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Abstract. We extend van Mill–Wattel’s results and show that each countably com-
pact completely regular space with a continuous selection on couples is suborderable. The
result extends also to pseudocompact spaces if they are either scattered, first countable,
or connected. An infinite pseudocompact topological group with such a continuous selec-
tion is homeomorphic to the Cantor set. A zero-selection is a selection on the hyperspace
of closed sets which chooses always an isolated point of a set. Extending Fujii–Nogura
results, we show that an almost compact space with a continuous zero-selection is homeo-
morphic to some ordinal space, and a (locally compact) pseudocompact space with a
continuous zero-selection is an (open) subspace of some space of ordinals. Under the Di-
amond Principle, we construct several counterexamples, e.g. a locally compact locally
countable monotonically normal space with a continuous zero-selection which is not sub-
orderable.

0. Introduction. Throughout this paper, all spaces are assumed to
be Hausdorff. Let F(X) be the set of all non-empty closed subsets of X.
A selection for X is a map ϕ : F(X) → X such that ϕ(F ) ∈ F for all
F ∈ F(X). Denote by [X]2 the subset of F(X) consisting of the subsets with
exactly two elements (couples). A weak selection onX is a map σ : [X]2 → X
such that σ({x, y}) ∈ {x, y} for all couples.

For every subset V of X, let V + = {F ∈ F(X) : F ⊆ V } and V − =
{F ∈ F(X) : F ∩ V 6= ∅}. The Vietoris topology on F(X) has a base
consisting of the sets of the form V +∩W−1 ∩ . . .∩W−n , where V,W1, . . . ,Wn

are open subsets of X.
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By a continuous selection (resp., continuous weak selection) on X, we
mean a selection (resp., weak selection) which is continuous for the Vietoris
topology on F(X) (resp., on the subspace [X]2). In Section 2, when we
consider the continuity of selections with respect to the Fell topology, this
difference is mentioned explicitly.

If σ is a continuous weak selection, it will be convenient sometimes
to consider the corresponding continuous map σ0 : X × X → X defined
by σ0(x, y) = σ({x, y}) for distinct x, y ∈ X and σ0(x, x) = x for each
x ∈ X. Conversely, every continuous map σ0 : X × X → X satisfying
σ0(x, y) = σ0(y, x) ∈ {x, y} and σ0(x, x) = x for all x, y ∈ X determines a
continuous weak selection σ : [X]2 → X. Therefore, in what follows we do
not distinguish between σ and σ0. Notice that a weak selection is continuous
if and only if it locally coincides with the projection of X ×X to the first
or the second factor, at any point (x, y) with x 6= y.

In [29], van Mill and Wattel proved that a compact space X has a weak
selection iff it is orderable, i.e., the topology of X coincides with the open
interval topology of a linear order on X. A topological space is said to be
suborderable provided that it is a subspace of an orderable space. It is well
known that a space X is suborderable if and only if it is a GO-space, that
is, there exists a base for X consisting of subsets which are convex for a
suitable linear order on X [6, Theorems 17 A.22, 17 A.23].

A useful characterization of suborderable spaces by means of continuous
weak selections is given in [30]. We use it in Section 1 to present a criterion
of suborderability for pseudocompact spaces which generalizes the compact
case in [29]. As a corollary, we show that a countably compact Tikhonov
space with a continuous weak selection is suborderable. Furthermore, a pseu-
docompact space with a continuous weak selection is suborderable if it is
either scattered, first countable, or connected.

The existence of a continuous weak selection on topological groups has a
strong impact on the topological properties of the groups. By Theorem 1.26,
a locally pseudocompact group with a continuous weak selection is either
discrete or has an open neighborhood of the identity homeomorphic to the
Cantor set or to the reals R. In particular, a pseudocompact group with a
continuous weak selection is either finite or topologically homeomorphic to
the Cantor set (Corollary 1.28).

A selection ϕ on a space X is said to be a zero-selection if ϕ(F ) is an
isolated point of F for each F ∈ F(X). By a continuous zero-selection we
mean a zero-selection which is continuous for the Vietoris topology. Ob-
viously, a space with a zero-selection is scattered and a continuous zero-
selection for X induces a continuous zero-selection for every closed sub-
space of X (in fact, for every subspace if X is normal, see Proposi-
tion 2.10).
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Fujii and Nogura [14] proved that a compact space is homeomorphic to
an ordinal space iff it has a continuous zero-selection (an ordinal space is an
ordinal equipped with the order topology). They raised a question whether
it is possible to characterize ordinal spaces in locally compact spaces by
means of continuous selections under the condition of local compactness.

In Sections 2 and 3, we obtain several affirmative results in this direc-
tion; however, two counterexamples are given in Section 4. We prove in
Theorem 2.5 that the existence of a Fell-continuous zero-selection on X en-
sures that the space X is homeomorphic to an ordinal space (the existence
of a Fell-continuous selection on [X]≤2 implies that X is locally compact
and the one-point compactification of X is ordered; see [3] and [20]). As
the Fell and Vietoris topologies coincide for compact spaces, Theorem 2.5
generalizes Fujii–Nogura’s result from [14]. Theorem 2.7 provides another
generalization: an almost compact space with a continuous zero-selection is
proven to be homeomorphic to an ordinal space. The main result of Section 2
is Theorem 2.9 where we prove that if X is a (locally compact) pseudocom-
pact space with a continuous zero-selection, then X is homeomorphic to an
(open) subspace of an ordinal space.

If X is a locally compact paracompact space with a continuous zero-
selection, thenX can be embedded as an open subspace into an ordinal space
(Theorem 3.1). Furthermore, if X is also Lindelöf, then it is homeomorphic
to an ordinal space of countable cofinality (1).

One may ask (cf. [14]) whether the existence of a continuous zero-selec-
tion on a locally compact space X implies the existence of an embedding of
X into an ordinal space. In Section 3, we discuss this question for locally
compact locally countable spaces (LCC-spaces for short). Affirmative results
of Section 3 provide “bounds” for possible counterexamples. In particular,
we prove in Theorem 3.4 (resp., Theorem 3.5) that if the Cantor–Bendixson
height of an LCC-space X is countable (resp., finite), then X is an open
subspace of an ordinal space, provided that X is hereditarily collectionwise
normal (resp., collectionwise normal). Furthermore, the condition on the
height of X cannot be removed, even if X has a continuous zero-selection.
Under the Diamond Principle, we provide several counterexamples in Sec-
tion 4. In Theorem 4.6, we construct a monotonically normal LCC-space
with a continuous zero-selection which is not suborderable. In Theorem 4.7,
we show that a collectionwise normal LCC-space of countable height may
have a continuous zero-selection without being suborderable. Moreover, an
LCC-space with a continuous zero-selection is not necessarily normal, even
if the Cantor–Bendixson height is equal to 2. Finally, we discuss some open
problems in Section 5.

(1) For the compact case, notice that the cofinality of a successor ordinal is equal to 1.
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1. Weak selections

1.1. Extending van Mill–Wattel’s results. By [29, Theorem 1.1], a com-
pact Hausdorff space with a continuous weak selection is linearly orderable.
We are going to generalize this result to wider classes of spaces, including
all countably compact Tikhonov spaces as well as the spaces with the pseu-
docompact square. On this way, we use and develop some ideas from [30].
At the same time, we hope that one can go further extending our results
(see Problem 5.2).

In [30], the following property of a selection σ : [X]2 → X was intro-
duced:

Definition 1.1. A continuous weak selection σ on X is called locally
uniform provided that for every x ∈ X and for every neighborhood U of x,
there is a neighborhood V of x which is contained in U and such that for
all p ∈ X \ U and y ∈ V ,

σ(p, y) = p iff σ(p, x) = p.

It is proved in [30] that every suborderable space admits a locally uniform
weak selection and each continuous weak selection on a compact space is
locally uniform (cf. Lemma 1.3 below). The following result from [30] shows
the importance of locally uniform weak selections.

Theorem 1.2. The following conditions are equivalent for every com-
pletely regular space X:

(1) X has a locally uniform weak selection;
(2) X is suborderable.

Let us prove the following lemma which via Theorem 1.2 gives the
promised extension of [29, Theorem 1.1] to the spaces whose square is pseu-
docompact. As usual, pseudocompact spaces are assumed to be completely
regular.

Lemma 1.3. Let X be a space such that X × X is pseudocompact and
let σ be a continuous weak selection on X. Then σ is locally uniform.

Proof. Suppose to the contrary that the weak selection σ on X is not
locally uniform. Then we can find x ∈ X and a neighborhood U of x in X
such that for each smaller neighborhood V of x, there are pV ∈ X \ U and
yV ∈ V such that

(∗) (σ(pV , yV ) = pV & σ(pV , x) = x) or

(σ(pV , yV ) = yV & σ(pV , x) = pV ).

Now an inductive construction of length ω follows. For each n ∈ ω, we
find a neighborhood Vn of x, points pVn , yVn , and an open set G̃n in X
satisfying the following conditions for all n ∈ ω:
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(1) yVn ∈ Vn, pVn ∈ X \ U, pVn ∈ G̃n;
(2) (∗) is satisfied for points x, yVn , pVn ;
(3) V 0 ⊂ U and V n+1 ⊂ Vn;
(4) Vn+1 and G̃n witness the continuity of σ at (x, pVn), i.e., σ(w, z) = w

iff σ(pVn , x) = pVn for each w ∈ G̃n and each z ∈ Vn+1.

Without loss of generality we may assume that the set {pVn : n ∈ ω} is
discrete in itself and that

(∗∗) σ(pVn , x) = x, hence σ(pVn , yVn) = pVn

for each n ∈ ω. For every n ∈ ω, choose open sets Gn 3 pVn and Hn 3 yVn
satisfying

(i) {Gn : n ∈ ω} ∪ {Hn : n ∈ ω} is a pairwise disjoint family;
(ii) Hn ⊂ Vn, Gn ⊂ G̃n and Gn ⊂ X \ V 0 for each n ∈ ω;

(iii) Gn and Hn witness the continuity of σ at (pVn , yVn), i.e., for any
ordered couple (a, b) ∈ Gn ×Hn, σ(a, b) = a (see (∗∗)).

