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Refining thick subcategory theorems
by

Sunil K. Chebolu (London, Ont.)

Abstract. We use a K-theory recipe of Thomason to obtain classifications of triangu-
lated subcategories via refining some standard thick subcategory theorems. We apply this
recipe to the full subcategories of finite objects in the derived categories of rings and the
stable homotopy category of spectra. This gives, in the derived categories, a complete clas-
sification of the triangulated subcategories of perfect complexes over some commutative
rings. In the stable homotopy category of spectra we obtain only a partial classification
of the triangulated subcategories of the finite p-local spectra. We use this partial clas-
sification to study the lattice of triangulated subcategories. This study gives some new
evidence for a conjecture of Adams that the thick subcategory C2 can be generated by
iterated cofiberings of the Smith—Toda complex. We also discuss several consequences of
these classification theorems.

1. INTRODUCTION

Classifying various subcategories of triangulated categories like the de-
rived categories and the homotopy category of spectra has been an active
area and has proved to be extremely useful in the study of global problems
in (stable) homotopy theory. Several mathematicians brought to light many
amazing a priori different theories by classifying various subcategories of
triangulated categories. Following the seminal work of Devinatz, Hopkins,
and Smith [DHSS88| in stable homotopy theory, this line of research was
initiated by Hopkins in the 80s. In his famous 1987 paper [Hop87], Hop-
kins classified the thick subcategories (triangulated subcategories that are
closed under retractions) of the finite p-local spectra and those of perfect
complexes over a noetherian ring. He showed that thick subcategories of the
finite spectra are determined by the Morava K-theories and those of per-
fect complexes by the prime spectrum of the ring. These results have had a
tremendous impact in their respective fields. The thick subcategory theorem
for finite spectra played a vital role in the study of nilpotence and period-
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icity. For example, using this theorem Hopkins and Smith [HS98] were able
to settle the class-invariance conjecture of Ravenel [Rav84] which classified
the Bousfield classes of finite spectra. Similarly the thick subcategory the-
orem for the derived category establishes a surprising connection between
stable homotopy theory and algebraic geometry; using this theorem one is
able to recover the spectrum of a ring from the homotopy structure of its
derived category! These ideas were later pushed further into the world of
derived categories of rings and schemes by Neeman [Nee92] and Thoma-
son [Tho97], and into modular representation theory by Benson, Carlson
and Rickard [BCR97]. Motivated by the work of Hopkins [Hop87], Neeman
[Nee92] classified the Bousfield classes and localising subcategories in the
derived category of a noetherian ring. In modular representation theory, the
Benson—Carlson—Rickard classification of the thick subcategories of stable
modules over group algebras has led to some deep structural information
on the representation theory of finite groups. Finally, the birth of axiomatic
stable homotopy theory [HPS97] in the mid 90s encompassed all these var-
ious theories and ideas and studied them all in a more general framework.
With all these developments over the last 30 years, the importance of trian-
gulated categories in modern mathematics is by now abundantly clear.

The goal of this paper is to classify the triangulated subcategories anal-
ogous to the aforementioned classifications of thick subcategories. To moti-
vate this project further, let us consider the following question. Let 7 be a
triangulated category and X and Y be two objects in 7.

QUESTION A. When can Y be generated from X using cofibrations and
retractions?

Knowledge of the thick subcategories of 7 will help us answer this ques-
tion. For example, if 7 is the category of perfect complexes over a noetherian
ring or the category of finite p-local spectra, then we know (from the Hop-
kins thick subcategory theorems) that Y can be generated from X using
cofibrations and retractions if and only if Supp(Y) C Supp(X). (When X is
a perfect complex, Supp(X) is the set of primes p for which X ® R,, # 0; and
when X is a finite p-local spectrum, by Supp(X) we mean the chromatic
support of X, i.e., the set of non-negative integers n for which K(n),X # 0.)
This is quite remarkable because often “support” is a computable invariant
while cofibrations and retractions can be extremely hard to understand. Now
let us ask an even more subtle and stringent question.

QUESTION B. When can Y be generated from X using cofibrations
alone?

We say that this is a stringent question because it is much harder, in
general, to work with cofibrations alone. For example, take X = M(p) (the
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Moore spectrum) and Y = M (p?); clearly Supp(M(p)) = Supp(M (p?)),
therefore M (p) can be generated from M (p?) using cofibrations and retrac-
tions. However, it is impossible, as we will see, to generate M (p) from M (p?)
just using cofibrations. On the other hand, M (p?) can be generated from
M (p) using cofibrations: There is a cofibre sequence

SM(p) — M(p) — M(p?).

So having a classification of triangulated subcategories will help us answer
Question B.

In order to classify the triangulated subcategories, we use a K-theoretic
approach of Thomason to refine Hopkins’s thick subcategory theorems, both
for finite spectra and perfect complexes. Note that, in both these categories,
the support condition (Supp(Y) C Supp(X)) is a necessary condition for
the generation in Question B. Thomason’s K-theory technique helps us to
come up with a sufficient condition! More precisely, we construct universal
Euler characteristic functions x on 7, and show that Y can be generated
from X using cofibrations if and only if Supp(Y) C Supp(X) and x(X)
divides x(Y'); see Corollaries 3.7, 3.13, 4.14, and 4.21.

We also discuss the following conjecture of Adams. In his last (unpub-
lished) paper [Ada92], Adams conjectured that the Smith-Toda complex
(which is known to exist at odd primes) generates the thick subcategory Co
by cofibrations. (Note that this is clearly possible if we allow retractions.)
Using BP-based homology theories, we construct Euler characteristic func-
tions x, on the thick subcategory Cy:

Xn(X) := ) (~1)"log, |BP(n — 1); X|.
i
These Euler characteristic functions give us triangulated subcategories CX
of Cp:
Ck={X eCp:xn(X)=0mod Ik},

where [,, is the smallest positive value of x,, on C,. We then show (using a
Bockstein spectral sequence) that, for all n and k,

Cn1 CCFCC,.

This gives only some evidence for Adams’s conjecture (when n = 1 the
above inclusions follow trivially from the Adams conjecture). The conjecture,
however, remains open.

This paper is organised as follows. We set up our categorical stage in
the next section. We begin with a quick recap of Grothendieck groups and
some categorical definitions. We then explain a K-theoretic technique of
Thomason which will be used in the later sections to obtain classifications
of triangulated subcategories. We also revise Thomason’s theorem for trian-
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gulated categories that are equipped with a nice product. We apply these
techniques to spectra (Section 3) and derived categories (Section 4). As con-
sequences of these classifications, we will study various structural results on
triangulated subcategories. We also record some questions that come up
along the way.

Acknowledgements. I would like to thank my advisor John Palmieri
for the innumerable conversations that we had on this material. Among oth-
ers, I thank Mark Hovey, for bringing to my attention the work of Adams
on universal Euler characteristics, and Steve Mitchell and Hal Sadofsky for
some interesting discussions on the subject. I am also grateful to an anony-
mous referee for many valuable suggestions.

2. THOMASON’S K-THEORY RECIPE

2.1. Grothendieck groups. We begin by recalling some definitions
and results from [Tho97]. Let 7 denote a triangulated category that is es-
sentially small (i.e., it has only a set of isomorphism classes of objects).
Then the Grothendieck group Ko(7) is defined to be the free abelian group
on the isomorphism classes of 7 modulo the Euler relations [B] = [A] 4 [C]
whenever A — B — C' — Y A is an exact triangle in 7 (here [X] denotes the
element in the Grothendieck group that is represented by the isomorphism
class of the object X). This is clearly an abelian group with [0] as the iden-
tity element and [X X] as the inverse of [X]. The identity [A]+ [B] = [AIl B]
holds in the Grothendieck group. Also note that any element of Ko(7) is of
the form [X] for some X € 7. All these facts follow easily from the axioms
for a triangulated category.

Grothendieck groups have the following universal property: Any map
o from the set of isomorphism classes of 7 to an abelian group G such
that the Euler relations hold in G factors through a unique homomorphism
f: Ko(T) — G; see the diagram below.

{isomorphism classes of objects in7 }

l \
™
f
Ky (T ) ....................................... =Ne
Therefore the map 7 will be called the universal Fuler characteristic func-
tion. Ko(—) is clearly a covariant functor from the category of small trian-
gulated categories to the category of abelian groups.

Unless stated otherwise, all subcategories in this paper are assumed to
be full subcategories.

DEFINITION 2.1. An object X in a triangulated category 7 is small if
the natural map
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@D Hom(X, A,) — Hom(X, ]_[Aa)

aEA a€EA
is an isomorphism for all set-indexed collections of objects A, in 7. (Some
authors call such objects finite or compact objects.)

DEFINITION 2.2. A triangulated subcategory C of 7 is said to be thick
if it is closed under retractions, i.e., given a commuting diagram

B—=4A-">B

~_ 7

in 7 such that A is an object of C, then so is B. Since retractions split in
a triangulated category, this property of C is equivalent to saying that C is
closed under direct summands: AIIBeC = A€ and B €C.

ExaMPLE 2.3. The full subcategory of small objects in any triangulated
category is thick.

DEFINITION 2.4. We say that a triangulated subcategory C is dense in
T if every object in 7 is a direct summand of some object in C.

The following theorem due to Thomason [Tho97] is the foundational
theorem that motivated this paper.

