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Abstract. By results of [9] there are models A and B for which the Ehrenfeucht–
Fräıssé game of length ω1, EFGω1(A,B), is non-determined, but it is consistent relative to
the consistency of a measurable cardinal that no such models have cardinality ≤ ℵ2. We
now improve the work of [9] in two ways. Firstly, we prove that the consistency strength of
the statement “CH and EFGω1(A,B) is determined for all models A and B of cardinality
ℵ2” is that of a weakly compact cardinal. On the other hand, we show that if 2ℵ0 < 2ℵ3 ,
T is a countable complete first order theory, and one of

(i) T is unstable,
(ii) T is superstable with DOP or OTOP,
(iii) T is stable and unsuperstable and 2ℵ0 ≤ ℵ3,

holds, then there are A,B |= T of power ℵ3 such that EFGω1(A,B) is non-determined.

This paper is a continuation of [9]. Let A and B be two first order
structures of the same vocabulary L. We denote the domains of A and B

by A and B respectively. All vocabularies are assumed to be relational. The
Ehrenfeucht–Fräıssé game of length γ of A and B denoted by EFGγ(A,B)
is defined as follows: There are two players called ∀ and ∃. First ∀ plays x0
and then ∃ plays y0. After this ∀ plays x1, and ∃ plays y1, and so on. If
〈(xβ, yβ) : β < α〉 has been played and α < γ, then ∀ plays xα after which ∃
plays yα. Eventually a sequence 〈(xβ, yβ) : β < γ〉 has been played. The rules
of the game say that both players have to play elements of A∪B. Moreover,
if ∀ plays his xβ in A (resp. B), then ∃ has to play his yβ in B (resp.
A). Thus the sequence 〈(xβ, yβ) : β < γ〉 determines a relation π ⊆ A × B.
Player ∃ wins this round of the game if π is a partial isomorphism. Otherwise
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∀ wins. The notion of winning strategy is defined in the usual manner. The
game EFGδ

γ(A,B) is defined like EFGγ(A,B) except that the players play
sequences of length < δ at a time. Thus EFGγ(A,B) is the same game as
EFG2

γ(A,B).
It was proved in [9] that, assuming �ω1 , there are models A and B of car-

dinality ℵ2 such that the game Gω1(A,B) is non-determined. In this paper
we weaken the assumption �ω1 , to “ω2 is not weakly compact in L” (Corol-
lary 8), but we can do this only if we assume CH. We do not know if this is
possible without CH. In the other direction, it was proved in [9] that if the
non-ω1-stationary ideal on ω2 has a σ-closed dense subset, then the game
EFGω1(A,B) is determined for all A and B of cardinality≤ ℵ2. The assump-
tion is equiconsistent with the existence of a measurable cardinal. In this pa-
per we weaken the assumption to a condition which is consistent relative to
the existence of a weakly compact cardinal (Corollary 13). Thus we establish:

Theorem 1. The following statements are equiconsistent relative to
ZFC :

1. There is a weakly compact cardinal.
2. CH and EFGω1(A,B) is determined for all models A and B of car-

dinality ℵ2.

In [9] we proved in ZFC that there are structures A and B of cardi-
nality ℵ3 with one binary predicate such that the game EFGω1(A,B) is
non-determined. We now improve this result under some cardinal arithmetic
assumptions. We prove:

Theorem 2. Assume that 2ω < 2ω3 and T is a countable complete
first order theory. Suppose that one of (i)–(iii) below holds. Then there are
A,B |= T of power ω3 such that for all cardinals 1 < θ ≤ ω3, EFGθ

ω1
(A,B)

is non-determined.

(i) T is unstable.
(ii) T is superstable with DOP or OTOP.

(iii) T is stable and unsuperstable and 2ω ≤ ω3.

This result complements the result in [9] that if T is an ω-stable first
order theory with NDOP, then EFGω1(A,B) is determined for all models A
of T and all models B. This is actually true under the weaker assumption
that T is superstable with NDOP and NOTOP.

Notation. We follow Jech [6] in set-theoretic notation. We use Smn to
denote the set {α < ωm : cof(α) = ωn}. Closed unbounded sets are called
cub sets. A set of ordinals is λ-closed if it is closed under supremums of
ascending λ-sequences 〈αi : i < λ〉 of its elements. A subset of a cardinal is
λ-stationary if it meets every λ-closed unbounded subset of the cardinal.
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1. Getting a weakly compact cardinal. In this section we show
that if CH holds and EFGω1(A,B) is determined for all models A and B
of cardinality ℵ2, then ω2 is weakly compact in L (Corollary 8). We use
the results from [8] that if ω2 is not weakly compact in L, then there is
a bistationary S ⊆ S2

0 such that for all α < ω2 either α ∩ S or α \ S is
non-stationary.

If I is a linear order, we use (I)∗ to denote the reverse order of I. We call
a sequence s = (sξ)ξ<ζ a coinitial sequence of length ζ in I if it is decreasing
in I and has no lower bound in I. The coinitiality coinit(I) of a linear order
I is the smallest length of a coinitial sequence in I.

Let θ = ω + ((ω1)∗ + ω) · ω1.

Lemma 3. There is a dense linear order I such that :

(i) |I| = ℵ1.
(ii) coinit(I) = ℵ0,

(iii) I · (α+ 1) ∼= I for all α ≤ ω1.
(iv) I ∼= I · ω + I · (ω1)∗.
(v) I · θ + I ∼= I.

Proof. This is like Lemma 7.17 in [10]. If J1 and J2 are linear orders, let
H(J1, J2) be the set of f : nf → J1 ∪ J2, where nf < ω is even, f(2i) ∈ J1
and f(2i+ 1) ∈ J2 for all i < nf . We can make H(J1, J2) a linear order by
ordering the functions lexicographically, i.e.

f ≤ g ⇔ (∃m ≤ nf )((∀i < m)(f(i) = g(i)) & (m < nf → f(m) < g(m))).

