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Invariant Borel liftings forategory algebras of Baire groupsbyMaxim R. Burke (Charlottetown)
Abstrat. R. A. Johnson showed that there is no translation-invariant Borel liftingfor the measure algebra of R/Z equipped with Haar measure, a result whih was generalizedby M. Talagrand to non-disrete loally ompat abelian groups and by J. Kupka andK. Prikry to arbitrary non-disrete loally ompat groups. In this paper we study analogsof these results for ategory algebras (the Borel σ-algebra modulo the ideal of �rst ategorysets) of topologial groups. Our main results are for the lass of non-disrete separablemetri groups. We show that if G in this lass is weakly α-favorable, then the ategoryalgebra of G has no left-invariant Borel lifting. (This partiular result does not requireseparability and implies a orresponding result for loally ompat groups whih are notneessarily metri.) Under the Continuum Hypothesis, many groups in the lass have adense Baire subgroup whih has a left-invariant Borel lifting. On the other hand, there is amodel in whih the ategory algebra of a Baire group in the lass never has a left-invariantBorel lifting. The model is a variation on one onstruted by A. W. Miller and the authorwhere every seond ategory set of reals has a relatively seond ategory intersetion witha nowhere dense perfet set.1. Introdution. A lifting for a struture (X, Σ, N), where X is a non-empty set, Σ is a σ-algebra of subsets of X and N ⊆ Σ is a σ-ideal ofsubsets of X, is a Boolean homomorphism Σ/N → Σ whih selets a rep-resentative from eah equivalene lass. Equivalently, a lifting is a Booleanhomomorphism θ: Σ → Σ suh that θ(E) △ E ∈ N, and for all E, F ∈ Σ,

E △F ∈ N implies θ(E) = θ(F ). If (X, Σ, µ) is a omplete σ-�nite measurespae and we take N to be the ideal of µ-null sets, then (X, Σ, N) has a lifting[Ma1958℄. If X is a loally ompat group and µ is left Haar measure, thena lifting exists whih ommutes with left translations (i.e., θ(xE) = xθ(E))[IT1967℄. In the ase of Lebesgue measure on the real line, if the Contin-2000 Mathematis Subjet Classi�ation: Primary 54H11; Seondary 03E35, 03E50.Key words and phrases: regular open algebra, property of Baire, invariant lifting,Cantor set, orale hain ondition foring.Researh supported by NSERC. The author thanks the Department of Mathematisat the University of Toronto for its hospitality while this work was initiated.[15℄



16 M. R. Burkeuum Hypothesis holds then the representatives hosen by a lifting an betaken to be Borel sets [vN℄ but it is also onsistent that no suh Borel liftingexists [Sh1983℄. R. A. Johnson [Jo℄ proved that there is no Borel lifting forHaar measure on R/Z whih ommutes with translations. This was subse-quently generalized to non-disrete loally ompat abelian groups [Ta℄ andthen to arbitrary non-disrete loally ompat groups [KP℄. (The result inthe non-abelian setting is that there is no Borel lifting for left Haar measurewhih ommutes with left translations.) The method of [Ta℄ was adapted toarbitrary loally ompat groups in [Lo℄ and [Bu1993a℄.In this paper, we deal with liftings for (X, BP(X), M(X)) where X is atopologial spae, BP(X) is the σ-algebra of sets E whih have the propertyof Baire, i.e., for whih there is an open set U suh that E △ U is �rstategory, and M(X) is the olletion of all �rst ategory (= meager) setsin X. When the spae X is lear from the ontext, we shall write BP and Minstead of BP(X) and M(X), respetively. We shall also use the notation
E =M F to mean E△F ∈ M. A lifting for (X, BP, M) is also alled a liftingfor the ategory algebra BP/M of X.It might as well be assumed that X is a Baire spae (i.e., no non-emptyopen set is �rst ategory) when we deal with BP/M, sine, by a well-knownresult of Banah (see, e.g., [Kur, Theorem I.10.III.1℄), the union of the open�rst ategory sets of X is a �rst ategory set and its omplement is then aBaire spae whih learly has the same ategory algebra as X. A group whihis not �rst ategory is automatially Baire by invariane of the topology. Animportant tool for working with Baire spaes is the following game hara-terization. A topologial spae X is Baire if and only if Player I does nothave a winning strategy in the Banah�Mazur game for two players, I andII, in whih, starting with Player I, the players alternately play the terms ofa dereasing sequene U1 ⊇ U2 ⊇ · · · of non-empty open sets and Player Iwins if the intersetion of the sequene is empty. (See [Re, Theorem 2.1℄.)When the stronger ondition that Player II has a winning strategy holds,
X is alled weakly α-favorable.Category analogs of some of the measure-theoreti results on liftingsmentioned in the previous paragraphs have been onsidered in the literature.See, e.g., [LMZ℄. In [Ma1977℄ it was observed in partiular that a liftingfor the ategory algebra of X always exists. Liftings for produt spaeswhih relate niely to liftings for the fators were studied in [BMMS℄. Inthe present paper, we establish ategory analogs of the above-mentionedresults on translation-invariane and prove the onsisteny result that nonon-disrete Baire separable metri group has a left-invariant Borel lifting forits ategory algebra. We do not know whether there is a measure-theoretianalog of this result.



Invariant Borel liftings 17Problem 1.1. If λ∗ is Lebesgue outer measure on R, M is the σ-algebraof Lebesgue measurable sets and G is a subgroup of R, equip G with the
σ-algebra MG = {M ∩G : M ∈ M} and the measure λ∗ restrited to MG. Isit onsistent with ZFC that for no subgroup G of (R, +) does the measurealgebra of G have an invariant Borel lifting?(Only subgroups of positive outer measure are of interest but it is notneessary to require λ∗G > 0. Indeed, a struture (X, Σ, N) has no lifting if
X ∈ N, sine we need θ(∅) = ∅ and θ(X) = X but then ∅ and X are equalmodulo N whereas θ(∅) 6= θ(X), ontraditing one of the requirements inthe de�nition of a lifting.)Our topologial terminology follows [En℄. For set theory and foring ter-minology see [Kun℄. For orale- foring, see [Sh1998℄. We write e for theidentity element of an abstrat group G. For eah i < ω, let hi: 2ω → 2ωbe the homeomorphism whih interhanges 0 and 1 on the ith oordinate,namely, hi(t)(j) = t(j) if j 6= i and hi(t)(i) = 1 − t(i).The author thanks W. Weiss and I. Farah for helpful disussions of thiswork and S. Soleki for telling him about Theorem 2.6.

2. Preliminary results. In this setion, we gather results whih areeither known or whose proofs are not substantially di�erent from those ofknown measure-theoreti analogs.Unlike its ounterpart for Haar measure mentioned in the previous se-tion, the following result is easy to prove. The reason for this is that, unlikethe situation for abstrat measure spaes, there is always a natural hoie ofa representative for eah ategory lass, namely the regular open represen-tative. Cf. [Ma1977, (1), p. 130℄.Proposition 2.1. For any Baire topologial group G, there is a left-invariant lifting θ for (G, BP, M).Proof. For eah E ∈ BP, let d(E) be the unique regular open set in thelass of E in the ategory algebra. Note that d preserves �nite intersetionsand ommutes with translations. Let F be an ultra�lter of subsets of Gextending the �lter {E ∈ BP : e ∈ d(E)}. De�ne
θ(E) = {x ∈ G : x−1E ∈ F}.That F is an ultra�lter easily implies that θ is a Boolean homomorphism.It is lear from the de�nition that E =M F implies θ(E) = θ(F ). For any

E ∈ BP, we have d(E) ⊆ θ(E) ⊆ d(Ec)c so that θ(E) =M d(E) =M E.For left-invariane we have θ(yE) = {x ∈ G : x−1yE ∈ F} = {x ∈ G :
(y−1x)−1E ∈ F} = y{z ∈ G : z−1E ∈ F} = yθ(E).



18 M. R. BurkeThe following simple but important result follows by replaing measureby ategory in standard proofs of the measure-theoreti analog. For thereader's onveniene we give a proof. Our presentation is taken from [Fr2003,447B℄.Proposition 2.2. Let G be a Baire topologial group, and let θ: BP(G)
→ BP(G) be a left-invariant lifting for the ategory algebra of G. Then θ isstrong , i.e., U ⊆ θ(U) for eah open set U .Proof. Let U be an open neighborhood of e. Let V be an open neighbor-hood of e suh that V −1V ⊆ U . Choose v ∈ V ∩ θ(V ). (Sine G is Baire,
V 6∈ M(G).) Then e = v−1v ∈ v−1θ(V ) = θ(v−1V ) ⊆ θ(V −1V ) ⊆ θ(U). If
U is now any open set and x ∈ U , then x−1U is an open neighborhood of eand hene e ∈ θ(x−1U). This gives x = xe ∈ xθ(x−1U) = θ(xx−1U) = θ(U).Hene, U ⊆ θ(U).The following lemma provides our framework for establishing the non-existene of invariant Borel liftings. It is a version of the main idea of [Ta℄.(Cf. the proof of [Lo, Theorem 1℄.)Lemma 2.3. Let G be a Hausdor� topologial group and H ⊆ G a denseBaire subgroup. Let 〈mi : i < ω〉 be a sequene of non-zero elements of ωand let

ϕ:
(∏

i<ω

mi

)
× 2ω → Gbe a homeomorphism onto a nowhere dense set C. Let V ⊆ G be a Borel set.Suppose that the following onditions are satis�ed :(a) C ∩ H is a dense Baire subset of C.(b) For eah (s, t) ∈ (

∏
i<ω mi) × 2ω and eah i < ω, there is an openset S ⊆ G ontaining ϕ(s, t) and there is an α ∈ H suh that

ϕ(s, hi(t)) = αϕ(s, t) and S \ C is partitioned by its intersetionswith V and α−1V .Then for any left-invariant lifting θ for (H, BP, M), θ(V ∩ H) ∩ C does nothave the property of Baire relative to C ∩ H. In partiular , θ is not a Borellifting.In (b) it would be enough to assume the property when ϕ(s, t) ∈ H. Notethat (b) implies that if ϕ(s, t) ∈ H then for all i < ω, ϕ(s, hi(t)) ∈ H.Proof. Fix s ∈
∏

i<ω mi and t ∈ 2ω suh that ϕ(s, t) ∈ H and �x i < ω.Let S and α be as in (b). By Proposition 2.2 and beause C ∩H is nowheredense in H (C ∩H is nowhere dense in G and H is dense in G), we see that
S ∩ H ⊆ θ(S ∩ H) = θ((S \ C) ∩ H) is partitioned by its intersetions with
θ(V ∩ H) and θ(α−1V ∩ H). Sine α ∈ H and θ is left-invariant, we have
θ(α−1V ∩ H) = θ(α−1(V ∩ H)) = α−1θ(V ∩ H). Hene, preisely one of