THEOREM 2.5 ([Tho97, Theorem 2.1]). Let T be an essentially small
triangulated category. Then there is a natural order preserving bijection be-
tween the posets

f
{dense triangulated subcategories A of T} = {subgroups H of Ko(T)}.
g

The map f sends A to the image of the map Ko(A) — Ko(T), and the map
g sends H to the full subcategory of all objects X in T such that [X] € H.

2.2. Thomason’s K-theory recipe. The importance of Thomason’s
Theorem 2.5 can be seen from the following simple observation. Every trian-
gulated subcategory A of T is dense in a unique thick subcategory of T—the
one obtained by taking the intersection of all the thick subcategories of 7
that contain A. This observation in conjunction with Theorem 2.5 gives
the following brilliant recipe of Thomason for the problem of classifying the
triangulated subcategories of 7:

(1) Classify the thick subcategories of 7.
(2) Compute the Grothendieck groups of all thick subcategories.
(3) Apply Thomason’s Theorem 2.5 to each thick subcategory of 7.

We will apply this recipe to the categories of small objects in some
stable homotopy categories like the stable homotopy category of spectra
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and the derived categories of rings. The stable homotopy structure on these
categories will guide us while applying this recipe and consequently we will
derive some structural information on these categories.

2.3. Grothendieck ring. Throughout this subsection 7 will denote
a tensor triangulated category that is essentially small. Now making use
of the available smash product, we want to define a ring structure on the
Grothendieck group. This can be done in a very natural and obvious way.

DEFINITION 2.6. If [A] and [B] are any two elements of Ky(7), then
define [A][B] := [A A B].

This can be easily shown to be a well defined operation and endows
Ko(T) with the structure of a commutative ring. The Grothendieck class of
the unit object [S] serves as the identity element in the ring.

The following three definitions are motivated by their analogues in com-
mutative ring theory.

DEFINITION 2.7. A full triangulated subcategory C of 7 is said to be
®-closed or a triangulated ideal if for all A € 7 and all Be C, BAA€C.
A full triangulated ideal is said to be respectively thick or dense if it is so
as a triangulated subcategory.

DEeFINITION 2.8. A full triangulated ideal B of 7 is said to be prime if
for all X,Y € 7 such that X AY € B, either X € B or Y € B. Similarly
B is said to be mazximal in 7 if there is no triangulated ideal A such that

BCACT.

DEFINITION 2.9. We say that a triangulated category A is a triangu-
lated module over a tensor triangulated category 7 if there is a triangulated
functor

p:TxA— A

that is covariant and exact in each variable and satisfies the obvious unital
and associative conditions. A full triangulated subcategory B of A is a trian-
gulated submodule of A if the functor ¢ maps 7 x B — B. Note that in this
situation, Ky(A) becomes a Ky(7 )-module, and Ky(B) a Ko(7 )-submodule.

We need the following lemma to upgrade Thomason’s theorem to tensor
triangulated categories.

LeMMA 2.10 ([Tho97, Lemma 2.2]). Let A be a dense triangulated sub-
category of an essentially small triangulated category 7. Then for any object
X inT, X eAifand only if [X] =0 € Ko(T)/Im(Ko(A) — Ko(7)).

The following results are now expected.
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THEOREM 2.11. Let T be a tensor triangulated category that is essen-
tially small. Then, under Thomason’s bijection ( Theorem 2.5)

{dense triangulated subcategories of T} < {subgroups of Ko(7T)},
we have the following correspondences.

(1) The dense triangulated ideals correspond precisely to the ideals of the
ring Ko(7T).

(2) The dense prime triangulated ideals correspond precisely to the prime
ideals of Ko(T).

(3) The dense maximal triangulated ideals correspond precisely to the
mazximal ideals of Ko(T).

Proof. Except possibly the second statement, everything else is straight-
forward.

1. Let I be any ideal in Ky(7). Then the corresponding dense triangu-
lated subcategory is 71 = {X € 7 : [X] € I}. Now for A € 7 and B € Ay,
note that [B A A] = [B][A] € I (I being an ideal) and therefore B A A € 77.
This shows that 77 is a triangulated ideal. The other direction is equally
easy.

2. Suppose H is a prime ideal in Ky(7). The corresponding dense tri-
angulated ideal is given by B = {X : [X] € H}. Now if AA B € B, then
by definition of B, we have [A A B] € H, or equivalently [A]|[B] € H. Now
primality of H implies that either [A] € H or [B] € H, which means either
A € B or B € B. For the other direction, suppose B is a dense prime tri-
angulated ideal of 7. The corresponding subgroup H is the image of the
map Ky(B) — Ky(7). Now suppose the product of two elements [A] and
[B] belongs to H. Then we have [A A B] € H or equivalently [AA B] =0 in
Ky(7T)/H. By the above lemma, we then have AA B € B. Since B is prime,
this implies that either A € B or B € B, or equivalently [A] € H or [B] € H.

3. This follows directly from the fact that Thomason’s bijection is a map
of posets. m

In the same spirit we get the following result for triangulated modules
over tensor triangulated categories. We leave the proof, which is similar to
that of the above theorem, as an easy exercise to the reader.

THEOREM 2.12. Let A be a triangulated module over a tensor triangu-
lated category T. Then, under Thomason’s bijection ( Theorem 2.5)

{dense triangulated subcategories of A} « {subgroups of Ko(A)},
we have the following correspondences.

(1) The dense triangulated submodules of A correspond precisely to the
Ko(T)-submodules of Ko(A).
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(2) The dense maximal triangulated submodules correspond precisely to
the mazimal Ko(7)-submodules of Ko(A).

3. TRIANGULATED SUBCATEGORIES OF FINITE SPECTRA

In this section we apply Thomason’s Theorem 2.5 to the category F,, of
finite p-local spectra. So we begin by recalling the celebrated thick subcate-
gory theorem of Hopkins and Smith which is a key ingredient in Thomason’s
recipe for classifying the triangulated subcategories of F,. We then examine
the Grothendieck groups of these thick subcategories. Our partial know-
ledge of these groups gives us a family of triangulated subcategories of 7).
We then study the lattice of these subcategories in Subsection 3.5 using
some spectral sequences. This study gives new evidence for a conjecture of
Adams. We end the section with some questions.

For each non-negative integer n, there is a field spectrum called the nth
Morava K-theory K(n), whose coefficient ring is Fy[v,, v, ] with |v,| =
2(p™ — 1). According to the thick subcategory theorem of Hopkins—Smith
these Morava K-theories determine the thick subcategories of F,. More
precisely:

THEOREM 3.1 ([HS98]). For each positive integer n, let C,, denote the
full subcategory of all finite p-local spectra that are K(n — 1)-acyclic. Then
a non-zero subcategory C of F, is thick if and only if C = C, for some n.
Further these thick subcategories give a nested decreasing filtration of F,
([Rav84, Mit85]):

G GGGl G GO CC (= F).

A property P of finite spectra is said to be generic if the collection of all
spectra in F,, which satisfy P is C,, for some n. A spectrum is said to be of
type n if it belongs to C,, — C,,+1. For example, the sphere spectrum S is of
type 0, the mod-p Moore spectrum M (p) is of type 1, etc.

The problem of computing the Grothendieck groups of thick subcate-
gories of the finite p-local spectra was first considered, to our knowledge, by
Frank Adams. This appeared in an unpublished manuscript [Ada92, pp. 528—
529] of Adams on the work of Hopkins. We begin with a recapitulation of
Adams’s work and then bring it to this new context of classifying triangu-
lated subcategories. We should also point out that our Euler characteristic
functions are simpler than the ones considered by Adams.

3.1. Cp: finite p-local spectra. We begin with the fundamental notion
of Euler characteristic of a finite spectrum. Recall that if X is any finite
p-local spectrum, the Euler characteristic of X with rational coefficients is
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given by
0 .
(1) Xo(X) =) (~1)"dimg HQ;(X).
I=—00
Since X is a finite spectrum it has homology concentrated only in some
finite range and therefore this is a well defined function.

ExaAMPLE 3.2. For every non-negative integer m, define a full subcate-
gory Cg* of Co (= Fp) as

Cy' ={X € Co: xo(X) =0 mod m}.

It is an easy exercise to verify that these are all dense triangulated subcat-
egories of Cy.

PROPOSITION 3.3. A triangulated subcategory C of Co (= Fp) is dense in
Co if and only if C = C§* for some m.

Proof. Let S denote the p-local sphere spectrum and recall that Cy can
be generated by iterated cofiberings of the sphere spectrum S°. Now using
the Euler relations, it is clear that the Grothendieck group of Cy is a cyclic
group generated by [S]. The map

Xo : {isomorphism classes of Cy} — Z

which sends an isomorphism class to its Euler characteristic shows that
Ky(Cp) is isomorphic to Z. The proposition now follows by invoking Theo-
rem 2.5. m

PROPOSITION 3.4. Ky(Co) = Z as commutative rings.

Proof. First note that the smash product on Cy induces a ring structure
on Ky(Cp). Now the isomorphism of abelian groups ¢ : Ko(Cp) — Z (from
the proof of the previous proposition) maps the Grothendieck class of the
wedge of n copies of the sphere spectrum to n. Since the smash product
distributes over the wedge, we conclude that ¢¢ is a ring isomorphism. =

We now give some nice consequences of this proposition.

COROLLARY 3.5. Ewery triangulated subcategory of Cq is a triangulated
ideal.