Consider the family U = {Gn ×Hn : n ∈ ω} of open sets in X ×X. By
pseudocompactness of X×X, there is a point (u, v) ∈ X×X such that any
neighborhood of (u, v) intersects infinitely many elements of U . Then u 6= v
by the choice of the Gn’s and Hn’s. As σ is continuous, (iii) implies that
σ(u, v) = u. The continuity of σ implies that there exists a neighborhood
W of u such that v 6∈ W and σ(w, v) = w for each w ∈ W . On the other
hand, v ∈ ⋂{Vn : n ∈ ω}. From the choice of Vn+1’s and G̃n’s it follows
that σ(v, w) = v for all w ∈ Gn and each n ∈ ω. We pick w ∈ Gm ∩W
for some m ∈ ω. As v 6∈ Gm ∩W , the behavior of σ just described yields a
contradiction.

Remark 1.3.1. Another way to prove Lemma 1.3 is to apply Glicks-
berg’s theorem [16] to extend σ from X to a continuous weak selection σ̃ on
the Stone–Čech compactification βX and then use the fact that a continuous
weak selection on a compact space is locally uniform [30, Lemma 1.1].

Lemma 1.3 has several applications. The following result generalizes [29,
Theorem 1.1]. Notice that a countably compact suborderable space is se-
quentially compact [41, 5.5].

Corollary 1.4. Let X be a space with a continuous weak selection. If
X2 is pseudocompact , then X is sequentially compact and suborderable.

Proof. Lemma 1.3 and Theorem 1.2 together imply that X is suborder-
able. Since every suborderable space is normal, we conclude that the pseu-
docompact space X is countably compact, hence sequentially compact.

As the square of a pseudocompact k-space is pseudocompact [12, 3.10.26],
Corollary 1.4 immediately gives:
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Corollary 1.5. If a pseudocompact k-space has a continuous weak se-
lection, then it is sequentially compact and suborderable.

We do not know whether pseudocompactness of X2 in Corollary 1.4 can
be weakened to pseudocompactness of X (see Problems 5.1 and 5.2 below).
However, there are several classes of topological spaces in which pseudo-
compactness turns out to be stable under the product operation. A good
example of this phenomenon is the Comfort–Ross theorem [7] which states
that pseudocompactness is productive in the class of topological groups. We
shall see in Theorem 1.27 below that the existence of a continuous weak se-
lection on [X]2 simplifies a lot the structure of X when X is a (locally) pseu-
docompact topological group. Another instance of a similar phenomenon is
the case of a countably compact Tikhonov space X with a continuous weak
selection. The assumption of pseudocompactness of X2 in Lemma 1.3 is sat-
isfied automatically since a countably compact space X with a continuous
weak selection is sequentially compact (see [9]) and, hence, so is X ×X.

Corollary 1.6. A countably compact Tikhonov space with a continuous
weak selection is sequentially compact and suborderable.

In fact, the above corollary remains valid for spaces X that contain a
dense set all countably infinite subsets of which have accumulation points
in X. Such spaces are called countably protocompact [2]. Clearly, countably
compact spaces are countably protocompact and countably protocompact
Tikhonov spaces are pseudocompact, but these implications are not invert-
ible in general. The following result generalizes Corollary 1.6.

Proposition 1.7. A countably protocompact Tikhonov space with a con-
tinuous weak selection is sequentially compact and suborderable.

Proof. Let X be a countably protocompact space with a continuous
weak selection. Denote by D a dense set in X which witnesses countable
protocompactness of X. One can follow van Douwen’s reasoning from [9]
to prove that every infinite subset of D contains a non-trivial sequence
converging in X. We can say that D is relatively sequentially compact in X.
Observe that D × D is relatively sequentially compact in X × X, which
implies that X × X must be pseudocompact. The conclusion now follows
from Corollary 1.4.

A simple verification shows that X×X is still pseudocompact for a pseu-
docompact scattered space X (see Proposition 1.13). Of course, this does
not require any assumption on the existence of a continuous weak selection
on X. We guess this observation is well known though we have not found
it in the literature so far. So, every scattered pseudocompact space with a
continuous weak selection is suborderable, hence normal and countably com-
pact. This is one more reason why the Tikhonov plank, the Isbell–Mrówka
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space Ψ and similar spaces have no continuous weak selections. We shall
see in Section 4 that under ♦, there is a locally compact locally countable
space X with a continuous zero-selection which is not normal though its
Cantor–Bendixson height is 2.

A very important class B of completely regular spaces was defined by
Z. Froĺık in [13]. By definition, a space X is in B if the product X × Y is
pseudocompact for every pseudocompact space Y . It is easy to see that B is a
proper subclass of the class of all pseudocompact spaces. The spaces X ∈ B
admit the following nice characterization [13, 5, 42]: for every sequence
{Un : n ∈ ω} of disjoint non-empty open subsets of X, there is an infi-
nite subset J ⊆ ω such that for any filter ξ on J , the set

⋂
F∈ξ

⋃
n∈F Un is

not empty. By [38, Corollary 2.14], every pseudocompact topological group
is in B. In addition, from [38, Theorem 2.13] it follows that a dense pseu-
docompact subspace of a product of compact metrizable spaces belongs
to B.

We now define sequentially pseudocompact spaces which form a proper
subclass of B.

Definition 1.8. A completely regular space X is called sequentially
pseudocompact if for any family {Un : n ∈ ω} of pairwise disjoint non-empty
open sets, there are an infinite set J ⊆ ω and a point x ∈ X such that every
neighborhood of x intersects all but finitely many elements of {Un : n ∈ J}.

From the above characterization of the spaces in B and Definition 1.8 it
immediately follows that every sequentially pseudocompact space is in B:

Proposition 1.9. Every sequentially pseudocompact space belongs to
Froĺık’s class B. Therefore, the product of two sequentially pseudocompact
spaces is pseudocompact.

It is worth noting that even compact spaces need not be sequentially
pseudocompact: βω is a counterexample. Since every compact space belongs
to B, there are many spaces in B which fail to be sequentially pseudo-
compact.

By [38, Corollary 2.14], every pseudocompact group is in B. It turns out
that this result admits the following strengthening.

Proposition 1.10. Every pseudocompact topological group G is sequen-
tially pseudocompact.

Proof. Denote by K the completion of G. Then K is a compact topo-
logical group. By Kuz’minov’s theorem [26, 40], K is dyadic. Therefore,
there exists a continuous onto map f : Dτ → K, where D = {0, 1} is
the discrete two-point space and τ is an appropriate infinite cardinal. Con-
sider a pairwise disjoint family {Un : n ∈ ω} of non-empty open sets
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in G. Since G is pseudocompact, the family {Un : n ∈ ω} has an accu-
mulation point x ∈ G. For every n ∈ ω, choose an open set Vn in K
such that Vn ∩ G = Un. The set Wn = f−1(Vn) is open in Dτ and its
closure depends on at most countably many coordinates [12, 2.7.12]. In
other words, for every n ∈ ω there exists a countable subset An of τ such
that Wn = π−1

An
(πAn(Wn)), where πAn : Dτ → DAn is the projection. Set

A =
⋃
n∈ω An. Then Wn = π−1

A (πA(Wn)) for each n ∈ ω.
Since the map f is closed and x is in the closure of the set

⋃
k≥n Vk, we

have f−1(x) ∩⋃∞k=nWn 6= ∅ for each n ∈ ω. Therefore, the set

f−1(x) ∩
⋂

n∈ω

⋃

k≥n
Wk

is non-empty. Pick an arbitrary point y from this set and put z = πA(y).
Clearly, DA is a metrizable compact space and z is an accumulation point
of the family {πA(Wn) : n ∈ ω}. Therefore, we can find an infinite set J ⊆ ω
such that every neighborhood of z in DA intersects almost all elements of the
family {πA(Wn) : n ∈ J}. Since the regular closed sets W n depend only on
A, we infer that every neighborhood of y in Dτ intersects almost all elements
of the family {Wn : n ∈ J}. This immediately implies that x = f(y) has the
same property with respect to the families {Vn : n ∈ J} and {Un : n ∈ J}
because each Un is dense in Vn. So, G is sequentially pseudocompact.

A topological space X is said to be scattered if every non-empty subset
Y of X has a point relatively isolated in Y . The following fact is almost
evident.

Proposition 1.11. All pseudocompact scattered spaces and all first
countable pseudocompact spaces are sequentially pseudocompact.

Proposition 1.11 admits a generalization given below. First, we need a
definition.

Definition 1.12. A topological space X is called ψ-ω-scattered pro-
vided that every non-empty closed subset F of X contains a point of count-
able pseudocharacter in F .

Proposition 1.13. Let X be a ψ-ω-scattered pseudocompact space.
Then X is sequentially pseudocompact.

Proof. Consider a family U = {Un : n ∈ ω} of pairwise disjoint non-
empty open subsets of X. Put F = {y ∈ X : each neighborhood of y
intersects infinitely many elements of U}. Clearly, F is a non-empty closed
set. Therefore, F contains a point x which has countable pseudocharacter
in F . Take a decreasing collection of open sets V = {Vn : n ∈ ω} in X
containing x such that

⋂{V n ∩ F : n ∈ ω} = {x}. For every n ∈ ω, choose
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kn > n such that Vn ∩Ukn 6= ∅. Put J = {kn : n ∈ ω}. Assume that there is
a neighborhood W of x missing Ukn ’s for infinitely many members of J . Put
K = {kn ∈ J : W ∩ Ukn = ∅}. As K is infinite by our assumption, there is
a point q ∈ F , q 6= x, such that each neighborhood of q intersects infinitely
many elements of the family {Vn ∩Ukn : kn ∈ K}. But then q ∈ V n for each
n ∈ ω. This contradiction concludes the proof.