Invariant Borel liftings 19
ϕ(s, t) ∈ θ(V ∩ H), ϕ(s, hi(t)) = αϕ(s, t) ∈ θ(V ∩ H) holds. Thus, preiselyone of (s, t) ∈ ϕ−1(θ(V ∩ H)), (s, hi(t)) ∈ ϕ−1(θ(V ∩ H)) holds. It followsthat A = ϕ−1(θ(V ∩ H)) does not have the property of Baire relative to
Y = ϕ−1(C ∩ H). Indeed, if it did, then either A or Y \ A would ontaina basi open set ([u] × [v]) ∩ Y modulo M(Y ), say A ontains suh a set.(For some n < ω, u ∈

∏
j<n mj , and v ∈ 2n, [u] × [v] denotes the set ofall (s, t) ∈ dom ϕ suh that u ⊆ s and v ⊆ t.) Fix any i < ω suh that

i ≥ |v|. Then the map (s, t) 7→ (s, hi(t)) restrits to a homeomorphism of
[u]× [v] whih arries the trae of A preisely to the trae of Y \A. Sine Ais residual in ([u]× [v])∩Y , it follows that so is Y \A. But this is impossiblesine ([u] × [v]) ∩ Y is seond ategory by (a).The following proposition isolates a version for ategory of the argumentfrom the �rst paragraph of the proof of [Bu1993a, Theorem 2.1℄.Proposition 2.4. Let G be a weakly α-favorable topologial group, let Kbe a normal subgroup of G suh that G/K is metrizable and let π: G → G/Kbe the projetion map. Suppose that in G/K there are a Borel set U and a set
C suh that π−1(C) is weakly α-favorable and for any left-invariant lifting
θ for (G/K, BP, M), θ(U) ∩ C does not have the property of Baire relativeto C. Then the sets π−1(U) and π−1(C) have the same properties in G, i.e.,for any left-invariant lifting θ for (G, BP, M), θ(π−1(U))∩ π−1(C) does nothave the property of Baire relative to π−1(C).Proof. We note for emphasis the elementary fat that sine K is normal,for any set A ⊆ G we have KA =

⋃
y∈A Ky =

⋃
y∈A yK = AK and heneany left K-invariant set is K-invariant. Let θ be a left-invariant lifting for

(G, BP, M). De�ne θ: BP(G/K) → BP(G/K) by the formula
θ(E) = π(θ(π−1(E))).Beause π is open [HR, Theorem 5.17℄, the preimage under π of eahnowhere dense set is nowhere dense. Hene, the preimage of eah meagerset is meager. It follows that the preimage of eah set with the propertyof Baire has the property of Baire. Hene θ(π−1(E)) is de�ned for eah

E ∈ BP(G/K). Clearly, θ preserves unions. Moreover, beause π−1(E) is
K-invariant and θ is left-invariant, it follows that θ(π−1(E)) is K-invariant.Beause θ(π−1(E)) and θ(π−1(Ec)) are omplementary K-invariant sets,
π maps them to omplementary sets. Thus, θ is a Boolean homomorphism.The image under π of a K-invariant (i.e., full preimage) meager set is mea-ger by Proposition 2.5. If E ∈ BP(G/K) and U is the regular open set inthe lass of θ(π−1(E)), then U is K-invariant. Hene M = U △ θ(π−1(E))is K-invariant. We see that θ(E) = π(θ(π−1(E))) = π(U) △ π(M) hasthe property of Baire. If E1 △ E2 is meager, then π−1(E1) △ π−1(E2) =
π−1(E1△E2) is meager and hene θ(π−1(E1)) = θ(π−1(E2)). Thus, θ(E1) =
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θ(E2). For open U ⊆ G/K, we have π−1(U) ⊆ θ(π−1(U)) sine θ is strong.Applying π gives U ⊆ θ(U). Sine the same is true for the interior of theomplement of U , we get θ(U) =M U . Finally, if g ∈ G, then

π(g)θ(E) = π(g)π(θ(π−1(E))) = π(gθ(π−1(E))) = π(θ(gπ−1(E)))

= π(θ(π−1(π(g)E))) = θ(π(g)E).[For the seond last equality, note that x ∈ π−1(π(g)E) gives π(x) ∈ π(g)E,
π(g−1x) ∈ E. Then we get x = g(g−1x) ∈ gπ−1(E).℄So θ is a left-invariant lifting for the ategory algebra of G/K. Suppose
θ(π−1(U)) ∩ π−1(C) has the property of Baire relative to π−1(C). We then�nd that θ(U) ∩ C = π(θ(π−1(U))) ∩ C = π(θ(π−1(U)) ∩ π−1(C)) has theproperty of Baire relative to C sine π−1(C) is weakly α-favorable and therestrition of π to π−1(C) is an open map onto C. (See the proof that θ(E)has the property of Baire.) This ontradits the properties of U and C.In [Bu1993a℄, a form of the Kuratowski�Ulam theorem for group quo-tients was established. The following proposition, without the assumptionthat Y is metrizable (see [Bu1993a, Theorem 1.5℄), was left as an exerisefor the reader with the laim that it overed an easier speial ase of theKuratowski�Ulam result whih su�ed for the rest of that paper. Unfortu-nately, we do not see why this form of the statement is true. The speialase where Y is metrizable also su�es for the purposes of the main resultof [Bu1993a℄ and for our purposes here. This time we give a areful proofof it.Proposition 2.5. Let X and Y be topologial spaes suh that X isweakly α-favorable and Y is metrizable. Let π: X → Y be an open ontinuoussurjetion. If A ⊆ Y is seond ategory , then π−1(A) is seond ategory in X.Proof. Note that for any topologial spae T and any dense subspae
S, S is Baire if and only if the Banah�Mazur game in T , modi�ed so thatPlayer I wins if the intersetion of the plays does not meet S, has no winningstrategy for Player I. We denote this modi�ed game by G(T, S).By replaing Y by a non-empty open subset U in whih A is everywhereseond ategory, and replaing X by π−1(U), we may assume that A iseverywhere seond ategory in Y . Then π−1(A) is dense in X sine π isopen. Let τX be a winning strategy for Player II in the Banah�Mazur gamefor X. Let σX be a strategy for Player I in G(X, π−1(A)). We must show that
σX is not winning. We use σX and τX to desribe a strategy σY for Player Iin G(Y, A). We need to de�ne σY (G0, H0, . . . , Gn, Hn) orresponding to eahplay

G0 ⊇ H0 ⊇ G1 ⊇ H1 ⊇ · · ·of the game G(Y, A). Only plays for whih Gn = σY (G0, H0, . . . , Gn−1, Hn−1)



Invariant Borel liftings 21for eah n < ω are relevant, so we limit ourselves to those. The de�nitioninvolves de�ning an auxiliary sequene of open sets in X:
U0 ⊇ V0 ⊇ U1 ⊇ V1 ⊇ · · ·The de�nitions are as follows. For eah non-empty open subset G of Yand eah n < ω, we �x a non-empty open L(G, n) ⊆ G having diameter atmost 2−n in some �xed metri for Y . Now we let(i) Un = σX(U0, V0 ∩ π−1(H0), . . . , Un−1, Vn−1 ∩ π−1(Hn−1)),(ii) Vn = τX(U0, V0, . . . , Un−1, Vn−1, Un),(iii) Gn = σY (G0, H0, . . . , Gn−1, Hn−1) = L(π(Vn), n).We hek indutively that(iv) U0 ⊇ V0 ⊇ · · ·Un ⊇ Vn 6= ∅,(v) G0 ⊇ H0 ⊇ · · · ⊇ Gn ⊇ Hn 6= ∅,(vi) U0 ⊇ V0 ∩ π−1(H0) ⊇ · · · ⊇ Un ⊇ Vn ∩ π−1(Hn) 6= ∅.Consider �rst what happens when n = 0. Item (i) shows that U0 = σX(∅)is a non-empty open set. Then (ii) gives V0 ⊆ U0 and V0 6= ∅. Item (iii)then implies that G0 = σY (∅) = L(π(V0), 0) is a non-empty open set. Thenby assumption H0 ⊆ G0 and H0 is non-empty. The inlusion in (vi) is aonsequene of the inlusion in (iv).Suppose that for some n we have veri�ed (iv) and (v) and all of (vi)exept the inequality at the end. By (iii), Hn ⊆ Gn ⊆ π(Vn) so that Vn ∩

π−1(Hn) 6= ∅. Then (i) makes sense for n + 1 and gives Un+1 ⊆ Vn. This,together with (iv), justi�es (ii) for n + 1 and gives Vn+1 ⊆ Un+1. Item (i)also gives π(Un+1) ⊆ Hn. By (iii) for n + 1 (whih makes sense by (v)),
Gn+1 ⊆ π(Vn+1) ⊆ π(Un+1) ⊆ Hn. Thus, (v) holds for n + 1. The seondlast inlusion in (vi) for n + 1 is immediate from the de�nition of Un+1 asgiven by (i).Sine A is Baire, the strategy σY is not winning in G(Y, A). Choose theresponses Hn for Player II so that ⋂

n Gn =
⋂

n Hn meets A. By (iii), theintersetion annot ontain more than one point. Hene there is a y ∈ A suhthat ⋂
n Gn =

⋂
n Hn = {y}. Sine τX is a winning strategy, there is a point

x ∈
⋂

n Un =
⋂

n Vn. By (i), π(x) ∈ Hn for all n < ω. Hene π(x) = y, whihgives x ∈ π−1(A). This shows that σX is not winning for G(X, π−1(A)) andhene that π−1(A) is Baire and hene everywhere seond ategory in X.We shall need the following fat about metrizable groups.Theorem 2.6 ([TH-J, Theorem 2.3.5, p. 352℄). If G is a metrizable topo-logial group, then the topology of G is generated by a left-invariant metri
d, i.e., a metri satisfying d(x, y) = d(zx, zy) for all x, y, z ∈ G. Moreover ,the metri ̺ given by

̺(x, y) = d(x, y) + d(x−1, y−1)