Proof. Let C be a triangulated subcategory of Cy, and let C, denote
the unique thick subcategory in which C is dense. Now note that C, is a
triangulated module over Cy, therefore Ky(C,) is a Ky(Cp)-module. We have
seen that Ko(Cp) = Z as rings. So we apply Theorem 2.12 and observe the
simple fact that subgroups of the abelian group Ky(C,,) are precisely the
Z-submodules of K(Cy,). =
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COROLLARY 3.6. If B is a dense triangulated subcategory of F, then B
is prime if and only if B = C8 or C§ for some prime number p. In particular,
a dense triangulated subcategory of F, is mazimal if and only if it is Cly for
some prime p.

Proof. By Theorem 2.11, we have a correspondence between the prime
(maximal) dense triangulated subcategories of F;, and the prime (maximal)
ideals of Ko(Fp) (= Z). The corollary now follows by comparing the prime
ideals and maximal ideals of Z. =

COROLLARY 3.7. Let A(Xy,...,Xy) denote the triangulated subcategory
generated by spectra X1, ..., Xg. Then we have the following.

(1) If A is a type-0 spectrum, then A(A) consists of all spectra X in Cy
for which xo(X) is divisible by xo(A).

(2) If A is a type-0 spectrum and B is a spectrum in Cy, then B can
be generated from A wusing cofibre sequences if and only if xo(B) is
divisible by xo(A).

(3) If A is a type-0 spectrum and B is a spectrum in Cy, then A(A, B)
consists of all spectra X in Cy for which xo(X) is divisible by the
highest common factor of xo(A) and xo(B).

REMARK 3.8. The above corollaries are interesting structural results on
the subcategories of F,,. It is not clear how one would establish such results
without using this K-theory approach of Thomason.

3.2. (C;: finite p-torsion spectra. Having classified the dense triangu-
lated subcategories of Cy, we now look at the thick subcategory C; consisting
of the finite p-torsion spectra. A potential candidate which might generate
Co as a triangulated category is the Moore spectrum M (p). So before going
any further, it is natural to ask if M (p?) can be generated from M (p) by iter-
ated cofiberings. That this is possible can be easily seen using the octahedral
axiom which gives the following commutative diagram of cofibre sequences:

§—L—=3 M (p)
PR
s—2 >3 M(p?)
N
0 M (p) M (p)

The exact triangle in the far right is the desired cofibre sequence. Induc-

tively, it is easy to see that M (p') can be generated from M (p) using cofibre
sequences. This example motivates the next proposition.
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PROPOSITION 3.9. Ewvery spectrum in C1 can be generated by iterated
cofiberings of M (p).

Proof. First observe that the integral homology of any spectrum in C;
consists of finite abelian p-groups. Further these spectra have homology con-
centrated only in a finite range, so we induct on |[HZ.(—)|. If |[HZ.(X)|=1,
that means X is a trivial spectrum and it is obviously generated by M (p).
So assume that |HZ.(X)| > 1 and let k be the smallest integer such
that HZy(X) is non-zero. Then by the Hurewicz theorem, we know that
(X)) = HZi(X). So pick an element of order p in HZy(X) and represent
it by a map « : S¥ — X. Since pa = 0, the composite S* L8k 2 X s
zero and hence the map « factors through X*M (p). This gives the following
diagram where the vertical sequence is a cofibre sequence:

p

skg skg ZFM(p)
X
Y

It is easily seen that HZ;(c/) is non-zero (and hence injective) if i = k, and
is zero otherwise. Therefore, from the long exact sequence in integral ho-
mology induced by the vertical cofibre sequence, it follows that |HZ.(Y)| =
|HZ,(X)|—p. The induction hypothesis tells us that Y can be generated by
cofibre sequences using M (p) and then the above vertical cofibre sequence
tells us that X can also be generated by cofibre sequences using M (p). =

Note that the regular Euler characteristic is not good for spectra in C;
because these spectra are all rationally acyclic and therefore their Euler
characteristic is always zero (no matter which field coefficients we use). The
integral homology of these spectra consists of finite abelian p-groups and
that motivates the following definition.

DEFINITION 3.10. For any spectrum X in Cp, define

(e}

(2) xi(X) = Y (=1)'log, |HZ:X],

1=—00
and for every non-negative integer m, define a full subcategory
Cl' :={X €C1: x1(X) =0mod m}.

THEOREM 3.11. A triangulated subcategory C of Cy is dense in Cy if and
only if C = C" for some non-negative integer m.
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Proof. The function log,, |—| is clearly an additive function on the abelian
category of finite abelian p-groups, i.e., whenever 0 - A — B — C — 0
is a short exact sequence of finite abelian p-groups, we have log, |B| =
log, |A| + log, |C|. Using this it is elementary to show that if we have a
bounded exact sequence of finite abelian p-groups, then the alternating sum
of log,, | — |’s is zero. This applies, in particular, to the long exact sequence in
integral homology for a cofibre sequence in C;. In other words, x1(—) respects
the Euler relations in C;. So we get an induced map ¢; : Ko(C1) — Z.
From Proposition 3.9, we know that K((C;) is a cyclic group generated by
[M(p)]. Since ¢1([M(p)]) = 1, it follows that ¢; is an isomorphism. The
given classification is now clear from Theorem 2.5. u

COROLLARY 3.12. A triangulated subcategory C of C1 is a mazximal tri-
angulated subcategory if and only if C = CY for some prime number p.

Proof. Since Ky(C1) = Z, the corollary follows (as before) by observing
that the maximal subgroups of Z are precisely the subgroups generated by
prime numbers. =

Now we state the analogue of Corollary 3.7 for finite p-torsion spectra.

COROLLARY 3.13. Let A(Xjy,..., X)) denote the triangulated subcate-
gory generated by spectra X1,...,X,. Then we have the following.

(1) If A is a type-1 spectrum, then A(A) consists of all spectra X in C;
for which x1(X) is divisible by x1(A).

(2) If A is a type-1 spectrum and B is a spectrum in Ci, then B can
be generated from A wusing cofibre sequences if and only if x1(B) is
divisible by x1(A).

(3) If A is a type-1 spectrum and B is a spectrum in Cy, then A(A, B)
consists of all spectra X in Cy for which x1(X) is divisible by the
highest common factor of x1(A) and x1(B).

We now examine the Grothendieck group of the Verdier quotient cate-
gory Co/C,. We begin with some generalities. If A is any thick subcategory
of a triangulated category C, then we have natural functors fitting into an
exact sequence

A—C—C/A—0,

where the first functor is the inclusion functor and the second one is the
quotient functor into the Verdier quotient. Applying Ko(—) to the above
sequence induces an exact sequence [Gro77, p. 355, Proposition 3.1]

(3) Ko(.A) - Ko(C) - KD(C/A) — 0.

Moreover, if C is a tensor triangulated category and A is a thick ideal in C,
then Ko(C/A) is a K(C)-algebra. The first map in the above exact sequence
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is in general not injective. Here is an example. If A = C,, (n > 1) and C = Cy,
then the inclusion functor C,, — Cy induces a map

Ko(Cp) — Ko(Co) = Z.

This is evidently the zero map because the Euler characteristic xo applied
to any rational acyclic gives zero. Exactness of the sequence Ky(C,) —
Ky(Co) — Ko(Cp/C1) — 0 gives the following corollary.

COROLLARY 3.14. Ky(Cy/Cyp) = Z as commutative rings, and is gener-
ated by the Grothendieck class of the image of the p-local sphere spectrum
under the quotient functor Co — Cy/Ch,.

Since the thick subcategories of F,, are all nested (Cp41 C C,,), we get an
exact sequence of triangulated functors

Cn—i—l —Cp — Cn/cn—H — 0.
Applying the functor Ky(—) gives an exact sequence of abelian groups
KO(Cn+1) - KO(Cn) - KO(Cn/Cn—l-l) — 0.

We do not know much about these groups beyond the fact that they are
countably generated abelian groups. The hard and interesting thing here
is to determine these groups and understand the map Ko(Cp+1) — Ko(Cp)
in the above exact sequence. Note that if X is a type-n spectrum and v
is a vp-self map on X [HS98|, then v being an even degree self map, the
Grothendieck class of cofibre X /v is the zero element in Ky(C,). Now heuris-
tically we expect every finite type-(n + 1) spectrum to be the cofibre of a
vp-self map on a type-n spectrum. Therefore it is reasonable to conjecture
that the map Ko(Cp+1) — Ko(Cp,) is trivial. Also note that this conjecture
is equivalent to the conjecture that C,41 is contained in every dense tri-
angulated subcategory of C,. We give some evidence for this conjecture in
Subsection 3.5; see Proposition 3.25.

3.3. C,,: higher thick subcategories. Now we want to study the tri-
angulated subcategories of the thick subcategories C, for n > 1. To this
end, we make use of the spectra related to BP and their homology theories
to construct some Euler characteristic functions. Recall that there is a ring
spectrum called the Brown—Peterson spectrum (denoted by BP) whose coef-

ficient ring is given by Z,[v1,v2, ..., vp, .. ], with |v;| = 2p' — 2. Associated
to BP, we have, for each n > 1, the Johnson-Wilson spectrum BP(n) whose
coefficient ring is Z)[v1, . . ., vn).

For each n > 1, recall that there is a generalised Moore spectrum of
type n. For n = 1 this is just the Moore spectrum M (p). For n = 2 this is
the cofibre of a self map of the Moore spectrum

7 Uil
S M (p) 2 M(p)
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that induces multiplication by vt (for some i) in BP, homology and is de-
noted by M (p,vi'). For higher values this is defined inductively: A type-n
generalised Moore spectrum is obtained by taking the cofibre of a self map

Ziv%nlM(p,vil,... o) &M(p,vl o

» “n—1 ’» Yn—1
that induces multiplication by vir (for some i,,) in BP, homology and is
inductively denoted by M (p,vy',. .. ,v;” -, vin). For sufficiently large powers
of the v;’s these spectra are known to exist [HS98]. However the problem of

existence of such spectra with specified exponents seems to be hard.

