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On d-finiteness in continuous structures

by

Itäı Ben Yaacov (Lyon) and Alexander Usvyatsov (Los Angeles, CA)

Abstract. We observe that certain classical results of first order model theory fail
in the context of continuous first order logic. We argue that this happens since finite
tuples in a continuous structure may behave as infinite tuples in classical model theory.
The notion of a d-finite tuple attempts to capture some aspects of the classical finite
tuple behaviour. We show that many classical results involving finite tuples are valid in
continuous logic upon replacing “finite” with “d-finite”. Other results, such as Vaught’s
no two models theorem and Lachlan’s theorem on the number of countable models of a
superstable theory are proved under the assumption of enough (uniformly) d-finite tuples.

The main goal of this article is to describe and study conditions under
which certain results of classical model theory generalise to the model theory
of metric structures, and to explain why when they do not.

We start by recalling Henson’s adaptation of the Ryll-Nardzewski theo-
rem to metric logics (originally for the logic of positive bounded formulae,
but we state and prove it for continuous first order logic). It characterises
the family of countable ω-categorical (i.e., separably categorical) continuous
theories in a manner analogous to the classical result. One of the equiva-
lent characterisations is that all models of T are approximately ω-saturated,
which is a weaker property than plain ω-saturation; in particular, the unique
separable model need not be ω-saturated in the classical sense.

A good example for this phenomenon is the theory T of Lp Banach
lattices [BBH] (for a fixed 1 ≤ p < ∞). Up to isomorphism, the unique
separable model of this theory is Lp[0, 1], which is therefore approximately
ω-saturated. By quantifier elimination it embeds elementarily in Lp[0, 2];
however, tp(χ[1,2]/χ[0,1]) is a consistent type over a single parameter which
is not realised in Lp[0, 1], and so it is not ω-saturated in the classical sense.
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In Section 2 we explain this by arguing that “finite tuple” is not always
the right notion in the setting of metric structures. Instead we define the
notion of a d-finite tuple, and show (among other things) that in an approx-
imately ω-saturated model every type over a d-finite tuple is realised. As
we show that every finite tuple of events in a probability algebra is d-finite,
this explains why models of the theory of atomless probability algebras are

ω-saturated in the classical sense.
A second look at the example above might prove even more disturbing:

Let now T ′ be the theory of (Lp[0, 1], χ[0,1]) in a language consisting of
a new constant symbol c. Then up to isomorphism T ′ has precisely two
separable models: (Lp[0, 1], χ[0,1]) and (Lp[0, 2], χ[0,1]) (which differ precisely
on the question whether tp(χ[1,2]/χ[0,1]) is realised or not). This means that
Vaught’s “no two models” theorem fails for continuous logic. Moreover, the
theory T , and therefore T ′, is superstable and indeed ω-stable: thus T ′ also
serves as a counterexample for Lachlan’s theorem stating that a countable
superstable theory has either one or infinitely many countable (or in our
context, separable) models.

We explain this by observing that the theory of Lp Banach lattices does
not have “enough d-finite elements”. Other continuous theories, like that of
probability algebras or Hilbert spaces, do have this property. In Section 3
we prove Vaught’s theorem under the assumption of enough d-finites, and in
Section 4 we prove Lachlan’s theorem under (almost) the same assumption.

We will use continuous first order logic as a framework for the model
theory of metric structures. We will assume the reader is familiar with it.
For general background we refer the reader to [BU, BBHU]. Much of the
time we will work in T eq, which is obtained from a theory T as in [BU,
Section 5] (once we know how to add a single imaginary sort we can iterate
this and add them all).

Most of the time we work implicitly inside a very saturated and homo-
geneous monster model. Thus all sets and tuples are considered to be taken
inside such a model, and all models are elementary substructures of the
monster model.

Given a set of parameters A and some logical property s(x) defining an
A-invariant set, we use [s]S(A) to denote the set

{p ∈ S(A) : p(x) implies s(x)}.

If A is clear from the context we may omit the superscript. Note that s(x)
may be a partial type, but also something of the form ϕ(x) < r (in which
case [s] is open).

We remind the reader that the symbols ∨ and ∧, which are used in
classical logic to denote disjunction and conjunction, respectively, are also
used in continuous first order logic as pointwise maximum and minimum of



d-finiteness in continuous structures 69

formulae (i.e., join and meet, respectively, in the lattice of continuous first
order formulae). This means that a statement of the form (ϕ ∧ ψ) ≤ r is
semantically equivalent to the disjunction (ϕ ≤ r) ∨ (ψ ≤ r), and similarly
for (ϕ ∨ ψ) ≤ r and (ϕ ≤ r) ∧ (ψ ≤ r). While in principle there should
not be any ambiguity, this could turn out to be a little confusing, so in this
paper we will do our best to restrict the use of the symbols ∨ and ∧ to their
lattice-theoretic meaning.

1. Preliminaries. Recall that every sort, be it the home sort(s) or any
imaginary sort, comes equipped with an intrinsic metric. For finite tuples
(of the same length, and coordinatewise in the same sorts) a<n and b<n
we may define d(a, b) = max{d(ai, bi) : i < n}. (We can view the sort of
n-tuples as the sort of canonical parameters for the formula ϕ(x<n, y<n) =∨
i<n d(xi, yi): the canonical parameter for ϕ(x, a) is precisely a, and the

metric on this sort is the one given above.)
This approach is not adequate when considering infinite tuples (which

we may wish to do). In the case of countable tuples we could cheat our way
out by defining d(a<ω, b<ω) =

∑
2−n−1(1 ∧ d(ai, bi)). A better approach,

which is less arbitrary and extends well to uncountable tuples as well, is
simply to define d(a∈I , b∈I) as the I-tuple (d(ai, bi) : i ∈ I) ∈ [0,∞]I , and
redefine the way we compare I-tuples in [0,∞]:

Definition 1.1. By a distance we mean a member ε ∈ [0,∞]. Let ε, δ ∈
[0,∞]I .

(i) We say that ε ≥ δ if εi ≥ δi for all i ∈ I.
(ii) We say that ε > δ if εi > δi for all i ∈ I and εi = ∞ for all but

finitely many i ∈ I. For the purpose of this definition ∞ <∞.
(iii) When comparing an I-tuple of distance with a single distance we

treat the single distance as if it were an I-tuple whose every coordi-
nate is that distance. (Thus ε > 0, which is by far the most common
instance of this rule, means that εi > 0 for all i, and εi = ∞ for all
but finitely many i.)

We can now define a uniform structure on the space of I-tuples: the
vicinities are given by positive tuples of distances (i.e., tuples satisfying ε > 0
according to Definition 1.1). For finite and countable tuples, this uniform
structure coincides with that defined by the metric in our first approach,
while for any tuple length it is the inverse limit of the metric structures on
the respective spaces of finite sub-tuples, justifying Definition 1.1(iii).

We recall that for all n (and sets of parameters A), the type of space
Sn(T ) (or Sn(A)) is a compact Hausdorff topological space, whose closed
sets are precisely the sets of the form [p(x)] where p is a partial type (over
A), and for which the family of sets of the form [ϕ(x) < 1/2], where ϕ is a
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formula (with parameters in A), forms a basis of open sets. We also put a
metric structure on this type space: d(p, q) is the infimal distance between
realisations of p and q (where distance between tuples is as above).