22 M. R. Burkegenerates the topology of G and , if (G̃, ˜̺) denotes the ompletion of the metrispae (G, ̺), then the group multipliation extends uniquely to G̃ in suh away that (G̃, ˜̺) is a topologial group.Notie that if we are given transitive models of set theory M1 ⊆ M2 anda separable metri group (G, d) ∈ M1, where d is a left-invariant metri, thenTheorem 2.6 gives natural embeddings of (G, ̺) into omplete metri groups
(G̃i, ˜̺i) ∈ Mi, i = 1, 2, and in M2, G̃2 an be onsidered in a natural wayto be an extension of G̃1. Furthermore, in M1, if we �x a ountable denseset G′ ⊆ G then the Borel subsets of G̃i (and in fat we are only aboutthe open sets and the losed sets) have natural ountable odes desribinghow they are built using balls {x ∈ G̃i : ̺(x, y) < ε}, where y ∈ G′ and
ε is a positive rational number. In suh irumstanes, we shall simply write
G̃ instead of G̃1 or G̃2, leaving it to the ontext to indiate whih group isintended.We shall make use of the following well-known fats. We do not know aonvenient referene for them in preisely the form we require, so we givethe brief proofs. For a referene whih essentially ontains this, see [Hu,Chapter V℄.Proposition 2.7. Let G be a topologial group.(a) Let H be a subgroup of G. If for some p ∈ H and some open neigh-borhood U of p the set U ∩ H is �rst ategory in G, then H is �rstategory in G.(b) If G is Baire and A ⊆ G ontains a residual subset of a non-emptyopen set , then AA−1 is a neighborhood of the identity.() (Open Mapping Theorem) Let G and H be Polish groups and let

f : G → H be a ontinuous homomorphism. If the range of f is seondategory , then f is open.Proof. (a) Let q ∈ H. The map φ: G → G de�ned by φ(x) = qp−1x is ahomeomorphism of G suh that φ(U) is an open neighborhood of φ(p) = qand φ(U) ∩ H = φ(U) ∩ φ(H) = φ(U ∩ H) is a �rst ategory set. Thisshows that H is loally �rst ategory at every one of its points and heneis �rst ategory by the result of Banah ited in the introdution ([Kur,Theorem I.10.III.1℄).(b) We may take the open set in question to have the form Ux for some
x ∈ G and some open neighborhood U of the identity e. So our assumptionis that A ∩ (Ux) is residual in Ux. Choose an open neighborhood W of esuh that WW ⊆ U . For eah w ∈ W , the set (wA) ∩ A ontains a residualsubset of (wUx) ∩ (Ux) and the latter is non-empty sine it ontains wwx.Hene (wA) ∩ A is not empty, from whih it follows that w ∈ AA−1. Thus,
W ⊆ AA−1.



Invariant Borel liftings 23() Let V0 be an open neighborhood of the identity e ∈ G. Choose an openneighborhood V of e so that V V −1 ⊆ V0. Sine ountably many translatesof V over G, ountably many translates of f(V ) over f(G). Sine one ofthese must be seond ategory in H, f(V ) is seond ategory in H. Sine fis ontinuous and V is open, f(V ) is analyti and hene has the property ofBaire. By (b), f(V )f(V )−1 = f(V V −1) ⊆ f(V0) is a neighborhood of theidentity in H.3. Weakly α-favorable metri groupsTheorem 3.1. Let G be a weakly α-favorable metrizable non-disretegroup. Then there are an open set U ⊆ G and a nowhere dense Cantorset C ⊆ G suh that for any left-invariant lifting θ for (G, BP(G), M(G)),
θ(U) ∩ C does not have the property of Baire relative to C.Proof. Fix a winning strategy σ for Player II in the Banah�Mazur gameon G. By indution on n < ω, we de�ne αn ∈ G, and for t ∈ 2n, we de�ne, byindution of the lexiographi order on 2n, non-empty open sets Un

t and Wn
tso that the following onditions are satis�ed. (The mention of n in thisnotation is redundant sine n = |t|, but for the ase where t is the onstantzero sequene, whih we denote simply by 0 regardless of the value of n, thenotation Un

0 , Wn
0 avoids ambiguity.)(i) U0

0 = G.(ii) For eah n < ω, t ∈ 2n and i < 2, Un
t ⊇ Wn

t ⊇ Un+1
ti and Un+1

t0 ∩
Un+1

t1 = ∅. The union Un+1
t0 ∪ Un+1

t1 is not dense in Wn
t .(iii) Un

t = βn
t Un

0 , where
βn

t = α
t(0)
0 · · ·α

t(n−1)
n−1 .(Take β0

0 = e.)(iv) For eah t ∈ 2n, we have
U0

0 ⊇W 0
0 ⊇ · · · ⊇ W k

t↾k

(1)

⊇ βk+1
t↾(k+1)(β

k+1
sk+1(t↾(k+1))

)−1W k+1
sk+1(t↾(k+1))

(2)

⊇ W k+1
t↾(k+1)⊇· · ·

⊇ βn
t (βn

sn(t))
−1Wn

sn(t),where for eah t ∈ 2n, sn(t) denotes the immediate predeessor of tin the lexiographi order on 2n. Even though sn(0) does not exist,we set Wn
sn(0) = Un

0 , βn
sn(0) = e. The sequene of inlusions stopsat W 0

0 when n = 0, the last inlusion being the speial ase of (1)where k = n − 1 and hene applying only when n > 0. The set Wn
tis Player II's next move aording to σ when the sequene of playsso far has been as above.



24 M. R. Burke(v) Un+1
0 ⊆ G is a non-empty open set, αn ∈ G and Un+1

0 and αnUn+1
0are disjoint subsets of (βn

1 )−1Wn
1 whose union is not dense in

(βn
1 )−1Wn

1 , where the subsript 1 denotes the onstant sequenewith value 1 in 2n. Furthermore, eah of the sets Un+1
0 and αnUn+1

0has diameter at most 1/(n + 1) in some �xed left-invariant metrifor G.To arry out the indution, start by de�ning U0
0 = G and let W 0

0 be PlayerII's �rst move aording to σ in the game where Player I's �rst move is U0
0 .This takes are of (i), (iii), (iv) and the �rst inlusion in (ii) when n = 0.Given Un

t and Wn
t for t ∈ 2n, de�ne Un+1

0 and αn so that (v) holds. Sine
G is not disrete, and hene has no isolated points, this is not a problem.De�ne other Un+1

t by the formula in (iii).For the �rst part of (iv), �x t ∈ 2n+1 and notie that, by the indutionhypothesis, aording to the �rst inlusion in (ii) and lause (iii), for k+1 ≤ nwe have
βk+1

t↾(k+1)(β
k+1
sk+1(t↾(k+1))

)−1W k+1
sk+1(t↾(k+1))

⊆ βk+1
t↾(k+1)(β

k+1
sk+1(t↾(k+1))

)−1Uk+1
sk+1(t↾(k+1))

= βk+1
t↾(k+1)U

k+1
0 = Uk+1

t↾(k+1),and the last term, aording to the seond inlusion in (ii), is ontainedin W k
t↾k so that the inlusions (1) hold. (Chek separately the ase where

t↾(k +1) is the zero sequene.) The inlusions (2), for k +1 < n, hold by thelast part of (iv). Now de�ne Wn+1
t as in the seond part of (iv). The �rstinlusion in (ii) (i.e., Wn+1

t ⊆ Un+1
t ) holds by the de�nition of Wn+1

t andthe alulation above with k = n, or diretly from the de�nition of Wn+1
t if

t = 0.There remains to hek the parts of lause (ii) (for n) with supersript
n + 1. For the inlusion, we have

Un+1
ti = βn+1

ti Un+1
0 = βn

t γUn+1
0 ,where γ = e or γ = αn depending on whether i = 0 or i = 1. Either way,from (v) we dedue that

(∗) Un+1
ti ⊆ βn

t (βn
1 )−1Wn

1 and Un+1
t0 ∪ Un+1

t1 is not dense in βn
t (βn

1 )−1Wn
1 .The inlusion Wn

t ⊆ βn
t (βn

sn(t))
−1Wn

sn(t) from the last part of (iv) an berewritten as
(βn

t )−1Wn
t ⊆ (βn

sn(t))
−1Wn

sn(t).Iterating this gives
(∗∗) (βn

t )−1Wn
t ⊆ (βn

s )−1Wn
s



Invariant Borel liftings 25whenever s, t ∈ 2n and s preedes t lexiographially. In partiular, (∗∗)holds for all s when t = 1. From (∗) we now get
Un+1

ti ⊆ βn
t (βn

1 )−1Wn
1 ⊆ βn

t (βn
t )−1Wn

t = Wn
ttogether with the last statement of (ii). Finally, Un+1

t0 ∩Un+1
t1 = (βn

t Un+1
0 )∩

βn
t αnUn+1

0 = βn
t (Un+1

0 ∩ αnUn+1
0 ) = ∅ by (v).By (ii) we have, for eah t ∈ 2ω,

U0
0 ⊇ W 0

0 ⊇ · · · ⊇ W k
t↾k ⊇ Uk+1

t↾(k+1) ⊇ W k+1
t↾(k+1) ⊇ · · · .Hene, ⋂

n<ω Un
t↾n =

⋂
n<ω Wn

t↾n and by (iv) the right-hand side equals theintersetion of a sequene of plays of the Banah�Mazur game in whih PlayerII uses a winning strategy. Hene, this intersetion in non-empty. By (v), wehave ⋂

n<ω

Un
t↾n = {ϕ(t)}for some ϕ: 2ω → G. From (ii) and the last statement of (v), it follows that

ϕ is ontinuous and one-to-one. Let C be the range of ϕ. By (ii) and (v),
C is nowhere dense in G. (If ϕ(t) were in the interior, then by (v), Un

t↾n is inthe interior for some n. This ontradits (ii).) It also follows from (ii) that
(∗) C =

⋂

n<ω

⋃

s∈2n

Un
s .The rest of the proof follows the argument for the 2ème étape of theproof in [Ta℄ (see also the proof of [Lo, Theorem 1℄). For ompleteness, wereprodue the argument. For x ∈ G\C, there is a largest n = n(x) < ω suhthat x ∈ Un

t for some (unique) t = t(x) ∈ 2n. De�ne
V = {x ∈ G \ C : t0 + · · · + tn−1 is odd}.Then V is the union of ountably many sets of the form Un

t \ (Un+1
t0 ∪Un+1

t1 )and hene is Borel. If i < n < ω and t ∈ 2ω satis�es t(i) = 0, then by (iii)we have
Un

hi(t)↾n
= βi

t↾iαi(β
i
t↾i)

−1Un
t↾n.Similarly, if t(i) = 1, then

Un
hi(t)↾n

= βi
t↾iα

−1
i (βi

t↾i)
−1Un

t↾n.