LEMMA 3.15. Let X be any spectrum in C,, (n > 1). Then BP(n —1); X
s always a finite abelian p-group, and is zero for all but finitely many 1.

Proof. The strategy here is a thick subcategory argument. Say that a
finite p-local spectrum X has property P if BP(n — 1); X satisfies the con-
ditions in the statement of the lemma. It is straightforward to verify that
property P is generic. Now by the Hopkins—Smith thick subcategory the-
orem, we will be done if we can exhibit one generic type-n spectrum for
which P holds. To this end, we consider a generalised type-n Moore spec-

trum M(p,v?,...,vn ). We have, for each n > 1,
4 , Ly U1, .oy Un
BP(n — 1).M(p,v},..., 0" ) = (p)[z.l in_lli.
(p, v}, ... 0,

This homology is a finitely generated F,-algebra, and therefore the gener-
alised Moore spectrum in question has property P. So we are done. In fact
it is also clear that the full subcategory of all finite p-local spectra with
property P is precisely the thick subcategory C,,. »

With the above lemma at hand, we can define a function x,, : C,, — Z as

(4) XnX = Z 1) log, [BP(n — 1);(X)|.

i=—00
The previous lemma shows that this is a well defined function. It is straight-
forward to verify that this function is an Euler characteristic function. More-
over the BP(n — 1), homology of the generalised type-n Moore spectrum

M(p,v{*,...,v,"7]) is non-trivial and is concentrated in a finite range of
; o1y s .
even degrees and hence x, M (p,v{',...,v," ) is non-zero. So by the univer-

sal property of the Euler characteristic function y,, we have the following
split short exact sequence:

0 — Ker(¢,,) — Ko(Cr) —Im(¢p,) —=0

R

Z
This discussion can be summarised in the following proposition.
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PROPOSITION 3.16. For each n > 1, Ko(Cy,) has a direct summand iso-

morphic to Z. This gives, for each k > 0, a dense triangulated subcategory
of Cp, defined by

Ck.={X €C,: xn(X)=0mod l,k}
where 1, is a generator for the cyclic group ITm(¢y,).

Note that these triangulated subcategories correspond to the subgroups
nZ @ Ker(¢,,) and hence are dense in C,, by Theorem 2.5.

REMARK 3.17. The above proposition recovers the dense triangulated
subcategories Cf of Theorem 3.11. In fact, the Euler characteristic func-
tion (4) agrees with (2) when n = 1. This is because BP(0) = HZ
(the Eilenberg—Mac Lane spectrum for the integers localised at p), and
for p-torsion spectra, HZ ) (X) = HZ.(X). Thus, for X in C;, we have
BP(0).X = HZ.(X) and consequently the two Euler characteristic func-
tions agree.

3.4. A conjecture of Frank Adams. It is easily seen that if the
Smith-Toda complex V(n —1) (:= M(p,v1,...,vn—1)) exists, then the map
¢n : Ko(Cp) — Z is surjective. The natural thing to do now is to determine
the kernel of ¢,,. This turns out to be a very hard problem. It is known that
V(1) exists at odd primes. In view of this Frank Adams made the following
conjecture.

CONJECTURE 3.18 ([Ada92, p. 529]). The thick subcategory Co (at odd
primes) can be generated by iterated cofiberings of the Smith—Toda com-
plez V(1).

This conjecture is equivalent to saying that Ker(¢2) = 0, or equivalently
that Ko(C2) = Z. Adams [Ada92, p. 528] also asked the following weaker
question.

QUESTION. What is a good set of generators for C,? (A set A generates
Cy, if the smallest triangulated category that contains A is Cy,.)

This is a very important question and one answer was given by Kai Xu
[Xu95]. Before we can state his result we need to set up some terminology.

Recall that a spectrum X is atomic if it does not admit any non-trivial
idempotents, i.e., whenever f € [X, X] is such that f2 = f, then f = 0
or 1. Since idempotents split in the stable homotopy category, this is also
equivalent to saying that X does not have any non-trivial summands. Now
if X is a finite p-torsion atomic spectrum, then the finite non-commutative
ring [X, X] of degree zero self maps of X modulo its Jacobson radical (in-
tersection of all left maximal ideals) is isomorphic to a finite field [AK89]:

[X, X]/rad = F,x  for some k.
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So for every p-torsion atomic spectrum X, we define e(X) to be the integer
k given by the above isomorphism.

EXAMPLE 3.19. It can be easily verified that for all ¢ > 1, M (p%) is an
atomic spectrum with e(M(p')) = 1.

The main result of [Xu95] which uses the nilpotence results [DHS88,
HS98| as the main tools then states:

THEOREM 3.20 ([Xu95]). For every pair of natural numbers (n, k), there
is an atomic spectrum X of type n such that e(X) = k. Further, if C(n,k)
denotes the triangulated subcategory of C, generated by the type-n atomic
spectra with e(—) < k, then C(n, k) = C,.

So this gives an answer to Adams’s question. One set of generators for
C, can be taken to be the collection of all type-n atomic spectra X with
e(X) = 1. The next natural question is: how big is this set? Is it finite? If
so, then we can infer that the Grothendieck groups Ky(C,) are all finitely
generated abelian groups. But we do not know the answer to this question.

Using this theorem of Xu, we can now revise Adams’s conjecture as
follows.

CONJECTURE 3.21. At odd primes, V(1) generates (by iterated cofiber-
ings) all type-2 atomic spectra X such that e(X) = 1.

3.5. The lattice of triangulated subcategories of Cy. We will now
study the lattice of triangulated subcategories of finite p-local spectra. First
recall that the thick subcategories of finite p-local spectra are nested [Mit85]:

"',C,_Cn+1 gcngcn—l Qgcl QCO
Our goal now is to understand how the triangulated subcategories C* fit in
this chromatic chain. We begin with a simple proposition.
PROPOSITION 3.22. Cp is contained in every dense triangulated subcate-
gory of Cy, i.e., C1 C C(’f for all k > 0.

Proof. If X is in Cq, then its rational homology is trivial and hence its
rational Euler characteristic xo(X) is zero. Therefore X belongs to every
dense triangulated subcategory of Cy. It is easy to see that the spectrum
SV XS belongs to C(lf — Cq for all k£ > 0, therefore the containment C; C C(’f
is proper. =

Motivated by this proposition, we wondered if it is true that for all
non-negative integers n and k,
Chi1 CCFCC,.
We now proceed to show that this is indeed the case. For better clarity we
separate the cases n =1 and n > 1.
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3.5.1. An Atiyah-Hirzebruch spectral sequence. We prove that Co C CF
for all £ > 0. Our main tool will be an Atiyah—Hirzebruch spectral sequence.
We begin with two lemmas: the first one is an elementary algebraic fact and
the second one is a standard topological fact.

LEmMmA 323. If A=+ 50— A — -+ =5 A - 0— --- isa
bounded chain complex of finite p-groups, then

S (1) log, |Ai] = 30(=1)'log, [Hi(4)].

Proof. This is left as an easy exercise to the reader.

LEMMA 3.24. The thick subcategory Co consists of all finite p-torsion
spectra whose complex K -theory is trivial.

Proof. We use a result of Adams [Ada69] which states that the complex
K-theory localised at p splits as a wedge of suspensions of E(1). More pre-
cisely, K, = \/f:_g Y% E(1). In particular, (K,) = (E(1)). With this at hand,
we get the following equalities of Bousfield classes:

(K) = \/(Ky) = VB = V(K (0) v (K1),
P P p
The last equality follows from [Rav84, Theorem 2.1(d)]. Now it is clear from
these equations that for X finite and p-torsion, K, X = 0 if and only if
K(l)*X =0.m

PROPOSITION 3.25. Co is properly contained in every dense triangulated
subcategory of C1, i.e., Co C CF for all k > 0.

Proof. Recall that Cf is the collection of p-torsion spectra X for which
x1(X) is divisible by k. So it is clear that X € CF for all k if and only if
X1(X) = 0. Therefore by Lemma 3.24 we have to show that if X is a finite p-
torsion spectrum for which K, (X) = 0, then x1(X) := > (—1)"log, |HZ;X|
=0.

Recall that the spectrum K (also denoted by BU) is a ring spectrum
whose coefficient group is given by the complex Bott periodicity theorem:;
K. = Z[u,u™1] where |u| = 2. We make use of the Atiyah-Hirzebruch
spectral sequence

EZ, = Hy(X; K;) = KepX

converging strongly to the K-theory of X. The differentials (d,) in this
spectral sequence have bidegrees |d,| = (—r,7 — 1). Note that X being a
finite spectrum, the E? page is concentrated in a vertical strip of finite
width (see Fig. 1) and therefore the spectral sequence collapses after a finite
stage. Since it converges to K. (X)), which is zero by hypothesis, we conclude
that for all sufficiently large n, E™ = E*° = 0.
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Fig. 1. Atiyah-Hirzebruch spectral sequence: E3-term

Next we claim that the function
n— Z logp |Eol

is constant.