Notation 1.2.

(i) For a (partial) type p(x) and distances ε, p(xε) denotes the partial
type saying that p is satisfied somewhere in the ε-neighbourhood
of x, i.e.

p(xε) = ∃y (p(y) ∧ d(x, y) ≤ ε).

Here the existential quantifier should be understood as “there exists
in an elementary extension”. This is definable by a partial type by
[BU, Fact 3.13].

(ii) If p(x, y) is a (partial) type and a a tuple of the same length as y,

then p(xε, aδ) is the obvious things, i.e., the result of substituting a

for y in p(xε, yδ).

(iii) Finally, if p(x, y) = tp(a, b), then tp(aε/b
δ
) denotes p(xε, b

δ
).

Thus, following Definition 1.1(iii), and when dealing with types in finitely
many variables, say types in Sn(T ), we have

[p(xε)] = {q ∈ Sn(T ) : d(p, q) ≤ ε}.

Definition 1.3. A structureM is approximately ω-saturated if for every
finite tuple a ∈ M , every type p(x, a) ∈ S1(a) and every ε > 0, there is
b′ ∈M realising p(xε, aε).

This is equivalent to the following apparently stronger condition:

Fact 1.4. Assume that a structure M is approximately ω-saturated.

Then for every finite tuple a ∈ M , every type p(x, a) ∈ S(a) in at most

countably many variables, and every ε > 0, there is a tuple a′ in M such

that d(a, a′) ≤ ε and p(x, a′) is realised in M .

Proof. Step I. We show that the definition of approximate ω-saturation
holds with any finite tuple of variables (rather than a single one). Indeed,
let p(x<n, a) ∈ Sn(a) for some finite tuple a ∈M . For i ≤ n, let pi(x<i, y) =
p(x<n, y)↾(x<i,y).

We will choose b<n ∈M such that for all i ≤ n: � pi(b
(1−2−i)ε
<i , a(1−2−i)ε).

• For i = 0, this is true (b<0 is the empty tuple, and � p0(a)).

• Now assume that i < n, and b<i as above are already chosen. Then in
some elementary extension of M there are b′<n such that � p(b′<n, a

(1−2−i)ε)
and d(b<i, b

′
<i) ≤ (1 − 2−i)ε, which yields

� pi+1(b<i
(1−2−i)ε, b′i, a

(1−2−i)ε).
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Approximate ω-saturation yields bi ∈ M realising tp(b′i
ε/2i+1

/(b<ia)
ε/2i+1

).

Adding up distances we see that � pi+1(b≤i
(1−2−i−1)ε, a(1−2−i−1)ε), as re-

quired.
Thus p(xε<n, a

ε) is realised by b<n ∈M .

Step II. We now consider the general case of p(x<ω, a), and show that
p(x<ω, a

ε) is realised in M . For n < ω, let pn(x<n, y) = p(x<ω, y)↾(x<n,y).
For each n < ω we will choose an n-tuple bn<n ∈ M with the property

that � pn((b
n
<n)

ε/2n
, a(1−2−n)ε):

• For n = 0, this holds trivially.
• Given bn<n, we know there are c<ω in someN �M such that d(c<n, b

n
<n)

≤ ε/2n and � p(c<ω, a
(1−2−n)ε). By the first step there is an (n + 1)-tuple

bn+1
<n+1 ∈ M realising tp(c

ε/2n+1

<n+1 /(b
n
<n)

ε/2n+1

, aε/2
n+1

). Thus in particular we

have � pn+1((b
n+1
<n+1)

ε/2n+1

, a
(1−2−n−1)ε
n+1 ), and the construction may proceed.

It follows from the construction that

d(bn<n, b
n+1
<n ) ≤

ε

2n+1
+

ε

2n
+

ε

2n+1
=

ε

2n−1
.

Thus, for each i < ω, the sequence (bn+i+1
i : n < ω) is a Cauchy sequence

which converges to some bωi ∈M . Clearly � p(bω<ω, a
ε).

Step III. Given p(x<ω, a), let q(x<ω, y, a) := p(x, y)∧y = a. Then this is
a complete type in countable many variables over finitely many parameters
inM , and by the second step there are b<ω, a

′ ∈M such that � q(b<ω, a
′, aε),

which means that � p(b<ω, a
′) and d(a′, a) ≤ ε, as required. 1.4

Fact 1.5. Any two elementarily equivalent separable approximately ω-

saturated structures are isomorphic.

Proof. This was first observed by C. Ward Henson, but no proof exists
in current literature.

Let M and N be two separable approximately ω-saturated models. Let
M0 = {ai : i < ω} and N0 = {bi : i < ω} be countable dense subsets of M
and N , respectively.

We will construct a sequence of elementary mappings fi : Ai → N and
gi : Bi →M , where Ai ⊆M and Bi ⊆ N are finite, such that:

(i) A0 = B0 = ∅, and for i > 0,

Ai+1 = a≤i ∪Ai ∪ gi(Bi), Bi+1 = b≤i ∪Bi ∪ fi+1(Ai+1).

(ii) For all c ∈ Ai, d(c, gi ◦ fi(c)) ≤ 2−i.
(iii) For all c ∈ Bi, d(c, fi+1 ◦ gi(c)) ≤ 2−i.

We start with f0 = ∅, which is elementary as we assume that M ≡ N .
Assume that fi is given. Then Ai is given, and is finite by the induction

hypothesis, and this determines Bi which is also finite. Fix enumerations
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for Ai and Bi as finite tuples, and let p(x, y) = tpN (Bi, f(Ai)). As fi is
elementary, p(x,Ai) is a consistent type over M , and by approximate ω-
saturation there are tuples B′

i, A
′
i ⊆ M such that d(Ai, A

′
i) ≤ 2−i and M �

p(B′
i, A

′
i). Then gi : Bi 7→ B′

i will do.
We construct fi+1 from gi similarly.
We now have, for all c ∈ Ai,

d(c, gi ◦ fi(c)) ≤ 2−i → d(fi+1(c), fi+1 ◦ gi ◦ fi(c)) ≤ 2−i

→ d(fi+1(c), fi(c)) ≤ 2−i+1.

Therefore the sequence of mappings fi converges to a mapping f : A → N ,
where A =

⋃
Ai, and by uniform continuity of the language, f is elementary.

As M0 ⊆ A we have A = M , and as f is an isometry it extends uniquely to
a mapping f : M → N . Again by uniform continuity, f is elementary. An
elementary mapping g : N → M is constructed similarly. For i < j < ω we
have

d(ai, g ◦ f(ai)) ≤ d(ai, g ◦ fj(ai)) + 2−j+2

≤ d(ai, gj+1 ◦ fj(ai)) + 2−j+1 + 2−j+2

≤ 2−j + 2−j+1 + 2−j+2 ≤ 2−j+3.

By letting j → ∞ we see that g ◦ f is the identity on M0, and therefore
on M . Similarly f ◦ g = idN . 1.5

Definition 1.6. Let p(x) ∈ S(A), and let a be a tuple of the same
length as x. Then d(a, p) is defined as inf{d(a, b) : � p(b)}, where b varies
over all tuples of appropriate length in the monster model.

(Note that by applying compactness to the partial type p(x)∪{d(a, x) ≤
d(a, p) + 1/n : n < ω}, we see that the infimum is in fact attained in the
monster model.)