Corollary 1.14. Suppose that X is a sequentially pseudocompact space
with a continuous weak selection. Then X is sequentially compact and sub-
orderable.

Proof. The conclusion follows from Corollary 1.4 and Proposition 1.9.

Corollary 1.15. If X is a pseudocompact ψ-ω-scattered space with a
continuous weak selection, then X is sequentially compact and suborderable.

Proof. Apply Proposition 1.13 and Corollary 1.14.

Making use of Corollary 1.15 and Glicksberg’s theorem [16], we char-
acterize the orderability of the Čech–Stone compactification βX of X as
follows (see also [43, 33]):

Theorem 1.16. Let X be a completely regular space. The following con-
ditions are equivalent :

(i) βX is orderable;
(ii) X is suborderable and pseudocompact ;

(iii) X is countably compact and has a continuous weak selection;
(iv) X ×X is pseudocompact and X has a continuous weak selection.

Proof. (i)⇒(ii). Pseudocompactness of X follows from [43, Propo-
sition 3.2].

(ii)⇒(iii). Every suborderable space is normal and has a continuous weak
selection.

(iii)⇒(iv). Apply Corollary 1.6.
(iv)⇒(i). A continuous weak selection σ : X ×X → X can be extended

over β(X × X) = βX × βX (see also Remark 1.3.1). By the density of
X ×X in βX × βX, the extension is still a continuous weak selection and,
consequently, βX is orderable [29].

Corollaries 1.6 and 1.15 extend the results of van Mill and Wattel on
orderability of compact spaces [29]. Note that a suborderable space is order-
able when it is scattered [34] or connected (in the latter case, the subspace
topology on a connected subset of a linearly ordered space coincides with
the one induced by the linear order).

There are countably compact locally connected suborderable spaces that
are not orderable. Let [0, ω1)∗ denote the usual ordinal space [0, ω1) with its
order reversed, and let D = [0, ω1)∗⊕[0, ω1). Then let L be the lexicographic
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product D× [0, 1) (this space is sometimes called the “mirrored long line”).
Finally, let X be the topological sum of L with a single point p 6∈ L. The
resulting space is the required example which shows that van Mill–Wattel’s
result on orderability cannot be extended outside the realm of compact
spaces.

1.2. Weak orderability. A space X is said to be weakly orderable if there
exists a coarser orderable topology on X; a suitable order on X induc-
ing this coarser open interval topology is called a compatible order for X.
Suborderable spaces are weakly orderable. If X is weakly orderable, then
σ(x, y) = min{x, y} is a continuous weak selection (cf. Lemma 2.2 and
Problem 5.4 below). Putting together results from [28] and [10], one gets
the following:

Theorem 1.17. A connected space has a continuous weak selection if
and only if it is weakly orderable. In this case, there are only two compatible
orders (continuous weak selections), each the reverse of the other.

Remark 1.17.1. The problem of whether each space with a continuous
weak selection is weakly orderable was suggested by van Mill and Wattel
in [30]; cf. Problem 5.4 below.

One can easily see that a locally connected weakly orderable space is a
GO-space and that every connected GO-space is orderable. Consequently,
a weakly orderable locally connected and connected space is orderable [10].
Since a locally connected weakly orderable space is locally compact, one may
wonder what is the role of local compactness here. It turns out that local
compactness and local connectedness are equivalent for connected weakly
orderable spaces. Though the idea of our proof goes back to [10], we have
not been able to find anywhere an explicit formulation of the following fact.

Proposition 1.18. Let X be a connected weakly orderable space. If X
is locally compact , then it is orderable and locally connected.

Proof. Fix a compatible linear order ≤ on X and consider the order
topology τ of (X,≤). The identity map f of X onto the orderable space
(X, τ) is continuous. As shown in [10], τ is connected and locally connected
for any connected weakly orderable space X (such an order is called con-
tinuous in [10]). At this moment, one can establish quite a tight connection
between X and ≤. It turns out that for any p ∈ X, both sets (←, p] and
[p,→) are connected as subsets of X. Indeed, suppose that (←, p] = A ∪B,
where A and B are disjoint non-empty and relatively open in (←, p] (in the
induced topology); without loss of generality, we assume that p ∈ A. Then,
clearly, {A∪ [p,→), B} is a partition of X into non-empty open sets, which
is a contradiction.
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We show that the local compactness of X implies that f : X → (X, τ) is
open, so X is also orderable and locally connected. Arguing by contradiction,
suppose that there exist a point p ∈ X and a compact neighborhood K of p
containing no open interval around p. Assume that p is the minimum of X
(in this case, an open interval containing p is of the form [p, q) = (←, q)).
We have inf(X \ K) = p. For every b 6∈ K, the set K ∩ [p, b] = K ∩ [p, b)
is closed and the set K̊ ∩ [p, b] = K̊ ∩ [p, b) is open (K̊ denotes the interior
of K). Consequently, the set Sb = (K \ K̊) ∩ [p, b] is closed and non-empty
because X is connected. Since

⋂
b6∈K Sb = ∅, we obtain a contradiction with

compactness of K.
If p is not an extremum, observe that both sets (←, p] and [p,→) are

connected and have p as an accumulation point (with the topology inherited
from X). Therefore, we are led back to the previous situation.

In order to prove that a connected pseudocompact space with a con-
tinuous weak selection is orderable, we need the following generalization
of [41, 5.5].

Proposition 1.19. Every pseudocompact weakly orderable space X is
sequentially compact.

Proof. Fix a compatible linear order on X. Since every sequence in X
has a monotone subsequence, it suffices to show that every strictly increas-
ing sequence {xn : n ∈ ω} ⊆ X converges. Choose mutually disjoint open
intervals In in X containing xn and, for each n, let Wn =

⋃
k≥n Ik. By the

pseudocompactness of X, there exists p ∈ ⋂n∈ωWn, so that every open
interval containing p meets all Wn’s. If the sequence {xn : n ∈ ω} is in-
creasing, the point p must be its supremum and

⋂
n∈ωWn = {p}. Assume

to the contrary that the sequence {xn : n ∈ ω} does not converge. Then
there is a closed neighborhood A of p such that A misses infinitely many
elements of {xn : n ∈ ω}. Put J = {n ∈ ω : xn 6∈ A}. For every n ∈ J , let
Vn =

⋃{Ik \ A : k ≥ n, k ∈ J}. Then
⋂
n∈J V n ⊆ (

⋂
n∈JW n) \ {p} = ∅, in

contradiction with the pseudocompactness of X.

Since every connected space with a continuous weak selection is weakly
orderable (cf. Corollary 1.23 below) and every connected suborderable space
is orderable, Proposition 1.19 and Corollary 1.6 imply the following:

Corollary 1.20. A connected pseudocompact space with a continuous
weak selection is orderable.

We now consider separately continuous weak selections, i.e., selections
σ on [X]2 which are separately continuous when considered as maps σ :
X ×X→ X. This notion is too weak in general.
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Example 1.21. Let α be an infinite initial ordinal and let Y = (α+1, τ)
be a topological space on α+ 1 such that all ordinals β < α are isolated in τ
and τ -neighborhoods of {α} coincide with the ordinal topology , i.e. intervals
{(β, α] : β < α} form a local base at {α}. Put X = Y × {0, 1}; so X is
compact iff α = ω0. Define σ : X ×X→ X as follows: Take two distinct
b = (β, i) ∈ X, c = (γ, j) ∈ X. Assume i ≤ j. Let

σ({b, c}) =
{
c if (i < j & β = γ 6= α) or (i = j & β > γ),
b otherwise.

Then σ is separately continuous but it is not continuous.

Proof. Take a map s : X ×X → X defined by

s(x, y) =
{
σ({x, y}) if x 6= y,
x if x = y.

Firstly, the map s is not continuous as s((α, 0), (α, 1)) = (α, 0) but
s((y, 0), (y, 1)) = (y, 1) for y ∈ Y \ {α}.

The map s is separately continuous: Put tb(x) = s(b, x) for b ∈ X, x ∈ X.
As the map s is symmetric, it is enough to show that tb is continuous on X
for any b ∈ X.

Choose b0 ∈ X, b0 = (β0, i0). Take x ∈ X and an open neighborhood U
of z = s(b0, x). Put x = (ξ, j). We should find a neighborhood V of x such
that s(b0, y) ∈ U for each y ∈ V .

If b0 = x then take V = U .
If x is isolated in X then take V = {x}.
So assume b0 6= x and x is not isolated in X, in particular ξ = α. Then

take

V =
{

(β0, α]× {i} if i = j and z = b0,
((α+ 1) \ {β0})× {j} otherwise.

For connected spaces, this cannot happen as the next result shows.

Proposition 1.22. Every separately continuous weak selection on a
connected space X is continuous.

Proof. Take a representation of a weak selection as a map σ :X×X→X.
For every x ∈ X, we set

Bx = {y ∈ X : σ(x, y) = y} and Ax = {y ∈ X : σ(x, y) = x}.
As σ is separately continuous, both Ax and Bx are closed and Ax∩Bx = {x}
(thus both Ax \ {x} and Bx \ {x} are open). Define a relation % on X by

x%y ⇔ y ∈ Ax.
To prove that % is a linear order, it suffices to show that % is transitive.
Assume that a, b, c are pairwise distinct and a%b, b%c. If c%a, then b ∈ Aa,
c ∈ Ab and a ∈ Ac. Hence, a ∈ Bb, b ∈ Bc. Therefore, for Z = Bb ∩ Ac, we
have Z = (Bb\{b})∩(Ac\{c}). Since b 6∈ Z and a ∈ Z, we conclude that Z is
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a proper non-empty clopen subset of the connected space X, a contradiction.
So, % is transitive. Since Ax and Bx are closed for every x ∈ X, the identity
map X → (X, %) is continuous. As σ({x, y}) = min%{x, y}, the map σ is
continuous (see [28]).

Proposition 1.22 enables us to derive the following generalization of
[28, Lemma 7.2] concerning the equivalence of weak orderability and the
existence of a continuous weak selection in connected spaces.