Assuming this claim, we will finish the proof of the proposition. When
n = 2, this function takes the value Y, (—1) log, |HZ; X| = x1(X) and for
large enough n, it takes the value 0 (since E™ = E*° = 0). Since the function
is constant (by the above claim), we get x1(X) = 0.

Now we prove our claim. First note that this spectral sequence is a
module over the coefficient ring K, = Z[u,u!]. Therefore the differentials
commute with this ring action. Also since « is a unit, it acts isomorphically
on the spectral sequence, and therefore induces periodicity on E*: E;l,* =
E! 9.« Also note that just for degree reasons, all the even differentials are
zero. So at FE3, where the first potential non-zero differentials occur, the
alternating sum 3 ,(—1)"log, |Efo| can be broken into three parts as shown
in the equation below.

S (-1l [ERl = >+ Z >

i i=0(3) i=1( 1=2(3)

Now because of the periodicity of the E3 page, we can assemble the terms in
the above equation along three parallel lines in the E® page, where the term
with congruence class [ modulo three corresponds to the line with ¢-inter-
cept [; see Fig. 1. Now we can apply Lemma 3.23 along each of these lines
which are bounded complexes of finite abelian p-groups to pass to the homol-
ogy groups. Invoking the periodicity of the differentials again, we conclude
that the new alternating sum thus obtained is equal to Y ,(—1)"log, |El470|.
Now an easy induction will complete the proof of the claim: At (E",d,), for
r odd, we decompose the alternating sum »_,;(—1)"log, |E} ol into r parts,
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one for each congruence class modulo r, and assemble these terms along r
parallel lines on the E" page such that the term whose congruence class
is I modulo r corresponds to the line with ¢-intercept [. Periodicity of the
differentials can be used (as before) to complete the induction step.

So we have shown that Cy C C:]f for all k¥ > 0. To see that this inclusion is
strict, observe that the p-torsion spectrum M (p)V XM (p) belongs to C¥ —Ca
forall k. m

COROLLARY 3.26. K((C1/C2) = Z generated by the Grothendieck class
of the image of the Moore spectrum under the quotient functor C; — Cy/Ca.

Proof. On applying Ko(—) to the sequence Co — C; — C1/Ca — 0, we get
an exact sequence of abelian groups: Ko(C2) — Ko(C1) — Ko(C1/C2) — 0;
see (3). The first map in this sequence is the zero map by Proposition 3.25,
and Ko(Cy1) was shown to be infinite cyclic on [M (p)]. So the corollary follows
by combining these two facts. =

The inclusion Cy € C¥ for all k, which we have just established, gives some
new evidence for Conjecture 3.18 of Adams. To see this, first note that since
M (p,v1) is a cofibre of an even degree self map of M (p), x1(M(p,v1)) = 0.
Now if M (p,v1) generates Cy by cofibre sequences (Adam’s conjecture), then
x1(X) = 0 for all X € C. This now clearly implies that Co C C¥ for all k.

One can try to test this conjecture by asking whether we can generate
M (p',v]) (whenever it exists) from M (p,v;). Results on nilpotence and
periodicity [HS98] give the following partial answer to this question.

PROPOSITION 3.27. For every fived positive integer k > 0, there exist
infinitely many positive integers j for which M (p", v]) can be generated from
M (p,v1) using cofibre sequences.

We leave the proof of this well known proposition to the reader.
All these results give only some evidence for Adams’s conjecture. The
conjecture, however, still remains open.

3.5.2. A Bockstein spectral sequence. Our goal now is to prove Cp 41 C CF
for all n and k. We mimic our strategy for the case n = 1 by replacing the
Atiyah—Hirzebruch spectral sequence with a Bockstein spectral sequence.
The above inclusion is an easy corollary of the following theorem.

THEOREM 3.28. If X is a spectrum in Cn41, then
yn(X) = 3(=1)' log, [BP (1 — 1);X| = 0.
COROLLARY 3.29. Cp41 € Cfi forall k>0 and all n > 1.

Proof. By the above theorem, for a spectrum X in Cpy1, xn(X) = 0.
Therefore X belongs to Cfi for all k. The spectrum F'V XY F, where F' is a
type-n spectrum, belongs to C¥ — C,, 1. So Cpy1 € CF for all k > 0. m
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We now outline the strategy for proving the above theorem. This is very
similar to the proof of Proposition 3.25. First recall that C,41 can also be
characterised as the collection of finite p-local spectra that are acyclic with
respect to E(n). So we seek a strongly convergent spectral sequence

E* = E(n).X,

whose E; term is built out of BP(n — 1),X. We show that a certain Bock-
stein spectral sequence has this property and that it collapses after a finite
stage. Finally, we work backward to conclude that x,X = 0.

Now we proceed to construct such a spectral sequence. Fix an integer
n > 1 and recall that

E(n) = v, 'BP(n) = hocolim BP(n).

This gives a sequence of cofibre sequences that fit into a diagram extending
to infinity in both directions as shown below:

L lonlBP (n) o BP(n) U S=1vnlBP (n) U — E(n)
\o o ~~
~ v —~ ~

2lnIBP(n—1)  BP(n—1) X-1IBP(n —1)

Since both the functors (—) A X and m.(—) commute with the functor
hocolim,, (—), smashing the above diagram with X and taking . gives
an exact couple of graded abelian groups:

S~ S~
o~ — o~ v

ZlnlBP(n —1),X BP(n—-1),X X-"IBP(n-1).X

This exact couple gives rise to a (Bockstein) spectral sequence E;" in the
usual way. We choose a convenient grading so that the F; term is concen-
trated in a horizontal strip of finite width, i.e., E’? = 0 for |q| > 0 (see
Fig. 2). This can be ensured by setting

DP? = X PlnIBP () X, EM= X PlnlBP(n — 1) X.

—plvn|+q —plvn|+q

With this grading one can easily verify that the differentials have bidegrees
given by |d,| = (—r,—r|v,| — 1). It is clear from Figure 2 that after a
finite stage all the differentials exit the horizontal strip and therefore the
spectral sequence collapses. Another important fact that we need about
this Bockstein spectral sequence is the periodicity of all the differentials.
More precisely, for all integers p and r > 0, EF'* = E?H’*, and further the
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Fig. 2. Bockstein spectral sequence: Ei-term

following diagram commutes:

d
quﬂ)’* r Ef—r,*—l—r\vn\

Lk

E7;€)+1,* dTE Ep+l—r,*—1—r|vn|
T

Now we show that this spectral sequence converges strongly to E(n).(X).
For this, we make use of a theorem of Boardman [Boa99]. Before we can
state his result we have to recall some of his terminology. Consider an exact
couple of graded abelian groups:

.. As+1 AS As—l ¢ As—2 ¢ e A—>®

N N N N
kN kN kN kN

Es+1 Es Es—l E5—2 ......

This gives the following filtration of the groups E® by cycles and boundaries
of the differentials in the spectral sequence that arises from this exact couple:

0=BiCB;C---CZ5CZ] =FE°

where Z5 := k= (Im[{("~V) : A5T" — A5t1]) and B := jker[i""D : 4% —
As—r—i—l]‘
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Associated to this exact couple and the resulting spectral sequence,
[Boa99] defines the following groups (these definitions also hold when n=o00):
o A7 :=colim A%, A% :=lim A% RA* := Rlim A?®,
S S

s

o K, A% :=ker[i(® : A5 — A5~ "] Im"A® :=Im[i(") : A5T" — A%],
o K,Im"A% := K,A° NIm"A*,
o W = colim Rlim K,Im" A%,

S T

e RES =Rlim Z;.
T
The main theorem of [Boa99] then states:

THEOREM 3.30 ([Boa99, Theorem 8.10]). The spectral sequence arising
from the above exact couple converges strongly to A= if the obstruction
groups A*, RA®, W, and RE, are zero.

We recall a few elementary facts about inverse limits before we can apply
this theorem to our Bockstein spectral sequence. The proofs follow quite
easily from the universal properties of these limit functors. Parts of this
lemma can also be derived from the more general Mittag-Leffler condition.

LEMMA 3.31. Consider a sequence of (graded) groups and homomor-
phisms:
'_)Aerl_)As_)Asfl_)”_.

Then the following statements hold.

o If, for some integer M, the composite of M consecutive maps in this
sequence is always null, then limg A° = RlimgzA® = 0.

o If there is an integer L such that for all s > L the map ASt! — A% is
the identity map, then limg A = AY and Rlim,A® = 0.

We now show that our Bockstein spectral sequence converges strongly
to E(n).X by verifying the hypothesis of Boardman’s theorem. So we apply
his theorem to the sequence

(5) oo 2oy sllBP(R) 2 BP(n) 2% X1 BP(R) 22 .
For brevity, we shall denote X~51""|BP(n), X by A°.

(a) A = 0: By Lemma 3.31, all we need to show is that there is some in-
teger M such that the composite of any M consecutive maps in the sequence
(5) is zero. X being a spectrum in Cp, 41, BP(n),X is concentrated only in a
finite range. Now since vy, is a graded map of degree 2(p™ — 1), a sufficiently
large iterate of v, vanishes, hence A* = limg X ~PI'»BP(n), X = 0.

(b) RA®> = 0: This is also immediate from the first part of Lemma 3.31
because we have already seen that a sufficiently large iterate of v, is zero in

part (a).



Refining thick subcategory theorems 83

(¢) W = 0: The colimit of the sequence (5) is E(n).X and this latter
group is zero by hypothesis. It now follows that K., A® = A®. We make use
of this fact in the third equality below.

