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Recent developments in the theory of Borel reducibility

by

Greg Hjorth (Los Angeles, CA) and
Alexander S. Kechris (Pasadena, CA)

Abstract. Let E0 be the Vitali equivalence relation and E3 the product of countably
many copies of E0. Two new dichotomy theorems for Borel equivalence relations are
proved. First, for any Borel equivalence relation E that is (Borel) reducible to E3, either
E is reducible to E0 or else E3 is reducible to E. Second, if E is a Borel equivalence
relation induced by a Borel action of a closed subgroup of the infinite symmetric group
that admits an invariant metric, then either E is reducible to a countable Borel equivalence
relation or else E3 is reducible to E.

We also survey a number of results and conjectures concerning the global structure
of reducibility on Borel equivalence relations.

1. Introduction. In this paper we present the proofs of the results
announced in [12] and survey the recent work bearing on the sweeping con-
jectures which were presented in that paper.

2. Definitions. We briefly recall the relevant definitions. This is only
a skeleton of the introduction of [12], which also presents considerable mo-
tivation.

Definition 2.1. A topological space is said to be Polish if it is separable
and the topology is generated by some complete metric. The Borel subsets
of a Polish space are those contained in the σ-algebra generated by the open
sets.

An equivalence relation E ⊆ X × X on a Polish space X is said to be
Borel if it appears in the σ-algebra generated by the open sets in the product
topology on X ×X. Here we have not really departed from our original use
of the term “Borel”, since X ×X is a Polish space in this product topology.
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A function f : X → Y between Polish spaces is said to be Borel if the
preimage of any open set is Borel. It follows from classical techniques (see
[14], §18.C) that this is equivalent to requiring that the graph of f be Borel
as a subset of X × Y .

Definition 2.2. For E and F Borel equivalence relations on Polish
spaces X and Y , we say that E is Borel reducible to F , written

E ≤B F,

if there is a Borel function f : X → Y such that for all x1, x2 ∈ X,

x1Ex2 ⇔ f(x1)Ff(x2).

This definition naturally gives rise to variations. We write E 6≤B F if it
is not the case that E ≤B F . We write

E <B F

if we have both E ≤B F and F 6≤B E. We write

E ∼B F

if there is a reduction in both directions:

E ≤B F, F ≤B E.

We say that E and F are Borel incomparable if there is reduction in neither
direction:

E 6≤B F, F 6≤B E.

For E an equivalence relation on a space X and x ∈ X, we let [x]E =
{y ∈ X : xEy} denote the equivalence class of x. We can then let X/E =
{[x]E : x ∈ X} indicate the collection of all equivalence classes.

The first comment that must be made about that partial order (Borel
equivalence relations, ≤B) is that it is massively complicated and apparently
resistant to any global structure theorems. For instance:

Theorem 2.3 (Louveau–Veličković; see [18]). There is an assignment
S 7→ ES of Borel equivalence relations to subsets of N such that for all
S, T ⊆ N, ES ≤ ET if and only if S \ T is finite.

Definition 2.4. For X a Polish space, we let ∆(X) denote the equiva-
lence relation of equality on X:

∆(X) = {(x1, x2) ∈ X2 : x1 = x2}.
Since X/∆(X) screams out to be identified with X, we will frequently

slur over the distinction between X and ∆(X). In particular, we will use n
to denote

∆({0, 1, . . . , n− 1}),
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the equality relation on the discrete space {0, 1, . . . , n−1} of size n, and N to
denote equality on the countably infinite discrete space N = {0, 1, . . .}, and
R to denote equality on the set of reals. Note that any countable discrete
space is Polish, and thus

0, 1, . . . , n, . . . ,N,R,
can be thought of as the simplest examples of Borel equivalence relations on
Polish spaces. It was shown in [19] that for every Borel equivalence relation
E, either E is ∼B to one of 1, 2, . . . , n, . . . ,N or else R ≤B E.

Slightly more complicated is the equivalence relation of eventual agree-
ment on infinite binary sequences. So for

x, y ∈ 2N := {z | z : N→ {0, 1}},
we set

xE0y iff ∃k ∀n > k (x(n) = y(n)).

We may view 2N as a Polish space by taking the discrete topology on 2 :=
{0, 1} and the resulting product topology on 2N. It was shown in [8] that E0

is the next Borel equivalence relation after R.
After E0 the ordering fans out. The first Borel equivalence relation here

to be seriously studied was the equivalence relation of eventual agreement
on sequences of points in the Cantor space 2N. For

x, y ∈ (2N)N := {z | z : N→ 2N},
we set

xE1y iff ∃k ∀n > k (x(n) = y(n)).