Corollary 1.23. If a connected space admits a separately continuous
weak selection, then it is weakly orderable.

We now give a generalization of Proposition 1.22 (see [28, Lemma 7.4]).

Proposition 1.24. Suppose that every point of a Hausdorff space X has
a connected neighborhood. Then every separately continuous weak selection
σ on X is continuous.

Proof. The space X is the union of disjoint clopen connected compo-
nents. Let Cx be the component of x. If y ∈ Cx, then the continuity of
σ at {x, y} follows from Proposition 1.22. If the points x and y belong to
distinct components then it suffices to observe that the sets {x′ ∈ Cx :
σ(x′, y) = y}, {x′ ∈ Cx : σ(x′, y) = x′}, {y′ ∈ Cy : σ(x, y′) = y′} and
{y′ ∈ Cy : σ(x, y′) = x} are clopen and, hence, each of them is either empty
or coincides with Cx or Cy. Again, this implies the continuity of σ at {x, y}.

Using Corollary 1.23, it is easy to give a rectified extension of the first
assertion in [31, Remark 16]. (A subspace of R obtained as the union of
a closed interval with a disjoint open interval shows that suborderability
cannot be strengthened to orderability in Corollary 1.25.)

Corollary 1.25. If a locally connected space X has a separately con-
tinuous weak selection, then X is suborderable.

Proof. By Corollary 1.23, every component in X is weakly orderable.
A connected locally connected weakly orderable space is orderable [10, 8.2].
The conclusion follows as X is a topological sum of orderable spaces.

1.3. Topological groups. In (locally) pseudocompact topological groups,
the existence of a continuous weak selection is very restrictive as the fol-
lowing theorem shows. We recall that a topological group G is said to be
topologically orderable if its topology is generated by a linear order (no re-
lation between the group operations and the order is assumed).

Theorem 1.26. Let G be a locally pseudocompact topological group with
a continuous weak selection. Then G is locally compact , metrizable, and
topologically orderable. In addition, if G is non-discrete, then it contains
an open neighborhood of the identity which is homeomorphic either to the
Cantor set or to the reals R.
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Proof. If G is discrete, there is nothing to prove. Hence, we suppose that
all neighborhoods of the identity in G are infinite. By our assumption, there
exists a pseudocompact neighborhood F of the identity e in G. Then the
closure F of F is also pseudocompact. Denote by U the interior of F . Then
e ∈ U ⊆ F . Therefore, the regular closed set P = U in the pseudocom-
pact space F is also pseudocompact. As the direct product of any number
of pseudocompact regular closed subspaces of a topological group remains
pseudocompact [39], the space P 2 is pseudocompact as well. Clearly, P ad-
mits a continuous weak selection (being a subspace of G), so the Stone–Čech
compactification βP of P is orderable by Theorem 1.16.

Denote by G̃ the completion ofG and letQ be the closure of P in G̃. Then
P is C-embedded in Q, i.e., βP ∼= Q (see [8, Theorem 4.2]). We conclude
that Q is orderable and, hence, both Q and P have a decreasing well-ordered
base at the identity e (cf. [32, Lemma 3]). Since P is a neighborhood of e
in G, the group G also has a decreasing well-ordered base at e. We claim that
the cofinality of this base is countable, i.e., the group G is first countable
and, hence, metrizable by the Birkhoff–Kakutani theorem. Indeed, otherwise
the intersection of each countable family of open sets in G is open, i.e., G is
a P -space. However, every pseudocompact subspace of a P -space is finite,
so that P is a finite neighborhood of e in G. Therefore, G is discrete, a
contradiction.

The pseudocompact subset P of the metrizable group G is compact,
whence it follows that G is locally compact. Denote by H the subgroup
of G generated by P . It is clear that H is open in G (hence, closed). In
addition, both P and H are second countable. Indeed, H is σ-compact as
a group generated by the compact set P . Therefore, H can be covered by
countably many translations of its open second countable subset U , whence
it immediately follows that w(H) ≤ ω.

Suppose first that the connected component c(G) is trivial. Since G is
locally compact, it must be zero-dimensional. Then P is a zero-dimensional
second countable compact space without isolated points, so that P is homeo-
morphic to the Cantor set. Since P is a neighborhood of the identity e in G, e
has an open neighborhood homeomorphic to the Cantor set. In addition, as
H is second countable, there exists a countable disjoint cover of H by clopen
sets homeomorphic to the Cantor set, which implies orderability of H. It is
clear that G is a topological sum of left cosets of its open subgroup H, so
G is also topologically orderable.

Finally, suppose that K = c(G) 6= {e}. Then K ⊆ H since H is clopen
in G. Clearly, K admits a continuous weak selection, being a subspace of G.
From Theorem 1.17 it follows that the connected space K is weakly order-
able. The subgroup K is closed in G, hence locally compact. Therefore, K



Selections and suborderability 15

is orderable by Proposition 1.18. By [43, Theorem 2.4], K is topologically
isomorphic to the additive group R with the usual interval topology.

Denote by < a linear order on P that generates the original topology
of P . We claim that there exist points a, b ∈ P such that (a, b) is a non-
empty open subset of K. Suppose to the contrary that (a, b) \ K 6= ∅ for
every a, b ∈ P with (a, b) 6= ∅. Since K is a non-trivial connected subgroup
of G, the identity e is not isolated in K. Clearly, e is in the closure of one of
the sets K ∩ (e,→) or K ∩ (←, e). Without loss of generality we can assume
that e is an accumulation point of K ∩ (e,→). Choose points c ∈ (e,→)\K,
d ∈ K ∩ (e, c) and f ∈ (e, d) \ K. Then A = (f, c) ∩ K = [f, c] ∩ K is a
clopen subset of K and d ∈ A 6= ∅. This contradicts connectedness of K,
thus proving our claim. Since U ∩ (a, b) is a non-empty open subset of G, K
must be open in G.

We conclude, therefore, that G is a topological sum of clopen subsets
homeomorphic to R, so the group G is topologically orderable.

Corollary 1.27. Let G be a pseudocompact topological group with a
continuous weak selection. Then G is a topologically orderable compact
metrizable totally disconnected group.

Proof. From Theorem 1.26 it follows that G is locally compact, metriz-
able and topologically orderable. However, every pseudocompact group is
precompact [7] and a locally compact precompact group is clearly compact.
Total disconnectedness of G follows from [43, Theorem 2.4] which states
that a topologically orderable topological group which is not totally discon-
nected contains an open normal subgroup H homeomorphic to the addi-
tive group R of the reals endowed with the usual topology. The existence
of such a subgroup of G is impossible in view of the pseudocompactness
of G.

Totally disconnected compact metrizable spaces without isolated points
are known to be homeomorphic to the Cantor set. Therefore, we have the
following:

Corollary 1.28. Let X be a pseudocompact topological group with a
continuous weak selection. Then X is either finite or homeomorphic to the
Cantor set.

We finish this section with an example of a weakly orderable but not
suborderable topological group. Our group is additionally σ-compact, zero-
dimensional and Abelian.

Example 1.29. The free Abelian topological group A(C) over the Cantor
set C is weakly orderable but not suborderable.



16 G. Artico et al.

Proof. Let d be the usual metric on C. Then d admits an extension to a
continuous invariant metric d̂ over A(C) (cf. [17]). Note that the group A(C)
is not metrizable and its topology is strictly finer than the metric topology
induced by d̂. Denote by G the metric group (A(C), d̂ ). It is easy to see that
G is second countable and zero-dimensional. Indeed, both C and A(C) are
separable. Clearly, the identity map A(C) → G is continuous, hence G is
also separable. Therefore, G is second countable. Zero-dimensionality of G
follows from [1, Fact (α11)] and the countable sum theorem for the covering
dimension in normal spaces. So, G is orderable since every second countable
zero-dimensional metric space is orderable ([25], [18] or [22]; the reasoning is
quite simplified as dimensions dim, ind and Ind coincide for separable metric
spaces, see e.g. [12, Theorem 7.3.3]). Since the identity map A(C) → G is
continuous, the group A(C) is weakly orderable.

Finally, we claim that A(C) is not suborderable. As noted above, A(C)
is separable. If A(C) were suborderable, it would be first countable. But
a first countable topological group is metrizable, while metrizability of the
free Abelian group A(X) on a space X is equivalent to discreteness of X
(cf. [17]).

A simple analysis of the above proof shows that one can take any non-
discrete metrizable space X with dimX = 0 instead of the Cantor set C in
Example 1.29.

2. Embeddings into ordinals. Scattered spaces may be characterized
by the following folklore proposition (see e.g. [36, 8.5.10, Ex. A]):

Proposition 2.1. A Hausdorff space X is scattered if and only if it
admits a well-ordering in which initial segments are open. For every such
well-ordering , F → minF is a zero-selection for X, and every zero-selection
gives such a well-ordering.

Proof. Clearly, X is scattered if and only if it has a zero-selection. Let
ϕ be such a selection. The required well-ordering on X will be defined by
transfinite recursion. Let x0 = ϕ(X); then x0 is an isolated point. Suppose
that we have defined Sα = {xβ : β < α} in such a way that the initial
segments of Sα are open in X. The set Sα is open because it is the union of
its initial segments. If Sα 6= X, let Yα = X \ Sα and put xα = ϕ(Yα). Since
xα is isolated in Yα, the set Xα = Sα ∪ {xα} = {xβ : β ≤ α} = Sα+1 is still
open in X.

Obviously, the existence of such a well-ordering implies that minF is an
isolated point of F .

The following result (see [28, 7.5.1]) implies that any subspace of an ordi-
nal space has a continuous zero-selection. It is known (see Corollary 2.6 be-
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low) that ordinal spaces are the only spaces with a continuous zero-selection
within the realm of compact spaces. Michael’s sufficient condition for the ex-
istence of a continuous selection may be used for continuous zero-selections:

Lemma 2.2. If X is weakly orderable in such a way that every closed
subset of X has a minimum, then the selection F → minF is continuous.