Claim. For any t ∈ 2ω and any i < ω, there is an open neighborhood
S of ϕ(t) and there is an α ∈ G suh that ϕ(hi(t)) = αϕ(t). Furthermore,
S \ C is partitioned by its intersetions with V and α−1V .Proof. We an take for S any Um

t↾m with i < m. Interseting over nin the two displayed equations above shows that ϕ(hi(t)) = αϕ(t) where
α = βi

t↾iα
±1
i (βi

t↾i)
−1. Now onsider x ∈ S \ C = Um

t↾m \ C. We want toshow that preisely one of x, αx belongs to V . For the unique n suh that
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x ∈ Un

s \ (Un
s0 ∪ Un

s1) for some s ∈ 2n, we have n ≥ m sine x ∈ Um
t↾m. Thus

i < n and we have
αx ∈ αUn

s = Un
hn

i (s) and αx 6∈ αUn
sj = Un

hn
i (s)j , j = 0, 1,where hn

i : 2n → 2n interhanges 0 and 1 on the ith oordinate. It followsthat αx 6∈ C and the same unique n witnesses this. The unique r suh that
x ∈ Un

r is r = s and the unique r suh that αx ∈ Un
r is r = hn

i (s). Thus,preisely one of x, αx is in V . This gives the seond statement of the Claim.The proof is now ompleted using Lemma 2.3. The U in the statementof the theorem is any open representative of the lass of V in the ategoryalgebra.Theorem 3.2. Let G be a non-disrete loally ompat Hausdor� group.Then there are an open set U ⊆ G and a nowhere dense ompat set C suhthat for any left-invariant lifting θ for (G, BP(G), M(G)), θ(U)∩C does nothave the property of Baire relative to C.Proof. As in the proof of [KP, Theorem 3.2℄, we have a ompat normalsubgroup K of G suh that G/K is seond ountable and not disrete. By[HR, Theorem 5.22℄, G/K is loally ompat. Hene Theorem 3.1 applies.Get U and C as given there for G/K. Let π: G → G/K be the proje-tion map. Then π−1(C) is ompat sine C is ompat and π is perfet.(π is losed sine G/K has the quotient topology and for any losed set
C ⊆ G, π−1(π(C)) = CK is losed.) Furthermore, π−1(C) is nowhere densesine π is open. The rest follows from Proposition 2.4.The next two results show that, assuming the Continuum Hypothesis(CH), we annot replae weakly α-favorable by Baire in Theorem 3.1.Proposition 3.3. Let G be a Baire topologial group. Let L be a densesubgroup of G whih is a Luzin set , i.e., is unountable but has ountableintersetion with eah �rst ategory set. Then L has a left-invariant Borellifting for its ategory algebra.Note that a subgroup whih is a Luzin set is automatially a Baire spae.This follows from Proposition 2.7(a).Proof of Proposition 3.3. Take any left-invariant lifting θ for the ategoryalgebra of G. (There is suh a lifting by Proposition 2.1.) Restriting to Lgives a left-invariant lifting for the ategory algebra of L. Indeed, for regularopen V ⊆ L, there is a unique regular open U ⊆ G suh that V = U ∩ L.Note that for l ∈ L, lV = (lU) ∩ L. De�ne θ(V ) = θ(U) ∩ L. Then θ isa Boolean homomorphism and a seletor for the ategory lasses, and for
l ∈ L,

θ(lV ) = θ(lU) ∩ L = (lθ(U)) ∩ L = l(θ(U) ∩ L) = lθ(V ).



Invariant Borel liftings 27Now onsider any regular open set V ⊆ L. We observe that θ(V ) △ V is�rst ategory and hene ountable. Thus, θ(V ) is Borel.Proposition 3.4. (CH) Let G be a non-disrete Baire separable met-ri group. For positive integers k, l and words w(x1, . . . , xk) on the alphabet
{x1, . . . , xk, a1, . . . , al}, where x1, . . . , xk are variables and a1, . . . , al ∈ G, letus all funtions Gk → G, x 7→ w(x), word maps.(a) Suppose that eah word map either has ountable range or is open.Then there is a dense subgroup of G whih is a Luzin set.(b) Suppose that some word map Gk→G, x 7→w(x), where w is a word onthe alphabet {x1, . . . , xk} (no onstants), has �rst ategory range andnowhere dense �bers. Then G has no subgroups whih are Luzin sets.Proof. (a) Let B be a ountable base for the topology of G. Let L ⊆ Gbe a set suh that L ∩B is seond ategory for eah non-empty B ∈ B, andfor eah positive integer n, there do not exist unountably many pairwisedisjoint n-element subsets of L whih, when identi�ed (arbitrarily) with someenumeration, form a nowhere dense subset of Gn. [See [To, Proposition 6.0℄for the existene of suh an L. The ontext there is the real line, but the sameargument works for any Baire separable metri spae. Brie�y, by CH, there isan inreasing hain 〈Mξ : ξ < ω1〉 of ountable elementary submodels of Hλ,for a suitably large regular ardinal λ, suh that G ∈ M0 and R ⊆

⋃
ξ<ω1

Mξ.(Note that then we also have G ⊆
⋃

ξ<ω1
Mξ sine M0 ontains a one-to-onefuntion G → R.) Let s: ω1 → B \ {∅} be suh that s−1(B) is unountablefor eah B ∈ B \ {∅}. Indutively hoose xξ, ξ < ω1, so that for some model

Mη(ξ) ontaining {xξ′ : ξ′ < ξ}, xξ is a member of s(ξ) whih is a Cohenreal over Mη(ξ). Then L = {xξ : ξ < ω1} is as desired beause if N is a(ode for a) losed nowhere dense subset of Gn, then, sine R ⊆
⋃

ξ<ω1
Mξ,we have N ∈ Mη for some η < ω1. Then no n-tuple of distint elements of

{xξ : η < ξ < ω1} belongs to N .℄We now verify that the subgroup of G generated by L is a Luzin set.If unountably many words wζ , ζ < ω1, on the elements of L belong to alosed nowhere dense set N ⊆ G, then we may assume that the subsetsof L involved all have the same ardinality m and form a ∆-system. Wemay enumerate them as {x0, . . . , xr−1, x
ζ
r , . . . , x

ζ
m−1} where {x0, . . . , xr−1}enumerates the root and is the same for all words. We may also assumethat there is a funtion f : Gm−r → G suh that f(yr, . . . , ym−1) is givenby a �xed word on the alphabet {x0, . . . , xr−1} ∪ {yr, . . . , ym−1}, and foreah ζ < ω1, wζ = f(xζ

r , . . . , x
ζ
m−1). Sine the wζ are distint, f does nothave ountable range. Hene, f is an open ontinuous map, so f−1(N) is alosed nowhere dense set in Gm−r. Sine f−1(N) ontains unountably manydisjoint (m − r)-tuples of L, we have a ontradition.



28 M. R. Burke(b) Let f be the given word map. Suppose some subgroup L were a Luzinset. Sine the �bers of f are nowhere dense, L has a ountable intersetionwith eah one. Sine L itself is not ountable, it follows that its image f(L)is unountable. The fat that w ontains no onstants gives f(L) ⊆ L. Byassumption, f(L) is �rst ategory in G and hene L is not a Luzin set,a ontradition.We an be more preise about the onditions under whih there existsubgroups whih are Luzin sets in abelian Polish groups.Corollary 3.5. Let G be a non-disrete abelian Polish group. Thereis a (dense) subgroup L of G whih is a Luzin set if and only if , for eahinteger a, the map x 7→ ax has either an open range or an open kernel.The parentheses around the word �dense� indiate that the statement istrue with or without it.Proof. Suppose the ondition fails and a is a ounterexample. Sinex 7→ axis a ontinuous homomorphism, by the Open Mapping Theorem (Proposi-tion 2.7()) the fat that the image is not open implies that the image is �rstategory. Sine the kernel of this map is a subgroup, the fat that it is notopen implies that its interior is empty. Now apply Proposition 3.4(b).Conversely, if the ondition holds, we show that the hypothesis of Propo-sition 3.4(a) is satis�ed. Sine G is abelian, eah word map f : Gk → G isgiven by a formula of the form f(x1, . . . , xk) = c +
∑k

i=1 aixi, where c ∈ G,
a1, . . . , ak ∈ Z. If eah of the maps x 7→ aix has ountable range, then sodoes f . If one of them has open range, then (by the Open Mapping Theorem)it is an open map and hene so is f .This haraterization was motivated by the following example.Example 3.6. (CH ) Let n > 1 be an integer and onsider the disreteyli group Zn. The group (Zn)ω has a dense subgroup whih is a Luzin setif and only if n is prime.Proof. If n is omposite with non-trivial fatoring n = ab, then the map
x 7→ ax maps (Zn)ω into {0, a, 2a, . . . , (b−1)a}ω. The range is nowhere dense.Furthermore, the �bers of this map are nowhere dense. (The �ber over ax is
{y : ay = ax} = {x + bz : z ∈ (Zn)ω} = x + {0, b, 2b, . . . , (a − 1)b}ω.) Nowuse Corollary 3.5.If n is prime then the maps x 7→ ax on Zn are onstant when a is amultiple of n, and bijetions of Zn otherwise. The same is thus true formultipliation by a on (Zn)ω and again we an apply Corollary 3.5.Problem 3.7. Assume the Continuum Hypothesis. Do the followinggroups have a dense Baire subgroup whih has an invariant Borel liftingfor its ategory algebra? (a) (Z4)

ω, (b) (Z2)
ω × R.



