Finite-to-one continuous s-covering mappings

by

Alexey Ostrovsky (München)

Abstract. The following theorem is proved. Let $f : X \to Y$ be a finite-to-one map such that the restriction $f|f^{-1}(S)$ is an inductively perfect map for every countable compact set $S \subset Y$. Then Y is a countable union of closed subsets Y_i such that every restriction $f|f^{-1}(Y_i)$ is an inductively perfect map.

All spaces in this paper are supposed to be separable and metrizable and all the mappings $f: X \to Y$ to be continuous and "onto".

We recall the following definitions:

f is inductively perfect if there exists a closed subset $X' \subset X$ such that f(X') = Y and the restriction f|X' is perfect, i.e. f|X' is a closed map with compact fibers $f^{-1}(y)$.

f is s-covering if $f|f^{-1}(S)$ is inductively perfect for every countable and compact set $S \subset Y$ (¹).

The following main theorem is an obvious corollary of Theorem 6 below:

THEOREM 1. If $f : X \to Y$ is a finite-to-one s-covering mapping, then Y is a countable union of closed subsets Z_i such that every restriction $f|f^{-1}(Z_i)$ is an inductively perfect mapping. If $Y \subset 2^{\omega}$, then the Z_i are pairwise disjoint.

Under the assumption that for some integer n all the fibers have at most n points G. Debs and J. Saint Raymond proved that f is inductively perfect, but the finiteness of the fibers does not suffice to ensure the same conclusion [1].

 $^{2000\} Mathematics\ Subject\ Classification:\ Primary\ 54C10,\ 54H05,\ 54E40.$

Key words and phrases: inductively perfect, s-covering, finite-to-one.

^{(&}lt;sup>1</sup>) Since the inverse image of a compact set under a perfect mapping is always compact, a mapping $f : X \to Y$ is s-covering if and only if every countable compact subset $S \subset Y$ is the image of some compact $B \subset X$.

1. Some properties of *s*-covering mappings. In this section, we use the following property of *s*-covering mappings, which was proved by W. Just and H. Wicke [2], as well as independently by the author [3].

PROPOSITION 2. A mapping f is s-covering if and only if in every fiber $f^{-1}(y)$ there exists a nonempty family ε_y of nonempty compact subsets such that every open set containing $K \in \varepsilon_y$ also contains a set $K' \in \varepsilon_{y'}$ for any point y' from a neighborhood of y (²).

Throughout the paper, we keep the notation ε_y , $y \in Y$, for the above families of compact subsets of the fibers $f^{-1}(y)$ of an s-covering map $f : X \to Y$.

LEMMA 3. Let $f: X \to Y$ be an s-covering mapping. Set

$$M_y = \bigcap \{ K : K \in \varepsilon_y \}, \quad X_0 = \bigcup_{y \in Y} M_y, \quad Y_0 = f(X_0).$$

Then the restriction $f|X_0$ is a perfect mapping.

Proof. Let $y \in f(X_0)$ and $V \supset M_y$ be an open set. We will prove that $f_0 = f|X_0$ is a closed mapping by applying the following characterization: $f_0 : X_0 \to Y_0$ is closed if and only if for every $y \in Y_0$ and every open $V \supset f_0^{-1}(y)$ there is an open $O \ni y$ such that $f_0^{-1}(y') \subset V$ for every $y' \in O$.

Since M_y is compact, there are finitely many $K_i \in \varepsilon_y$ such that $\bigcap_i K_i \subset V$. It follows from the normality of X that there are open sets $V_i \supset K_i \setminus V$ such that $\bigcap_i V_i = \emptyset$.

Since $V_i \cup V \supset K_i$ are open sets, for every *i* there exists an open set $O_i(y)$ such that for every $y' \in O_i(y)$ there is $B'_i \in \varepsilon_{y'}$ with $B'_i \subset V_i \cup V$.

Let $O(y) = \bigcap_i O_i(y)$. If $y' \in O(y) \cap f(X_0)$, then

$$M_{y'} = \bigcap \{K : K \in \varepsilon_{y'}\} \subset \bigcap_i B'_i \subset \bigcap_i (V_i \cup V) = \left(\bigcap_i V_i\right) \cup V = V,$$

and hence $f|X_0$ is a closed mapping with compact fibers M_y .