Definition 1.7. Let p(x) ∈ S(A). We say that p is isolated if the pred-
icate a 7→ d(a, p) is definable (with parameters from A). If ϕ(x,A) is an
A-definable predicate such that d(x, p) = ϕ(x,A), we say that ϕ(x,A) iso-

lates p.

Fact 1.8. Let p(x) ∈ S(A). Then the following are equivalent :

(i) p is isolated.

(ii) For every ε > 0, the set [p(xε)] ⊆ S(A) has non-empty interior.

(iii) For every ε > 0, the set [p(xε)] ⊆ S(A) forms a neighbourhood of p.
(iv) For every ε > 0 there is a formula ϕ(x,A) such that

p(x) ⊢ ϕ(x,A) = 0, ϕ(x,A) ≤ 1/2 ⊢ p(xε).

(v) There is an A-definable predicate ϕ(x,A) such that p(x) ⊢ ϕ(x,A)
= 0, and always d(x, p) ≤ ϕ(x,A).
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Proof. (i)⇒(ii). Clear.

(ii)⇒(iii). For every ε > 0, the set [p(xε/3)] contains a non-empty open
set, which may be taken to be of the form [ϕ(x,A) < ε/2] where infx ϕ(x,A)
= 0. Let

ψ(x,A) = inf
y

(ϕ(y,A) ∨ d(x, y)).

(Here d(x, y) =
∨
i d(xi, yi).) Then

p ∈ [ψ(x,A) < ε/2] ⊆ [p(xε)].

(iii)⇒(iv). We have ϕ(x,A) and r such that p ∈ [ϕ(x,A) < r] ⊆ [p(xε)].
By subtraction and re-scaling we may assume that p ⊢ ϕ(x,A) = 0 and
r = 1/2.

(iv)⇒(v). For all n < ω choose ϕn(x,A) such that p(x) ⊢ ϕn(x,A) = 0
and

ϕn(x,A) ≤ 1/2 ⊢ p(x2−n−1

).

Now let

ϕ(x,A) =
∑

n<ω

2−nϕn(x,A).

(Here it is understood that the sum is truncated at 1.) Then ϕ(x,A) is an
A-definable predicate and clearly p(x) ⊢ ϕ(x,A) = 0. On the other hand, if
a does not realise p let n be such that

2−n ≥ d(a, p) > 2−n−1.

Then ϕm(a,A) > 1/2 for all m ≥ n, and so ϕ(a,A) ≥ 2−n, as required.

(v)⇒(vi). Given ϕ as in the assumption we have

d(x, p) = inf
y
d(x, y) + ϕ(y,A). 1.8

The omitting type theorem has been proved in [Ben05] in a somewhat
different setting, namely that of Hausdorff cats. Since every continuous first
order theory is in particular an (open) Hausdorff cat, the result we will need
here is a special case of [Ben05, Theorem 3.17]. However, for the benefit of
the reader who is not familiar with the cat setting, we will go quickly through
the proof again. In addition, there was a small mistake in the statement of
the result there regarding the omission of n-types for n > 1, which we correct
here.

Lemma 1.9. Let T be a countable theory , M � T and a = (ai : i < ω)
∈Mω. Write a �M if there is an elementary submodel M0 �M such that

every tail (ai : k < i < ω) is dense in M0. Then there is a co-meagre set

Y ⊆ Sω(T ) such that if M � T , a ∈Mω and tpM (a) ∈ Y then a �M .
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Proof. Indeed, let ϕ(x<n, y) be any formula, where some of the variables
may be dummies, and let 0 ≤ r < s ≤ 1 be rational. Define

Yϕ,r,s = [inf
y
ϕ(x<n, y) > r] ∪

⋃

k<ω

[ϕ(x<n, xn+k) < s] ⊆ Sω(T ),

Yϕ =
⋂

{Yϕ,r,s : 0 ≤ r < s ≤ 1 and r, s ∈ Q},

Y =
⋂

{Yϕ : ϕ(x, y) ∈ L}.

Then Yϕ,r,s is clearly open. To see that it is also dense, let p ∈ Sω(T ), say
realised in a model M by some a. If infy ϕ(a<n) > r then p ∈ Yϕ,r,s, so
assume infy ϕ(a<n, y) ≤ r. Then there is some b∈M such that ϕ(a<n, b)<s.
Let U be any neighbourhood of p; we may assume it is of the form [ψ(x<m)
< 1] where m ≥ n. Define bi = ai for i < m and bi = b for b ≥ m. Then
tpM (b) ∈ U ∩ Yϕ,r,s, so Yϕ,r,s is dense. It follows that each Yϕ is co-meagre,
and since the language is countable, Y is co-meagre.

Assume now that M � T , a ∈ Mω and tp(a) ∈ Y . Let M0 be the
closure in M of the set {ai : i < ω}. For each formula ϕ(x<n, y) ∈ L we have
tp(a) ∈ Yϕ, and hence

inf
y
ϕ(a<n, y)

M = inf{ϕ(a<n, b)
M : b ∈M0}.

Thus M0 � M by the Tarski–Vaught test. Moreover, by adding dummy
variables we obtain, for every k ≥ n,

inf
y
ϕ(a<n, y)

M = inf{ϕ(a<n, am)M : k ≤ m < ω}.

Applying this to the formula d(xn−1, y) we see that {an : k ≤ n < ω} is
dense in M0 for all k. 1.9

Fact 1.10. For any two ordinals (or even mere index sets) α, β,
every mapping f : α → β induces a mapping f∗ : Sβ(T ) → Sα(T ) send-

ing tp(ai : i < β) 7→ tp(af(i) : i < α). The mapping f∗ is continuous, and if

f is injective then f∗ is open. (We then say that if T is a continuous first

order theory then α 7→ Sα(T ) is an open type space functor).

Proof. For continuity, observe that for i0, . . . , in−1 < α,

f∗−1([ϕ(xi0, . . . , xin−1
) < r]) = [ϕ(xf(i0), . . . , xf(in−1)) < r].

If f is injective, then up to a permutation of the indices we may assume that
it is the inclusion α ⊆ β. Then for all i0, . . . , in−1 < α ≤ j0, . . . , jm−1 < β,

f∗([ϕ(xi0, . . . , xin−1
, xj0 , . . . , xjm−1

) < r])

= [ inf
xj0

,...,xjm−1

ϕ(xi0 , . . . , xin−1
, xj0 , . . . , xjm−1

) < r]. 1.10
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Theorem 1.11 (Omitting types theorem, strong form). Let T be a

countable theory , and for each n let Xn ⊆ Sn(T ) be a meagre set. Then

there exists a model M � T such that for each n < ω a dense subset of Mn

omits every type in Xn.

Proof. The proof consists of several steps.

First we recall that Sω(T ) is the type space of ω-tuples of elements in
models of T , and that this is a compact Hausdorff space. In particular it has
the Baire property, i.e., a co-meagre set is never empty.

Second, using Lemma 1.9 and following its notation we have a co-meagre
set Y ⊆ Sω(T ) such that for every M � T and a ∈ Mω, if tp(a) ∈ Y then
a �M .

Third, by Fact 1.10, if Xn ⊆ Sn(T ) is meagre and f : n →֒ ω is injective
then f∗−1(Xn) ⊆ Sω(T ) is meagre as well.