Invariant Borel liftings 29Remark 3.8. Analogous examples related to liftings for their measurealgebras an be worked out for Haar measures in loally ompat Polishgroups. We do not elaborate on this here as it is outside the topi of thispaper.4. Baire separable metri groupsTheorem 4.1. It is onsistent with ZFC that (1) every seond ategoryset in R has a seond ategory subset of ardinality ω1, and (2) for everyBaire separable metri group (G, d) without isolated points, where d is a left-invariant metri, there are a Borel set W ⊆ G̃ and a ontinuous one-to-onemap
ϕ:

(∏

i<ω

mi

)
× 2ω → G̃,

where 0 < mi < ω for eah i < ω and (G̃, ˜̺) is given by Theorem 2.6, sothat the following properties hold :(a) ranϕ is nowhere dense in G̃.(b) G ∩ ranϕ is a dense Baire subset of ranϕ.() For any s ∈
∏

i<ω mi and t ∈ 2ω and any i < ω, there are α ∈ G andan open neighborhood S of ϕ(s, t) suh that ϕ(s, hi(t)) = αϕ(s, t)and S \ ranϕ is partitioned by its intersetions with W and α−1W .The proof ombines ideas from the proof of Theorem 3.1 and of the resultof [BM℄ that it is onsistent that every seond ategory set of reals is seondategory in a nowhere dense perfet set. Before proving the theorem, we needsome lemmas, prinipally Lemma 4.5.Definition 4.2. A sequene
M = 〈Mδ : δ is a limit ordinal < ω1〉is alled an orale if eah Mδ is a ountable transitive model of a su�ientlylarge fragment of ZFC, δ ∈ Mδ, Mδ |= �δ is ountable� and for eah A ⊆ ω1,

{δ : A ∩ δ ∈ Mδ} is stationary in ω1.The meaning of �su�iently large� depends on the ontext. In a partiularproof, some fragment of ZFC for whih models an be produed in ZFCmust su�e for all the orales in the proof. The existene of an orale isequivalent to ♦ (see [Kun, Theorem II 7.14℄), and hene implies CH. We limitthe de�nition of the M -hain ondition to partial orders of ardinality ω1.This overs our present needs. Assoiated with an orale M , there is a �lter
Trap(M) generated by the sets

{δ < ω1 : δ is a limit ordinal and A ∩ δ ∈ Mδ}, A ⊆ ω1.This is a proper normal �lter ontaining all losed unbounded sets.



30 M. R. BurkeDefinition 4.3. If P is any partial order, P ′ ⊆ P , and D is any lassof sets, then we write P ′ <D P to mean that every predense subset of P ′whih belongs to D is predense in P .Definition 4.4. A partial order P satis�es the M -hain ondition, orsimply is M -, if there is a one-to-one funtion f : P → ω1 suh that
{δ < ω1 : δ is a limit ordinal and f−1(δ) <Mδ,f

P}belongs to Trap(M), where Mδ,f = {f−1(A) : A ⊆ δ, A ∈ Mδ}.It is not hard to verify that if P is M -, then P is . Also, any one-to-one funtion g: P → ω1 an replae f in the de�nition.In what follows, Q denotes the ountable foring notion for adding oneCohen real.Lemma 4.5 (Main Lemma). Let M = 〈Mδ : δ < ω1〉 be an ℵ1-orale. Let
(G, d) be a Baire separable metri group without isolated points, where d isa left-invariant metri. Then there is a foring notion P whih is M -, and
P -names Ẇ for a Borel subset of G̃, and ṁi, i < ω, for non-zero elementsof ω, and ϕ̇ for a ontinuous one-to-one map

ϕ̇:
(∏

i<ω

ṁi

)
× 2ω → G̃

so that for every Γ ⊆ P × Q generi over V and every non-empty open set
B ⊆ G̃,(a) ran ϕ̇[Γ ] is nowhere dense in G̃,(b) for any s ∈

∏
i<ω ṁi[Γ ] and t ∈ 2ω and any i < ω, there are α ∈ Gand an open neighborhood S of ϕ̇[Γ ](s, t) suh that ϕ̇[Γ ](s, hi(t)) =

αϕ̇[Γ ](s, t) and S \ ran ϕ̇[Γ ] is partitioned by its intersetions with
Ẇ [Γ ] and α−1Ẇ [Γ ],and there is no Borel set X ⊆ G̃ in V [Γ ] suh that() X ∩ ran ϕ̇[Γ ] is meager relative to ran ϕ̇[Γ ],(d) B ∩ ran ϕ̇[Γ ] 6= ∅ and G ∩ B ∩ ran ϕ̇[Γ ] ⊆ X.Note that the non-existene, for eah non-empty open B, of a Borel set Xsatisfying () and (d) just says that G ∩ ran ϕ̇[Γ ] is a dense Baire subset of

ran ϕ̇[Γ ]. The given wording is more onvenient for our purposes.Proof of the Main Lemma. Fix a ountable dense subgroup G′ ⊆ G andlet B be the base for G̃ onsisting of G̃ and all the left translates by elementsof G′ of all the open ˜̺-balls of rational radii entered at points of G′.



Invariant Borel liftings 31Definition 4.6. De�ne partial orders P =P (〈aη : η<ζ〉) where ζ≤ω1,
aη ∈ G as follows. The onditions in P are the quadruples

p =
(
Fp,

〈
(Up)

n
s,t : s ∈

∏

i<n

mp
i , t ∈ 2n, n ≤ np

〉
,

〈αp
i : i < np〉, 〈γ

p
i,j : j < mp

i , i < np〉
)

where:(1) e ∈ Fp and Fp is a �nite subset of G′ ∪ {aη : η < ζ}.(2) np < ω, 0 < mp
i < ω for i < np, (Up)

n
s,t ∈ B for all s ∈

∏
i<np

mp
i and

t ∈ 2np , αp
i , γ

p
i,j ∈ G′ and γp

i,0 = e for all j < mp
i , i < np.(3) U0

0,0 = G̃.(4) For eah n < np, s ∈
∏

i<n mp
i , t ∈ 2n and (k, l) ∈ mn × 2, thefollowing properties hold:(a) (Up)

n
s,t is an open subset of G̃ and cl(Up)

n+1
sk,tl ⊆ (Up)

n
s,t, where cldenotes losure in G̃.(b) (Up)

n
s,t has ˜̺-diameter at most 2−n.() If (k′, l′) ∈ mn×2 is distint from (k, l) then (Up)

n+1
sk,tl ∩ (Up)

n+1
sk′,tl′

= ∅.(d) e ∈ (Up)
n
0,0 and (Up)

n
s,t = (βp)

n
s,t(Up)

n
0,0, where the subsripts 0denote the onstant zero sequene of length n and

(βp)
n
s,t = (αp

0)
t(0)γp

0,s(0) · . . . · (α
p
n−1)

t(n−1)γp

n−1,s(n−1).(Take (βp)
0
0,0 = e.) The supersripts t(i) indiate exponentiation.All other supersripts are just supersripts.(5) Fp ⊆

⋃
{(Up)

np

s,t : s ∈
∏

i<np
mp

i , t ∈ 2np}.The order on P is: p ≤ q if and only if the following onditions are satis�ed:(6) Fp ⊇ Fq, np ≥ nq.(7) For all i < nq, mp
i = mq

i , αp
i = αq

i and, for eah j < mq
i , γp

i,j = γq
i,j .(8) For all n ≤ nq, s ∈

∏
i<n mq

i and t ∈ 2n, we have (Up)
n
s,t = (Uq)

n
s,t.Lemma 4.7. For every ondition p and every �nite set A ⊆

⋃
{(Up)

np

s,t :

s ∈
∏

i<np
mp

i , t ∈ 2np}, there is a ondition q ≤ p suh that Fq = Fp, nq =

np + 1, A ⊆
⋃
{(Uq)

nq

s,t : s ∈
∏

i<nq
mq

i , t ∈ 2nq} and for all s ∈
∏

i<np
mp

i ,
t ∈ 2np the set ⋃

{(Up)
np+1
sk,tl : (k, l) ∈ mnp × 2} is not dense in (Up)

np

s,t.Proof. Replaing A by A ∪ Fp, we may assume that Fp ⊆ A. Let A′ bea �nite subset of (Up)
np

0,0 ontaining
⋃{

((βp)
np

s,t)
−1((Up)

np

s,t ∩ A) : s ∈
∏

i<np

mp
i , t ∈ 2np

}
.



32 M. R. BurkeNote that by (1) we have e ∈ A and hene e ∈ A′ (by the �rst part of (4)(d)and the fat that (βp)
np

0,0 = e). De�ne a ondition q by setting Fq = Fp,
nq = np +1, mnp = |A′|. Let q agree with p below np as required by (7), (8).For x ∈ A′, hoose open sets Sx suh that x ∈ Sx ⊆ cl Sx ⊆ (Up)

np

0,0, the sets
Sx, x ∈ A′, are pairwise disjoint, ⋃

x∈A′ Sx is not dense in (Up)
np

0,0, and forall s ∈
∏

i<np
mp

i and t ∈ 2np , the ˜̺-diameter of (βp)
np

s,tSx is at most 2−nq .For all α ∈ G lose enough to e, we have αx ∈ Sx for eah x ∈ A′. Pik onesuh α ∈ G′ \ {e}. For a small enough open neighborhood W of e, we derivefor eah x ∈ A′ that xW and αxW are disjoint subsets of Sx. Choose B ∈ Bsuh that e ∈ B ⊆ BB ⊆ W . For eah x ∈ A′ \ {e}, hoose γx ∈ G′ loseenough to x so that γ−1
x x, x−1γx ∈ B. We have

x ∈ γxB ⊆ xBB ⊆ xW.Let A′ = {A′(i) : i < |A′|} with A′(0) = e. Let (Uq)
nq

0,0 = B, αq
np = α,

γq
np,i = γA′(i) when 0 < i < |A′| and γq

np,0 = e. De�ne the other values of
(Uq)

nq

s,t by (4)(d). This works.[We have
(∗) cl(Uq)

np+1
sk,tl = cl(βq)

np+1
sk,tl (Uq)

np+1
0,0 = cl(βp)

np

s,t(α
q
np

)lγq
np,k(Uq)

np+1
0,0

= cl(βp)
np

s,tα
lγq

np,kB,where γq
np,k = γA′(k) if 0 < k < |A′| and γq

np,0 = e. For x = A′(k) and
γ = γq

np,k, we have γB ⊆ xW ⊆ Sx and αγB ⊆ αxW ⊆ Sx. From (∗) we get
cl(Uq)

np+1
sk,tl ⊆ cl(βp)

np

s,tSx = (βp)
np

s,t cl Sx ⊆ (βp)
np

s,t(Up)
np

0,0 = (Up)
np

s,t.If x ∈ Fp, then x ∈ (Up)
np

s,t for some s, t. Then y = ((βp)
np

s,t)
−1x ∈ A′. Wehave y ∈ γyB and for some i < |A′|, y = A′(i). Then x ∈ (βp)

np

s,tγyB =

(Uq)
np+1
si,t0 .℄Let K̇ be a P -name for the set onstruted from the generi �lter Γ asfollows:

K̇ =
⋂

n<ω

⋃
{(Up)

n
s,t : p ∈ Γ, n ≤ np}.(The name really depends on a = 〈aη : η < ζ〉, but omitting expliit mentionof a should not ause any onfusion.)It will be onvenient to have a partiularly simple form for the (P ×Q)-names τ for losed sets in G̃. We will all suh a name nie if it is identi�edwith a name for its omplement having the form ⋃

B∈B
{B}×AB , where the

AB 's are ountable sets of onditions, B ⊆ B′ ⇒ AB′ ⊆ AB , and given ageneri �lter Γ , τ names the set whose omplement is ⋃
{B ∈ B : Γ ∩ AB

6= ∅}. [For a given name τ , an equivalent nie name an be obtained by



Invariant Borel liftings 33taking a ountable M ≺ Hλ ontaining B (for some large enough regularardinal λ) and setting AB = M ∩ {x ∈ P × Q : x  B ⊆ τ}.℄Claim 4.8 (Main Claim). Let Pδ = P (〈aη : η < δ〉), δ < ω1 be given,as well as a ountable Nδ, Pδ ∈ Nδ, a ondition (p∗, r∗) ∈ Pδ × Q, s ∈∏
i<np∗

mp∗

i , t ∈ 2np∗ and Pδ × Q-names for losed sets τn so that Pδ×Q�τn∩K̇ is relatively nowhere dense in K̇�, n < ω. Then we an �nd aδ ∈ G∩
(Up∗)

np∗

s,t suh that , letting Pδ+1 = P (〈aη : η ≤ δ〉), the following onditionshold :(A) Every predense subset of Pδ whih belongs to Nδ is a predense subsetof Pδ+1.(B) There is a ondition (p′, r′) ∈ Pδ+1 × Q extending (p∗, r∗) suh that
aδ ∈ Fp′ and for all n < ω, (p′, r′) Pδ+1×Q aδ 6∈ τn.Proof of the Main Claim. Choose a su�iently large regular λ and hoosea ountable N ≺ Hλ suh that Pδ, 〈aη : η < δ〉, 〈τn : n < ω〉, Nδ ∈ N . Choosea Cohen real over N , aδ ∈ G ∩ (Up∗)

np∗

s,t . For the purposes of hoosing aδ,think of Cohen foring as B ordered by inlusion.Remark 4.9. Inompatible elements of Pδ remain inompatible in Pδ+1as inompatibility of two onditions p, q with, say, np ≤ nq an only resultfrom a failure to have mp
i = mq

i , αp
i = αq

i , γp
i,j = γq

i,j , (Up)
n
s,t = (Uq)

n
s,tbelow np (more preisely for j < mi, i < np, s ∈

∏
k<n mk, t ∈ 2n, n ≤ np),or a failure of the (Uq)

nq

s,t to inlude all points of Fp.Proof of ondition (A). Let J ⊆ Pδ be predense, J ∈ Nδ. We must showthat J is predense in Pδ+1. Let p ∈ Pδ+1, p 6∈ Pδ. By the de�nition of Pδ+1,
Fp has the form F ∪ {aδ} where F is a �nite subset of {aη : η < δ}. If p isnot ompatible with any element of J , then some I ∈ B ontaining aδ foresthis over N . By shrinking I, we may take I ⊆ (Up∗)

np∗

s,t . Choose p1 ∈ Pδ,a ommon extension of the ondition p ∈ Pδ obtained from p by replaing
Fp by F and some p2 ∈ J so that for some s′ ∈

∏
i<np1

mp1

i , t′ ∈ 2np1 , wehave aδ ∈ (Up1
)
np1

s′,t′ . [The set of possible values for (Up1
)
np1

s′,t′ overs a denseopen subset of I whih belongs to N , so aδ belongs to one of them. To seethat I is densely overed by these values, �x any a ∈ I and ε > 0. ApplyingLemma 4.7 su�iently many times gives q ≤ p in Pδ so that some (Uq)
nq

s′′,t′′ontains a and has ˜̺-diameter less than ε. Then, beause J is predense in
Pδ, we get p1 ∈ Pδ, a ommon extension of q and some p2 ∈ J . Then for any
s′, t′ for whih (Up1

)
np1

s′,t′ is ontained in (Uq)
nq

s′′,t′′ , we dedue that the formeris within ε of a.℄ Then p is ompatible with p2.Proof of ondition (B). Let p′ be obtained from p∗ by replaing Fp∗ by
Fp∗ ∪{aδ}. Take r′ = r∗. If N [aδ] believes that these satisfy (B) then they doand we are done. Otherwise, hoose (p′′, r′′) in N [aδ] extending (p′, r′) and
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i < ω suh that

N [aδ] |= (p′′, r′′) Pδ+1×Q aδ ∈ τi.For some Cohen ondition I ∈ B ontaining aδ, we have, letting x be a namefor the Cohen real and writing Fp′′ = F ′′ ∪ {aδ} with aδ 6∈ F ′′,
N |= I  �Fp′′ = F ′′ ∪ {x} and (p′′, r′′) Pδ+1×Q x ∈ τi�.By shrinking I, we may assume that it is ontained in some (Up′′)

np′′

s′′,t′′ . Let
p′′ ∈ Pδ be obtained from p′′ by replaing Fp′′ by F ′′ ∪ {y}, where y is anyelement of G′∩I. (Adding y ensures p′′ Pδ

I∩K̇ 6= ∅.) In N , extend (p′′, r′′)to (p′′′, r′′′) ∈ Pδ×Q whih fores (over Pδ×Q) that some I ′ = (Up′′′)
np′′′

s′′′,t′′′ ⊆

I has the property that I ′∩ K̇ 6= ∅ and I ′∩ K̇ is disjoint from τi, and hoosethis extension so that aδ ∈ I ′.[Arranging the last ondition is amatter, as in the proof of ondition (A), ofheking that the set of possible values for I ′, ignoring the requirement aδ ∈ I ′,belongs to N and overs a dense subset of I. To hek the latter, �rst extend
p′′ in N to p̃ ∈ Pδ so that some Ĩ = (Up̃)

np̃

s̃,t̃
is ontained in I and is within agiven ε of a given a ∈ I. Adding an element of Ĩ ∩G′ to Fp̃ if neessary, we mayassume that p̃ Pδ

Ĩ ∩ K̇ 6= ∅. Next, in N , extend (p̃, r′′) to (p′′′, r′′′) ∈ Pδ ×Qwhih deides an I ′ ∈ B suh that I ′ ⊆ Ĩ, I ′ ∩ K̇ 6= ∅ and I ′ ∩ τi = ∅. Sine
(p′′′, r′′′) fores I ′ ∩ K̇ 6= ∅, I ′ meets some (Up′′′)

np′′′

s′′′,t′′′ . By adding to Fp′′′ apoint y0 ∈ G′ from the intersetion and then extending p′′′ �nitely many timesusing Lemma 4.7, we may assume that the (Up′′′)
np′′′

s′′′,t′′′ whih ontains y0 isontained in I ′. Now replae I ′ by (Up′′′)
np′′′

s′′′,t′′′ .℄Now let p′′′ ∈ Pδ+1 be obtained from p′′′ by replaing Fp′′′ with Fp′′′∪{aδ}.Sine aδ ∈ I ′,
(∗) (p′′′, r′′′) Pδ+1×Q aδ 6∈ τi.More preisely, beause

(p′′′, r′′′) Pδ×Q I ′ ∩ τi ∩ K̇ = ∅holds in N [aδ], it also holds in V . (A �lter Γ ⊆ Pδ ×Q generi over V inter-sets N [aδ] in a �lter generi over N [aδ], the value τi[Γ ] only depends on thisintersetion and the statement being fored is absolute.) By an observationof Shelah, it follows that
(p′′′, r′′′) Pδ+1×Q I ′ ∩ τi = ∅.(See [Bu1993b, Lemma 4.13℄. Observe that the proof of (A) showed that

Pδ <N Pδ+1 and, as noted above, inompatible elements of Pδremain inom-patible in Pδ+1.)



Invariant Borel liftings 35Hene this last statement is true with p′′′ in plae of p′′′ as well, and (∗)follows. Sine (p′′′, r′′′) extends (p′′, r′′), this ontradits the hoie of (p′′, r′′)(using absoluteness again to replae N [aδ] by V ). This ompletes the proofof the Main Claim.The proof of the Main Lemma is now a mostly routine (for the readerfamiliar with orale- foring) bookkeeping argument using the Main Claim.There are a few points where some are is needed, so we give the argument.The middle part of the argument losely follows [Bu1993b, pp. 144�145℄.Suppose δ ≤ ω1 and τ is a nie P × Q-name for a losed set in G̃. If
τ =

⋃
B∈B

{B} × AB is suh that the AB 's are ontained in Pδ × Q, then τis also a Pδ × Q-name for a losed set.
Fact 4.10. If P×Q �τ is a nowhere dense subset of K̇�, then also Pδ×Q�τ is a nowhere dense subset of K̇�.(As pointed out after the de�nition of K̇, this notation denotes two dif-ferent names in the two statements above.)Claim 4.11. If y ∈ B and u Pδ×Q B ⊆ τ c then u is ompatible withsome v ∈ AB′ for some B′ so that y ∈ B′ ⊆ B.[Let Γ be a generi �lter ontaining u. Then y ∈ B ⊆ τ [Γ ]c =

⋃
{B′ :

B′ ∈ B, Γ ∩ AB′ 6= ∅}. Hene, there is v ∈ Γ ∩ AB′ for some B′ suh that
y ∈ B′. Choose B′′ ∈ B so that y ∈ B′′ ⊆ B∩B′. By assumption, AB′ ⊆ AB′′so that v ∈ AB′′ . Also, y ∈ B′′ ⊆ B.℄To prove Fat 4.10, suppose it fails. Then, for some ondition (p, r) ∈
Pδ × Q and some B ∈ B,
(∗∗) (p, r) Pδ×Q ∅ 6= B ∩ K̇ ⊆ τ.Then some extension (p′, r′) ∈ P × Q deides B0 ∈ B, B0 ⊆ B meeting
K̇ but disjoint from τ . Note that B0 must meet some (Up′)

np′

s,t . We mayassume that there is a point y ∈ G′ ∩ B0 ∩ (Up′)
np′

s,t in Fp′ (by adding oneif neessary). By Claim 4.11, (p′, r′) is ompatible with some (p′′, r′′) ∈ AB1for some B1 suh that y ∈ B1 ⊆ B0. Then (p, r) modi�ed by adding y to
Fp is also ompatible with (p′′, r′′). As observed earlier, this modi�ation of
(p, r) and (p′′, r′′) must have a ommon extension (p, r) in Pδ × Q. Sine
y ∈ Fp, we have (p, r) Pδ×Q B1 ∩ K̇ 6= ∅. However, (p, r) ≤ (p′′, r′′) ∈ AB1