The Fell topology on F(X) is the topology generated by the sets of the
form V +∩W−1 ∩ . . .∩W−n , where V,W1, . . . ,Wn are open subsets of X, with
the additional condition that X \V is compact. The Fell topology is coarser
than the Vietoris topology and they coincide if and only if X is compact.
Consequently, every Fell-continuous selection is continuous.

We denote by [X]≤2 the subset of F(X) consisting of the sets with at
most two elements. While Vietoris and Fell topologies coincide on [X]2, they
are different on [X]≤2. If there exists a Fell-continuous selection on [X]≤2,
then X is locally compact and orderable in such a way that every non-empty
closed subset has a minimum [3]. Putting together results from [3] and [21],
we obtain:

Theorem 2.3. The following conditions are equivalent :

(i) X is topologically well-ordered (i.e., X is a linearly ordered topolog-
ical space such that each non-empty closed set has a minimal element);

(ii) there exists a Fell-continuous selection for [X]≤2;
(iii) there exists a Fell-continuous selection for F(X).

Remark 2.3.1. It is our pleasant duty to point out that, while finishing
this paper, we got acquainted with [20]. The above Theorem 2.3 corresponds
to Theorem 1.2 and Corollary 1.3 of [20].

Theorem 2.5 below gives an explicit formulation of a similar equivalence
within the class of scattered spaces. First, we need a lemma about conver-
gence of nested sequences of closed sets.

Lemma 2.4. Let X be a topological space and suppose that {Fα : α < α0}
is a decreasing transfinite sequence of closed subsets of X with the non-empty
intersection F =

⋂
α<α0

Fα. The net {Fα : α < α0} always converges to F in
the Fell topology , and also in the Vietoris topology if some Fα is compact (2).

Proof. Since the family {Fα : α < α0} is decreasing, it suffices to observe
that if an open neighborhood V of F has compact complement, then Fα ⊆ V
for some α < α0. The same occurs if V is an arbitrary open neighborhood
of F and some Fα is compact.

(2) Clearly, the claim may also be stated for any filter base of closed sets with non-
empty intersection.
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Theorem 2.5. For a Hausdorff space X, the following are equivalent :

(i) X is homeomorphic to an ordinal space;
(ii) there exists a Fell-continuous zero-selection for X.

Proof. (i)⇒(ii). It suffices to show that the zero-selection ϕ(F ) = minF
is Fell-continuous. If W is an open interval containing minF , then the open
set V = W ∪{x ∈ X : x > minF} contains F and has compact complement.
Then W− ∩ V + is a neighborhood of F in the Fell topology and for every
G ∈W− ∩ V +, we have minG ∈W .

(ii)⇒(i). Denote by ϕ a Fell-continuous zero-selection on X. Let X =
{xα : α < α0} be the well-ordering corresponding to ϕ, as in Proposition 2.1.
Consider the sets Sα, Yα and Xα defined in the proof of Proposition 2.1. It
turns out that the closed set Yα coincides with {xβ : β ≥ α}. Let α be a
limit ordinal. Since

⋂
β<α Yβ = Yα, the decreasing net {Yβ}β<α converges to

Yα in the Fell topology. By the Fell-continuity of ϕ, the sequence {xβ}β<α
converges to xα in the topology of X. Consequently, every neighborhood
of xα contains a neighborhood in the order topology and the order topology
is finer than the original one. Finally, since the open subspace Xα of X is
compact in the order topology, the minimality of compact topologies ensures
that the order topology of Xα coincides with the subspace topology of Xα.
The conclusion now follows because X is the union of open subspaces Xα.

Corollary 2.6 ([14, Theorem 1]). A compact space X is homeomor-
phic to an ordinal space iff there exists a continuous zero-selection for X.

Clearly, Theorem 2.5 implies Corollary 2.6 since compactness of X en-
sures the Fell-continuity of the selection. In Theorem 2.7 below we provide
another generalization of Corollary 2.6 weakening the condition of compact-
ness of X.

A space X is said to be almost compact if for any two disjoint closed sets
in X, one of them is compact [15]. One can easily construct a space which
is almost compact without being regular. Every almost compact space is
countably compact and every regular almost compact space is normal and
locally compact. A completely regular space is almost compact iff it has a
unique compactification [15]. If α is a limit ordinal, then the ordinal space
α is almost compact iff α has uncountable cofinality.

In the proof of the next theorem we use background and notation of
Proposition 2.1 and Theorem 2.5. In fact, this theorem provides a topolog-
ical characterization of ordinal spaces α where α is a successor or has an
uncountable cofinality.

Theorem 2.7. A regular almost compact space X is homeomorphic to
an ordinal space if and only if there exists a continuous zero-selection for X.
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Proof. The necessity follows from Lemma 2.2 (or by arguing as in The-
orem 2.5). For the sufficiency, consider the well-ordering {xα} of X given
by the zero-selection. If for every limit ordinal α the net {Yβ}β<α Vietoris-
converges to Yα, then the conclusion follows as in Theorem 2.5. Otherwise,
let α be the minimal limit ordinal for which the above net does not converge.
Then there exists an open setΩ inX containing Yα such that Yβ∩(X\Ω) 6= ∅
for every β < α. Consequently, the closed subset X \Ω of X is unbounded
in Sα. Note that by the minimality of α, the subspace topology of Sα coin-
cides with its order topology.

Since the closed set X \Ω is countably compact (being almost compact),
the cofinality of α is uncountable. Let p be a point of Yα and let C be a
closed neighborhood of p with C ⊆ Ω. Then L = C ∩ Sα is a closed subset
in the subspace topology of Sα which is disjoint from X \ Ω. Since X \ Ω
is unbounded, L must be a bounded closed subset of Sα. Therefore, L is
compact and C \L is a neighborhood of p contained in Yα. This means that
Yα is clopen, so that X is the topological sum of the clopen subspaces Sα
and Yα. Since Sα is not compact, the clopen set Yα is compact and, hence,
it is homeomorphic to an ordinal space (Corollary 2.6). If δ + 1 is the order
type of Yα, then X is homeomorphic to δ + 1 + α.

One may wonder whether almost compactness can be replaced by count-
able compactness in Theorem 2.7. The answer is negative, as the topolog-
ical sum of two copies of ω1 shows. However, pseudocompact spaces with
a continuous zero-selection admit embeddings into ordinals (Theorem 2.9).
We start with a lemma in which Isol(X) denotes the set of isolated points
of X.

Lemma 2.8. Let X be a pseudocompact scattered space with a continuous
zero-selection and let {xα}α<δ be the well-ordering given by the selection.
Then the topology of X is finer than the ordinal topology of δ, and it is
obtained from the latter by declaring isolated some points corresponding to
limit ordinals of uncountable cofinality ; hence X is suborderable. If X is
locally compact , then every non-isolated point of X has a neighborhood V
such that V ∩ Isol(X) consists of points corresponding to successor ordi-
nals.

Proof. By Proposition 1.11 and Corollary 1.14, X is countably compact.
Consider the open sets Xα, Sα and the closed set Yα introduced in the proof
of Proposition 2.1. We prove the claim by induction on α. Suppose that for
all β < α, the set Xβ is closed in X and each non-isolated point xβ has a
neighborhood satisfying the conditions of the lemma. For every β < α, let
Vβ(xα) = {xγ : β < γ ≤ α}. By inductive hypothesis, the set Xβ is closed
for each β < α, so Vβ(xα) = Xα ∩ (X \Xβ) is an open neighborhood of xα.
Let us consider the following possible cases:
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• α = γ + 1. Then the set Xα = Xγ ∪ {xα} is closed and {xα} = Vγ(xα)
is open.
• α is limit and the net {Yβ}β<α converges to Yα in the Vietoris topol-

ogy. Then every neighborhood V of xα contains some Vβ(xα). Therefore,
the neighborhood system of xα in the topology of X coincides with the
neighborhood system of xα in the order topology. Let W be a neighborhood
of xσ disjoint from some Vβ(xα), where σ > α. Then W ∩ (X \ Xβ) is a
neighborhood of xσ disjoint from Xα and Xα is closed.
• α is limit and the net {Yβ}β<α does not Vietoris-converge to Yα. Then

there exists an open subset Ω containing Yα such that Yβ ∩ (X \Ω) 6= ∅ for
every β < α. Thus, X \Ω ⊆ Sα is a closed subset of X which is unbounded
in Sα. If α has countable cofinality, take a sequence βn ↗ α. Then Yβn ∩
(X \Ω) 6= ∅ for each n ∈ ω, and

(⋂
n∈ω Yβn

)
∩(X \Ω) = Yα∩(X \Ω) = ∅, in

contradiction with countable compactness of X. Consequently, the cofinality
of α is uncountable.

Let L be a closed subset of Sα such that L∩(X\Xβ) 6= ∅ for every β < α.
We want to prove that L∩(X\Ω) 6= ∅. Choose points y1 < z1 < y2 < z2 < . . .
such that yi ∈ L and zi ∈ X\Ω for each i ≥ 1. If w is the common supremum
of these sequences in the order of δ, we have w ∈ Sα. Since w has countable
cofinality, the inductive hypothesis implies that w ∈ L ∩ (X \Ω).

Now, for σ ≥ α, let V be a closed neighborhood of xσ such that V ⊆
Xσ∩Ω. Then L = V ∩Sα is contained in some Xβ with β < α. Thus, V \Xβ

is a neighborhood of xσ contained in Yα ∩Xσ. Consequently, xα is isolated
(take σ = α) and Xα is closed (take σ > α and xα 6∈ V ).

To prove the last assertion of the lemma, suppose that X is locally
compact and let xα be a non-isolated point of X. Since the sets Vβ(xα) =
Xα ∩ Yβ+1 form a base of closed neighborhoods of xα, there exists β < α
such that Vβ(xα) is compact. Suppose that there exists a limit ordinal σ with
β < σ < α such that xσ is an isolated point of X. Then Cγ = Vγ(xσ) \ {xσ}
is a closed non-empty subset of Vβ(xα) for every γ with β < γ < σ. Since⋂
γ<σ Cγ = ∅, we get a contradiction.