We conclude that

Z = Y \
⋃

n<ω, f : n→֒ω

f∗−1(Xn) ⊆ Sω(T )

is co-meagre and therefore non-empty. Let p ∈ Z and realise p by some
a ∈ N � T . Let M = {ai : i < ω}. Then M � N , so M � T . Also, for each
n < ω let Mn = {(ai0 , . . . , ain−1

) : i0 < · · · < in−1 < ω}. Then Mn is dense
in Mn and omits every type in Xn. 1.11

Remark 1.12. From the statement of [Ben05, Theorem 3.17] it would
follow that we can have Mn = Mn

1 for all n, which is not true: for example,
X2 = [d(x0, x1) = 0] ⊆ S2(T ) may be nowhere-dense, but cannot be omitted
from M2

1 .

Corollary 1.13. Let T be a countable theory , and let p ∈ Sn(T ) be a

non-isolated type. Then T has a model omitting p.

Proof. If p is non-isolated then there is an ε > 0 such that [p(xε)] ⊆ S(T )
has empty interior, and is in particular meagre. Let M � T contain a dense
subset omitting p(xε). ThenM omits p (and in fact p(xε

′

) for all ε′ < ε). 1.13

Fact 1.14 (Ryll-Nardzewski theorem for continuous logic). Let T be a

complete countable theory. Then the following are equivalent :

(i) T is ω-categorical.

(ii) Every n-type over the empty set is isolated , for all n.
(iii) Every model of T is approximately ω-saturated.

(iv) Every separable model of T is approximately ω-saturated.

(v) The metric on Sn(T ) coincides with the logic topology for all n.
(vi) The metric on Sn(T ) is compact for all n.

(This was known to C. Ward Henson for a long time.)
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Proof. (i)⇒(ii). By Corollary 1.13, a non-isolated type can be omitted
in a separable model, and of course can be realised in another.

(ii)⇒(iii). Let M � T , a ∈ M finite, and b ∈ N ≻ M . Then p(x, y) =
tp(ba) is isolated by a definable function ϕ(x, y) = d(xy, p). Then N �

infy ϕ(y, a) = 0, and hence M � infy ϕ(y, a) = 0, so for every ε > 0 there is
c ∈M such that ϕ(c, a) ≤ ε, i.e., � p(cε, aε).

(iii)⇒(iv). Clear.

(iv)⇒(i). By Fact 1.5.

(ii)⇔(v). The metric always refines the logic topology, since all the for-
mulae are uniformly continuous. By Fact 1.8, the logic topology refines the
metric if and only if all the types are isolated.

(v)⇔(vi). Since the metric topology refines the logic topology which is
compact and Hausdorff. 1.14

Definition 1.15. A theory T is small if for all n the density character
of Sn(T ) in the metric topology (denoted ‖Sn(T )‖) at most countable.

Proposition 1.16. A theory T is small if and only if it has a separable

approximately ω-saturated model.

Proof. Clearly, if T has a separable ω-saturated model then T is small.
Conversely, assume that T is small. Then we may assume that the language
L of T is countable: otherwise, there is a countable sublanguage L0 ⊆ L
such that any two distinct types of T differ on an L0-formula, and we may
reduce everything to L0.

As T is small, choose for every n < ω a countable dense subset Xn ⊆
Sn(T ), and for every p ∈ Xn introduce a new n-ary predicate symbol p̂

with the identity as uniform continuity modulus. Let L̂ be the expanded
language.

Let M � T be ω-saturated. Expand it to an L̂-structure M̂ by interpret-
ing p̂(x) as d(x, p). As |L̂| ≤ ω, M̂ has a separable elementary submodel

N̂ � M̂ . Let N = N̂↾L. Then in particular N �M is a model of T .

Now let a ∈ Nm be a finite tuple and p(x, a) ∈ Sn(a). By ω-saturation
there are b ∈M realising p. Let ε > 0 be also given. Then there is q ∈ Xn+m

such that d(q, p) < ε, and so q̂(b, a) < ε. As N̂ � M̂ ,

(inf
x
q̂(x, a))N̂ = (inf

x
q̂(x, a))M̂ < ε.

Therefore there exists c ∈ N̂ such that q̂(c, a) < ε. By definition of q̂ we
have � q(cε, aε) and thus � p(c2ε, a2ε). This shows that N is approximately
ω-saturated. 1.16

Proposition 1.17. Assume T is small. Then T has an atomic model

(i.e., a model only realising isolated types).
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Proof. For every n < ω and ε > 0, let Xn,ε ⊆ Sn(T ) be the union
of all open subsets of Sn(T ) of diameter smaller than ε. Let Kn,ε be the
complement of Xn,ε: this is a closed subset of Sn(T ).

Assume that K◦
ε,n 6= ∅ for some n, ε. Then by construction every open

subset of Kε,n has diameter greater than ε, and by a tree argument we can
find continuum many types in Kn,ε with the distance between any two being
at least ε/2, contradicting smallness.

Therefore K◦
ε,n = ∅ for all n, ε and we can find a model M � T which

has a dense subset M0 ⊆ M omitting them all (just consider ε = 1/m for
m ≥ 1). Assume that p ∈ Sn(T ) is realised in M . Then for every ε > 0, we
know that p(xε) is realised in M0 (since M0 is dense), so [p(xε)] ∩Xn,ε 6= ∅
and thus [p(x2ε)] has non-empty interior. Then p is isolated by Fact 1.8, so
M only realises isolated types. 1.17

Proposition 1.18. Assume T is complete and countable and M � T .

Then M is prime if and only if M is atomic and separable.

Proof. Clearly if M is prime then it must be separable and atomic.
Conversely, assume M is separable and atomic. Let {ai : i < ω} enumerate
a dense subset. Viewing the tuple a<ω with the metric as defined in the
introduction we see that tp(a<ω) is isolated and therefore realised in every
model of T . As M = dcl(a<α), we obtain an elementary embedding of M
into every model of T . 1.18

2. d-finiteness

Definition 2.1. Let a and c be possibly infinite tuples, and let p =
tp(a/c). Here δ will denote a tuple of distances of the same length as a.

(i) We say that a is d-finite over c, or that p is d-finite, if for every tuple

b and a corresponding tuple of distances ε > 0 there is δ = δ
a/c
b,ε > 0

such that whenever a′ ≡c a and d(a, a′) ≤ δ, there is b′ such that
d(b, b′) ≤ ε and a′b′ ≡c ab.

(ii) We say that a is uniformly d-finite over c, and p is uniformly d-finite,

if for every tuple length α and ε > 0 of length α there is δ
a/c
α,ε > 0

such that for every tuple b of length α we can take δ
a/c
b,ε = δ

a/c
α,ε and

the same holds (i.e., δ
a/c
b,ε depends on |b| rather than on b).

If c = ∅ we omit it.

Note that when testing for (uniform) d-finiteness we may assume that
b is finite and ε is a single positive distance. Indeed, by Definition 1.1(iii),
if ε > 0 then it is equal to ∞ on all but finitely many coordinates, and we
may simply restrict to these coordinates. Then we may replace the tuple ε
with its minimum.
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Lemma 2.2. Let a, b and c be tuples, and assume that tp(a/c) and

tp(b/ac) are (uniformly) d-finite. Then so is tp(ab/c).