Let I0 = H(Q, ω+(ω1)∗) and I1 = H(I0, ω1). Thus I0 ∼= (1+I0)·(ω+(ω1)∗)·Q
and I1 ∼= (1+I1) ·ω1 ·I0. By using Q ∼= Q+1+Q, ω = 1+ω and ω1 = 1+ω1,
one easily gets the following, first for I0, and then for I1:

I0 ∼= I0 + 1 + I0, I1 ∼= I1 + 1 + I1.(1)

Let I be the set of f : ω → I1 ∪ θ, where f(2i) ∈ I1 and f(2i + 1) ∈ θ
for all i < ω ordered lexicographically. Thus I ∼= I · θ · I1. In fact, I is of the
form J ·Q, so (ii) is true. By (1) and θ ∼= 1 + θ one gets (v) immediately. As
I ∼= I ·θ ·(1+I1) ·ω1 ·I0, from (v) we easily get (iii) for α = ω1. From this and
α+ω1 = ω1 we immediately get (iii) for α < ω1. Note that θ ∼= ω+(ω1)∗+θ.
If we combine this with I ∼= I · θ · I1 and (ω1)∗ ∼= (ω1)∗ + 1, we get (iv).

As to (i), we only have |I| = 2ω. We use this lemma in a context where
CH is assumed, so we could simply assume it here. But actually the lemma
is true without CH, as we can construct I in L. Then |I| = ℵ1. Note that
our I0 and I1 are in L, and the only property of ω1 that we used was that
it is a limit ordinal.

In the following, I denotes the dense linear ordering of Lemma 3.
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Definition 4. Suppose S ⊆ S2
0 . We define

Φ(S) =
∑

i<ω2

ηi,

where

ηi =
{
I · (ω1)∗ if i ∈ S,
I if i 6∈ S.

Let Φα,β(S) be the suborder
∑

α≤i<β ηi of Φ(S). The rank of x ∈ Φ(S) is
the least α such that x ∈ Φα,α+1(S). We denote this α by rnk(Φ(S), x).

Lemma 5. Assume S ⊆ S2
0 is such that there is no α ∈ S2

1 with both
S ∩ α and (α ∩ S2

0) \ S stationary. Then

Φα,β+1(S) ∼= I

whenever α < β < ω2 and α 6∈ S.

Proof. This is like Lemma 7.20 in [10]. We use Lemma 3 and induction
on β.

Let us first assume β 6∈ S. If β is a successor ordinal, then Φα,β+1(S) ∼=
I + I = I by (iii). If β has cofinality ω, then Φα,β+1(S) ∼= I · ω + I ∼= I. If β
has cofinality ω1 and β∩S is non-stationary, then I ∼= I ·ω1 +I ∼= I. Finally,
if β has cofinality ω1 and β \ S is non-stationary, then I ∼= I · θ + I ∼= I,
by (v).

Let us then assume β ∈ S. Thus β has cofinality ω. Therefore Φα,β+1(S)
∼= I · ω + I · (ω1)∗ ∼= I, by (iv).

Lemma 6. Assume S ⊆ S2
0 is such that there is no α ∈ S2

1 with both
S∩α and (α∩S2

0)\S stationary. Then Φ0,α(S) ∼= Φ0,α(∅) whenever α ∈ S2
1

and S ∩ α is not stationary.

Proof. Let (αξ)ξ<ω1 by a continuously increasing cofinal sequence in α
such that αξ 6∈ S for all ξ < ω1. By Lemma 5 there is an isomorphism

fξ : Φαξ,αξ+1+1(S)→ Φαξ,αξ+1+1(∅).
Let f =

⋃
ξ<ω1

fξ. This is the required isomorphism.

Proposition 7. Assume CH and that there is S ⊆ S2
0 such that both

S and S2
0 \ S are stationary but there is no α ∈ S2

1 with both S ∩ α and
(α ∩ S2

0) \ S stationary. Then there are models A and B of cardinality ℵ2
such that EFGω1(A,B) is non-determined.

Proof. We may assume that {α ∈ S2
1 : α ∩ S is non-stationary} is sta-

tionary, for otherwise we work with S ′ = S2
0\S. Let A = Φ(S) and B = Φ(∅).

We first show that ∃ cannot have a winning strategy in EFGω+ω+1(A,B).
Suppose τ is a strategy of ∃. Let C be the cub of ordinals α < ω2 such that
if during the first ω rounds of the game, ∀ plays elements of the models of
rank < α, then so does ∃ following τ . Let δ ∈ C ∩ S. Let (δn)n<ω be an
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increasing cofinal sequence in δ. Now we let ∀ play against τ as follows: On
round n < ω we let ∀ play some element of A if n is even, and of B if n
is odd, of rank δn. During rounds ω + n, n < ω, we let ∀ play a coinitial
sequence of length ω in Φδ,δ+1(∅) ⊆ B. As coinit(Φδ,δ+1(S)) = ω1, the game
is lost for ∃. So τ could not be a winning strategy.

Suppose then % is a strategy of ∀. We show that it cannot be a winning
strategy. By CH we have an ω1-cub set D of ordinals δ < ω2 such that if
∃ plays only elements of rank < δ, then % directs ∀ to play also elements
of rank < δ only. Let δ ∈ D ∩ S2

1 be such that δ ∩ S is non-stationary. By
Lemma 6 there is an isomorphism f : Φ0,α(S)→ Φ0,α(∅). Now ∃ can beat %
by using f .

Using the result from [8] referred to above, we now get:

Corollary 8. If CH holds and EFGω1(A,B) is determined for all mod-
els A and B of cardinality ℵ2, then ω2 is weakly compact in L.

2. Getting determinacy from a weakly compact cardinal. In this
section we show that if κ is weakly compact, then there is a forcing extension
in which the game EFGω1(A,B) is determined for all A and B of cardinality
≤ ℵ2.

We shall consider models A,B of cardinality ℵ2, so we may as well assume
they have ω2 as universe. For such a model A and any ordinal α < ω2 we
let Aα denote the structure A ∩ α, and similarly for Bα. Let us first recall
the following basic fact from [9]:

Lemma 9 ([9]). Suppose A and B are structures of cardinality ℵ2. If ∀
does not have a winning strategy in EFGω1(A,B), then

S = {α : Aα ∼= Bα}
is ω1-stationary.