Theorem 2.9. Let X be a pseudocompact space. If there exists a contin-
uous zero-selection for X, then X is homeomorphic to a sequentially compact
subspace of an ordinal space. This subspace is open if X is locally compact.

Proof. Let {xα}α<δ be as in Lemma 2.8. Represent every ordinal in
the form α + n, where α is a limit ordinal and n < ω. Consider the map
ι : X → δ + 1 defined by

ι(xα+n) =
{
α+ n if xα is an accumulation point of X,
α+ n+ 1 if xα is an isolated point of X.
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Using Lemma 2.8, it is straightforward to verify that the map ι is the re-
quired embedding.

We finish this section with a result about zero-selections for subspaces.
Actually, we do not know whether normality can be dropped in the next
proposition. This is also connected with Conjecture 5.4: if the conjecture
were true, the assumption of normality in Proposition 2.10 would not be
necessary.

Proposition 2.10. Let Y be a subspace of a normal space X. If ϕ is
a continuous zero-selection for X, then the map ψ defined by ψ(F ) = ϕ(F )
for each relatively closed set F ⊆ Y is a continuous zero-selection for Y .

Proof. Let F be a relatively closed subset of Y and put q = ϕ(F ). Since
q is an isolated point of F , we have q ∈ F . To check the continuity of ψ,
let W be a neighborhood of q in X. Let Z = Ω+ ∩ V −1 ∩ . . . ∩ V −n be a
neighborhood of F in F(X) such that if B ∈ Z then ϕ(B) ∈ W . Since
F ⊆ Ω, take in X an open subset U such that F ⊆ U ⊆ U ⊆ Ω. Then
ZY = (U ∩Y )+∩(V1∩Y )−∩ . . .∩(Vn∩Y )− is a neighborhood of F in F(Y ).
If G belongs to ZY , it is straightforward to prove that G ∈ Z and, thus,
ψ(G) = ϕ(G) ∈W ∩ Y .

3. Covering properties may be helpful. It is worth noting that
zero-selections are not always necessary when describing (open) subsets of
ordinals: e.g., every scattered first countable compact space is homeomor-
phic to a countable successor ordinal (Mazurkiewicz–Sierpiński, [36]). By
this theorem, every compact countable space, being scattered and metriz-
able, is homeomorphic to a countable ordinal. Consequently, every locally
compact locally countable space, LCC-space for short, is scattered and zero-
dimensional. Another related result is due to Telgársky who proved that a
first countable scattered paracompact space is completely metrizable and
embeddable into an ordinal space [37]. Below we present several theorems
which generalize these results and extend them to spaces having nice cover-
ing properties.

Let us recall that a scattered space X can be represented in the form⋃
α<λ L

α for some ordinal λ, where, for α < λ, Lα is the non-empty set of all
isolated points of X \⋃β<α L

β (e.g., L0 is the set of isolated points of X).
The height h(X) of X is λ, the αth level is Lα and the rank of p ∈ X is the
α < λ for which p ∈ Lα. For every p ∈ Lα, there exists a neighborhood Vp
of p with Vp ⊆

⋃
β≤α L

β and Vp ∩ Lα = {p}; such a neighborhood is said to
be a topped neighborhood of p. Observe that Lα is a closed and discrete sub-
set of

⋃
β≤α L

β. Every locally compact scattered space is zero-dimensional
[36, Theorem 8.5.4].



22 G. Artico et al.

A space is said to be ultraparacompact if every open covering has a
disjoint open refinement. Since every paracompact scattered space is ultra-
paracompact [37, 35], we obtain the following result:

Theorem 3.1. Let X be a locally compact paracompact space. If X has
a continuous zero-selection, then it is homeomorphic to a topological sum of
successor ordinals. Consequently , it is homeomorphic to an open subspace
of an ordinal space. If X is Lindelöf , then it is homeomorphic to an ordinal
space of countable cofinality.

Proof. Take a cover U of X consisting of open sets with compact closure.
By [37], there exists a disjoint open refinement V of this covering. Every
V ∈ V is clopen and compact as a subset of some U , U ∈ U . Since every
V ∈ V has a continuous zero-selection, every element of this partition is
homeomorphic to a compact ordinal space by Corollary 2.6.

If X is Lindelöf, it suffices to observe that a countable topological sum
of compact ordinal spaces is homeomorphic to an ordinal space of countable
cofinality.

Remark 3.1.1. Let S be an ordinal equipped with a locally compact
topology τ which is finer than the order topology. Then there exists a con-
tinuous zero-selection for (S, τ) (e.g., see Lemma 2.2). If S is countable, then
S is Lindelöf; consequently, (S, τ) is homeomorphic to a countable ordinal
space. Under the assumption of ♦, in Theorem 4.6 below, we construct a
topology τ on ω1 for which the space (ω1, τ) is monotonically normal, locally
compact, locally countable and not suborderable.

We give a positive result for locally compact scattered spaces of countable
height which is interesting in comparison with a counterexample promised
in Remark 3.1.1.

Recall that a space X is called strongly collectionwise Hausdorff if for
every closed discrete subset L of X, there exists a discrete family {Ux}x∈L
of open subsets of X such that x ∈ Ux for every x ∈ L. A collectionwise
normal space is strongly collectionwise Hausdorff. A space is said to be
meta-Lindelöf if every open cover has an open point-countable refinement.

Lemma 3.2. Let X be a regular scattered space.

(1) If X is hereditarily strongly collectionwise Hausdorff and h(X) < ω1,
then X is hereditarily meta-Lindelöf.

(2) If X is strongly collectionwise Hausdorff and h(X) is finite, then X
is ultraparacompact.

Proof. (1) It suffices to prove that X is meta-Lindelöf. We proceed by
transfinite induction on the height of X. If h(X) = 1, then X is discrete. Let
h(X) = α and suppose that the conclusion holds for every space Y satisfying
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the hypotheses with h(Y ) < α. We will prove that every open covering A of
X has a point-countable open refinement.

If α = γ + 1, then the maximal level Lγ is closed and discrete. For
every p ∈ Lγ , choose an open neighborhood Up of p in such a way that the
family {Up}p∈Lγ is discrete and each Up is contained in some member of A.
Then choose a closed neighborhood Vp of p such that Vp ⊆ Up for every
p ∈ Lγ. Consider the open set M = X \⋃p∈Lγ Vp. Its height is at most γ, so
by the inductive hypothesis, M is meta-Lindelöf. Therefore, there exists a
point-countable familyW of open subsets of M such that

⋃W = M andW
refines A|M . Thus, the cover W ∪{Up : p ∈ Lγ} is an open point-countable
refinement of A.

If α is limit, then X =
⋃
β<α L

β. By the inductive hypothesis, the open
subspace

⋃
γ≤β L

γ is meta-Lindelöf for every β. Consequently, since α is
countable, the spaceX is meta-Lindelöf because it coincides with a countable
union of open meta-Lindelöf subspaces.

(2) It suffices to prove that X is paracompact [37]. We proceed by in-
duction on the height of X. If h(X) = 1, then X is discrete. Let h(X) = n
and suppose that the statement holds for every space Y satisfying the hy-
potheses with h(Y ) < n. The maximal level Ln is closed and discrete in X.
We will prove that every open cover A of X has a locally finite refinement
([12, Theorem 5.1.11]; recall that this refinement may consist of arbitrary
sets). For every p ∈ Ln, choose an open neighborhood Up of p in such a
way that the family {Up}p∈Ln is discrete and each Up is contained in some
member of A. Consider the closed set Mn = X \ ⋃p∈Ln Up. Its height is
smaller than n and it is strongly collectionwise Hausdorff. By the induc-
tive hypothesis, Mn is paracompact. Therefore, there exists a locally finite
(in Mn) cover W of Mn which refines A|Mn. It is not restrictive to assume
that W consists of subsets of Mn. As Mn is closed, it follows that W is
locally finite in X. Thus, the coverW∪{Up : p ∈ Ln} is the required locally
finite refinement of A.

Remark 3.2.1. (1) The first statement of Lemma 3.2 is not true without
the assumption on the height ofX as the ordinal space ω1 shows. In addition,
by Theorem 3.1, the example provided in Theorem 4.7 below shows that the
second statement of Lemma 3.2 does not hold for spaces of countable height.

(2) Lemma 3.2 is sufficiently strong for our purpose. For example, one
can modify (1) in Lemma 3.2 adding the assumption that X is locally c.c.c.:
then X will be paracompact.

Proposition 3.3. If X is a meta-Lindelöf LCC-space, then X is me-
trizable and homeomorphic to an open subspace of an ordinal.

Proof. Let A be a point-countable open cover of X consisting of count-
able sets with compact closure. Consider the sets Stω(A) =

⋃
n∈ω Stn(A),
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with A ∈ A, which form a disjoint clopen cover of X. Every Stω(A) is
countable and locally compact, hence Lindelöf and scattered. Therefore, it
is ultraparacompact [37], so it may be split into a sum of compact count-
able spaces, which are homeomorphic to countable ordinals. Since compact
countable spaces are metrizable, so is X.

Lemma 3.2 and Proposition 3.3 imply:

Theorem 3.4. Let X be an LCC-space with the following properties:

(1) h(X) < ω1;
(2) X is hereditarily strongly collectionwise Hausdorff.

Then X is metrizable and homeomorphic to an open subspace of an ordinal
space.

Every suborderable space is monotonically normal and, hence, heredi-
tarily collectionwise normal (see [19]). One may ask if condition (1) on the
height of X can be omitted in Theorem 3.4. Assuming the Diamond Prin-
ciple ♦, we will construct a monotonically normal LCC-space X which has
a continuous zero-selection, but it is not suborderable (Theorem 4.6). This
example shows that the assumptions of Proposition 3.3 and Theorem 3.1
cannot be easily weakened. The second claim in Lemma 3.2 implies the
following fact close to Theorem 3.4.