,so (p, r) Pδ×Q B1 ∩ τ = ∅, ontraditing (∗∗) and the fats that B1 ⊆ Band (p, r) ≤ (p, r). This proves Fat 4.10.Fix a bijetion g: ω → B. Let 〈(pδ, sδ, tδ, rδ, σδ) : δ < ω1〉 list all 5-tuples
(p, s, t, r, σ) where p < ω1, s ∈ ω<ω, t ∈ 2<ω, r ∈ Q, σ = 〈σi : i < ω〉,
σi =

⋃
n{n} × An(σi), and eah An(σi) is a ountable subset of ω1 × Q. Wean arrange that for eah δ, pδ < δ and, for all n, i, An((σδ)i) ⊆ δ × Q. Wealso want that eah 5-tuple (p, s, t, r, σ) is listed su�iently often so that
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{δ < ω1 : (p, s, t, r, σ) = (pδ, sδ, tδ, rδ, σδ)} meets every member of Trap(M).[Apply [Kun, Theorem II.6.11℄ to the dual ideal of Trap(M).℄ For δ < ω1,indutively de�ne models Nδ, 〈aη : η < δ〉, and a 1-1 funtion hδ: Pδ → ω1whose range is an initial segment of ω1 whih inludes δ. As in the statementof the Main Claim we write Pδ = P (〈aη : η < δ〉). We want ∀δ′ < δ, hδ′ ⊆ hδ,and at limits, hδ =

⋃
δ′<δ hδ′ and Pδ =

⋃
δ′<δ Pδ′ . At suessor stages use theMain Claim to get Pδ+1, with:(i) p∗ = h−1

δ (pδ).(ii) If sδ ∈
∏

i<np∗
mp∗

i and tδ ∈ 2np∗ , then (s, t) = (sδ, tδ). Otherwise
(s, t) = (0, 0) where the 0-sequenes have length np∗ .(iii) r∗ = rδ.(iv) τi =

⋃
B{B} × {(h−1

δ (α), q) : (g−1(B), (α, q)) ∈ (σδ)i, α < ω1},
i < ω.(It does not matter here whether τi is a nie name in the sensede�ned earlier. It simply names the set whose omplement is de�nedfrom Γ by ⋃

{B ∈ B : ∃u ∈ Γ, (B, u) ∈ τi}.)(v) Nδ = a ountable transitive model of a large fragment of ZFC suhthat Nδ ⊇
⋃

δ′<δ Nδ′ ∪ Mδ,hδ
∪ {τ} ∪ {Pδ}.Let P =

⋃
δ<ω1

Pδ, h =
⋃

δ<ω1
hδ. De�ne K̇ for P as above. We must �rstshow that P is M -. By indution on α > δ we easily dedue from (A) ofthe Main Claim that
Pδ <Mδ,h

Pαfor every α < ω1, and hene Pδ <Mδ,h
P . For a losed unbounded set of δ,we will have Pδ = h−1(δ). Thus h witnesses that P is M -.Now, let Γ ⊆ P × Q be generi over V . Let mi, αi, γi,j (j < mi, i < ω),

Un
s,t (n < ω, s ∈

∏
i<n mi, t ∈ 2n) denote, respetively, mp

i , αp
i , γp

i,j , (Up)
n
s,tfor any p ∈ Γ for whih i < n ≤ np. Lemma 4.7 ensures that there arearbitrarily large values of np for p ∈ Γ . De�ne ϕ: (

∏
i<ω mi) × 2ω → G̃ by

{ϕ(s, t)} =
⋂

n<ω Un
s↾n,t↾n. By De�nition 4.6(4)(a,b,), ϕ is a well-de�nedone-to-one ontinuous map.Part (a) of the Main Lemma follows from (4)(b) and a simple generiityargument using Lemma 4.7. (Cf. the reason that C is nowhere dense in G inthe proof of Theorem 3.1.) Part (b) follows by an argument similar to the endof the proof of Theorem 3.1. For x ∈ G \ K, there is a largest n = n(x) < ωsuh that x ∈ Un

s,t for some (unique) s = s(x) ∈
∏

i<n mi, t = t(x) ∈ 2n.De�ne
W = {x ∈ G \ K : t0 + · · · + tn−1 is odd}.Then W is the union of ountably many sets of the form Un

s,t \
⋃
{Un+1

sk,ti :

k < mn, i < 2} and hene is Borel. If i < n < ω and t ∈ 2ω satis�es t(i) = 0,



Invariant Borel liftings 37then by (4)(d) we have, for eah s ∈
∏

i<ω mi,
Un

s↾n,hi(t)↾n
= βi

s↾i,t↾iαi(β
i
s↾i,t↾i)

−1Un
s↾n,t↾n.Similarly, if t(i) = 1, then

Un
s↾n,hi(t)↾n

= βi
s↾i,t↾iα

−1
i (βi

s↾i,t↾i)
−1Un

s↾n,t↾n.Claim 4.12. For any s ∈
∏

i<ω mi, t ∈ 2ω and any i < ω, there is anopen neighborhood S of ϕ(s, t) and there is an α ∈ G suh that ϕ(s, hi(t)) =
αϕ(s, t). Furthermore, S \ K is partitioned by its intersetions with W and
α−1W .Proof. We an take for S any Um

s↾m,t↾m with i < m. Interseting over
n in the two displayed equations above shows that ϕ(s, hi(t)) = αϕ(s, t)where α = βi

s↾i,t↾iα
±1
i (βi

s↾i,t↾i)
−1. If x ∈ S \K = Um

s↾m,t↾m \K, then from thede�nition of α it follows that preisely one of x, αx belongs to W . This givesthe seond statement of the laim.Suppose there were a generi Γ ⊆ P×Q, B ∈ B and a Borel set X ∈ V [Γ ]whih give a ounterexample to the Main Lemma. Then there is a sequeneof nie P × Q-names 〈τi : i < ω〉 for losed sets whose traes on K̇ arerelatively nowhere dense suh that X ∩ K̇ ⊆
⋃

i<ω τi[Γ ], and there is aondition (p∗, r∗) ∈ P ×Q whih fores (d) of the Main Lemma with ⋃
i<ω τiin plae of X, i.e., B ∩ K̇ 6= ∅ and G∩B ∩ K̇ ⊆

⋃
i<ω τi. The �rst statementimplies that B meets at least one (Up∗)

np∗

s,t . By adding a point of G′ from suhan intersetion to Fp∗ and extending p∗ �nitely many times using Lemma 4.7,we an assume that (Up∗)
np∗

s,t ⊆ B. Then B an be replaed by (Up∗)
np∗

s,t .The set of all δ < ω1 whih satisfy any one of the following onditionsbelongs to Trap(M):(i) (p∗, r∗) ∈ Pδ × Q.(ii) τi =
⋃

B∈B
{B} × AB(τi) is a Pδ × Q-name, i < ω.(iii) h−1(δ) = Pδ.(iv) σi =

⋃
n{n} × {(h(p), q) : (p, q) ∈ Ag(n)(τi)} ∈ Mδ, i < ω.(v) For all δ′ ≥ δ and i < ω, Pδ′×Q �τi is a losed set whih has arelatively nowhere dense trae on K̇�.[As explained above, for (v) all that is required is to hoose δ large enoughso that eah τi is a Pδ × Q-name.℄Choose a δ satisfying all these properties and for whih (pδ, sδ, tδ, rδ, σδ)

= (p∗, s, t, r∗, σ). Then τ δ is a sequene of Pδ × Q-names for losed setswhih have a relatively nowhere dense trae on K̇. So by (B) of the MainClaim, there is a ondition (p′, r′) ≤ (p∗, r∗) with the property given there.This will learly ontradit our hoie of (p∗, r∗) if we an show that thesubsript Pδ+1×Q in (B) an be replaed with P×Q. Fix i<ω. By indution



38 M. R. Burkeon α > δ we have Pδ+1 <Nδ+1
Pα and hene Pδ+1 <Nδ+1

P . As alreadyobserved, elements of Pδ+1 whih are inompatible remain inompatible in P .From Shelah's observation mentioned above [Bu1993b, Lemma 4.13℄, we have
(p′, r′) P×Q aδ 6∈ τi, whih is the desired ontradition. This proves theMain Lemma.Before turning to the proof of Theorem 4.1, we reall the basi propertiesof orale- foring. See [Sh1998, Chapter IV℄ for the details. A version ofthis material is also explained in [Bu1993b, Setions 4�6℄.Proposition 4.13. The M - has the following properties:(1) If α < ω2 is a limit ordinal , 〈〈Pβ〉β≤α, 〈Q̇β〉β<α〉 is a �nite-support

α-stage iteration of partial orders, and for eah β < α, Pβ is M -,then Pα is M -.(2) If P is M -, then there is a P -name M
∗ for an orale suh that foreah P -name Q̇ for a partial order , if P �Q̇ is M

∗-� then P ∗ Q̇is M -.(3) If Mα, α < ω1, are orales, then there is an orale M suh that forany partial order P , if P is M -, then P is Mα- for all α < ω1.Lemma 4.14. Assume ♦. Let A be a non-meager subset of R. Then thereis an orale M = 〈Mδ : δ < ω1〉 suh that if P is any M - partial order ,then P �A is non-meager�.Proof. This is [Sh1998, Example IV.2.2℄.We now prove Theorem 4.1. Beause of part (1) of its statement, it su�esto establish part (2) for groups of ardinality ω1. [If (G, d) is arbitrary, thenthe fat that G̃ has a dense Gδ subset homeomorphi to ωω ensures that Ghas a dense subgroup G0 of size ω1 whih is Baire. (Take a seond ategoryset of size ω1 in eah non-empty member of a ountable base for G and let
G0 be the subgroup generated by their union.) Then any V, ϕ whih workfor (G0, d↾(G0 ×G0)) will ontinue to work for (G, d) sine G̃ = G̃0 and (b),() are preserved by enlarging G inside G̃.℄Start with a ground model of V = L. Fix a diamond sequene

〈(fα, gα, hα) : α < ω2, cof(α) = ω1〉for trapping triples (f, g, h) onsisting of:(1) A funtion f : ω2 → ([ω2]
≤ω)ω. The idea of f is that, with ω2 iden-ti�ed with the  partial order we are about to build, [ω2]

≤ω on-tains the maximal antihains. Thus, ([ω2]
≤ω)ω ontains a name foreah real number (onstrued as a subset of ω). Then for any non-meager set X in the extension, we an �nd a ground model funtion

f : ω2 → ([ω2]
≤ω)ω enumerating the names of the elements of X.