W = colim Rlim (K Im"A®) = colim Rlim (Ko A% N Im"A?%)

= colim Rlim (A° N Im" A®) = colim Rlim Im" A®

S T

= colimRlim (---0 — 0 — --- C Im?A* C Im*4*) = colim 0 = 0.
S

S T

(d) REsx = 0: This follows from the fact that the spectral sequence
collapses after a finite stage. For each fixed s, all inclusions in the sequence

-i>Z,f+1i>Z;f§---§Z§§Zf:Ef

become equalities eventually. So we now invoke the second part of Lemma
3.31 to conclude that RES = Rlim,Z; = 0.

So we have shown that all the obstruction groups vanish and therefore
Boardman’s theorem tells us that our spectral sequence converges strongly
to E(n).X.

We now move to the final part of the theorem: x,(X) = 0. We mimic
the argument given for the fact “Co C C¥”. The crux of the proof lies in the
key observation that the ¢ component of the differential d,. is always an odd
number (—r|v,| —1). We claim that the function

kHZ ) log, | E}"|

is constant. Toward this, we decompose the sum Y (—1)"log, |EYY into ¢ :=
|vn| + 1 parts as follows:

> (= >longi°\—Z D+ Z

i =0(t) =1(t) i=t—1(

Now the periodicity of all the differentials coupled with the fact that |v,|+1
is an odd number will enable us to assemble all these terms on the right hand
side of this equation along ¢ parallel complexes of differentials on the FEj
term. (The term corresponding to the congruence class [ modulo ¢ will cor-
respond to the parallel complex with g-intercept [; see Fig. 2.) We can now
apply Lemma 3.23 to each of these complexes and pass on to the homology
groups without changing the underlying alternating sum. Again using the
periodicity of the differentials, we can reassemble all the terms after taking
homology to obtain ¢(2). This shows that ¢(1) = ¢(2). Now a straightfor-
ward induction will complete the proof of the claim.

Finally, to see that yx,(X) = 0, observe that when k = 1, ¢ takes the
value x,(X), and for all sufficiently large values of k, ¢ is zero because
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our spectral sequence collapses at a finite stage and converges strongly to
E(n).X, which is zero by hypothesis. Since we know that ¢ is constant, this
completes the proof of the theorem.

3.6. Questions

3.6.1. Grothendieck groups and Adams’s conjecture. The biggest prob-
lem that needs to be settled is the classification of all triangulated subcat-
egories of F,. We believe that such a classification will reveal some hidden
ideas behind the chromatic tower which might shed some new light on the
stable homotopy category. We have seen that Ky(Cp) is infinite cyclic with
the sphere as the generator, and Ky(Cp) is infinite cyclic with the mod-p
Moore spectrum as the generator. Computing the Grothendieck groups of
higher thick subcategories (C,, n > 2), as we have seen, is much more com-
plicated. In particular Adams’s conjecture remains open.

Another interesting and related question at this point is the following.
In C,, what is the triangulated subcategory generated by atomic spectra X
of type n for which e(X) = k (k some fixed positive integer)? By [Xu95],
this is the whole of C, if £k = 1; otherwise, this will be some dense trian-
gulated subcategory of C,. The immediate question that springs out now is
whether these triangulated subcategories, when n = 2, are precisely the sub-
categories C5. A non-affirmative answer to this question will settle Adams’s
conjecture in the negative. Similarly when n = 1, it will be interesting to
match these dense triangulated subcategories with the subcategories Cf .

One can also try to investigate some properties of these Grothendieck
groups. For instance, are they finitely generated? are they torsion-free?

3.6.2. Euler characteristics and the lattice of triangulated subcategories.
It would be interesting to find an Euler characteristic defined on C,, that is
not a multiple of x,, (see equation (4)). Such an Euler characteristic function
might tell us something new about Ko(Cp,).

Recall that [, was defined to be the generator of the image of ¢, :
Ky(Cy) — Z. Tt is clear that I, = 1 if V(n) exists. In general, [,, can be
a very large integer and not much is known about it. The following is a
conjecture of Ravenel (personal communication): If (p, f) # (2, 1), then p/
divides l(,_1)741-

We have seen that the triangulated subcategories CX are sandwiched
between C,+1 and C,. Is the same true for all triangulated subcategories
of F,7

These are some questions which we think merit further study in this
direction.
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4. TRIANGULATED SUBCATEGORIES OF PERFECT COMPLEXES

For the rest of this paper we work in the derived categories of rings. The
subsections that follow are organised as follows. We begin with a quick recap
of the derived category in the next subsection. In Subsection 4.2 we review
some basic algebraic K-theory and connect it to the problem of classifying
triangulated subcategories. We then start applying Thomason’s Theorem
2.5 to classify triangulated subcategories of perfect complexes over PIDs,
Artin rings, and some non-noetherian rings. We end with some questions.

Unless stated otherwise, all rings will be assumed to be commutative
with a unit.

4.1. The derived category. There are many beautiful constructions
of the derived category; see [Wei94] for the classical approach, or [Hov99] for
a model category theoretic approach. We briefly review some preliminaries
on the derived category D(R) of a commutative ring R. It is obtained from
the category of unbounded chain complexes of R-modules and chain maps
by inverting the quasi-isomorphisms (maps that induce an isomorphism in
homology). D(R) is a tensor triangulated category with the derived tensor
product as the smash product and the ring R (in degree 0) as the unit ob-
ject. It is a standard fact that the small objects of D(R) are precisely those
complexes that are quasi-isomorphic to perfect compleres (bounded chain
complexes of finitely generated projective R-modules); see [Chr98, Prop.
9.6] for a nice proof. It follows from [Wei94, Corollary 10.4.7] that the full
subcategory of small objects in D(R) is equivalent (as a triangulated cate-
gory) to the chain homotopy category of perfect complexes. The latter will be
denoted by D°(proj R) and it provides a nice framework for studying small
objects. The full subcategory of small objects in D(R) can also be charac-
terised as the thick subcategory generated by R; see [Chr98, Prop. 9.6].

4.2. Algebraic K-theory of rings. Now we recall some classical alge-
braic K-theory of rings and connect it to the problem of classifying (dense)
triangulated subcategories of perfect complexes. If R is any commutative
ring, the K-group of the ring R, which is denoted by Ky(R), is defined
to be the free abelian group on the isomorphism classes of finitely gener-
ated projective modules modulo the subgroup generated by the relations
[P] — [P ® Q] — [Q] = 0, where P and @ are finitely generated projective
R-modules. A folklore result says that these K-groups are isomorphic to the
Grothendieck groups of D®(proj R).

PROPOSITION 4.1 (well known). If R is any ring (not necessarily com-
mutative), then there is a natural isomorphism of abelian groups

Ko(R) = Ko(D"(proj R)).
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Proof (sketch). Let A denote the free abelian group on the isomorphism
classes of perfect complexes in the derived category of R and let B denote the
free abelian group on the isomorphism classes of finitely generated projective
R-modules. Since the Grothendieck groups under consideration are quotients
of these free groups, we define maps on A and B that descend to give the
desired bijections. Define f : A — B by f((X)) = >,c,(—1)"(X;) and
g: B — Aby g((M)) = (M|[0]). Now one can easily verify that these
map descend to the Grothendieck groups and that the descended maps are
inverses of each other. m

The importance of this folklore result, for our purpose, can be seen from
the following observation.

REMARK 4.2. This folklore result, along with Theorem 2.5 of Thoma-
son, connects the problem of classifying dense triangulated subcategories in
D®(proj R) with the K-theory of R. More precisely, there is a 1-1 correspon-
dence between the subgroups of Ky(R) and the dense triangulated subcat-
egories of D?(proj R). So this leads us naturally to algebraic K-theory—a
subject that has been extensively studied.

For the remainder of this section, we review some well known computa-
tions of K-groups of rings that will be relevant to us.

ExaMpPLE 4.3. If R is any commutative local ring, then every finitely
generated projective R-module is free. Thus the monoid proj R (the cate-
gory of finitely generated projective R-modules) is equivalent to the monoid
consisting of the whole numbers. The Grothendieck group of the latter is
clearly isomorphic to Z. Thus for local rings,

Ko(DP(proj R) = Ko(R) = Z.

Similarly, it is easy to see that if R is any principal ideal domain, then
Ky(R) =2 Z.

Now we state some results on the K-groups of some low-dimensional
commutative rings. These results are of interest because they connect K-
groups and classical Picard groups of rings. Before we state the result, we
need to recall the definition of the Picard groups of rings.

DEFINITION 4.4. The Picard group Pic(R) of a ring R is defined to be
the group of isomorphism classes of R-modules that are invertible under the
tensor product. Similarly the Picard group of D(R), denoted by Pic(D(R)),
is the group of isomorphism classes of objects in D(R) that are invertible
under the derived tensor product. In both these cases, note that the ring R
acts as the identity element.

THEOREM 4.5 ([Wei03]). Let [Spec(R),Z] denote the additive group of
continuous functions from Spec(R) to the ring of integers with the discrete
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topology. Then the following holds:

(1) For every 0-dimensional ring R, Ko(D"(proj R)) = [Spec(R), Z].
(2) For every 1-dimensional noetherian ring,

Ko(D"(proj R)) = Pie(D(R)).

Proof. The first statement is Pierce’s theorem; see [Wei03, Theorem
2.2.2]. The second statement can be seen as a corollary of a theorem due
to Fausk [Fau03]: There is a natural split short exact sequence (for any
commutative ring)

0 — Pic(R) — Pic(D(R)) — [Spec(R),Z] — 0.