Proof. Let a tuple e and ̺ > 0 of the same length be given. Let ε =

δ
b/ac
e,̺/2 > 0 be given by d-finiteness of b over ac. Let δ = δ

a/c
be,(ε/2,̺/2) > 0 be

given by d-finiteness of a over c. We claim that δ
ab/c
e,̺ can be taken to be

(δ, ε/2), which is indeed positive.
Indeed, assume now that a′b′ ≡c ab are such that d(ab, a′b′) ≤ (δ, ε/2).

First, by choice of δ, there are b′′, e′ such that a′b′′e′ ≡c abe and d(b′′e′, be) ≤
(ε/2, ̺/2). Then b′ ≡a′c b′′ and d(b′, b′′) ≤ ε, so there is e′′ such that
d(e′, e′′) ≤ ̺/2 and b′e′′ ≡a′c b

′′e′. Then d(e, e′′) ≤ ̺, and a′b′e′′ ≡c abe.
Therefore the tuple ab is d-finite over c.
The proof for uniformly d-finite is similar. 2.2

Proposition 2.3. Let M be approximately ω-saturated , and let a ∈ M
be d-finite. Then M is approximately ω-saturated as a model of T (a) =
Th(M,a) (i.e., the theory of M with a named).

Proof. Let b, c be finite tuples, b ∈M , and p(z, b, a) = tp(c/ab) ∈ S(ab).
For every real number ε > 0 let δ = δabc,ε/2 (so we view ε/2 as a tuple of |bc|

repetitions of the number ε/2; it is positive as a tuple since |bc| < ω).
By approximate ω-saturation there exists c̃∈M realising p(zε/2, bε/2, aδ);

that is to say, there are a′, b′, c′ such that d(a, a′) ≤ δ, d(bc̃, b′c′) ≤ ε/2 and

� p(c′, b′, a′). By choice of δ there are b̃′, c̃ ′ such that d(b′c′, b̃′c̃ ′) ≤ ε/2 and

ab̃′c̃ ′ ≡ a′b′c′, so d(bc̃, b̃′c̃ ′) ≤ ε and � p(c̃ ′, b̃′, a). Therefore c̃ � p(zε, bε, a),
as required. 2.3

Corollary 2.4. Assume T is small and a ∈ M � T is d-finite. Then

T (a) = Th(M,a) is small.

Proof. As T is small, it has a separable approximately ω-saturated model
M , and we may assume that a ∈ M . Then (M,a) is a separable approxi-
mately ω-saturated model of T (a), which is therefore small. 2.4

Corollary 2.5. If M is an approximately ω-saturated model of T and

a ∈ M is d-finite then every type in at most countably many variables over

a is realised in M .

We can prove a converse to Proposition 2.3 under the assumption that
T is small.

Proposition 2.6. Let T be small , let a be a finite or countable tuple in

a model of T , and T (a) = Th(M,a). Then a is d-finite if and only if every

model of T (a) which is approximately ω-saturated as a model of T is also

approximately ω-saturated as a model of T (a).

Proof. One direction is just Proposition 2.3.
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For the other, we will improve on the proof of Proposition 1.16. Assume
that a is a tuple which is not d-finite. Then there are a finite tuple b and
ε > 0 which witness this. Let p(x, a) = tp(b/a).

Let M be as in the proof of Proposition 1.16, and we may assume in
addition that a ∈M and that M is sufficiently homogeneous and saturated
for what will follow. Let T̂ = Th

L̂
(M̂), and T̂ (a) = Th

L̂
(M̂, a). We claim

that the partial type p(xε/2, a) defines in S(T̂ (a)) a nowhere-dense set.

Indeed, assume otherwise. Then there is an L̂-formula ϕ(x, y) such that

ϕ(x, a) < 1/2 is consistent and implies p(xε/2, a). This means that M̂ �

infx ϕ(x, a) < 1/2, so there is c ∈ M such that ϕ(c, a) < 1/2, and c �

p(xε/2, a). As M is a sufficiently saturated model of T , there is c′ ∈M such
that d(c, c′) ≤ ε/2 and � p(c′, a): in fact, we might as well assume that
c′ = b. By uniform continuity of ϕ there is δ > 0 such that for all a′, if
d(a, a′) ≤ δ then ϕ(c, a′) < 1/2 as well.

By assumption on a and b, and by saturation of M , there exists a′ ∈M
such that a′ ≡L a and d(a, a′) ≤ δ and yet for no b′ ∈ M do we have
d(b, b′) ≤ ε and � p(b′, a′). By the homogeneity assumption there is an

automorphism f ∈ Aut(M) such that f(a) = a′. Then f ∈ Aut(M̂) as well,
so that a′ ≡

L̂
a. By choice of δ we have ϕ(c, a′) < 1/2, and since a′ ≡

L̂
a, this

implies that � p(cε/2, a′). Therefore there is b′ ∈ M such that d(b′, c) ≤ ε/2
and � p(b′, a′). Then d(b, b′) ≤ ε, contradicting the choice of a′.

Thus p(xε/2, a) indeed defines a nowhere dense set in S(T̂ (a)). Also, for

every q ∈ Xn (where Xn is as in the construction of L̂) and any two rationals
0 < r < s ≤ 1, the set defined by q(yr) ∧ q̂(y) ≥ s is closed and omitted

in M̂ , and is therefore also nowhere dense. Thus, by Theorem 1.11, there
exists a model (N̂ , a) � T̃ (a) in which p(x, a) is omitted, and for every

q ∈ Xn and c ∈ N̂n we have q̂(c) ≤ d(c, q). A compactness argument shows

that d(c, q) ≤ q̂(c) is simply a consequence of T̂ , so we may proceed as in

the proof of Proposition 1.16 to conclude that N = N̂↾L is approximately
ω-saturated as an L-structure. As it omits p(x, a), it is not approximately
ω-saturated once a is named. 2.6

Being d-finite is a property of tuples implying they are well-behaved.
One can derive from it a property defining well-behaved theories:

Definition 2.7. We say that T has enough d-finite elements if for every
single element in the home sort a, any tuple c, and ε > 0, there is an
imaginary b ∈ dcl(ac) such that:

(i) b is d-finite over c.
(ii) tp(a/bc) ⊢ d(x, a) ≤ ε (i.e., b “captures” aε over c).

Same for uniformly d-finite.
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Proposition 2.8. The following are equivalent :

(i) T has enough d-finite elements.

(ii) For every finite or countable tuple a, and every tuple c, there is a

sequence of imaginaries (bi : i < ω) such that each bi is d-finite over

cb<i, and a is interdefinable with b<ω over c.
(iii) For every finite or countable tuple a, and every tuple c, there is a

sequence of imaginaries (bi : i < ω) such that b<i is d-finite over c
for all i < ω, and a is interdefinable with b<ω over c.

(iv) Same for a single element a in the home sort.

Same for uniformly d-finite.

Proof. (i)⇒(ii). We may assume that a = a<ω is a countable tuple.
Choose some enumeration ((ni,mi) : i < ω) of ω2. Choose a sequence (bi :
i < ω) in dcl(a<ω, c) such that bi ∈ dcl(ani

cb<i) ⊆ dcl(a<ωc) is d-finite over
cb<i, and tp(ani

/cb<i) ⊢ d(x, ani
) ≤ 2−mi . It follows that tp(an/cb<ω) ⊢

x = an, i.e., a<ω ∈ dcl(cb<ω), as required.