The paper [16] showed that E0 <B E1 and there is no Borel E with E0 <B

E <B E1.
Also strictly above E0 is the equivalence relation (E0)N obtained by

taking its countable product. So for x, y ∈ (2N)N we set

xE3y iff ∀n (x(n)E0y(n)).

It is folklore that E0 <B E3 and it follows from [16] that E1 and E3 are
Borel incomparable. We announced in [12] that there is no E with E0 <B

E <B E3, and we will give the proof below.
In passing from E1 to E3 we skipped over E2. In fact, its construction

is less obvious than these other examples, and so we will postpone giving
the usual definiton until we come to the subject of Polishable ideals. In the
meantime it might be worth saying that, up to ∼B-equivalence, E2 is given
by the coset equivalence relation of

`1 :=
{
x ∈ RN :

∑
|x(i)| <∞

}

thought of as a subgroup of RN in the usual way.
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Definition 2.5. A Borel equivalence relationE onX is said to be count-
able if every equivalence class is countable. It is then said to be treeable if
there is a symmetric Borel relationR ⊆ X×X which has no cycles and whose
connected components form the equivalence classes of E; in other words, we
may, in a Borel manner, place the structure of a tree on each [x]E.

An equivalence relation E is said to be smooth or concretely classifiable
if it is Borel reducible to R.

It is a non-trivial fact that in the ≤B ordering there is a maximal count-
able Borel equivalence relation, E∞, and a maximal countable treeable Borel
equivalence relation, ET∞. For the sake of definiteness, we give each one an
instantiation, but the reader should see [4] or [13] for a more detailed anal-
ysis.

Definition 2.6. Let F2 denote the free group on two generators and let
2F2 denote the space of all functions f : F2 → {0, 1}, equipped with the
product topology (under which it is isomorphic to the Cantor space 2N). We
let F2 act on 2F2 by the shift action

(σ · f)(τ) = f(σ−1τ),

for f ∈ 2F2 and σ, τ ∈ F2. For any two f1, f2 : F2 → {0, 1} we set

f1E∞f2 iff there is some σ ∈ F2 with σ · f1 = f2.

We then obtain the universal treeable equivalence relation by restricting
to the set on which the action is free. So first let F (2F2) be the set of functions
f for which, whenever σ ∈ F2 is not the identity,

σ · f 6= f.

This set of points is a Gδ subset of 2N and hence a Polish space (see [14],
3.C). The relation ET∞ is the restriction of E∞ to the set F (2F2).

The notation E∞ is somewhat misleading, since it is ≥B E0 but not
≥BE1, E2, or E3.

Definition 2.7. We let p(N) denote the collection of all subsets of the
natural numbers. A collection I ⊆ p(N) is said to be an ideal if it is closed
under finite unions and the process of passing to a subset of a member of I.
We can view p(N) as a Polish space in the natural way, by identifying it
with 2N via the association of the characteristic function to a subset of N;
in other words, we give it the topology generated by taking as basic open
sets those of the form

{A ⊆ N : ∀i ∈ F0 (i 6∈ A), ∀i ∈ F1 (i ∈ A)},
where F0, F1 are finite sets of natural numbers. It will be convenient to
identify p(N) with 2N.
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Any ideal can be viewed as an abelian group under the operation of
symmetric difference. Thus for A,B ⊆ N we let

A+B = (A \B) ∪ (B \A).

A Borel ideal I on p(N) is said to be Polishable if there is a Polish
topology τ on I such that

(i) (I, τ,+) is a Polish group, that is to say, the operation of symmetric
difference is continuous with respect to τ ;

(ii) τ gives rise to the original Borel structure on I, that is to say, a set
X ⊆ I appears in the σ-algebra generated by the τ -open sets if and only if
it is Borel with respect to the above Polish topology on 2N.

Sławomir Solecki in [20] has shown that all Polishable ideals are Fσδ,
and that the Fσ Polishable ideals are those which may be represented as
sets which are finite for some appropriately chosen “exhaustive” lower semi-
continuous submeasure on N.