Therefore Pic(D(R)) = Pic(R) @ [Spec(R), Z]. It is shown in [Wei03, Corol-
lary 2.6.3] that

Ko(Db(proj R)) = Pic(R) @ [Spec(R), Z)].
So the second statement follows by combining these two results. m

With these and related results from algebraic K-theory, one can compute
the K-groups of various families of rings and that will help understand the
dense triangulated subcategories of perfect complexes over all those rings.
However, in order to classify all triangulated subcategories of perfect com-
plexes, one has to compute the Grothendieck groups of all thick subcate-
gories of these complexes.

We now recall some definitions and a theorem due to Hopkins and Nee-
man [Nee92] which classifies the thick subcategories of perfect complexes
over a noetherian ring.

DEFINITION 4.6 ([Nee92]). Given a perfect complex X in D(R), define
the support of X, denoted by Supp(X), to be the set {p € Spec(R) : X ® R,
# 0}, where R, is the localisation of R.

DEFINITION 4.7. A subset of Spec(R) is said to be closed under speciali-
sation if it is a union of closed sets under the Zariski topology. Equivalently,
and more explicitly, a subset S of Spec(R) is specialisation-closed if when-
ever a prime ideal p is in S, then so is every prime ideal ¢ that contains p.

Now we are ready to state the celebrated thick subcategory theorem of
Hopkins and Neeman.

THEOREM 4.8 ([Nee92]). If R is any noetherian ring, then there is a
natural order preserving bijection between the sets

{thick subcategories A of D®(proj R)}

FlTg
{subsets S of Spec(R) that are closed under specialisation}.
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The map [ sends a thick subcategory A to |Jxc 4 Supp(X), and the map g
sends a specialisation-closed subset S to the thick subcategory Tg = {X €
D’(proj R) : Supp(X) € S}.
The following corollary is immediate from the above theorem.
COROLLARY 4.9. Every thick subcategory of D?(proj R) is a thick ideal.

COROLLARY 4.10. Let R be any commutative ring such that Ko(R) = Z.
Then every triangulated subcategory of D®(proj R) is a triangulated ideal.

Proof. Since we know that thick subcategories of D’(proj R) are thick
ideals, they can be viewed as triangulated modules over D®(proj R). Now we
can apply Theorem 2.12 to conclude that every triangulated subcategory is
also a triangulated submodule because Ko(D’(proj R)) = Z. =

It is clear that the proofs of the above corollaries generalise to prove the
following proposition.

PROPOSITION 4.11. Let T be a tensor triangulated category. If the unit
object S is small and generates T, then every thick subcategory of compact
objects is a thick ideal. Moreover, if the Grothendieck ring of the compact ob-
jects in T is isomorphic to Z, then every triangulated subcategory of compact
objects is a triangulated ideal.

We will now apply Thomason’s recipe to classify the triangulated sub-
categories of perfect complexes over some commutative rings: principal ideal
domains, Artin rings, and non-noetherian rings with a unique prime ideal.

4.3. Principal ideal domains. We first set up a few notations and
recall some definitions and basic facts about PIDs.

For any element z in R, we define the mod-x Moore complex M (z), in
analogy with the stable homotopy category of spectra, to be the cofibre of
the self map (of degree 0)

R-%R
in D(R).
Now we recall the notion of the length of a module. For an R-module M,

a chain
M =My 2 M 2---2M =0

is called a composition series if each M;/M;1; is a simple module (one that
does not have any non-trivial submodules). The length of a module, denoted
by (M), is defined to be the length of any composition series of M. The
fact that this is well defined is part of the Jordan—Hé&lder theorem.

The function [(—) is an additive function on the subcategory of R-
modules which have finite length, i.e., if

0O—-M —--+-—M;—0
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is an exact sequence of R-modules of finite length, then

> (=D)'(M;) =0.
(2
Also note that when R is a PID, every finitely generated torsion module
has finite length. (This can be seen as an immediate consequence of the
structure theorem for finitely generated modules over a PID.)
Finally, we need the following easy exercise. If p and ¢ are two distinct
(non-zero) prime elements in a PID R, then for any i > 1,

(2 —
R/(pZ) QR R(q) — {R/(p ) when p=gq,
0 when p # q.
Now we are ready to compute the Grothendieck groups for thick subcat-
egories of perfect complexes over a PID. Given a subset S of Spec(R) that
is closed under specialisation, the thick subcategory that corresponds to the

subset S (under the Hopkins—Neeman bijection) will be denoted by 7.

THEOREM 4.12. Let R be a PID and let S be a specialisation-closed
subset of Spec(R). Then we have the following.

(1) If S = Spec(R), then Ky(7s) is an infinite cyclic group generated
by R.

(2) If S # Spec(R), then Ky(7g) is a free abelian group on the Moore
complexes M (p), forp € S.

Proof. The first part follows from the fact that every finitely generated
projective module over a PID is free; consequently, its Grothendieck group
is an infinite cyclic group (see Proposition 4.1 and Example 4.3). For the
second part, first note that a specialisation-closed subset S # Spec(R) is a
subset of maximal ideals in R (because non-zero prime ideals in a PID are
also maximal). For each prime element p in S, define an Euler characteristic
function A, : 7s — Z by

Ap(X) 1= (—1)I[Hi(X) ®r Rep)).
(Since S does not contain (0), it follows that H,(X) is a torsion R- module.
Therefore A\,(—) is a well defined Euler characteristic function.)
Also, since \,(M(q)) = 63, the Euler characteristic map

P : Ko(Ts) - Pz
peES peES
is clearly surjective.
To see that this map is injective, it suffices to show that every complex in
7s can be generated by the set {M(p) : p € S} using cofibre sequences. We
do this by induction on ), {[H;(—)]. If X € Tg is such that >, [[H;(X)] = 1,
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0——0

Fig. 3. Killing a homology class in the Hurewicz dimension

then there exists an integer j such that H;(X) = 0 for all i« # j, and
H;(X) = R/(p) for some prime p in R (because every simple module over
a PID is of the form R/(p) for some prime p). Such an X is clearly quasi-
isomorphic to M(p). Now consider an X € 7g for which ) I[H;(X] > 1.
Without loss of generality we can assume that up to suspension X is of the
form

= 0—-P—---—>P—-FP—>0—---

with Ho(X) # 0 (otherwise, we can replace X with a quasi-isomorphic
complex in 7g which has this property). Now pick a non-zero element in
Hy(X) and represent it with a cycle ¢. Since Hy(X) is a torsion module,
there exists a prime p and a positive integer k such that p*t = 0 in homology.
Replacing ¢ with p*~'t, we can assume that pt = 0 in homology, which
means pt is a boundary. So there is an element y € P; which maps under
the differential to pt. Consider Fig. 3 where a(1) = y, ¢(y) = pt, and b(1) = ¢.
This diagram shows a chain map between the two complexes in 7g such that
the induced map in homology in dimension 0 sends 1 to ¢ (by construction).
So the class t is killed. Now if we extend this morphism to a triangle (M (p) —

X%y o oM (p)) and look at the long exact sequence in homology, it
is clear that X and Y have the same homology in all dimensions except
dimension 0. In dimension 0, part of the long exact sequence gives a short
exact sequence 0 — R/(p) — Hy(X) — Ho(Y) — 0. Therefore I[[Hy(Y)] =
[[Ho(X)]—1. By the induction hypothesis we know that ¥ can be generated
by the set {M(p) : p € S} using cofibre sequences. The above exact triangle
then tells us that X can also be generated using cofibre sequences in this
way. So we are done. m
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COROLLARY 4.13. If R is any PID, then Pic(D(R)) = Z.

Proof. Since Ko(D®(proj R)) = Z, the corollary follows by invoking The-
orem 4.5. m

Classification of the triangulated subcategories of D?(proj R) when R is
a PID. There are two families of triangulated subcategories: triangulated
subcategories that correspond to S = Spec(R) and the ones that correspond
to S # Spec(R) (subsets of maximal ideals).

1. S = Spec(R): Consider the Euler characteristic function

X(X) = (-1)' dimp{H;(X) @& F},
where F' is the field of fractions of our domain R. For every integer k, we
define
Dy ={X : x(X)=0mod k}.

These are all the triangulated subcategories that are dense in D°(proj R).
2. S # Spec(R): Given such a subset S and a subgroup H of @pes Z,

we define
T(S,H) = {X €Ty (@Ap)(){) = H}
peS
These are all the triangulated subcategories that are dense in 7g.
It is clear from Theorem 4.12 and Theorem 2.5 that every triangulated
subcategory of D?(proj R) is of one of these two types.
Here is an interesting consequence of the above theorem.

COROLLARY 4.14. Let X and Y be perfect complexes over a PID. Then
Y can be generated from X using cofibrations if and only if

e Supp(Y’) € Supp(X),
e If(0) € Supp(X), then \o(X) divides \o(Y'); otherwise, \,(X) divides
Mp(Y) for all p € Supp(X).

4.4. Product of rings: Artin rings. We now address the following
question.

QUESTION. Suppose a commutative ring R is a direct product of rings,
say
R=2 Ry X -+ X Ry,

and suppose that we have a classification of all the triangulated subcate-
gories of D’(proj R;) for all i. Using this information, how can we get a
classification of all triangulated subcategories of D?(proj R)? More gener-
ally, one can ask how the spectral theory of R and the spectral theories of
the rings R; are related.
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Before we go further, we remark that by the obvious induction, it suffices
to consider only two components (R 2 Ry x Rs). We collect some standard
facts about products of triangulated categories that will be needed.