(ii)⇒(iii). By Lemma 2.2.

(iii)⇒(iv). Clear.

(iv)⇒(i). Let a be a singleton, c a tuple, and ε > 0. By assumption
there is a sequence (bi : i < ω) of imaginaries such that dcl(ac) = dcl(b<ωc)
and b<i is d-finite over c for all i < ω. For all i < ω, let pi(x) = tp(a/b<ic).
Since a ∈ dcl(b<ωc), it is the unique realisation of

∧
i<ω pi(x). Therefore the

partial type d(x, a) ≥ ε∧
∧
i<ω pi(x) is inconsistent, so by compactness there

is some i < ω such that pi(x) ⊢ d(x, a) < ε. Thus b = b<i is the imaginary
we need. 2.8

Proposition 2.9. Let M be a structure, let a be a tuple in M eq, T =
Th(M) and T (a) = Th(M,a). Then the following are equivalent :

(i) T is ω-categorical and a is uniformly d-finite (over ∅).
(ii) T is ω-categorical and a is d-finite (over ∅).
(iii) T (a) is ω-categorical.

Proof. Clearly, uniform d-finiteness implies d-finiteness.

Assume now that T is ω-categorical and a d-finite. Then all separable
models of T are approximately ω-saturated, and by Proposition 2.3 so are
all the separable models of T (a), which is thereby ω-categorical.

Finally, assume that T (a) is ω-categorical. By Fact 1.14, T is ω-categor-
ical as well: since the metric on Sn(T (a)) is compact for all n it is also
compact on its quotient Sn(T ). So assume for contradiction that a is not
uniformly d-finite. Then there exist n and ε > 0 such that for all δ > 0
of the same length as a there exists an n-tuple bδ, and aδ ≡ a, such that
d(a, aδ) ≤ δ but there is no b′ satisfying d(bδ, b

′) ≤ ε and abδ ≡ aδb
′.
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Let pδ(a, y) = tp(bδ/a). By compactness, there exists a complete type
p(a, y) which is an accumulation point for these types: for every neighbour-
hood p ∈ U ⊆ S(a) and δ > 0 there is δ ≥ δ′ > 0 such that pδ′ ∈ U as
well.

By assumption, p(a, y) is isolated; there exists therefore a formula ϕ(a, y)
such that ϕ(a, y)p(a,y) = 0 and

ϕ(a, y) ≤ 1/2 ⊢ p(a, yε/2).

Find δ > 0 small enough such that ϕ(a, y)pδ < 1/4 (using the fact that
[ϕ(a, y) < 1/4] is a neighbourhood of p(a, y)), and in addition if d(a, a′) ≤ δ
then

sup
y

|ϕ(a, y) − ϕ(a′, y)| ≤ 1/4.

First, as ϕ(a, bδ) ≤ 1/2, we have bδ � p(a, yε/2), so there exists b′ � p(a, y)
such that d(b′, bδ) ≤ ε/2. But we also have ϕ(aδ, bδ) ≤ 1/2, so there exists
b′′ � p(aδ, y) such that d(b′′, bδ) ≤ ε/2. Choose an automorphism of the
universal domain sending ab′ to aδb

′′, and let b′δ be the image of bδ under
this automorphism.

Then d(b′δ, b
′′) = d(bδ, b

′) ≤ ε/2 so in all we have d(bδ, b
′
δ) ≤ ε and

abδ ≡ aδb
′
δ, contradicting the hypothesis. 2.9

Proposition 2.10. Assume that T is ω-categorical. Then dcl(∅), re-

stricted to the home sort (or to any other one sort), is compact (in the

metric topology of the universal domain).

Proof. Consider the mapping θ : dcl(∅) → S1(T ) sending a ∈ dcl(∅) to
tp(a). Since a ∈ dcl(∅) is the unique realisation of tp(a), θ is an isometric
embedding. As T is ω-categorical, S1(T ) is compact in the metric topology
(Fact 1.14), and hence totally bounded. Therefore dcl(∅) is totally bounded.
But dcl(∅) is also complete (any Cauchy sequence in dcl(∅) converges to an
element of the universal domain which must also be in dcl(∅)).

Therefore dcl(∅) is compact. 2.10

The next result is an analogue of the fact that if a and b are finite
tuples in a model of a classical first order theory and tp(ab) is isolated,
then so is tp(a/b). The requirement that b be d-finite below is not redun-
dant: as in the introduction, consider the case of the theory of Lp Banach
lattices: tp(χ[0,1], χ[1,2]) is isolated (since the theory is ω-categorical) but
tp(χ[0,1]/χ[1,2]) is not.

Proposition 2.11. Assume that tp(ab/c) is isolated and b is d-finite

over c. Then tp(a/bc) is isolated.

Proof. Let p(x, y) = tp(a, b/c). Given ε > 0, we want to show that

[p(xε, b)]◦⊆S(bc) is non-empty. Let δ=δ
b/c
a,ε/2>0. We know that [p(xε/2, yδ)]◦
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⊆ S(c) is non-empty, so let ϕ(x, y, c) be a formula such that ϕ(a, b, c) = 0
and [ϕ(x, y, c) < 1/2] ⊆ [p(xε/2, yδ)]◦.

Assume that a′ is such that ϕ(a′, b, c) < 1/2. Then there are a′′, b′

such that � p(a′′, b′) and d(a′′b′, a′b) ≤ (ε/2, δ). By choice of δ there is
a′′′ such that d(a′′′, a′′) ≤ ε/2 and a′′′b ≡c a

′′b′. Therefore d(a′, a′′′) ≤ ε and
� p(a′′′, b), so ϕ(x, b, c) < 1/2 ⊢ p(xε, b), as required. 2.11

Let us conclude with a few examples.

Example 2.12. Let T be a classical first order theory in a language L.
We can view the class of ω-powers of models of T , {Mω : M � T}, as a
continuous elementary class in the following manner. For every formula
ϕ(x<n) ∈ Lω,ω and m<n ∈ ωn let Pϕ,m be an n-ary predicate symbol,
2mi-Lipschitz in the ith argument for each i < n. Let L′ be a continuous
signature consisting of all these predicate symbols, plus the metric symbol d.

If M is an L-structure, interpret Mω as an L′-structure by

Pϕ,m(a<ω, b<ω, . . .) =

{
0 if M � ϕ(am0

, bm1
, . . .),

1 otherwise,

d(a<ω, b<ω) = inf{2−ℓ : a<ℓ = b<ℓ}.

Then the class of structures {Mω : M � T} is elementary, and let Tω denote
its theory.

It is easy to see that T is ω-categorical if and only if Tω is, M is ω-
saturated if and only if Mω is approximately so, etc. Also, T is superstable
if and only if Tω is.

The definition of d-finiteness tries to capture the distinction between ar-
bitrary elements a<ω ∈ Mω, which actually code infinite tuples, and ones
which only code a finite tuple from M , e.g., ones which are constant from
some point onwards. Indeed, let a<ω ∈Mω be constant from the nth coordi-
nate onwards, and let δ = 2−n−1. If a<ω ≡ a′<ω and d(a<ω, a<ω) ≤ δ then in
fact a<ω = a′<ω. It follows that δ witnesses (quite uniformly, too) that a<ω
is uniformly d-finite over any set of parameters. On the other hand, we leave
it to the reader to verify that if (ai : i < ω) is a non-constant indiscernible
sequence, then a<ω is not d-finite.