Theorem 3.5. Let X be an LCC-space with h(X) < ω. If X is strongly
collectionwise Hausdorff , then X is metrizable and homeomorphic to an
open subspace of an ordinal space.

Theorem 4.7 in the next section shows that the above result is no more
valid for spaces X with h(X) = ω.

4. Counterexamples. We need some preliminaries. A subset C of ω1
is said to be a cub in ω1 if C is closed in the order topology and unbounded
in ω1. Clearly, the set Lim(ω1) of all limit ordinals less than ω1 is a cub.
The intersection of countably many cubs is again a cub (see [11] or [23]).
We say that B ⊆ ω1 is stationary if B ∩ C 6= ∅ for every cub C. The
intersection of a cub with a stationary set is again a stationary set. We also
put Isol(ω1) = ω1 \ Lim(ω1).

Let B ⊆ ω1. A function ϑ : B → ω1 is called regressive if ϑ(α) < α for
every α ∈ B.

Lemma 4.1 (Fodor). Let ϑ : B → ω1 be a regressive function, where B
is a stationary subset of ω1. Then there is a stationary set B′ ⊆ B such
that ϑ is constant on B′.

Corollary 4.2. For every unbounded subset B of ω1, the set C =
{α < ω1 : sup(B ∩ α) = α} is a cub.
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Our constructions depend on a set-theoretic assumption consistent with
ZFC and known as the Diamond Principle.

Diamond Principle. There exists a transfinite sequence {Aα : α < ω1}
of subsets of ω1 such that Aα ⊆ α for each α < ω1 and, for every subset
B of ω1, the set {α < ω1 : B ∩ α = Aα} is stationary. Such a sequence
{Aα : α < ω1} will be called a ♦-sequence.

Notice that the set A = {α < ω1 : supAα = α} is stationary for every
♦-sequence {Aα}α<ω1 . We abbreviate the diamond principle to ♦ (see [23]
or [11]). Let us introduce notation which will be used in this section.

Notation 4.3. Let {Aα : α < ω1} be a ♦-sequence. Set A = {α < ω1 :
supAα = α}. For an unbounded subset B of ω1, put

A(B) = {α ∈ A : B ∩ α = Aα} and I(B) = {α ∈ A : B ⊃ Aα}.
Proposition 4.4. If {Aα : α < ω1} is a ♦-sequence and B ⊆ ω1 is

unbounded , then both sets A(B) and I(B) are stationary.

We omit the proofs of Corollary 4.2 and Proposition 4.4 as they are well
known and pretty standard. We shall use the following characterization of
monotonically normal spaces given in [19, Theorem 5.19]:

Lemma 4.5. A space X is monotonically normal iff to each open set
U ⊂ X and x ∈ U , one can assign an open set Ux contained in U , containing
x and satisfying the following condition:

Ux ∩ Vy 6= ∅ implies x ∈ V or y ∈ U.
We are finally ready to present the first counterexample.

Theorem 4.6. Assume ♦. There exists a topology τ on the set ω1, finer
than the order topology , such that X = (ω1, τ) is a monotonically normal
LCC-space with a continuous zero-selection, but X is not suborderable.

Proof. First, we construct the topology τ on ω1 and then we prove in
several steps that the space X = (ω1, τ) is as required.

Apply the diamond principle to take a ♦-sequence {Aα : α < ω1} and
define D = {α ∈ Lim(ω1) : sup(Aα∩ Isol(ω1)) = α}. The set D is stationary
because it contains A(Isol(ω1)) (see Proposition 4.4). If α ∈ D, then choose
{σα(n)}n∈ω ⊆ Aα ∩ Isol(ω1) such that

(1) σα(n)↗ α;
(2) if σα(3n + 1) has a successor s in Aα such that s ∈ Isol(ω1), then

σα(3n+ 2) = s (this requirement is used to prove Fact 3 below).

For δ < α, put

Lα0 = {σα(3n) : n ∈ ω},
Cαδ = (δ, α) ∩

⋃
{{σα(3n+ 1), σα(3n+ 2)} : n ∈ ω}.
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If α 6∈ D and δ < α, then put Lα0 = Cδδ = ∅.
Recursive construction of τ . For each α ∈ ω1, the family B(α) will be a

local base of topped neighborhoods of α for a topology τ which is finer than
the order topology of ω1. On α∪{α}, we consider the topology τα generated
by
⋃
β≤α B(β). The topology τ will have the union of all τα’s as a base, and

τ will induce on α ∪ {α} the topology τα. In addition, the family B(α) will
satisfy the following condition:

(Iα) B(α) = {Uγ(α) : γ < α}, where each Uγ(α) is a compact open
neighborhood of α (in τα) such that Uγ(α) ⊆ (γ, α] and Uγ(α) ∩
Lim(ω1) = (γ, α] ∩ Lim(ω1) whenever α ∈ Lim(ω1), and B(α) =
{{α}} whenever α ∈ Isol(ω1).

The topology τ is defined as follows. Suppose that τγ ’s have been defined
for all γ < α ∈ ω1 in such a way that (Iγ) holds for all γ < α.

• If α ∈ Isol(ω1), then {α} is an isolated point in τα (hence, in τ) and
B(α) = {{α}}.
• If α ∈ Lim(ω1), then it is convenient to distinguish two cases:

(1) α is not isolated in Lim(ω1), i.e. there is a sequence {βn}n<ω such
that βn ↗ α and βn ∈ Lim(ω1) for each n ∈ ω;

(2) α is isolated in Lim(ω1).

To make our notation less clumsy, we put β−1 = 0.

Ad (1). We take a sequence {βn}n<ω as in (1). For every n ∈ ω, choose
the neighborhood Wn = Uβn−1(βn) of βn. By (Iβn), Wn is compact and open
in τβn , Wn ⊂ (βn−1, βn] and Wn ∩ Lim(ω1) = (βn−1, βn] ∩ Lim(ω1) for each
n ∈ ω.

Ad (2). If α > ω, put β0 = max(α ∩ Lim(ω1)). Then we take {βn}∞n=1 as
the increasing enumeration of all ordinals in (β0, α). We put W0 = U0(β0)
and Wn = {βn} for n ≥ 1. If α = ω, put βn = n + 1 and Wn = {βn} for
every n ∈ ω.

Definition of B(α). Whichever case occurs, choose δ < α. So there exists
nδ ∈ ω such that δ ∈ [βnδ−1, βnδ). Put Uδ = Uδ(βnδ) provided case (1) occurs
or nδ = 0 & α > ω in case (2). Put Uδ = ∅ otherwise. Then put Uδ(α) =
({α} ∪ Uδ ∪ (

⋃∞
k=nδ+1Wk) ∪ Cαδ ) \ Lα0 . Finally, set B(α) = {Uδ(α) : δ < α}.

Note that if Cα0 is non-empty, then it τα-converges to α, and Lα0 is closed
and discrete. It is easy to see that B(α) satisfies (Iα), and this completes
our recursive construction.

Clearly, the family
⋃
α<ω1

B(α) is a base for the topology τ on ω1 which is
finer than the order topology of ω1, and τ is zero-dimensional, locally com-
pact and locally countable. In other words, the space X = (ω1, τ) is LCC.
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For the later references, we sum up some properties of τ :

Fact 1. The restriction of τ to Lim(ω1) coincides with the order topol-
ogy of Lim(ω1) and Isol(ω1) is dense in X. In addition, X has a continuous
zero-selection by Remark 3.1.1.

Fact 2. (X, τ) is monotonically normal.

Proof. We are going to use Lemma 4.5. For an open set U ⊂ X and
x ∈ U , put Ux = {x} if x is isolated. If x is not isolated, take an element
Ux ∈ B(x) such that Ux ⊂ U . Assume that Ux∩Vy 6= ∅ for open subsets U, V
of X. We may suppose that x 6= y. Let us show that x ∈ V or y ∈ U . If x
or y is isolated, we are done. So assume that neither x nor y is isolated and
x < y. Then there is z < x such that z ∈ Ux ∩ Vy. By (Iy) and as Vy ⊂ V ,
we obtain x ∈ V . This proves Fact 2.

Fact 3. Let B and C be uncountable subsets of ω1. Then B
τ ∩ Cτ is

uncountable, even stationary.

Proof. There exist sequences E = {bα : α < ω1} and F = {cα : α < ω1}
such that bα ∈ B, cα ∈ C and bα < cα < bα+1 for each α < ω1. The sets
E, F and T = E ∪ F are unbounded in ω1. Observe that if x ∈ E, then the
successor of x in the order of T belongs to F . It is not restrictive to assume
that one of the next three cases occurs:

(1) B ∪ C ⊆ Isol(ω1). Let A(T ) ⊆ D be the stationary set such that
T ∩ α = Aα and supAα = α for every α ∈ A(T ) (see Proposition 4.4). We
claim that if α ∈ A(T ), then α ∈ Bτ ∩Cτ . Since α ∈ D, the sequence Cα0 is
non-empty, is contained in T and τ -converges to α. In addition, σα(3n+ 1)
∈ E iff σα(3n+ 2) ∈ F , so we have α ∈ Bτ ∩ Cτ .

(2) B ∪ C ⊆ Lim(ω1). In this case B
τ

and C
τ

are closed in the order
topology and the intersection is a cub.

(3) B ⊆ Isol(ω1) and C ⊆ Lim(ω1). As in case (1), the stationary set
A(B) is contained in B

τ
. The conclusion now follows since C

τ
is a cub.

Fact 3 is proved.

We now show that X is not suborderable. By a result of Purisch [34],
a scattered suborderable space is orderable, so it suffices to prove the fol-
lowing:

Fact 4. The space X is not orderable.

Proof. Suppose to the contrary that there exists a linear order % on X
inducing the topology τ . We divide the proof into several steps.