This shows that to get determinacy of EFGω1(A,B) it suffices to give
a winning strategy of ∃ under the assumption that the above set S is ω1-
stationary. In [9] an assumption I∗(ω) was used. It says that the non-ω1-
stationary ideal on ω2 has a σ-closed dense set. The rough idea was that
∃ uses the Pressing Down Lemma on S to “normalize” his moves so that
he always has an ω1-stationary set of possible continuations of the game.
We now use the same idea. The hypothesis I∗(ω) is equiconsistent with
a measurable cardinal. Since we assume only the consistency of a weakly
compact cardinal, we have to work more.

Suppose κ is a weakly compact cardinal. Let I denote the Π1
1-ideal

on κ, i.e., the ideal of subsets of κ generated by the sets {α : (H(α), ε,
A ∩ H(α)) |= ¬φ}, where A ⊆ H(κ) and φ is a Π1

1-sentence such that
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(H(κ), ε, A) |= φ. We collapse κ to ω2 and then force a cub to the comple-
ment of every set S ⊆ S2

1 in I. In the resulting model the above “normal-
ization” strategy of ∃ works even though the non-ω1-stationary ideal on ω2
may not have a σ-closed dense set.

Definition 10. Let F be a set of cardinality κ of regressive functions
κ → κ and S ⊆ κ. The game PDGω1(S,F) has two players called ∀ and ∃.
They alternately play ω1 rounds. During each round ∀ first chooses fi ∈ F .
Then ∃ chooses a subset Si of

⋂
j<i Sj (of S if i = 0) such that Si is un-

bounded in κ and fi is constant on Si. Player ∃ wins if he can play all ω1

moves following the rules.

Lemma 11. Suppose S = {α < ω2 : α 6= 0, Aα ∼= Bα} and hα : Aα ∼= Bα

for α ∈ S. Let
F = {fα : α ∈ S} ∪ {gα : α ∈ S},

where fα : ω2 → ω2 is the regressive function mapping ξ (6= 0) to hξ(α) if
ξ > α, and to 0 otherwise, and gα is the regressive function mapping ξ (6= 0)
to (hξ)−1(α) if ξ > α, and to 0 otherwise. Suppose ∃ has a winning strategy
in PDGω1(S,F). Then ∃ has a winning strategy in the game EFGω1(A,B).

Proof. Let H = {hα : α ∈ S}, where hα : Aα ∼= Bα for α ∈ S. Let τ
be a winning strategy of ∃ in the game PDGω1(S,F). Suppose the sequence
〈(xi, yi) : i < α〉 has been played, where α < ω1, xi denotes a move of ∀
and yi a move of ∃. Suppose ∀ plays next xα. During the game ∃ also plays
PDGω1(S,F). Let us denote his moves in PDGω1(S,F) by Si. Thus Sj ⊆ Si
for i < j < α. The point of the sets Si is that ∃ has taken care that for all
i < α and j ∈ Si we have yi = hj(xi) or xi = hj(yi) depending on whether
xi ∈ A or xi ∈ B. Let S′α =

⋂
i<α Si \ α. The winning strategy τ gives an

Sα ⊆ S′α and a yα such that fi(xα) = yα for all i ∈ Sα if xα ∈ A, and
gi(xα) = yα for all i ∈ Sα if xα ∈ B. This element yα is the next move of ∃.
Using this strategy ∃ cannot lose and hence wins.

Theorem 12. It is consistent relative to the consistency of a weakly
compact cardinal that for every ω1-stationary S ⊆ ω2 and every set F of
cardinality ℵ2 of regressive functions ω2 → ω2, ∃ has a winning strategy in
the game PDGω1(S,F).

Proof. We may assume GCH. Suppose κ is weakly compact. Let Q be
the Levy collapse of κ to ℵ2. In V Q we define by induction a sequence Pα,
α < κ+, of forcing notions. Let (Aα), α < κ+, be a complete list of all sets
in the Π1

1-ideal I on κ such that every element of Aα has uncountable cofi-
nality. If α is limit of cofinality ≤ ω1, then Pα is the inverse limit of all Pβ,
β < α. For other limit α, Pα is the direct limit of Pβ , β < α. At successor
stages we let Pα+1 = Pα ? Rα, where Rα is defined as follows: q ∈ Rα iff q
is a bounded closed sequence of elements of κ such that q ∩ Aα = ∅. Rα is
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ordered by the end extension relation. Thus each Pα is countably closed.
Let P = Pκ+ . Now Q ? P satisfies the κ+-chain condition. Note also that for
all α < κ+, Q ? Pα has power κ. We prove that it is true in V Q that Pα
does not add new subsets of κ of cardinality ≤ ℵ1, hence κ remains ℵ2 also
after forcing with P. It also follows that Q?P and each Q?Pα are countably
closed.

We now show that in V Q?P the claim is true. Suppose S and a set
F = {fα : α < κ} of regressive functions κ→ κ are given in V Q?P such that
(in V Q?P) S ⊆ S2

1 is ω1-stationary. Suppose α < κ+ is such that S̃, F̃ and f̃i
are Q ? Pα-names for S,F and fi, respectively. Since S is ω1-stationary in
V Q?P, S is not in the ideal generated by I in V Q?Pα . Suppose (p, q) 
 S̃ 6∈ I.
For a contradiction, suppose also that (p, q) forces that ∃ does not have a
winning strategy in the game PDGω1(S,F).

Let (B′0,∈) be a sufficiently elementary substructure of (V,∈) such that
|B′0| = κ, B′<κ0 ⊆ B′0, Q, Pα, α, κ, F̃ , f̃i, S̃ are in B′0, and α ∪ κ ⊆ B′0. Let
B0 be the transitive collapse of B′0. Thus Q,Pα, α, κ ∈ B0, Aj ∈ B0 for i ≤ α
and f̃i ∈ B0 for i < κ. Let

T = {α < κ : (∃(p′, q′) ≤ (p, q))((p′, q′) 
Q?Pα α ∈ S̃)}.
Clearly T ∈ B0 and T 6∈ I. By weak compactness, there are a transitive B1
and an elementary embedding j : B0 → B1 such that κ is the critical point
of j, κ ∈ j(T ) and κ 6∈ j(Ai) for i ≤ α. So there is some (p′, q′) ∈ j(Q ? Pα)
such that (p′, q′) ≤ j((p, q)) = (p, q) and (p′, q′) 
j(Q?Pα) κ ∈ j(S̃). Note that