LEMMA 4.15. Let 77 and 7o be triangulated categories. Then we have
the following.

e The product category Ty x Ty admits a triangulated structure that has
the following universal property: Given any triangulated category D
and some triangulated functors Ty < D — T, there exists a unique
triangulated functor F : D — Ty x T5 making the following diagram of
triangulated functors commutative:

o
'

e FEvery thick (resp. localising) subcategory of Ty x Ty is of the form
B1 x By, where B; is a thick (resp. localising) subcategory in 7T;.

o If both Ty and Ty are essentially small triangulated (resp. tensor tri-
angulated) categories, then Ko(7y x To) = Ko(71) x Ko(72) as groups
(resp. Tings).

REMARK 4.16. In contrast with the thick subcategories, not every tri-
angulated subcategory of 77 x 75 is of the form A; x As, where A; is a
triangulated subcategory of 7;. This is clear from the third part of the above
lemma because not every subgroup of the product group Ko(7;) x Ko(72)
is a product of subgroups.

Now we relate the category of perfect complexes over R and those over
the rings R;.

PROPOSITION 4.17. There is a natural equivalence of triangulated cate-
gories

Db(proj R) ~ D°(proj R1) x D(proj Ra).

In particular, Ko[D®(proj R)] = Ko[D®(proj R1)] x Ko[D’(proj Rz)].

Proof. Note that every module M over R; x Ry is a direct sum (in the
category of Ry x Rg-modules)

M =P & Py,
where P; is an R;-module: Take P; = ((1,0))M and P> = ((0,1))M, where
P; is also regarded as an Ry x Re-module via the projection maps R x Ro
— R;. Now one can verify easily that this decomposition is functorial and

sends finitely generated (resp. projective) modules to finitely generated (resp.
projective) modules. Therefore every complex in D?(proj Ry x Ry) splits as
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a direct sum of two complexes, each in D®(proj R;). Conversely, given a pair
of complexes (X1, X2) with X; in D?(proj R;), their direct sum X; @ X» is
clearly a complex in D®(proj Ry x Ry). Now it can be verified that these two
functors establish the desired equivalence of triangulated categories. The
second statement follows immediately from Lemma 4.15. m

In view of this proposition, the problem of classifying triangulated sub-
categories in D°(proj Ry x Rs) boils down to classifying triangulated sub-
categories of D®(proj Ry) x D’(proj Rz). So, following Thomason’s recipe,
we need to classify the thick subcategories of D?(proj Ry) x D®(proj Rg) and
compute their Grothendieck groups. This is given by Lemma 4.15: Every
thick subcategory 7 of D?(proj Ry) x D®(proj Rs) is of the form 77 x 75 where
7T; is thick in D®(proj R;), and Ko(7) = Ko(71 x T2) = Ko(7T1) x Ko(T2).

4.4.1. Artin rings. We will now apply these ideas to Artin rings. Re-
call that a ring is said to be Artinian if every descending chain of ideals
terminates. Artin rings can be characterised as zero-dimensional noetherian
rings. They have the following structure theorem.

THEOREM 4.18 ([AMG69]). Every Artin ring R is isomorphic to a finite
direct product of Artin local rings. Moreover, the number of local rings that
appear in this isomorphism is equal to the cardinality of Spec(R).

Thus R =[] | R;, where each R; is an Artin local ring (n is the car-
dinality of Spec(R)). We have seen above that there is an equivalence of
triangulated categories

n

D*(proj R) = [ [ D*(proj Ry).

i=1
So by the above discussion, we just have to compute the Grothendieck groups
of the thick subcategories of D’(proj R;). But since each R; is an Artinian
local ring, Spec(R;) is a one-point space. This implies (by the Hopkins—
Neeman theorem) that the only non-zero thick subcategory is D®(proj R;)
itself, whose Grothendieck group is well known to be infinite cyclic. There-
fore we have

Ko(Ts) = @ Ko(D"(proj R:)) = P Z.
Pi€ES piES

The universal Euler characteristic function that gives this isomorphism is
D,,cs Ap; where A, (X) =372 (—1)'dimpg, /,, Hi(X @ R;/p;).

We now record the classification of triangulated subcategories of perfect
complexes over Artin rings.

THEOREM 4.19. Let R be any Artin ring and let R = [[, R; be its unique
decomposition into Artin local rings. For every subset S of Spec(R) and
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every subgroup H of ®pi65 Z, define
T(S, H) := {X €Ty (@ Apz)(X) € H}

Di€ES
This is a complete list of triangulated subcategories of D®(proj R). Further,
every dense triangulated subcategory of Tg is a triangulated ideal if and only
if S is a one-point space.
REMARK 4.20. It is clear from the proof that this theorem also holds

whenever R =[], R;, where each of the rings R; has exactly one prime
ideal.

We now derive some easy consequences of the above theorem.

COROLLARY 4.21. Let X andY be perfect complexes over an Artin ring.
Then'Y can be generated from X using cofibrations if and only if

e Supp(Y) € Supp(X),
o Ap,(X) divides Ay, (Y) for all p; € Supp(X), where
Ap,(X) = > (1) dimg, s, Hi(X ® R;/p;).
COROLLARY 4.22. An Artin ring R is local if and only if every dense
triangulated subcategory of D®(proj R) is a triangulated ideal.

Proof. By Theorem 2.11, it is clear that every dense triangulated subcat-
egory is a triangulated ideal if and only if every subgroup of Ko(D®(proj R))
= Hpespec( R) Z is also an ideal. Clearly the latter happens if and only if
|Spec(R)| = 1, or equivalently if R is local. =

4.5. Non-noetherian rings. In order to study the problem of classify-
ing triangulated subcategories in the non-noetherian case, we need a thick
subcategory theorem for D?(proj R), when R is a non-noetherian ring. This
is given by a result of Thomason, which is a far-reaching generalisation of
the Hopkins—Neeman theorem to schemes. We now state this theorem for
commutative rings.

THEOREM 4.23 ([Tho97]). Let R be any commutative ring. Then there
1s a natural order preserving bijection between the sets
{thick subcategories A of D®(proj R)}
Fl 19
{subsets S of Spec(R) such that S =J,V(la),
where 1, is finitely generated}.

The map f sends a thick subcategory A to the set x4 Supp(X) and the
map g sends S to the thick subcategory {X € D®(projR) : Supp(X) € S}.
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REMARK 4.24. The subsets of Spec(R) in this corollary which determine
the thick subcategories of perfect complexes will be called thick supports. If
R is noetherian, every thick support is a specialisation-closed subset (since
ideals in a noetherian ring are finitely generated), therefore the above corol-
lary recovers the Hopkins—Neeman thick subcategory theorem.

We do not know much about the K-theory of thick subcategories over
non-noetherian rings, except in the simplest case where the rings have only
one prime ideal, e.g., R = Fa[Xo, X3,...]/(X3, X3,...).

REMARK 4.25. The geometry of these rings is very simple—just a one
point space, however, their derived categories can be very mysterious and
extremely complicated. Amnon Neeman [Nee00] showed that the derived
category of the above ring has uncountably many Bousfield classes—a strik-
ing contrast with the noetherian result where the Bousfield classes are known
to be in bijection with the subsets of Spec(R) [Nee92]. Despite this incredi-
ble complexity in the derived categories of such rings, K-theory does enable
us to classify all the triangulated subcategories of perfect complexes.

PROPOSITION 4.26. Let R be any commutative ring with a unique prime
ideal p. Then every triangulated subcategory of D(proj R) is a triangulated
ideal and is of the form

D, = {X € D(proj R) : A(X) =0 mod m}

for some non-negative integer m, where

AX) =) (-1)' dimp, Hi(X @ R/p).
Proof. Note that any such R is, in particular, a local ring. Therefore,
Ko(D"(proj R)) (¥ Ko(R)) & Z.

It is easily verified that the given Euler characteristic function gives this iso-
morphism. Moreover, since R has a unique prime ideal, it is clear from Corol-
lary 4.23 that there are no non-trivial thick subcategories in D®(proj R). So
the dense triangulated subcategories in D®(proj R) are all the triangulated
subcategories in D?(proj R). It is clear that these are all triangulated ideals.
This completes the proof of the proposition. =

4.6. Questions

4.6.1. Algebraic K-theory for thick subcategories. The key to the prob-
lem of classifying the triangulated subcategories of perfect complexes lies in
the algebraic K-theory of thick subcategories. In Section 4.2 we have sum-
marised a few results from classical algebraic K-theory. They concerned the
Grothendieck groups of D’(proj R). So we now ask if such results also hold
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for thick subcategories of DP(projR). We ask a very specific question to
make this point clear. It is well known that if J is the nilradical of R, then

Ko(D"(proj R)) = Ko(D"(proj R/J)).

Since every prime ideal contains the nilradical, the quotient map R — R/J
induces a homeomorphism on prime spectra: Spec(R) = Spec(R/J). This
homeomorphism implies that the lattice of specialisation-closed subsets of
Spec(R) is isomorphic to that of Spec(R/J). Now if R is noetherian, we can
invoke the Hopkins—Neeman thick subcategory theorem to conclude that the
same is true for the lattices of thick subcategories of perfect complexes over R
and R/J. Now the question arises whether the thick subcategories that cor-
respond to each other under this isomorphism have isomorphic Grothendieck
groups.
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