Claim 1. There is no uncountable subset M of Isol(ω1) such that the
restriction of % or %−1 to M coincides with the well-order on M inherited
from ω1.
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Indeed, assume that %|M coincides with the standard order on M . Take
α ∈ A(M). Then α ∈ D and M ∩ α = Aα. The sequence Cα0 τ -converges
to α. The definition of the order topology implies that Lα0 %-converges to α,
a contradiction. The case of %−1 is similar.

In what follows, by %-intervals we shall mean the sets [a, b]%, (←, b]% or
[a,→)%, where a, b ∈ X, or the whole X.

Claim 2. For each x ∈ X, either (←, x]% or [x,→)% is countable.

This follows from Fact 3.

Claim 3. If ∆ is the intersection of countably many %-intervals and ∆
is uncountable, then there is y ∈ X such that [y,→)ω1 ⊆ ∆.

This follows from Claim 2.

Let us return to the proof of Fact 4. We consider two possibilities:

Case 1. There is an uncountable %-interval J such that the %-interval
[a, b]% is countable for all a, b ∈ int%J (3).

Case 2. For each uncountable %-interval J , there is a %-interval [a, b]%,
with a, b ∈ int%J , such that [a, b]% is uncountable.

Suppose that Case 1 holds. By recursion, one can define an uncountable
subset M of Isol(ω1) such that either %|M or %−1|M coincides with the order
on M inherited from ω1, so Claim 1 yields a contradiction. Indeed, one
knows from the beginning of the inductive construction whether % or %−1

works: take γ0 ∈ Isol(ω1) ∩ int%J such that [γ0,→)ω1 ⊆ J . If the %-interval
[γ0,→)% is uncountable, then % works. As [γ0,→)% is uncountable, there
are only countably many points from Isol(ω1) %-below γ0, so there exists
γ1 ∈ Isol(ω1) ∩ int%J ∩ (γ0,→)%. The %-interval [γ1,→)% is uncountable by
our assumption, so the construction goes on up to ω1. (Claim 3 is used at
limit steps.)

If Case 2 holds, then since Isol(ω1) is dense in X, we may assume that
a, b ∈ Isol(ω1). Again, by recursion (and using Claim 3) one can construct
uncountable %-intervals Jα = [aα, bα]% such that intJα ⊃ Jα′ if α < α′ < ω1,
so both {aα : α ∈ ω1} and {bα : α ∈ ω1} are uncountable subsets of Isol(ω1)
whose existence contradicts Claim 1.

This finishes the proof of Fact 4 and, hence, of Theorem 4.6.

In the next example, we show that the condition h(X) < ω is necessary in
Theorem 3.5. Furthermore, we prove that an LCC-space with a continuous
zero-selection is not necessarily normal, even if its height is 2.

(3) int%J consists of the points which are not in the %-boundary of J .
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Theorem 4.7. Assume ♦. There exist a subset S of ω1 and a topology τ
on S finer than the relative topology of ω1 such that X = (S, τ) is a col-
lectionwise normal LCC-space of height ω with a continuous zero-selection,
but X is not suborderable. The union Y of the first two levels of X fails to
be normal.

Proof. Take a ♦-sequence {Aα : α < ω1}. Using Proposition 4.4, de-
fine inductively H0 = Isol(ω1), Hn+1 = I(Hn) for every n ∈ ω and S =⋃∞
n=0H

n. One can apply the definition of I( ) to prove that the sets Hn are
mutually disjoint. We shall construct a scattered topology on S for which
Hn is the n-level. By induction on n, we define a base B(α) for each point
α ∈ Hn consisting of topped compact open neighborhoods.

• If α ∈ H0, then B(α) = {{α}}.
• Suppose we have already defined B(α) for all points from

⋃
k≤nH

k.
Let α ∈ Hn+1 = I(Hn). Then Hn ⊇ Aα and supAα = α. Choose a se-
quence {σα(k) : k ∈ ω} ⊆ Aα such that σα(k) ↗ α and σα(2k + 1) is
the successor of σα(2k) in the order of Aα. For each k ≥ 1, take a com-
pact open set Wk ∈ B(σα(k)) such that Wk ⊆ (σα(k − 1), σα(k)]. Put
Vk(α) = {α} ∪⋃l≥kWl. The local base at α is defined as B(α) = {Vk(α) :
k ≥ 1}.

Let τ be the topology on S with the base
⋃
α<ω1

B(α). Then τ is finer than
the relative topology of the ordinal space ω1, X = (S, τ) is an LCC-space
with a continuous zero-selection (apply Lemma 2.2), and its levels are the
sets Hn. A direct verification shows that the statement of Fact 3 in the proof
of Theorem 4.6 remains valid for X. A useful fact for transferring Fact 3 is
that for each uncountable C ⊆ S, C

τ ∩Hn is uncountable for all but finitely
many n ∈ ω.

Now we prove that X is collectionwise normal. Let {Fδ : δ ∈ D} be a
discrete family of closed subsets of X. We may distinguish three cases:

• There exists γ < ω1 such that Fδ ⊆ γ + 1 for every δ ∈ D. Since the
countable subspace Xγ = {α ∈ S : α ≤ γ} is clopen and Lindelöf, there
exists a disjoint family {Vδ}δ∈D of open subsets of X such that Fδ ⊆ Vδ for
every δ ∈ D [12, 5.1.17–18].
• There exists δ0 ∈ D such that Fδ0 is unbounded in ω1. Put G =⋃

δ 6=δ0 Fδ. By Fact 3, G is bounded. Arguing as above, we can find a disjoint
family {Vδ}δ∈D of open subsets of X such that Fδ0 ∩Xγ ⊆ Vδ0 and Fδ ⊆ Vδ
whenever δ 6= δ0. The required disjoint family of open sets is {Vδ : δ ∈
D \ {δ0}} ∪ {Vδ0 ∪ (X \Xγ)}.
• Every Fδ is bounded, but

⋃
δ∈D Fδ is unbounded. It is easy to find

disjoint subsets D1 and D2 of D such that Gi =
⋃
δ∈Di Fδ is closed and

unbounded for i ∈ {1, 2}, thus contradicting Fact 3.
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It remains to show that the open subspace Y = H0 ∪ H1 of X is not
normal (a suborderable space is hereditarily normal). Notice that H1 is
closed and discrete in Y and it is stationary in ω1. Let G be an unbounded
non-stationary subset of H1. Then G and H1 \G are disjoint closed subsets
of Y . If Ω is an open set containing G, let B = Ω ∩ H0. Then B is an
uncountable subset of Isol(ω1), the set A(B) is stationary and A(B) ⊆ H1.
Consequently, A(B) \ G is a non-empty subset of H1 \ G. If α ∈ A(B),
then α ∈ Aτ

α ⊆ B
τ ⊆ Ω

τ
. Therefore, (H1 \G) ∩ Ω τ 6= ∅, and Y cannot be

normal.

5. Open problems. By van Douwen’s result in [9], every countably
compact space with a continuous weak selection is sequentially compact.
The following problem is an attempt to find an analog of this fact for pseu-
docompact spaces.

Problem 5.1. Is a pseudocompact space X with a continuous weak se-
lection necessarily sequentially pseudocompact or does it belong to the Froĺık
class B? (4)

In view of Corollary 1.4 and Proposition 1.9, the above problem is equiv-
alent to the following one:

Problem 5.2. Is every pseudocompact space X with a continuous weak
selection suborderable?

Counterexamples in Section 4 have been constructed under ♦. We do not
know whether similar spaces exist in ZFC.

Problem 5.3. Does there exist in ZFC a space as in Theorem 4.6, i.e.,
a locally compact locally countable monotonically (or hereditarily collection-
wise) normal space with a continuous zero-selection which is not a subspace
of ordinals? (5)

Recall that by Theorem 3.1 and Lemma 3.2, a space as in Problem 5.3
must have uncountable height. Problem 5.3 remains open, even if the re-
quirement of local countability is omitted. If, however, local compactness is
omitted, then it is easy to find an example in ZFC: see [4]. In addition, once
we drop both local compactness and local countability, a space like that in
Theorem 4.7 can be constructed in ZFC using an appropriate ladder sys-
tem. This indicates that the spaces with a continuous zero-selection are very

(4) Garcia-Ferreira and Sanchis have recently answered this problem in the affirma-
tive: a continuous weak selection implies sequential pseudocompactness for pseudocompact
spaces.

(5) It will be clarified in the forthcoming paper [4] that replacing a subspace of ordinals
by suborderable, one obtains the same problem.
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far from being orderable. Nevertheless, we dare to formulate the following
conjecture (cf. Lemma 2.2):

Conjecture 5.4. Let X be a completely regular space with a continu-
ous zero-selection. Then there is a continuous 1-1 map of X to an ordinal
space.
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[6] E. Čech, Topological Spaces, revised by Z. Froĺık and M. Katětov, Czechoslovak
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[16] I. Glicksberg, Stone–Čech compactifications of products, Trans. Amer. Math. Soc.

90 (1959), 369–382.
[17] M. I. Graev, Free topological groups, in: Topology and Topological Algebra, Transl.

Ser. 1, Vol. 8, Amer. Math. Soc., 1962, 305–364; Russian original in: Izv. Akad.
Nauk SSSR Ser. Mat. 12 (1948), 279–324.

[18] J. de Groot, Non-archimedean metrics in topology , Proc. Amer. Math. Soc. 7 (1956),
948–953.



32 G. Artico et al.

[19] G. Gruenhage, Generalized metric spaces, in [24], 423–501.
[20] V. G. Gutev, Fell-continuous selections and topologically well-orderable spaces II ,

in: Proc. Ninth Topological Symposium (Prague, 2001), P. Simon (ed.), Topology
Atlas, 2002, 147–153; arXiv:math.GN/0204129.

[21] V. G. Gutev and T. Nogura, Fell continuous selections and topologically well-order-
able spaces, preprint, 1999, 8 pp.

[22] H. Herrlich, Ordnungsfähigkeit total-diskontinuierlicher Räume, Math. Ann. 159
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