Q,Pα ∈ B1 and f̃i ∈ B1 for i < κ.
By (the proof of) Lemma 3 in [8], there are a Q ? Pα-generic G over B1

and a forcing notion R ∈ B1[G] such that (p, q) ∈ G, R is countably closed in
B1[G], for all R-generic K over B1[G], there is a canonical j(Q ?Pα)-generic
GK over B1 such that B1[GK ] = B1[G][K], and for some K, GK is such that
(p′, q′) ∈ G′. Then for everyQ?Pα-name X̃ ∈ B0, there is a canonical R-name
Ỹ ∈ B1[G] such that for all R-generic K over B1[G], j(X̃) and Ỹ have the
same interpretation in B1[G][K]. We do not distinguish j(X̃) and Ỹ . With
this notation, there is r ∈ R which forces in B1[G] that κ ∈ j(S̃). Then
there is some (p∗, q∗) ≤ (p, q) in G that in B1 forces the existence of such
R and r. So we may assume that G is generic over V and our V Q?Pα is the
same as V [G].

We describe in B1[G] a winning strategy of ∃ in the game PDGω1(S,F).
This is a contradiction since all possible winning plays of ∀ are in B1[G] and
being unbounded is absolute in transitive models. The strategy of ∃ is to
play on the side conditions qi in B1[G] and sets Si ∈ B0[G] with Q?Pα-names
S̃i in B0 such that:
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1. qi ∈ R.
2. q0 ≤ r.
3. i < k < ω1 implies qk ≤ qi.
4. i < k < ω1 implies Sk ⊆ Si ⊆ S.
5. qi 
R κ ∈ j(S̃i) in B1[G].

Suppose ∃ has followed this strategy, forming conditions qi and sets Si
for i < k. Let p = inf{qi : i < k}. If we let S be

⋂
i<k Si and S̃ a name for

this, then in B1[G],
p 
R κ ∈ j(S̃).

Suppose then ∀ moves fk ∈ F . Let qk ≤ p be such that for some δ < κ we
have qk 
R j(f̃k)(κ) = δ in B1[G] and let Sk be {β ∈ S : fk(β) = δ} and S̃k
a name for this. Then qk 
R κ ∈ j(S̃k) in B1[G].

Finally, we have to prove that Q ? Pα does not add new subsets of κ of
cardinality ≤ ℵ1 over and above those added by Q. The proof of this is,
mutatis mutandis, like the proof of the Main Fact (page 761) in [8]. Here
we use the assumption κ 6∈ j(Ai) for i ≤ α. Thus, if C is a generic sequence
in the complement of j(Aβ) in V j(Q?Pα), then we can continue it to a closed
condition C ∪ {κ} ∈ Rj(β).

Results similar to Theorem 12 have also been treated in [14] and [15].

Corollary 13. It is consistent relative to the consistency of a weakly
compact cardinal that the game EFGω1(A,B) is determined for all A and B
of cardinality ≤ ℵ2.

3. Non-determinacy and structure theory. In this section we prove
Theorem 2, which essentially establishes, under cardinality assumptions con-
cerning the continuum, the existence of non-determined Ehrenfeucht–Fräıssé
games of length ω1 for models of non-classifiable theories. This complements
the observation, made in [9], that the Ehrenfeucht–Fräıssé game of length
ω1 is determined for models of classifiable theories.

We start by proving Theorem 2 under assumption (iii), which we consider
the most interesting case. That is, we start with a countable complete stable
and unsuperstable first order theory and show that, assuming 2ω ≤ ω3, it
has two models A and B of cardinality ℵ3 for which EFGω1(A,B) is non-
determined. Actually, we construct A and B so that ∃ does not have a
winning strategy even in EFG2

ω+ω(A,B) and ∀ does not have a winning
strategy even in EFGω3

ω1
(A,B).

We then prove Theorem 2 under assumption (i), that is, we now start
with a countable complete unstable first order theory and show that, as-
suming 2ω < 2ω3 , it has two models A and B of cardinality ℵ3 for which
EFGω1(A,B) is non-determined.
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Theorem 2 under assumption (ii) can be dealt with in the same way
as under assumption (i). The section ends with some remarks on possible
improvements.

3.1. The stable unsuperstable case. We will prove Theorem 2, case (iii),
in a series of lemmas. We assume ωω3 = ω3 all the time. Let T be a countable
complete stable and unsuperstable first order theory. As usual, we work
inside a large saturated model M of T . We start by fixing some notation.
By a tree I we mean a lexicographically ordered, downwards closed subtree
of θ<(ω+1) for some linear order θ, that is, I = (I,�, Pα, <,H)α≤ω ∈ Kω

tr(θ)
(see [5, Definition 8.2] or [12]). For a while, we fix a tree I ∈ Kω

tr(λ), where
λ is some large enough cardinal, so that (I,�) is isomorphic to λ<(ω+1). As
in [4], for u, v ∈ Pω(I) (= finite subsets of I), we define r(u, v) to be the
unique set R which satisfies:

(I) R ⊆ Xu,v = {H(η, ξ) : η ∈ u, ξ ∈ v},
(II) for all ν ∈ Xu,v \R, there is ν ′ ∈ R such that ν � ν ′,

(III) if η and ξ are distinct elements of R, then η 6� ξ.

We write u ≤ v if r(u, v) = r(u, u). For more on these definitions, see [4].
In [4], it is shown that there are models A and Au, u ∈ Pω(I), and sequences
aη from A{η}, η ∈ I, such that:

(i) A =
⋃
u∈Pω(I)Au |= T ,

(ii) if u ≤ v, then Au ⊆ Av,
(iii) for all u, v ∈ Pω(I), Au ↓Ar(u,v) Av,
(iv) for all u ∈ Pω(I), |Au| ≤ ω3,
(v) if Pω(η) holds and ξ � η is an immediate successor of ξ′, then

aη -↓A{ξ′} aξ.
These models are exactly what we want except that they are too large: we
want the models Au, u ∈ Pω(I), to be countable. In order to get this, we
use the Ehrenfeucht–Mostowski construction.

We extend the signature L of T to L∗ by adding ω3 new function symbols,
some of which will be interpreted in M so that they provide Skolem functions
for the L-formulas. In addition we interpret the functions so that if we write
SH∗(u) for the L∗-Skolem hull of {aη : {η} ≤ u} then

(vi) for all u ∈ Pω(I), SH∗(u) = Au.