Invariant Borel liftings 39(2) Funtions g: ω1 × ω1 → ([ω2]
≤ω)ω×ω and h: ω1 × ω1 → ([ω2]

≤ω)ω in-tended to represent a pair (G, d) where G is a group of ardinality ω1whose underlying set we take to be ω1 itself and d is a left-invariantmetri for G. More spei�ally, h(α, β) is intended to represent (thename of) the value d(α, β) and g(α, β) is intended to represent theomposition of α and β under the group operation. (If the omposi-tion of α and β is γ, then g(α, β) an be thought of as a real whih isa subset of ω×ω and whih is a well-ordering of ω with order-type γ.)So for eah α < ω2 of o�nality ω1, fα: α → ([α]≤ω)ω, gα: ω1 × ω1 →
([α]≤ω)ω×ω and hα: ω1 × ω1 → ([α]≤ω)ω. Also, for eah (f, g, h) as in (1)�(2), {α < ω2 : cof(α) = ω1, f↾α = fα, g = gα and h = hα} is stationaryin ω2.We will indutively de�ne an ω2-stage �nite support iteration

〈〈Pα〉α≤ω2
, 〈Q̇α〉α<ω1

〉as well as Pα-names Mα for orales and one-to-one funtions Fα: Pα → ω2for α < ω2 suh that the range of eah Fα is an initial segment of ω2 whihinludes α, and for β < α < ω2, we have Fβ ⊆ Fα. (At eah stage, Fα is anyfuntion satisfying these onditions.)For α < ω2, we will let Ẋα denote the Pα-name for the set of real numberswhose elements have the names
⋃

n<ω

{n} × F−1
α (fα(ξ)(n)), ξ < α.

Similarly, we will let Ġα and ḋα denote the ω1 × ω1-sequenes of Pα-namesfor real numbers〈 ⋃

(m,n)∈ω×ω

{(m, n)} × F−1
α (gα(ξ1, ξ2)(m, n)) : ξ1, ξ2 < ω1

〉

and 〈 ⋃

n<ω

{n} × F−1
α (hα(ξ1, ξ2)(n)) : ξ1, ξ2 < ω1

〉

respetively. At stage α < ω2 of the onstrution, if cof(α) = ω1 and if
Pα �Ẋα is not meager� ,then we use Lemma 4.14 to get a Pα-name M

′

α for an orale so that if Pis any foring notion whih is M
′

α-, then Xα remains non-meager afterforing with P .If cof(α) = ω1 and if
Pα �(Ġα, ḋα) is a Baire separable metri groupwith left-invariant metri ḋα�,



40 M. R. Burkethen use Lemma 4.5 to get a Pα-name Q̇α for a partial order whih is Mα-and fores a ontinuous funtion ϕ and a Borel set V as desribed in thestatement of the lemma. Then use Lemma 4.14 and Proposition 4.13(3) toget a Pα+1-name M
′

α+1 for an orale suh that if P is any foring notionwhih is M
′

α+1-, then Gα ∩ ran ϕ remains a dense Baire subset of ran ϕafter foring with P .Otherwise, let M
′

α be any Pα-name for an orale.For β < α, let Pβα be the usual Pβ-name for a partial order suh that
Pα is isomorphi to a dense subset of Pβ ∗ Pβα (see [Ba℄). Let Mβα be a
Pα-name for an orale suh that
(1) if Pβ

�Pβ,α is Mβ- and Pβ,α
�Q̇α is Mβα-� � ,then Pβ
�Pβ,α+1 = Pβ,α ∗ Q̇α is Mβ-�.(There is suh an Mβα by Proposition 4.13(2). In (1), Mβα is atually a Pβ-name for a Pβ,α-name for an orale. We denote the orresponding Pα-namealso by Mβα.)Let Mα be a Pα-name for an orale suh that

(2) Pα �If Q̇α is Mα-, then Q̇α is M
′

α- and Mβα- for all β < α�.(Use Proposition 4.13(3).)In all other ases, take Q̇α to name the partial order Q for adding oneCohen real. We thus have
(3) Pα �Q̇α is Mα-� .Now suppose that for some Pω2

-name Ẋ we have
Pω2

�Ẋ is not meager� .(Every non-meager set in any extension has a name fored by the weakestondition to be non-meager sine there always is a non-meager set.) Fix aname ḟ suh that
Pω2

� ḟ : ω2 → Ẋ is onto� .Then de�ne f : ω2 → ([ω2]
≤ω)ω so that if

τξ =
⋃

n<ω{n} × F−1(f(ξ)(n)), ξ < ω2,then, for eah ξ < ω2,
Pω2

ḟ(ξ) = τξ.There is a losed unbounded set C ⊆ ω2 suh that for eah α ∈ C of o�nality
ω1 we have:(i) f↾α: α → ([α]≤ω)ω.(ii) ∀ξ < α, τξ is a Pα-name.(iii) Pα �{τξ : ξ < α} is not meager�.



Invariant Borel liftings 41(For (iii), note that when α has o�nality ω1, eah Pα-name for a meagerset is a Pβ-name for some β < α. Thus, if M is an elementary submodel of
Hθ for a suitably large θ suh that |M | = ω1, Mω ⊆ M , 〈τξ : ξ < ω2〉 ∈ Mand α = M ∩ ω2 ∈ ω2 has o�nality ω1, then for eah (nie) Pα-name σ fora meager Borel set, we have σ ∈ M and hene M knows about a maximalantihain of onditions eah deiding a ξ for whih τξ is fored not to be in σ.The antihain is ountable and hene ontained in M . For eah ondition inthe antihain, the least ξ whih it deides is in M and hene below α. Hene
Pα �{τξ : ξ < α} is not ontained in σ�.)Choose suh an α of o�nality ω1 for whih f↾α = fα. By (i) and (ii), thede�nition of τξ would not hange if we used fα instead of f and Fα insteadof F . Then from the de�nition of Ẋα we get

Pα Ẋα = {τξ : ξ < α}.So at stage α we hose a Pα-name Mα and we arrange that
Pα �Pα,γ is Mα-�.[This follows easily by indution on γ ≥ α and Proposition 4.13(1,2). (Reallthat Pα,γ an be viewed in the anonial way as an iteration: see [Ba℄.) Atlimits γ use Proposition 4.13(1). At stages γ + 1, use (3) to get Pγ �Q̇γ is

Mγ-� and then use (2) and (1) with (β, α) replaed by (α, γ).℄Hene, by the hoie of Mα,
(4) PαPα,γ �Ẋα is not meager� ,from whih it follows that

PαPα,ω2
�Ẋα is not meager�sine if this failed then we would have

p Pα q Pα,ω2
Ẋα ⊆ Ḃfor some onditions p ∈ Pα, q ∈ Pα,ω2

and some name Ḃ for a meager Borelset. But then for some γ, we have α < γ < ω2, q ∈ Pα,γ and Ḃ is a Pγ-name,and this ontradits (4).By what we have established, there are guaranteed to be sets of ardi-nality ω1 whih are not meager in any extension by Pω2
. Hene there areguaranteed to be Baire separable metri groups of ardinality ω1 (for ex-ample, subgroups of R). Suppose that for some Pω2

-names Ġ and ḋ and anie Pω2
-name ḟ for a subset of ω × ω1, we have

Pω2
�(Ġ, ḋ) is a Baire separable metri group with underlying set ω1(where Ġ names the operation) and ḟ : ω → ω1 has dense rangein (Ġ, ḋ)�.



42 M. R. Burke(By what we just said, every Baire separable metri group with underly-ing set ω1 has a name suh that the weakest ondition fores the desiredproperties.)De�ne g: ω1 × ω1 → ([ω2]
≤ω)ω×ω and h: ω1 × ω1 → ([ω2]

≤ω)ω so that if
Ġ(ξ1, ξ2) =

⋃

(m,n)∈ω×ω

{(m, n)} × F−1(g(ξ1, ξ2)(m, n)), ξ1, ξ2 < ω1,

ḣ(ξ1, ξ2) =
⋃

n<ω

{n} × F−1(h(ξ1, ξ2)(n)), ξ1, ξ2 < ω1,then for eah ξ1, ξ2 < ω1,
Pω2

�Ġ(ξ1, ξ2) = Ġ(ξ1, ξ2) is the omposition of ξ1 and ξ2 in (Ġ, ḋ)�and
Pω2

�ḣ(ξ1, ξ2) = ḋ(ξ1, ξ2), where ḣ(ξ1, ξ2) is interpretedas explained at the start of the proof� .For all large enough α < ω2, we have:(i) g: ω1 × ω1 → ([α]≤ω)ω×ω and h: ω1 × ω1 → ([α]≤ω)ω.(ii) Ġ(ξ1, ξ2) and ḣ(ξ1, ξ2) are Pα-names for all ξ1, ξ2 < ω1.(iii) ḟ is a Pα-name.Choose any suh α of o�nality ω1. By (i) and (ii), the de�nitions of Ġ(ξ1, ξ2)and ḣ(ξ1, ξ2) would not hange if we used gα instead of g, hα instead of h,and Fα instead of F . Then from the de�nitions of Ġα and ḣα we get
Pα �(Ġα, ḋα) is a Baire metri group with left-invariant metri ḋαand ḟ : ω → ω1 has dense range in (Ġ, ḋ)�.(Being a metri group is learly absolute. That ḟ is a funtion with denserange is also absolute. Being Baire is downward absolute.) Then Q̇α washosen to add ϕ and V as required by the theorem.[That the values of Ġα are well-orderings is absolute and then the order-types are equal in V p and V Pα . The fat that Ġα ∩ ranϕ is a dense Bairesubset of ranϕ is preserved by the hoie of M

′

α+1 and the fat that Pα+1,ω2is M
′

α+1-.℄This ompletes the proof of the theorem.
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