If I is an ideal on p(N), then we let EI denote the corresponding coset
equivalence relation on 2N; thus

xEIy iff {n : x(n) 6= y(n)} ∈ I.
Definition 2.8. We let I(1/n) denote the summable ideal , where for A

⊆ N we have A ∈ I(1/n) if
∑

n∈A

1
n+ 1

<∞.

With this in hand we can finally define E2 to be equal to I(1/n), the coset
equivalence relation arising from I(1/n) in 2N.

Unlike E1 and E3, we are still only able to conjecture that there is no
E strictly (in <B) between E0 and E2. However, [9] comes close to proving
this.

Definition 2.9. A topological group is said to be Polish if the under-
lying topological space is Polish. If G is a Polish group equipped with a
continuous (resp. Borel) action on a Polish space X, then we say X is a
Polish (resp. Borel) G-space. We then denote the orbit equivalence relation
by EXG , so that

x1E
X
G x2 iff there is some g ∈ G with g · x1 = x2.

Many Borel equivalence relations arise in this form, or are at least Borel
reducible to the orbit equivalence relation of some Polish group acting Borel
on a Polish space. It was shown in [16] that whenever G is a Polish group
and X is a Borel G-space, E1 6≤B EXG . Consequently, whenever E1 ≤B E we
deduce that E fails to be Borel reducible to any such EXG ; it remains open
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whether this is the only reason a Borel equivalence relation may fail to be
Borel reducible to a Borel Polish group action.

An important class of Polish group actions are those presented by S∞,
the group of all permutations of N equipped with the topology of pointwise
convergence. Appropriately understood, the isomorphism relation on count-
able structures can be viewed as the orbit equivalence relation induced by
an action of S∞ (see for instance [10], §2.3). There is a fundamental kind of
obstruction to reduction to the orbit equivalence relations of the form EXS∞ .

Definition 2.10. A continuous action of a Polish group G on a Polish
space X is said to be turbulent if:

(i) every orbit is dense;
(ii) every orbit is meager;
(iii) for all x, y ∈ X, U ⊆ X, V ⊆ G open with x ∈ U , 1 ∈ V , there

exists y0 ∈ [y]G := G · y and (gi)i∈N ⊆ V, (xi)i∈N ⊆ U with
x0 = x, xi+1 = gi · xi,

and for some subsequence (xn(i))i∈N,
xn(i) → y0.

In [10] it is shown that an orbit equivalence relation arising from a tur-
bulent action of a Polish group is never reducible to the orbit equivalence
relation EXS∞ arising from a Borel action of the infinite symmetric group on
some Polish space X.

3. The countable equivalence relations. The paper [12] bemoaned
the failure to find two ≤B-incomparable countable Borel equivalence re-
lations. At the end of 1998 this was finally settled by Scott Adams and
Alexander Kechris, who used the superrigidity theory of Zimmer [23], in the
ergodic theory of higher-rank linear algebraic groups, to show that such ex-
amples exist and they exist in abundance. For instance, their methods were
easily sufficient to obtain a Louveau–Veličković type result:

Theorem 3.1 (Adams–Kechris; see [1]). There is an assignment S 7→
ES of countable Borel equivalence relations to subsets of N such that for all
S, T ⊆ N we have ES ≤ ET if and only if S \ T is finite.

The examples obtained by their methods are all non-treeable. Thus the
original problem lives on in a weaker form:

Question 3.2. Do there exist≤B-incomparable treeable countable Borel
equivalence relations?

4. The summable ideal. Independently, Ilijas Farah and Boban Velič-
ković refuted Conjecture 3 from [12] regarding the equivalence relation in-
duced by the cosets of the summable ideal in p(N):
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Theorem 4.1 (Farah, Veličković; see [5], [22]). There is an Fσ Polishable
ideal ITsir ⊆ p(N) such that

E0 <B EITsir but E2 6≤B EITsir .

In both cases their proofs made striking use of ideas from Banach space
theory by defining a kind of Polishable ideal analog of the Tsirelson Banach
space. This idea has naturally become known as the Tsirelson ideal, and
its variations have played an important role in further work by Farah on
turbulence.

Conjecture 4 of [12] to the effect that there is no Borel equivalence rela-
tion E with E0 <B E <B E2 remains open and very likely true.

5. Dichotomies for turbulence. Knowing that the action of the Ba-
nach space c0 by translation on RN is turbulent and gives rise to an equiv-
alence relation ER

N
c0 which is ≤B-incomparable with E2 (see Hjorth [9]), it

was even speculated at Conjecture 7 of [12] that for any Polish group G and
turbulent Polish G-space X, either

E2 ≤ EXG or ER
N

c0 ≤B EXG .