By the usual argument (using [12, Appendix Theorem 2.6] and compactness)
we can interpret the new function symbols so that M remains sufficiently
saturated and the following holds:

(vii) if U is a downwards closed subtree of I and f is an automorphism
of U , then there is an L∗-automorphism g of

⋃
u∈Pω(U)Au such that for all

η ∈ U , g(aη) = af(η).
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Finally, it is easy to see that we can choose countable L1 ⊆ L∗ so that
L ⊆ L1, L1 contains the Skolem functions for the L-formulas and if we write
SH1(u) for the L1-Skolem hull of {aη : {η} ≤ u} then

(viii) for all u, v ∈ Pω(I), SH1(u) ↓SH1(v) SH∗(v).

So we have proved the following lemma (for the notion of Φ proper for Kω
tr

and the Ehrenfeucht–Mostowski models EM1(J, Φ), see [5, Definition 8.1]
or [12]).

Lemma 14. There are countable L1 ⊇ L and Φ proper for Kω
tr such that

the following holds:

(a) For all J ∈ Kω
tr there are an L1-model EM1(J, Φ) |= T and sequences

aη ∈ EM1(J, Φ), η ∈ J , such that EM1(J, Φ) is the L1-Skolem hull of {aη :
η ∈ J} (i.e. {aη : η ∈ J} is the skeleton of EM1(J, Φ) and as before for
u ⊆ J , SH1(u) denotes the L1-Skolem hull of {aη : {η} ≤ u}).

(b) If U is a downwards closed subtree of J and f is an automorphism
of U , then there is an L1-automorphism g of SH1(U) such that for all
η ∈ U , g(aη) = af(η).

(c) Assume (sηi)i<ω is a strictly �-increasing sequence of elements of
J , ηi+1 is an immediate successor of ηi and η0 is the root. Then (ηi)i<ω has
an upper bound in J iff there is a sequence a ∈ EM(J, Φ) such that for all
i < ω, a -↓SH1

({ηi})aηi+1.

We will write EM(J, Φ) for EM1(J, Φ)�L.
Our next goal is to define the skeletons for the models A and B in the

theorem. For this we use the weak square from [9]. We denote by Snm the set
{α < ωn : cf(α) = ωm}.

Theorem 15 ([9, Lemma 16]). There are sets S, U and Cα, α ∈ S,
such that the following holds:

(a) S ⊆ S3
0 ∪ S3

1 and S ∩ S3
1 is stationary.

(b) U ⊆ S3
0 is stationary and S ∩ U = ∅.

(c) For all α ∈ S, Cα ⊆ α ∩ S is closed in α and of order-type ≤ ω1.
(d) For all α ∈ S, if β ∈ Cα, then Cβ = Cα ∩ β.
(e) For all α ∈ S ∩ S3

1 , Cα is unbounded in α.

We will construct trees Iα and Jα, α < ω3, so that the following holds:

(1) If α < β then Iα is a submodel of Iβ and Jα is a submodel of Jβ; now
for η ∈ Iα, we will write rk(η) for the least β such that η ∈ Iβ and similarly
for η ∈ Jα.

(2) For all α ∈ S, there is an isomorphism Gα : Iα → Jα.
(3) If α ∈ Cβ, then Gα ⊆ Gβ.
(4) For all α ≤ β and η ∈ Iα, if Pω(η) does not hold, then there is an

immediate successor ξ of η such that ξ ∈ Iβ+1 \ Iβ.



Ehrenfeucht–Fräıssé game 89

(5) If (ηi)i<ω is an increasing sequence of elements of Iα (for some α)
and the sequence has an upper bound ξ in Iα, then rk(ξ) = supi<ω rk(ηi)
and similarly for sequences from Jα.

(6) If (ηi)i<ω is an increasing sequence of elements of Iα, (rk(ηi))i<ω
is not eventually constant and the sequence has an upper bound ξ in Iα,
then rk(ξ) (= supi<ω rk(ηi)) ∈ U ; in Jα such sequences never have an upper
bound.

(7) |Iα| ≤ ω3 and |Jα| ≤ ω3.
(8) Iα, Jα ⊆ Hω(ω3), where Hω(ω3) is the least set H such that ω3 ⊆ H

and if E ⊆ H is of power ≤ ω, then E ∈ H.

It is easy to see that such trees can be constructed by induction on α.
However, in order to get what we want we need to do a bit more work when
we define Iα and Jα in the case α ∈ U . In order to decide which branches
like the one in (6) above we want to have an upper bound, we use a guessing
machine from [13] called the black box, which we formulate so that it fits
exactly our purposes.

Theorem 16 ([1, Theorem 1.3, Chapter XIII]). (ωω3 = ω3.) There are
(Mα, ηα), α < ω3, such that :

(i) Mα = (Mα
i )i<ω is an increasing elementary chain of elementary

submodels of some (Hω(ω3), A,B, σ) such that A,B ⊆ Hω(ω3) and σ is a
strategy of ∃ in EFG2

ω(A,B) (A and B can be viewed as models of empty
signature).

(ii) Mα
i = (Mα

i , A
α
i , B

α
i , σ

α
i ) ∈ Hω(ω3).

(iii) ηα is an increasing function from ω to ω3, Mα
i ∈ Hω(ηα(i+ 1)) and

supi<ω η
α(i) ∈ U .

(iv) (ηα(j))j≤i, (Mα
j )j≤i ∈Mα

i+1.
(v) If α 6= β, then ηα 6= ηβ.
(vi) Player I does not have a winning strategy for the following game:

The length of the game is ω. At each move i < ω, first I chooses Mi and
then II chooses αi < ω3. I must play so that in the end (i), (ii) and (iv)
above are satisfied. I wins if he has played according to the rules and there
is no α < ω3 such that ((Mi)i<ω, (αi)i<ω) = (Mα, ηα).

First we (partially) uniformize the Ehrenfeucht–Mostowski construction:
We assume that for all I, I ′ ∈ Kω

tr, if I is a substructure of I ′ and I ′ ⊆
Hω(ω3), then there is a unique model EM1(I, Φ), it is a substructure of
EM1(I ′, Φ) and EM1(I ′, Φ) ⊆ Hω(ω3).