It follows that Tω admits enough uniformly d-finites: Indeed, let c be
any tuple of parameters, and a = a<ω. Define am = am<ω by am<m = a<m,
and amk = am for k ≥ m. Then tp(am/c, a<m) is uniformly d-finite, and a is
interdefinable with a<ω.

Example 2.13.The theory of atomless probability algebras admits enough

uniform d-finites. In fact , every finite tuple of vectors is uniformly d-finite

over any tuple of parameters.
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Proof. Let us first consider the case of a single event without param-
eters. Let a, a′ ∈ A , where A is the unique separable complete atomless
probability algebra, and assume that a ≡ a′ and d(a, a′) = µ(a ⊕ a′) ≤ ε.
Then µ(a) = µ(a′), which yields µ(ara′) = µ(a′ ra), and hence there is an
automorphism σ ∈ Aut(A ) exchanging a r a′ and a′ r a, and fixing every
b ∈ A which is disjoint from a⊕a′. In particular σ(a∧a′) = a∧a′, implying
that σ(a) = a′. On the other hand, for all b ∈ A we have b⊕ σ(b) ≤ a⊕ a′,
so d(b, σ(b)) ≤ ε.

We conclude that there is an automorphism sending a to a′ while moving
nothing by more than ε, so tp(a) is uniformly d-finite.

The same argument can be generalised to a finite tuple of events (gener-
ating an algebra with finitely many atoms, and we assume none of the atoms
moves much), and replacing probabilities with conditional probabilities also
to types over parameters. 2.13

Example 2.14. The theory of (the closed unit ball of ) Hilbert spaces

admits enough uniform d-finites. In fact , every finite tuple of events is uni-

formly d-finite over any tuple of parameters.

Proof. By moving to orthogonal components we may always assume
there are no parameters. Also, we may restrict our consideration to
tuples of orthogonal vectors of norm 1. Let v<n, w<n be two such tuples
(so v<n ≡ w<n) and assume that d(v<n, w<n) ≤ δ is small. Let V , W and U
be the spans of v, w and vw, respectively. Let V ⊥ and W⊥ be the orthogonal
complements of V and W , respectively, in U . Let u<m be an orthonormal
base for V ⊥. Write ui = u′i+u

′′
i where u′i ∈W⊥, u′′i ∈W . Then ‖u′′i ‖

2 ≤ nδ2,
so if we assume δ to be small enough the tuple u′<m is close to being or-
thonormal. Let û<m be the result of applying Gram–Schmidt to u′<m. Given
any ε > 0 we may choose δ > 0 small enough so that u′<m suffices to span
W⊥, so û<m is an orthonormal base for W⊥, and d(u<m, û<m) ≤ ε.

Let T be the automorphism of U sending the orthonormal base v<nu<m
to w<nû<m. Then ‖Tt − t‖ ≤ ε‖t‖ for every t ∈ U . We can now extend T
to an automorphism of any ambient Hilbert space by setting it to be the
identity on the orthogonal complement. We conclude there is an automor-
phism sending v to w and moving nothing in the unit ball by more than ε.
It follows that v is uniformly d-finite. 2.14

Example 2.15. Let 1 ≤ p < ∞, and let T be the theory of atomless Lp

Banach lattices [BBH]. Then the type of any non-zero function over ∅ is

non-d-finite. It follows that T does not admit enough d-finites.

Proof. Let us start with the specific example of f = χ[0,1] in Lp(R). Let

δ > 0 and let g = (1 + δ)−1/pχ[0,1+δ], h = δ−1/pχ[1,1+δ]. Then ‖g‖ = ‖f‖ =
‖h‖ = 1 and all are positive so f ≡ g by quantifier elimination in T . Also,
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‖f − g‖p ≤ δ/p + δ ≤ 2δ. On the other hand, if h′ is such that fh ≡ gh′

then necessarily ‖h−h′‖p = 21/p > 1. Thus no δ > 0, however small, is good
enough for ε = 1. A similar argument shows that no non-zero function is
d-finite (over ∅). 2.15

3. Vaught’s theorem. Assume in this section that T is complete in a
countable language and has enough d-finite elements.

Lemma 3.1. Assume T is not ω-categorical. Then there is a d-finite type

p(x) ∈ S(T ) which is not isolated.

Proof. As T is not ω-categorical, there is a type q(y) ∈ S(T ), where y is
a finite tuple of variables, which is not isolated. Therefore there exists ε > 0
such that [q(yε)] is nowhere-dense in S(T ). Let b � q. As T has enough d-
finite elements, there is a ∈ dcl(b) which is d-finite, and tp(b/a) ⊢ d(y, b) < ε.
We claim that p = tp(a) is not isolated.

Assume, towards a contradiction, that p is isolated. By a compactness
argument there is a formula ϕ(x, y) such that ϕ(a, b) = 0 and

(ϕ(x, y) ∨ ϕ(x, y′)) ≤ 1/2 ⊢ d(y, y′) < ε.(∗)

By uniform continuity there is also δ > 0 such that

d(x, x′) ≤ δ ⊢ |ϕ(x, y) − ϕ(x′, y)| ≤ 1/4.(∗∗)

As p was assumed to be isolated, there is a formula ψ(x) such that ψ(a) = 0
and

ψ(x) ≤ 1/2 ⊢ p(xδ).(∗∗∗)

Let χ(y) = infx(ϕ(x, y) ∨ ψ(x)), so clearly χ(b) = 0. Also, assume that b′

is any tuple such that χ(b′) < 1/4. Then there is a′ such that ϕ(a′, b′) ∨
ψ(a′) < 1/4. In particular ψ(a′) < 1/2, so by (∗∗∗) there is a′′ � p such
that d(a′, a′′) ≤ δ, and up to applying an automorphism we may assume
that a′′ = a. By (∗∗), ϕ(a, b′) < 1/2, and by (∗), d(b′, b) < ε, so b′ � q(yε).
We have thus shown that [χ(y) < 1/4] defines a non-empty open subset of
[q(yε)], contradicting the choice of ε. 3.1

Theorem 3.2 (Vaught’s theorem for continuous logic). Assume T has

enough d-finite elements. Then T cannot have precisely two non-isomorphic

separable models.

Proof. Assume for contradiction that T has precisely two separable mod-
els. Then T is not ω-categorical, so it has a non-isolated d-finite type p(x),
which is therefore omitted in some separable model of T . As T has only
countably many separable models it is necessarily small, so it has a sepa-
rable model which is approximately ω-saturated, and therefore realises p.
Thus a separable model of T is approximately ω-saturated if and only if it
realises p.
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Let a � p. Then every separable model of T (a) is a model of T realising p,
and is therefore approximately ω-saturated as a model of T . By Proposi-
tion 2.3, a separable model of T (a) is also approximately ω-saturated as a
model of T (a). By Fact 1.5, T (a) is ω-categorical, and therefore so must be
T , by Proposition 2.9. Contradiction. 3.2

4. Lachlan’s theorem. In this section we will need the somewhat
strong notion of a uniformly d-finite tuple. We adapt the proof of Lach-
lan’s theorem from [Pil83] to our setting.