This further gathers plausibility from an observation due to Kechris (for a
proof see [9]) that E2 ∼B ER

N
`1 , and thus we might hope that ER

N
`1 and ER

N
c0

would stand like Adam and Eve at the very base of the turbulent equivalence
relations.

However:

Theorem 5.1 (Oliver). For any equivalence relation ES obtained in the
Louveau–Veličković construction from 2.3 we have

ES <B ER
N

c0 .

Since these Louveau–Veličković equivalence relations are easily seen to
arise from turbulent Polish group actions, we see in particular that there are
many incomparable turbulent orbit equivalence relations <B-below ER

N
c0 .

Not only was Conjecture 7 false as stated, the hope it expressed—that
one would have a small basis of turbulent orbit equivalence relations, with
at least one member of the basis reducing to any other example of an or-
bit equivalence relation arising from a turbulent Polish group action—was
misguided. Since Mike Oliver’s result, Farah has advanced steadily on the
structure of the turbulent orbit equivalence relations, and used suitable re-
finements of the Tsirelson ideal and the Louveau–Veličković examples to
refute every structural conjecture we might have ever entertained.

Theorem 5.2 (Farah; see [6]). There is no finite or even countably in-
finite sequence EX0

G0
, EX1

G1
, . . . , EXnGn , . . . of orbit equivalence relations arising
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from turbulent actions of Polish groups such that for any other Polish group
H and turbulent Polish H-space Y , there is some k with

EXkGk ≤B EYH .

Theorem 5.3 (Farah; see [7]). There is a Polish group G and a turbulent
Polish G-space X which is above no minimal turbulent orbit equivalence rela-
tion; that is to say , for each Polish group H0 and turbulent Polish H0-space
Y0 with

EY0
H0
≤B EXG ,

we may find a Polish group H1 and turbulent Polish H1-space Y1 with

EY1
H1

<B EY0
H0
.

6. What remains open? From the original sequence of conjectures
the following remain open:

Conjecture 6.1 (Conjecture 1 of [12]). For E a Borel equivalence re-
lation, either we have E1 ≤B E or there is some Polish group G and Polish
G-space X with E ∼B EXG .

Conjecture 6.2 (Conjecture 4 of [12]). For E a Borel equivalence re-
lation with E ≤ E2 we have either E2 ∼B E or E ≤B E0.

Conjecture 6.3 (Conjecture 5 of [12]). For E a Borel equivalence re-
lation of the form EXG for some Polish G-space X, where G is a closed
subgroup of S∞, we have either E3 ≤B E or E ≤B E∞.

Below we give the proof of the result announced in [12] that this conjec-
ture holds when E ≤B EXG , for G a closed invariantly metrizable subgroup
of S∞ and X a Polish G-space.

Added in proof. Hjorth has now proved the full Conjecture 6.3. His proof
appears in his preprint “A dichotomy theorem for isomorphism”.

Conjecture 6.4 (Conjecture 6 of [12]). For G a Polish group and X
a Polish G-space, either we have some turbulent Polish G-space Y with
EYG ≤B EXG or there is some Polish S∞-space Z with EXG ∼B EZS∞ .

In particular, these conjectures imply that for any Borel equivalence
relation one of the following holds:

(i) E1 ≤B E,
(ii) EXG ≤B E for some turbulent G-space X,
(iii) E3 ≤B E,
(iv) E ≤B E∞.

This consequence is also open at this time.
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7. The Sixth Dichotomy Theorem. We present here the proof of
the following result, labeled the Sixth Dichotomy Theorem in [12].

Theorem 7.1. Let E be a Borel equivalence relation. If E ≤B E3, then

E ≤B E0 or E ∼B E3.

As discussed in §11 of [12] it is enough to prove the following two results.

Theorem 7.2. Let E be a Borel equivalence relation such that E ≤B

EN∞. Then exactly one of the following holds:

(i) E ≤B E∞,
(ii) E3 vc E,

where vc means that there is an injective continuous reduction.

Theorem 7.3. Let Gi, i = 1, 2, . . . , be closed subgroups of S∞, let G =∏∞
i=1 Gi and let X be a Borel G-space. If E ≤B EXG and E ≤B E∞, then

for each n, there is a Borel Gn-space Zn, where Gn =
∏
i≤nGi, such that

E ≤B

⊕

n

EZnGn ,

where
⊕

denotes direct sum.