So let α ∈ U and assume that Iβ and Jβ are defined for all β < α. Write
I∗α =

⋃
β<α Iβ and J∗α =

⋃
β<α Iβ . For γ < ω3, we write Mγ for

⋃
i<ωM

γ
i

and Aγ , Bγ and σγ are defined similarly. Let Wα be the set of all γ < ω3

such that:
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(a) Aγ = EM(I∗α ∩Mγ , Φ) and Bγ = EM(J∗α ∩Mγ , Φ).
(b) supi<ω η

γ(i) = α.
(c) There are ξγi ∈ I∗α ∩Mγ , i < ω, such that ξγ0 is the root of I∗α, ξγi+1 is

an immediate successor of ξγi and ξγi ∈ Iηγ(i)+1 − Iηγ(i).

Notice that by Theorem 16(v), if γ 6= δ, then (ξγi )i<ω 6= (ξδi )i<ω. Let
Cγi = SH({ξγi }). Then we can find a partial function gγ : Aγ → Bγ such
that:

(d) dom(gγ) =
⋃
i<ω C

γ
i .

(e) gγ is a result of a play of EFG2
ω(Aγ , Bγ) in which ∃ has used σγ .

We let Wα
J be the set of those γ ∈Wα such that:

(f) gγ is a partial isomorphism from EM(I∗α∩Mγ , Φ) to EM(Jγα∩Mγ , Φ).
(g) There is J such that if we let Jα = J , then (1), (5)–(8) above are

satisfied and there is a sequence a ∈ EM(J, Φ) such that for all i < ω,
a -↓gγ(Cγi ) g

γ(aξγi+1
).

We let Wα
I be the set of all γ ∈Wα \Wα

J such that gγ satisfies (f) above.
Now we can define Iα and Jα. First we choose Iα so that it consists of

all η ∈ I∗α together with the supremums for the branches (ξγi )i<ω, γ ∈ Wα
I .

Jα is chosen so that it satisfies (g) for all γ ∈ W α
J (and so especially (1),

(5)–(8)).
Then we let I =

⋃
α<ω3

Iα, J =
⋃
α<ω3

Jα, A = EM(I, Φ) and B =
EM(J, Φ). Clearly A and B can be chosen so that A,B ⊆ Hω(ω3).

Lemma 17. ∀ does not have a winning strategy for EFGω3
ω1

(A,B).

Proof. For this it is enough to show that A does not have a winning
strategy for EFGω3

ω1
(I, J), which is clear by (2) and (3) above and Theo-

rem 15.

Lemma 18. ∃ does not have a winning strategy for EFG2
ω+ω(A,B).

Proof. For a contradiction, assume σ is a winning strategy of ∃ for
the game EFG2

ω+ω(A,B). We play a round of the game defined in Theo-
rem 16(vi). We let player I play so that he follows the rules and:

(i) For all i < ω, Mi ≺ (Hω(ω3),A,B, σ�ω),
(ii) For all δ, δ′ ∈ Mi, if δ ≤ δ′, η ∈ Iδ ∩Mi and Pω(η) does not hold,

then there is ξ ∈ (Iδ′+1 \ Iδ′) ∩Mi+1 such that ξ is an immediate successor
of η.

(iii) The Skolem hulls of {aη : η ∈ I ∩Mi} and {aη : η ∈ J ∩Mi} are
subsets of Mi+1.

(iv) A ∩Mi is a subset of the Skolem hull of {aη : η ∈ I ∩Mi+1} and
B ∩Mi is a subset of the Skolem hull of {aη : η ∈ J ∩Mi+1}.

(v)
⋃{rk(η) : η ∈ I ∩Mi} ∪

⋃{rk(η) : η ∈ J ∩Mi} ∈Mi+1.
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By Theorem 16(vi), the round can be played so that ∀ loses. Let αi, i < ω,
be the choices ∃ made, and γ be such that ((Mi)i<ω, (αi)i<ω) = (Mγ , ηγ).
Finally, let α =

⋃
i<ω αi (∈ U).

Now it is easy to see that γ ∈Wα, in fact γ ∈Wα
I or γ ∈Wα

J (otherwise
we have demonstrated that σ is not a winning strategy). In the first case,
there is a sequence a ∈ A such that for all i < ω, a -↓Cγi aξγi+1

but in B there
is no sequence b such that for all i < ω, b -↓gγ(Cγi ) g

γ(ξγi+1), a contradiction.
In the latter case, there is a sequence b ∈ B such that for all i < ω, b -↓gγ(Cγi )

gγ(ξγi+1) but by (the construction,) Lemma 2.3(c) and Theorem 16(v), there
is no sequence a ∈ A such that for all i < ω, a -↓Cγi aξγi+1

, a contradiction.

Now Lemmas 2.6 and 2.7 imply Theorem 2(iii).

3.2. The unstable case. We will prove Theorem 2, case (i), again in a
series of lemmas. We assume ωω3 < 2ω3 . Let T be a countable complete
unstable first order theory. Let L be the signature of T .

Theorem 19 ([12]). Assume T is a countable unstable theory in the sig-
nature L. There are a countable signature L1 ⊇ L, a complete Skolem theory
T1 ⊇ T in the signature L1, a first-order L-formula φ(x, y) and Φ proper
for (ω, T1) (see [12, Definition VII 2.6]) such that for every linear order I
there is an Ehrenfeucht–Mostowski model EM1(I, Φ) of T1 with a skeleton
{aη : η ∈ I} such that

EM1(I, Φ) |= φ(aη, aξ) iff I |= η < ξ.

We write EM(I, Φ) for EM1(I, Φ)�L. Notice that by using the terminol-
ogy from [13, Definition III 3.1], {aη : η ∈ I} is weakly (ω, φ)-skeleton-like
in EM(I, Φ).

In order to use Theorem 19, linear orders are needed. If A is a linear
ordering, x ∈ A and B ⊆ A, then by writing x < B we mean that x < y
for every y ∈ B; x > B and C > B for C ⊆ A are defined similarly. We
denote by A∗ the inverse of A. Again let S, U and Cα, α ∈ S, be as in
[9, Lemma 16], i.e. Theorem 15 above, with the exception that 0 ∈ S and
for all α ∈ S \ {0}, 0 ∈ Cα. By induction on i < ω3, we will define linear
orders Aiα and Bi

α, α < ω3, and for i ∈ S, isomorphisms

Gi :
∑

β<i+2

Aiβ →
∑

β<i+2

Bi
β.