Definition 4.1. Let a and b be finite tuples, and A a set. We say that
a semi-isolates b over A if there exists an A-definable predicate ϕ(x, y) such
that ϕ(a, b) = 0, and for all c,

d(c, tp(b/A)) ≤ ϕ(a, c).

We then say that ϕ(a, y) witnesses that a semi-isolates b over A.

Lemma 4.2. Let a, b and A be as above, and p(y) = tp(b/A). Then a
semi-isolates b over A if and only if for every ε > 0 there is a formula ϕ(x, y)
with parameters in A such that ϕ(a, b) = 0 and ϕ(a, y) ≤ 1/2 ⊢ p(yε).

Proof. Left to right is easy. For right to left, notice that the right con-
dition can be read as: for every ε > 0 there is a neighbourhood of tp(b/a)
whose pull-back to Sn(aA) (where |b| = n) contains the pull-back of p(yε)
there. By an Urysohn-lemma-style argument, there is a continuous mapping
ϕ : Sn(a) → [0, 1] which is 0 at tp(b/a), and for every ε > 0, the pull-back
of [ϕ ≤ ε] to Sn(aA) contains the pull-back of p(yε) there. But this is just a
re-statement of the left condition. 4.2

Lemma 4.3. Assume that a semi-isolates b over A and b semi-isolates c
over A. Then a semi-isolates c over A.

Proof. Let ϕ(a, y) witness that a semi-isolates b over A, and let ψ(b, z)
witness that b semi-isolates c over A. Let uψ,y be the inverse continuous
uniform continuity modulus, as defined in [BU, Appendix A], of ψ(y, z)
with respect to y, and let

̺(x, z) = inf
y

(uψ,y ◦ ϕ(x, y) + ψ(y, z)).

Then ̺(a, z) witnesses that a semi-isolates c over A. 4.3

Notation 4.4. Let aε |⌣c
b mean there is a tuple a′ ≡c a such that

d(a, a′) ≤ ε and a′ |⌣c
b (i.e., tp(aε/bc) ∪ tp(a/c) does not divide over c).

It is easy to see that a |⌣c
b if and only if aε |⌣c

b for all ε > 0.

Lemma 4.5. Assume T is stable. Let a and b be finite tuples, A a set ,
p(y) = tp(b/A), ε > 0 and ϕ(x, y) a formula such that :
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(i) ϕ(a, b) = 0.
(ii) ϕ(a, y) < 1/2 ⊢ p(yε).
(iii) [p(y3ε)] is nowhere dense in Sy(A).

Then bε 6 |⌣A
a. Therefore, in particular , if a semi-isolates b over A, but

p(y) = tp(b/A) is not isolated , then a 6 |⌣A
b.

Proof. Assume for contradiction that bε |⌣ a, so there is c such that
d(b, c) ≤ ε and c |⌣A

a. Let

X = {q ∈ Sn(aA) : q does not divide over A} ⊆ Sn(aA).

Then the restriction mapping θ : X → Sn(A) is open by the open mapping
theorem.

Let

ψ(x, y) = inf
z

(
ϕ(x, z) +

d(z, y)

4ε

)
.

Then ψ(a, y) < 1/2 ⊢ p(y3ε). Let

Y = X ∩ [ψ(a, y) < 1/2].

Then Y ⊆ X is relatively open, and therefore so is θ(Y ) ⊆ [p(y3ε)]. On the
other hand, ψ(a, c) ≤ 1/4 < 1/2, and c |⌣A

a, so tp(c/Aa) ∈ Y 6= ∅.

Thus [p(y3ε)] contains a non-empty open set, contrary to the assump-
tion. 4.5

Lemma 4.6. Assume that T is superstable. Then there are no finite

(imaginary) tuples a, a′, b′ and c′, and ε > 0, such that if p(z) = tp(c′)
then:

(i) a ≡ a′, and they are uniformly d-finite.

(ii) tp(a′b′/a) is isolated.

(iii) tp(c′/a′b′) ⊢ d(z, c′) < ε.
(iv) a′ |⌣ c′.

(v) [p(z3ε)] is nowhere dense in S(∅).

Proof. Assume that such tuples exist. Construct a sequence (aibici : i<ω)
by induction as follows. Start with a0 = a. At the nth step, given a≤n, b<n
and c<n, choose an+1bncn such that:

(i) anan+1bncn ≡ aa′b′c′.
(ii) an+1bncn |⌣an

a<nb<nc<n.

Then an+1 |⌣cn for all n, and by induction on n one proves that an+1cn |⌣c<n.
In particular, (cn : n < ω) is an independent sequence. Using Lemma 4.3 one
can also prove that a (= a0) semi-isolates an, and therefore an+1bn, for all n.

By compactness there is a formula ψ(xy, z) such that ψ(a′b′, c′) = 0 and
ψ(a′b′, z) ≤ 1/2 ⊢ d(c′, z) < ε. Let uψ,xy be its inverse uniform continuity
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modulus with respect to the first group of variables. Let χn(a, xy) witness
that a semi-isolates an+1bn. Let

ϕn(a, z) = inf
xy

uψ,xy(χn(a, xy)) + ψ(xy, z).

Then ϕn(a, cn) = 0, and ϕn(a, z) < 1/2 ⊢ p(zε). By Lemma 4.5, cεn 6 |⌣ a for
all n.

Now use the assumption that a is uniformly d-finite, and let δ=δa|c′|,ε>0.

By superstability there is n such that aδ |⌣c<n
c<ω. Therefore there is a′ ≡ a

such that d(a, a′) ≤ δ and a′ |⌣c<n
c<ω. By independence of (ci : i < ω) we

get a′ |⌣ cn. By choice of δ there is c′n such that d(cn, c
′
n) ≤ ε and c′na ≡ cna

′.
But then a |⌣ c′n, so c′n witnesses that cεn |⌣ a. Contradiction. 4.6

Theorem 4.7. Assume T is superstable and has enough uniformly d-
finite elements. Then T is either ω-categorical or has infinitely many sepa-

rable models.

Proof. Assume that T has finitely many countable models, but more
than one, and we will prove it cannot be superstable.

Since T has few separable models it is small. Therefore it has a sepa-
rable and approximately ω-saturated model M . By Proposition 2.8, M is
interdefinable with a sequence (ai : i < ω) such that tp(ai/a<i) is uniformly
d-finite for all i.

By Lemma 2.2, a<n is uniformly d-finite for all n. It follows that T (a<n)
is small by Corollary 2.4, and therefore has a prime model. In other words, T
has a prime model over a<n. Since there are only finitely many possibilities
for the prime model over a<n, there is n such that the prime model over
a<n realises tp(a<m) for all m. Let a = a<n.

As T is also assumed to be non-ω-categorical, there is c such that p(z) =
tp(c) is non-isolated. Therefore there is ε > 0 such that [p(z3ε)] is nowhere
dense. Since M is approximately ω-saturated over a, we may assume that
c ∈ M and c |⌣ a. Since c ∈ M = dcl(a<ω), there is m < ω such that
tp(c/a<m) ⊢ d(z, c) < ε. Let b = a<m.

Then ab = a<na<m, so by choice of n there are a′b′ in the prime model
over a realising tp(ab). Find c′ such that abc ≡ a′b′c′. Then the existence of
aa′b′c′ shows that T cannot be superstable, by Lemma 4.6. 4.7
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