To see that 7.2 and 7.3 together imply 7.1, let E ≤B E3. Then E ≤B

E3 ≤B EN∞, so by 7.1 either E3 vc E, so E ∼B E3, or else E ≤B E∞. If the
last alternative holds, we have E ≤B E3 = EN0 and E ≤B E∞.

As discussed in [4], E0 ∼B E2Z
Z , where the action of Z on 2Z is the shift

action. So E ≤B EN0 ∼B (E2Z
N )N ∼B EX2N , where X = (2Z)N and ZN acts on

(2N)N coordinatewise. Since Z is a closed subgroup of S∞, 7.3 implies that
E is Borel reduced to a direct sum of a sequence of equivalence relations
of the form EYZn . As discussed in [13], it is a theorem of Weiss that any
orbit equivalence relation associated with a Borel Zn-space is ≤B E0. So
E ≤B E0.

We now present the proofs of 7.2 and 7.3.

Proof of 7.2. Since E∞ can be realized in the form E2N
G , where G is a

countable group acting continuously on 2N, it is enough to prove that (i)
or (ii) hold for any E ≤B (E2N

G )N, where G is a countable group acting
continuously on 2N. We can clearly assume that E lives on X = 2N. We also
claim that we can assume (by changing G to Z2×G if necessary) that there is
a Borel map f : X → (2N)N which is 1-1 and for which there is a continuous
f∗ : (2N)N → X such that f∗|f [X] = f−1, and xEy ⇔ f(x)(E2N

G )Nf(y).
Indeed, if g : X → (2N)N is Borel such that xEy ⇔ g(x)(E2N

G )Ng(y), define
f : X → (2N)N (≡ 2N×N, via xi(j) = x(i, j)) by

f(x)(i, 0) = x(i), f(x)(i, j + 1) = g(x)(i, j).
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Then let Z2 ×G act on 2N as follows:

(a, g) ∗ x = (a+ x(0))∧g · x′, where x′(i) = x(i+ 1)

(here g · x is the given action that defines E2N
G ). Denoting by E2N

Z2×G the
equivalence relation induced by this action, we clearly have

xEy ⇔ g(x)(E2N
G )Ng(y) ⇔ f(x)(E2N

Z2×G)Nf(y).

Finally, let f∗ be defined by

f∗(z)(i) = z(i, 0).

Then f is 1-1, Borel and reduces E to (E2N
Z2×G)N, and f∗ is continuous and

equal to f−1 on f [X].
So fix G,X,E, f, f∗ as above. By relativization, we can assume that

E, f ∈ ∆1
1, and G and the action are recursive.

Notation. • For x, y ∈ 2N×N, let

x≤n = y≤n ⇔ ∀i ≤ n (xi = yi).

Put
x ≡n y ⇔ x(E2N

G )Ny & x≤n = y≤n.

• For each n, let

V (n) = {1} × . . .× {1}︸ ︷︷ ︸
n+1

×GN.

Then V (n) is an open subgroup of GN and so has countable index in GN.
Clearly, (E2N

G )N = E2N×N
GN , where GN acts by the product action on (2N)N ≡

2N×N. Moreover, (≡n) = E2N×N

V (n) . It follows that every E2N×N
GN -class contains

only countably many ≡n-classes.
• Let f [X] = X0 ⊆ 2N×N.
• Let G = {gn}n∈N (a recursive enumeration), with g0 = 1.

For each n < k and each p define

An,k,p = {A ∈ Σ1
1, A ⊆ 2N×N :

∀x, y ∈ X0 ∩A (x ≡n y ⇒ ∃i ≤ p (gi · xk = yk))}.
Put

A0 =
⋃

n

⋂

k>n

⋃

p

{A : A ∈ An,k,p}.

Claim 1. A ∈ An,k,p ⇒ ∃B ⊇ A (B ∈ ∆1
1 & B ∈ An,k,p).

Proof. The property “A ∈ An,k,p” is Π1
1 in the codes.

Claim 2. A0 ∈ Π1
1.
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Proof. By Claim 1,

x ∈ A0 ⇔ ∃n ∀k > n ∃p ∃A ∈ An,k,p (x ∈ A)

⇔ ∃n ∀k > n ∃p ∃A ∈ ∆1
1, A ∈ An,k,p (x ∈ A).