We write Ai(β, α) for
∑

β≤γ<αA
i
γ , and similarly for Bi(β, α). We will do

the construction so that:

(1) A0
α
∼= ω∗ for all α < ω3 and if α 6∈ U , then B0

α
∼= ω∗, otherwise

B0
α
∼= (ω1)∗.
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(2) If i < j, then Aiα ⊆ Ajα and Bi
α ⊆ Bj

α, otherwise the sets are distinct;
and if j ∈ Ci, then Gj ⊆ Gi.

(3) If cf(α) = ω, then A0
α is coinitial in Aiα, and similarly for B.

We will do this by induction on i. However, in order to be able to show that
(3) holds in each step, we need additional machinery.

Let C ∈ {A,B}. We say that (I, J) is a (C, i, β)-cut if I is an initial
segment of Ciβ and J = Ciβ \ I. We say that the cut is basic if I = ∅. We
define a notion of forbidden cut by induction on i as follows (we should talk
about i-forbidden cuts, but i is always clear from the context):

(a) For all limit β, the basic (C, 0, β)-cut is forbidden.
(b) If (I, J) is a (C, i, β)-cut, j < i and (Cj

β ∩ I, C
j
β ∩ J) is forbidden,

then (I, J) is forbidden.
(c) If (I, J) is a forbidden (A, i, β)-cut, I∗ = I ∪ ⋃γ<β A

i
γ and Gi(I∗)

is not bounded by any x ∈ ⋃γ<δ B
i
γ but some y ∈ Bi

δ bounds it, then
(Gi(I∗)∩Bi

δ, B
i
δ\Gi(I∗)) is forbidden, and similarly for A andB interchanged

(and Gi replaced by (Gi)−1).

Now we can state the additional properties we want our construction to
have. Let E ∈ {A,B}, i, β < ω3 and (I, J) be an (E, i, β)-cut.

(4) If (I, J) is forbidden, then there are no j < ω3 and x ∈ Ejβ such that
I < x < J .

(5) Assume (I, J) is forbidden and j ∈ S is such that j < i and either
Ejβ ∩ I is cofinal in I or Ej

β ∩J is coinitial in J (we say that ∅ is both cofinal

and coinitial in ∅). Then (Ej
β ∩ I, E

j
β ∩ J) is forbidden.

(6) If β is successor, then E0
β is coinitial in Ei

β.

Lemma 20. Let E ∈ {A,B}.
(i) For all i, β < ω3, if (5) holds up to stage i, then (Ei

β, ∅) is not
forbidden, and neither is (∅, Ei

β) if β is successor.
(ii) For limit β, every basic (E, i, β)-cut is forbidden.

(iii) Property (4) implies property (3).
(iv) If i + 1 < β and (I, J) is a forbidden (E, i, β)-cut , then it is basic

(and β is limit).

Proof. Immediate.

Now we are ready to do the construction: For i = 0, the linear orders
are defined by (1) and we let G0 be the only possible one. Clearly (1)–(6)
hold. If i 6∈ S or supCi = i, then we let Aiα =

⋃
j<iA

j
α, Bi

α =
⋃
j<iB

j
α

and if i ∈ S (and supCi = i), then Gi = G ∪ ⋃j∈Ci Gj , where G is the
obvious isomorphism from Ai(i, i + 2) to Bi(i, i + 2) (both are isomorphic
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to ω∗ + ω∗). Now (1), (2), (4) and (6) hold trivially. By Lemma 2.9(iii), (3)
holds. For (5), assume that C ∈ {A,B} and (I, J) is a forbidden (C, i, β)-cut.
Now the reason why (I, J) is forbidden is (b) in the definition of forbidden
cut (if i 6∈ S, then this is trivial and otherwise by the definition of Gi, (c)
does not give forbidden cuts not forbidden by (b)). But then (5) follows
immediately from the induction assumption.

We are left with the case i ∈ S and j = supCi < i. Notice that now
j ∈ Ci. Let α < j + 2 and A 6= ∅ be an initial segment of Ajα. Let A+ =
A ∪⋃γ<αA

j
γ . Then there is the least β < j + 2 such that B+ = Gj(A+) ∩⋃

γ≤β B
j
β = Gj(A+). Let A′ = (Ajα ∪ Ajα+1) \ A, B = Gj(A)∩Bj

β and B′ =

(Bj
β ∪B

j
β+1) \B. Assume that at least one of C ′ = {x ∈ ⋃k<i(A

k
α ∪Akα+1) :

A < x < A′} and D′ = {x ∈ ⋃k<i(B
k
β ∪ Bk

β+1) : B < x < B′} is non-
empty. Then by the induction assumption, B 6= ∅. Let C be a copy of
C ′ and D a copy of D′. Then we define Aiα so that it contains

⋃
k<iA

k
α

and in each cut as above we add D so that A < C ′ < D < A′ and
Bi
β is defined similarly but now B < C < D′ < B′ (this is possible

by (6) in the induction assumption). Then, by (4) in the induction assump-
tion, we can find an isomorphism G′i :

⋃
α<j+2A

i
α →

⋃
α<j+2B

i
α. Notice

that by (5) in the induction assumption, for all δ < i, the (A, δ, α)-cut
(Aδα\A(δ), A(δ)) and (B, δ, β)-cut (B(δ), Bδ

β\B(δ)) are not forbidden, where
A(δ) = {x ∈ Aδα : x > C ′} and B(δ) = {x ∈ Bδ

β : x < D′}. So we have not
violated property (4).