LEMMA 4. Let $f: X \to Y$ be an s-covering mapping, let X_0, Y_0 be as in Lemma 3, and define inductively

$$Y_i = \left\{ y \in Y \setminus \bigcup_{k=0}^{i-1} Y_k : \exists K_y^1, \dots, K_y^{i+1} \in \varepsilon_y \\ such that \ K_y^1 \cap \dots \cap K_y^{i+1} = \emptyset \right\} \quad for \ i \ge 1.$$

Then $Y = \bigcup_{i=0}^{\infty} Y_i$ and Y_i are pairwise disjoint F_{σ} -sets.

^{(&}lt;sup>2</sup>) It is easy to see that $|\varepsilon_y| = 1$ for all $y \in Y$ if and only if f is inductively perfect.

Proof. Note that if $y \in \bigcup_{i=1}^{n} Y_i$, then there exist $i \in \{1, \ldots, n\}$ and $K_y^1, \ldots, K_y^{i+1} \in \varepsilon_y$ such that $K_y^1 \cap \cdots \cap K_y^{i+1} = \emptyset$. By the normality of X, there are open sets $O_j \supset K_y^j$ $(j = 1, \ldots, i+1)$ such that $\bigcap_j O_j = \emptyset$, and by the definition of ε_y (Proposition 2) there is an open set $O \ni y$ such that for every $y' \in O$ one has $K_{y'}^j \subset O_j$ for some $K_{y'}^j \in \varepsilon_{y'}$. Since $\bigcap_j O_j = \emptyset$ we obtain $\bigcap_j K_{y'}^j = \emptyset$ and hence $y' \in \bigcup_{i=1}^n Y_i$ for $y' \in O$. This implies that $\bigcup_{i=1}^n Y_i$ is open in Y and $Y_n = \bigcup_{i=0}^n Y_i \setminus \bigcup_{i=0}^{n-1} Y_i$ is of type F_σ , for each n > 0.

Suppose $y \in Y \setminus Y_0$. Then $\bigcap \{K : K \in \varepsilon_y\} = \emptyset$. Since the sets K are compact, there are finitely many $K^j \in \varepsilon_y$ such that $\bigcap_j K^j = \emptyset$. Hence, y belongs to some Y_i and $Y = \bigcup_{i=0}^{\infty} Y_i$.

2. s-covering mappings with finite families ε_y

LEMMA 5. Let $f: X \to Y$ be an s-covering mapping with finite families ε_y , and let Y_i be as in Lemma 4. Then for every $y \in Y_i$ (i = 1, 2, ...) there is an open subset O(y) of Y such that the restriction of f to $f^{-1}(O(y) \cap Y_i)$ is an s-covering map onto $O(y) \cap Y_i$ with a family $\varepsilon_y^1 \subsetneq \varepsilon_y$, hence, $\operatorname{card}(\varepsilon_y^1) \le \operatorname{card}(\varepsilon_y) - 1$.

Proof. As in the proof of Lemma 4 there are open sets $O_j \supset K_y^j \in \varepsilon_y$ such that $\bigcap_{j=1}^{i+1} O_j = \emptyset$ and, hence,

(1)
$$O_1 \cap \bigcap_{j=2}^{i+1} O_j = \emptyset.$$

Let O(y) be an open set such that for every $y' \in O(y) \cap Y_i$ and every O_j there is $K_{y'}^j \subset O_j$ for which $K_{y'}^j \in \varepsilon_{y'}$ (j = 1, ..., i + 1). Since $y' \in Y_i$, and hence $y' \notin Y_{i-1}$, we have

(2)
$$\bigcap_{j=2}^{i+1} K_{y'}^j \neq \emptyset.$$

CLAIM. There is j > 1 such that $K_{y'}^j \not\subset O_1$.

Suppose not; then $K_{u'}^j \subset O_1$ for all $j = 2, \ldots, i+1$, and hence

(3)
$$\bigcap_{j=2}^{i+1} K_{y'}^j \subset O_1.$$

Since $K_{y'}^j \subset O_j$, it follows that

(4)
$$\bigcap_{j=2}^{i+1} K_{y'}^j \subset \bigcap_{j=2}^{i+1} O_j.$$

The conditions (2), (3), (4) contradict (1).