We now have 2 cases:

Case I: X0 ⊆ A0. We will then show that E ≤∆1
1
F , where F is ∆1

1

and countable. For that it is enough to find a ∆1
1 function g : X → Y ,

with Y a recursively presented Polish space, so that g([x]E) is countable
and ¬xEy ⇒ g([x]E) ∩ g([y]E) = ∅ (see, e.g., [10]).

Since X0 ⊆ A0, we have

∀x ∈ X0 ∃n ∀k > n ∃p ∃A ∈ ∆1
1

(x ∈ A & ∀y, z ∈ X0 ∩ A (y ≡n z ⇒ ∃i ≤ p (gi · yk = zk))).

So there is a ∆1
1 function x 7→ n(x) such that

x ∈ X0 ⇒ ∀k > n(x) ∃p ∃A ∈ ∆1
1

(x ∈ A & ∀y, z ∈ X0 ∩ A (y ≡n z ⇒ ∃i ≤ p (gi · yk = zk))).

Let Pn = {x : n(x) = x} (∈ ∆1
1) and

Qn = Pn ∩X0 (∈ ∆1
1).

Clearly, X0 =
⋃
nQn and

x ∈ Qn ⇒ ∀k > n ∃p ∃A ∈ ∆1
1

(x ∈ A & ∀y, z ∈ X0 ∩ A (y ≡n z ⇒ ∃i ≤ p (gi · yk = zk))).

We will find a ∆1
1 function fn : 2N×N → 2N×N such that

x, y ∈ Qn & x ≡n y ⇒ fn(x) = fn(y) ≡n x.
Then for x ∈ X, let

g(x) = 〈n, y〉 ⇔ f(x) ∈ Qn & fn(f(x)) = y.

This is ∆1
1 and we claim that it works: To see that g([x]E) is countable,

just use the fact that there are only countably many ≡n-classes in each
E2N×N
GN -class. Now assume g(x) = g(y) = 〈n, z〉. Then f(x), f(y) ∈ Qn and

fn(f(x)) = fn(f(y)) (= z), so f(x) ≡n f(y), thus f(x)E2N×N
GN f(y), and so

xEy.
We will now construct the fn’s:
Fix a ≡n|Qn-class C. Note that for any x ∈ C and any k > n, there are

p,A ∈ ∆1
1 with x ∈ A and

∀y, z ∈ X0 ∩ A (y ≡n z ⇒ ∃i ≤ p (gi · yk = zk)).

So for each k > n let pk, Ak be least such that Ak∩C 6= ∅ and ∀y, z ∈ X0∩Ak
(y ≡n z ⇒ ∃i ≤ pk (gi · yk = zk)). Then it is clear that {xk : x ∈ C ∩ Ak}
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is finite, so let aCk be its least member (in the lexicographical ordering on
2N×N ≡ 2N).

Define αC by

(αC)i = xi for any (all) x ∈ C, if i ≤ n;

(αC)k = aCk for k > n.

Then αC ≡n x for any x ∈ C.
For x ∈ Qn, put

hn(x) = α[x]≡n|Qn
.

Then hn is C-measurable (where C is the smallest σ-algebra containing the
open sets and closed under the Suslin operation A) and

x, y ∈ Qn & x ≡n y ⇒ hn(x) = hn(y) ≡n x.
Let Q̃n = [Qn]≡n = the saturation of Qn by ≡n in 2N×N. Clearly, Q̃n ∈

Σ1
1 and there is qn : Q̃n → Qn which is C-measurable with qn(x) ≡n x. If

rn = hn ◦ qn, then rn : Q̃n → 2N×N is C-measurable and

x, y ∈ Q̃n & x ≡n y ⇒ rn(x) = rn(y) ≡n x.
Thus µ(Q̃n) = 0 for every ≡n-ergodic, non-atomic probability Borel measure
on 2N×N. Since this is a Π1

1 in the codes property of Q̃n, there is a ∆1
1 set

Rn ⊇ Q̃n, Rn ∈ ∆1
1, which still has this property. Let

〈Rn〉 = {x : ∀y ≡n x (y ∈ Rn)}.
Then 〈Rn〉 ∈ Π1

1, 〈Rn〉 is ≡n-invariant, and Q̃n ⊆ 〈Rn〉 ⊆ Rn, so there
is a ∆1

1,≡n-invariant set Sn with Q̃n ⊆ Sn ⊆ 〈Rn〉. Then µ(Sn) = 0 for
any measure as above, so ≡n|Sn is smooth. Since ≡n|Sn is induced by a ∆1

1
action of the Polish group V (n), it follows that ≡n|Sn has a ∆1

1-selector, i.e.,
there is a ∆1

1 map fn : 2N×N → 2N×N such that

x, y ∈ Sn & x ≡n y ⇒ fn(x) = fn(y) ≡n x,
and since Qn ⊆ Sn we are done.