For all α > j + 1, we let Aiα =
⋃
k<iA

k
α, and Bi

α is defined similarly.
However we will still make changes to Bi

j+1 and Aii+1! Let A be a copy of
Bi(j + 3, i + 2) and B be a copy of Ai(j + 2, i + 1). Furthermore, extend
Aii+1 so that there is an isomorphism g : Aii+1 → Bi

j+2 such that g(A0
i+1) =

B0
j+2 (this is not a problem since A0

i+1 =
⋃
k<iA

k
i+1
∼= ω∗ ∼= B0

j+2 and by
Lemma 2.9(iv), the sets Aki+1, k < i, do not contain forbidden (A, k, i+ 1)-
cuts; so we do not violate (4)). Then we add A to (the extended) Aii+1 as an
end segment and B to Bi

j+1 as an end segment. By Lemma 2.9(i), this does
not violate (4). Now it is easy to extend G′i to Gi so that Gi(Ai(j+2, i+1))
= B, Gi(Aii+1 −A) = Bi

j+2 and Gi(A) = Bi(j + 3, i+ 2).
Now (1), (2) and (6) hold trivially, (4) is already shown to hold and by

Lemma 2.9(iii), (4) implies (3). So we are left to show

Lemma 21. (5) holds.

Proof. Assume (I, J) is a forbidden (E, i, β)-cut, E ∈ {A,B}, and δ ∈ S
is such that δ < i and Eδ

β ∩ J is coinitial in J ; the other case is similar.
If β ≥ j + 1 and both J ∩ ⋃k<iA

k
j+1 and J ∩ ⋃k<iB

k
j+1 are empty, then

the claim follows easily from Lemma 2.9 and the induction assumption.
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So we assume that this is not the case. If (I, J) is forbidden because of
(b) in the definition of forbidden cut, the claim follows from the induction
assumption. So we assume that E = B and there is a forbidden (A, i, γ)-cut
(C,D) such that (I, J) is forbidden by (c) applied to (C,D) (the case of A
and B interchanged is symmetric). Since (I, J) is not forbidden by (b) in
the definition of forbidden cut, (C,D) must be forbidden because of it, i.e.
for some α < i, (Aαγ ∩ C,Aαγ ∩D) is a forbidden (A,α, γ)-cut.

If

(?) y < Ajγ ∩D for no y ∈ Aαγ ∩D,
then by the induction assumption, (Bj

β∩I,B
j
β∩J) is a forbidden (B, j, β)-cut

and the claim follows from the definition of forbidden cut if δ ≥ j and from
(5) in the induction assumption if δ < j. So we assume that (?) fails. Let y
be the bound. Then ∅ 6= D′ = {z ∈ Aiγ ∩ D : z ≤ y} ⊆ Aiγ \ dom(Gj). So
by the construction, Gi(D′) ⊆ J \Bδ

β and for all x ∈ Bδ
β, either x < Gi(D′)

or x > Gi(D′). By the choice of the cut (C,D), there cannot be x ∈ J ∩Bδ
β

such that x < Gi(D′). But then Gi(D′) < J ∩ Bδ
β, which contradicts the

assumption that J ∩Bδ
β is coinitial in J .

Let A =
∑

α<ω3

⋃
i<ω3

Aiα and B =
∑

α<ω3

⋃
i<ω3

Bi
α. Notice that by (1)

and (3), inv1
ω(A) differs from inv1

ω(B) by a stationary set which consists of
ordinals of cofinality ω (for the definition of invnω, see [13, Definition III 3.4]).
Let Sα ⊆ S3

0 , i < 2ω3 , be stationary sets such that for α < β < 2ω3 , Sα4Sβ is
stationary and define Ψα =

∑
α<ω3

τα, where τα = A∗ if α 6∈ Sα and τα = B∗

otherwise. Notice that if α 6= β, then inv2
ω(Ψα) differs from inv2

ω(Ψβ) by a
stationary set which consists of ordinals of cofinality ω.

Finally, let Aα = EM((Ψα)∗ · ω1, Φ).

Lemma 22. For all α, β < 2ω3 , ∀ does not have a winning strategy for
EFGω3

ω1
(Aα,Aβ).

Proof. For this, it is enough to show that ∀ does not have a winning
strategy for EFGω3

ω1
((Ψα)∗ · ω1, (Ψβ)∗ · ω1), which follows easily from (2) in

the construction of A and B and Theorem 15 (see e.g. [9, Claim 3 in the
proof of Theorem 17]).

Lemma 23. There are α < β < 2ω3 such that ∃ does not have a winning
strategy for EFG2

ω1
(Aα,Aβ).

Proof. By using the usual forcing notion, we collapse ω3 to an ordinal
of power ω1. Since this forcing notion does not kill those stationary subsets
of ω3 which consist of ordinals of cofinality ω and cofinalities ≤ ω1 are pre-
served, in the extension, inv2

ω(Ψα) 6= inv2
ω(Ψβ) for all α 6= β. Clearly, the

skeletons of the models Aα remain weakly (ω, φ)-skeleton-like in Aα. So by



Ehrenfeucht–Fräıssé game 95

(the proof of) [13, Lemma III 3.15(1)], inv2
ω(Ψα) ∈ INV2

ω(Aα, φ) in the exten-
sion (for the definition of INVn

ω, see [13, Definition III 3.11] and notice that
A ∼= B implies INV2

ω(A, φ) = INV2
ω(B, φ)). Also by [13, Lemma III 3.13(1)],

|INV2
ω(Aα, φ)| = ω1. Since ωω3 < 2ω3 in the ground model, in the generic

extension, (2ω3)V is a cardinal > ω1. So there are α < β < (2ω3)V such that
Aα 6∼= Aβ in the extension. Since countable subsets are not added, ∃ does
not have a winning strategy for EFG2

ω1
(Aα,Aβ) (in the ground model).

Now Lemmas 2.11 and 2.12 imply Theorem 2(i).

Having proved the theorem, we make some remarks which follow from
the proof.

Remark 24. In many cases, the assumption on 2ω in Theorem 2 can
be removed. For example, this is true of linear orders. An easy proof for
this is given in [3], alternatively this follows immediately from the proof
of Theorem 2(i) by checking where the assumption 2ω < 2ω3 was needed.
Another case where the assumption on 2ω can be removed is when θ = ω3 in
the stable unsuperstable case. This follows from the proof of Theorem 2(iii)
by noticing that the black box can now be replaced by an argument from [4].
Another remark is that in Theorem 2(i), (ii), ω3 can be replaced by any
cardinal κ ≥ ω3 such that κ is a successor of a regular cardinal and 2κ > κω.
Finally, in Theorem 2(iii), ω3 can be replaced by any cardinal κ ≥ ω3 such
that κ is a successor of a regular cardinal and κω = κ.
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