A. Ostrovsky

For every $y' \in O(y) \cap Y_i$, there is j such that $K_{y'}^j \not\subset O_1$. It follows that the restriction of f to $O_1 \cap f^{-1}(O(y) \cap Y_i)$ is an s-covering map onto $O(y) \cap Y_i$ with a family ε_y^1 such that $\operatorname{card}(\varepsilon_y^1) \leq \operatorname{card}(\varepsilon_y) - 1$.

THEOREM 6. Let $f: X \to Y$ be an s-covering mapping with finite families ε_y . Then Y is a countable union of closed subsets Z_i such that every restriction $f|f^{-1}(Z_i)$ is an inductively perfect mapping.

Indeed, it follows from Lemma 4 that every set $O(y) \cap Y_i$ is F_{σ} in Y. If $Y \subset 2^{\omega}$, it is well known that the open cover $\{O(y)\}_{y \in Y_i}$ of the zerodimensional space Y_i has a refinement consisting of clopen (in Y_i) pairwise disjoint sets F_{i_r} . Hence, $Y_i = \bigcup_{i_r} F_{i_r}$ is a countable union of pairwise disjoint subsets closed in Y. In the general case $(Y \not\subset 2^{\omega})$, the open cover $\{O(y)\}_{y \in Y_i}$ has a locally finite open refinement and the sets F_{i_r} are only closed in Yand not pairwise disjoint.

Now Theorem 6 results from step-by-step application of Lemma 5 to the sets F_{i_r} , etc.

3. Application to Borel sets

THEOREM 7. If $f : X \to Y$ is an s-covering finite-to-one mapping of a Borel set $X \subset 2^{\omega}$ of additive or multiplicative class $\alpha \geq 1$ onto $Y \subset 2^{\omega}$, then Y is a Borel set of the same class.

Proof. If X is of additive class α , then, by Theorem 1 and by the theorem on preservation of the Borel class under perfect mappings (³), every Z_i is of additive class α . It is obvious that Y is of additive class α because it is the countable union of the Z_i .

Let X be of multiplicative class α . If $\alpha = 1$, then by [4, Main result], Y is of multiplicative class 1.

For $\alpha > 1$ we consider in $\mathbf{C} = 2^{\omega}$ according to Theorem 1 the sets $L_i = [Z_i]_{\mathbf{C}} \setminus Z_i$ of additive class α . Obviously,

$$Y = \bigcup_{i} Z_{i} = \bigcup_{i} ([Z_{i}]_{\mathbf{C}} \setminus L_{i}) = \bigcup_{i} [Z_{i}]_{\mathbf{C}} \setminus \bigcup_{i} L_{i},$$

where $\bigcup_i [Z_i]_{\mathbf{C}}$ is of multiplicative class 2 and $\bigcup_i L_i$ is of additive class α . This implies that Y is of multiplicative class α .

QUESTION. I do not know whether the conclusion of Theorem 6 is still true if the condition that f is an s-covering mapping with finite families ε_y is replaced by the condition that f is an s-covering mapping with compact fibers and each set in any family ε_y is finite.

^{(&}lt;sup>3</sup>) A. D. Taimanov proved [6, Theorem 6] that the image of a Borel set of class ξ under a perfect mappings is of the same class if $\xi \geq \omega_0$, and of class $\xi + 1$ if $1 < \xi < \omega_0$. J. Saint Raymond proved the preservation in the case $1 < \xi < \omega_0$ [5].

References

- G. Debs and J. Saint Raymond, Compact covering properties of finite-to-one mappings, Topology Appl. 81 (1997), 55–84.
- W. Just and H. Wicke, Some conditions under which tri-quotient or compact-covering maps are inductively perfect, Topology Appl. 55 (1994), 289–305.
- [3] A. Ostrovsky, New classes of maps related to k-covering maps, Vestnik Moskov. Univ. Ser. 1 Mat. Mekh. 1994, no. 4, 24–28 (in Russian); English transl.: Moscow Univ. Math. Bull. 49 (1994), no. 4, 20–23.
- [4] —, Maps of Borel sets, Proc. Steklov Inst. Math. 252 (2006), 225–247.
- [5] J. Saint Raymond, Fonctions boréliennes sur un quotient, Bull. Sci. Math. 100 (1976), 141–147.
- [6] A. D. Taimanov, On closed mappings. II, Mat. Sb. 52 (1960), 579–588 (in Russian).

Bundeswehr University Munich D-85577 Neubiberg, Germany E-mail: Alexey.Ostrovskiy@UniBw.de

> Received 25 April 2006; in revised form 23 November 2006