Case II: X0 6⊆ A0. We will then show that EN0 vc E. Notice that it
is enough to show that EN0 vc E

N
0 |X0, say by a continuous embedding e,

because then f∗ ◦ e is a continuous embedding of EN0 into E.
Let Y0 = X0 \A0. Then Y0 6= ∅, Y0 ∈ Σ1

1. By definition, for any x ∈ Y0,

∀n ∃k > n ∀p ∀A ∈ Σ1
1 (x ∈ A ⇒ A 6∈ An,k,p),

i.e., if x ∈ Y0, then

∀n ∃k > n ∀p ∀A ∈ Σ1
1

(x ∈ A⇒ ∃y, z ∈ X0 ∩A (y ≡n z & ∀i ≤ p (gi · yk 6= zk))).
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Let, for n < k,

Yn,k = {x ∈ Y0 : ∀p ∀A ∈ Σ1
1 (x ∈ A⇒ A 6∈ An,k,p)}

= {x ∈ Y0 : ∀p ∀A ∈ ∆1
1 (x ∈ A⇒ A 6∈ An,k,p)}

(by Claim 1), so that Yn,k ∈ Σ1
1. Thus

∀x ∈ Y0 ∀n ∃k > n (x ∈ Yn,k).

Notation. Below 〈m, j〉 denotes the usual Cantor bijection of N × N
with N, given by

〈m, j〉 = (m+ j)(m+ j + 1)/2 + j.

Let L(n) = max{k : ∃i (〈k, i〉 ≤ n)}. Note that L(〈m, 0〉) = m and
L(n) ≤ L(n + 1), while L(n) = L(n − 1) if n = 〈m, j〉 with j > 0, and
L(n) = L(n− 1) + 1 if n = 〈m, 0〉 > 0.

We will define the following by induction on n ≥ 0:

(i) Non-empty Σ1
1 sets As, s ∈ 2n+1. These will be chosen so that A∅ =

Y0, As∧i ⊆ As, diam(As) ≤ 2−lh(s), and for each x ∈ 2N, Ax|i “converges”
in the Gandy–Harrington topology, so that

⋂
iAx|i = {αx} and if αi ∈ Ax|i,

then αi → αx in the usual topology.
(ii) km ∈ N, m ≤ L(n). These will be chosen so that 0 < k0 < k1 < . . .

(iii) We will also have

A0n+1 ⊆
⋂

r≤L(n)

Yr,kr .

(iv) gs ∈ GN, s ∈ 2n+1, such that g0n+1 = 1, (gs)i = 1 if i > kL(n).
(Thus, essentially, gs ∈ GkL(n)+1.)

(v) Links. We will also have, for s ∈ 2n+1,

∀x ∈ A0n+1∃y ∈ As (gs · x ≡kL(n) y).

(vi) Positive requirements. For s, t ∈ 2n+1, put gs,t = gt · g−1
s . If

n < n, (s, t ) ⊆ (s, t), s, t ∈ 2n+1, then for l ≤ L(n) we must have

[∀l ≤ l ∀〈l, i〉 ∈ (n+ 1) \ (n+ 1) (s(〈l, i〉) = t(〈l, i〉))] ⇒ gs,t ≡l gs,t,
where for g, h ∈ GN, l ∈ N we let

g ≡l h ⇔ ∀i ≤ l (gi = hi).

(vii) Negative requirements. If s, t ∈ 2n+1, n = 〈m, j〉, then we must have

s(n) 6= t(n) ⇒ ∀l ≤ n (x ∈ As & y ∈ At ⇒ gl · xkm 6= ykm).

Assume all this can be done. Then we claim that

(∗) xEN0 y ⇔ αxE
2N×N
GN αy,
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which, since αx ∈ Y0, proves what we want. (Notice that by (vii), As∧0 ∩
As∧1 = ∅ (as g0 = 1), so x 7→ αx is 1-1 and clearly continuous.)

