walk from γ to ξ, and γ∗ = min(cγi \ ξ) = β∗

is the next step of the walk from γ to ξ after γi. By the agreement we
have ρ0(ξ, β) = 〈ot(cβ0 ∩ ξ), . . . , ot(cβi ∩ ξ)〉 ̂ ρ0(ξ, β∗) = 〈ot(cγ0 ∩ ξ), . . .
. . . , ot(cγi ∩ ξ)〉̂ρ0(ξ, γ∗) = ρ0(ξ, γ).

Proposition 4.2. Suppose the C-sequence 〈cα : α < κ〉 is such that for
every ξ < κ, |{cβ ∩ ξ : β < κ}| < κ. Then T (ρ0) is a κ-tree.

Proof. Let ξ < κ be given; we show that level ξ of the tree T (ρ0) has
size less than κ. Note that it suffices to prove this statement for limit ordi-
nals ξ. For in general, level γ of the tree is equal to {ρ0γ+n�γ : n < ω} ∪
{t�γ : t ∈ T (ρ0)γ+ω}.

So let ξ be a limit ordinal. By the previous lemma, for all β ≥ ξ, the
function ρ0β�ξ is determined from the finite sequence 〈cβ0 ∩ ξ, . . . , cβn ∩ ξ〉,
where 〈β0, . . . , βn〉 is the walk from β to ξ. By assumption, there are fewer
than κ many possibilities for such a sequence. So there are fewer than κ
many functions of the form ρ0β�ξ for β < κ.

Assume that there exists a weak square sequence on κ. Then by Lemma
1.2, we can fix a C-sequence 〈cα : α < κ〉 satisfying the following conditions:

(1) there exists a club C ⊆ κ ∩ Lim such that for all α in C, ot(cα) <
min(cα);

(2) for all α ∈ (κ ∩ Lim) \ C, min(cα) > sup(C ∩ α);
(3) for every ξ < κ, |{cα ∩ ξ : α < κ}| < κ.

Let ρ0 be the full code defined from this C-sequence. We will prove that
T (ρ0) is a special Aronszajn tree.

Let 〈α0, . . . , αn〉 7→ p〈α0, . . . , αn〉q be some coding of finite sequences of
ordinals in κ by ordinals in κ. Let D be the club set of ordinals α ∈ C which
are closed under this mapping.

Lemma 4.3. For all α ∈ C and β ≥ α, ot(cβ ∩ α) < α. Hence for all
α ∈ D and γ ≥ α, pρ0(α, γ)q < α.
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Proof. Fix α ∈ C and β ≥ α. If β is a successor ordinal then cβ ∩α = ∅.
Suppose β is a limit ordinal. If β is not in C, then α ≤ sup(C∩β) < min(cβ).
Therefore cβ ∩α = ∅. Now suppose that β is in C. If cβ ∩α = ∅ then we are
done. Otherwise ot(cβ ∩ α) ≤ ot(cβ) < min(cβ) < α.

Theorem 4.4. The tree T (ρ0) is a special Aronszajn tree.

Proof. Let U = {t ∈ T (ρ0) : ht(t) ∈ D}. We will define a function
g : U → κ satisfying:

(a) g(t) < ht(t) for all t ∈ U ;
(b) t @ u in U implies g(t) 6= g(u).

Let us note that the existence of such a function g implies that T (ρ0)
is special. For in that case, define h : T (ρ0) → κ as follows. For t ∈ U , let
h(t) = g(t). For t ∈ T (ρ0) \ U , let h(t) = sup(D ∩ ht(t)). Then h(t) < ht(t)
for all nonminimal t. Consider ν < κ; we show that h−1({ν}) is the union
of fewer than κ many antichains. If h(t) = ν and t /∈ U , then ν < ht(t) <
min(D \ν+1). There are fewer than κ many such nodes t. Enumerate them
as {ti : i < λ} where λ < κ. Define fν : h−1({ν}) → λ + 1 by letting
fν(ti) = i for i < λ and fν(t) = λ if h(t) = ν and t ∈ U . If fν(t) = fν(u)
then clearly t, u ∈ U . Hence h(t) = g(t) = ν and h(u) = g(u) = ν, so t @ u
is not possible by the properties of g.

Now we define the function g : U → κ. Consider t ∈ T (ρ0) with
ht(t) ∈ D. Let α = ht(t). Define A(t, 0) as the set of β ≥ α with ρ0β�α = t
such that, letting 〈β0, . . . , βn〉 be the walk from β to α, sup(cβn−1 ∩ α)<α.
Define A(t, 1) as the set of γ ≥ α with ρ0γ�α = t such that, letting
〈γ0, . . . , γm〉 be the walk from γ to α, sup(cγm−1 ∩ α) = α. By Proposition
3.6 we have:

(1) for all β, β′ ∈ A(t, 0), ρ0(α, β) = ρ0(α, β
′);

(2) for all γ, γ′ ∈ A(t, 1), ρ0(α, γ) = ρ0(α, γ
′);

(3) for all β ∈ A(t, 0) and γ ∈ A(t, 1), ρ0(α, γ) = ρ0(α, β)̂ot(cα).

The definition of g(t) splits into cases. First assume that one of A(t, 0)
or A(t, 1) is empty. Fix any γ ≥ α with t = ρ0γ�α, and let

g(t) = p〈pρ0(α, γ)q, 0〉q.

Note that by (1) and (2) and the case assumption, the definition of g(t) is in-
dependent of γ. Secondly, assume that A(t, 0) and A(t, 1) are both nonempty.
Fix any γ ∈ A(t, 1), and define

g(t) = p〈pρ0(α, γ)q, 1〉q.

By (2), the definition of g(t) is independent of γ. Note that g(t) < ht(t) by
Lemma 4.3.
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To complete the proof, we show that if t, u ∈ U , then t @ u implies
g(t) 6= g(u). So let t @ u be given, and let α = ht(t) and δ = ht(u). So
α < δ. Assume for a contradiction that g(t) = g(u). Note that g(t) and
g(u) are defined by the same case, since the case is coded by a 0 or 1 in the
definition of g.

First suppose g(t) and g(u) are defined as in the first case. Fix γ ≥ δ
such that u = ρ0γ�δ. Since t @ u, t = ρ0γ�α. So

p〈pρ0(α, γ)q, 0〉q = g(t) = g(u) = p〈pρ0(δ, γ)q, 0〉q.
Therefore ρ0(α, γ) = ρ0(δ, γ). But by Lemma 3.4, α < δ implies that
ρ0(α, γ) <r ρ0(δ, γ), and in particular these sequences are different. So we
have a contradiction.

Now suppose g(t) and g(u) are defined as in the second case. Fix γ ∈
A(u, 1). Then u = ρ0γ�δ and

g(u) = p〈pρ0(δ, γ)q, 1〉q.
Since t @ u, t = ρ0γ�α. Now there are two cases, depending on whether γ is
in A(t, 0) or A(t, 1). If γ ∈ A(t, 1), then

g(t) = p〈pρ0(α, γ)q, 1〉q.
But g(t) = g(u) implies ρ0(α, γ) = ρ0(δ, γ). This contradicts Lemma 3.4.

If γ ∈ A(t, 0), then fix some γ′ ∈ A(t, 1). Then

g(t) = p〈pρ0(α, γ′)q, 1〉q.
Since g(t) = g(u), we have ρ0(α, γ

′) = ρ0(δ, γ). But by Proposition 3.6(3),

ρ0(δ, γ) = ρ0(α, γ
′) = ρ0(α, γ)̂ot(cα).

So ρ0(α, γ) is a proper initial segment of ρ0(δ, γ), which implies ρ0(δ, γ) <r
ρ0(α, γ). But by Lemma 3.4, α < δ implies ρ0(α, γ) <r ρ0(δ, γ), and we have
a contradiction.

Remark. If κ is a strongly inaccessible non-Mahlo cardinal, then there
exists a weak square sequence on κ. Namely, let C be a club set of singular
cardinals, and for each α ∈ C, choose cα as a club subset of α with order
type cf(α). Then for every ξ < κ, |{cα ∩ ξ : α < κ}| ≤ 2|ξ| < κ. We pose
the following question: is it consistent that there is a weakly inaccessible
non-Mahlo cardinal which does not carry a weak square sequence?
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