Proof of (∗). ⇒ Assume xEN0 y. Fix l. Choose t0, t1, . . . , tl such that

x(〈l, i〉) = y(〈l, i〉) for l ≤ l and i ≥ tl.
Then there is n with L(n) ≥ l such that for any n > n we have

∀l ≤ l ∀〈l, i〉 ∈ (n+ 1) \ (n+ 1) [x|(n+ 1)(〈l, i〉) = y|(n+ 1)(〈l, i〉)].
So, by (vi) for n > n, we have

gx|(n+1),y|(n+1) ≡l gx|(n+1),y|(n+1).

By (v), find wx|(n+1), wy|(n+1) in Ax|(n+1), Ay|(n+1), respectively, so that

gx|(n+1) · α0∞ ≡kL(n) wx|(n+1), gy|(n+1) · α0∞ ≡kL(n) wy|(n+1).

Thus
gy|(n+1)g

−1
x|(n+1) · wx|(n+1) ≡kL(n) wy|(n+1),

and so, since L(n) ≥ L(n) ≥ l and therefore kL(n) ≥ l, we have

gx|(n+1),y|(n+1) · wx|(n+1) ≡l wy|(n+1).

Hence
gx|(n+1),y|(n+1) · wx|(n+1) ≡l wy|(n+1).

Taking the limit as n→∞, we get

(gx|(n+1),y|(n+1) · αx)l = (αy)l, ∀l ≤ l,
so, in particular, there is gl ∈ G with gl · (αx)l = (αy)l. Since this is true for
every l, we see that αxE2N×N

GN αy.
⇐ Assume ¬xEN0 y. Fix m such that x(〈m, j〉) 6= y(〈m, j〉) for infinitely

many j. Assume, towards a contradiction, that αxE2N×N
GN αy. Let l be such

that gl · (αx)km = (αy)km . Fix n = 〈m, j〉 such that x(n) 6= y(n) and n ≥ l.
Then x|(n+ 1)(n) 6= y|(n+ 1)(n), so by (vi), as αx ∈ Ax|(n+1), y ∈ Ay|(n+1),
we have

gl · (αx)km 6= (αy)km ,

a contradiction.

CONSTRUCTION

Step 1. Let y ∈ Y0. Then ∀k ∃n > k (y ∈ Yn,k), so fix k0 > 0 such
that y ∈ Y0,k0 , and so ∀p ∀A ∈ Σ1

1 (y ∈ A ⇒ A 6∈ A0,k0,p). Recall that
g0 = 1. So for p = 0 and A = Y0,k0 we have Y0,k0 6∈ A0,k0,0, so there are
x(0), x(1) ∈ Y0,k0 with x(0) ≡0 x(1), but g0 ·(x(0))k0 = (x(0))k0 6= (x(1))k0 . Let
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g(0) = 1 and let g′(1) ∈ GN be such that g′(1) · x(0) = x(1). Define g(1) ∈ GN
by

(g(1))i =
{

(g′(1))i if i ≤ k0 = kL(0),
1 if i > k0.

Then g(1) · x(0) ≡k0 x(1). Let then A(0), A(1) be small enough Σ1
1 subsets of

Y0,k0 (⊆ Y0 = A∅) so that the following are satisfied: (i), (ii) (k0 > 0), (iii)
(A(0) ⊆ Y0,k0), (iv), (v), (vi) (vacuously), (vii) (if (x(0))k0(t) 6= (y(0))k0(t),
we just make sure that every x ∈ A(0) agrees with x(1) at (k0, t)).

Step n+ 1 (n > 0). Assume the construction has been done up to level
n, i.e., for

⋃
k≤n 2n, and km has been defined for m ≤ L(n − 1). We now

consider 2n+1. Let n = 〈m, j〉. We consider two cases, (A) and (B).

(A) j > 0. Then L(n) = L(n − 1), so km is already defined for all
m ≤ L(n).

First we shrink all As, s ∈ 2n, to make sure that diam(As) < 2−lh(s)−1,
and “convergence” in the Gandy–Harrington topology is improved, and
moreover, this is done so that (v) still remains valid (for s ∈ 2n of course).
To avoid complicated notation we will still call these smaller sets As (we
have not changed, by the way, the gs, s ∈ 2n). So all conditions (i)–(vii) are
satisfied up to that point, and we took care of (i) at Step n+ 1. Also, as we
pointed out, (ii) has been taken care of at Step n+ 1, and we have

A0n ⊆
⋂

r≤L(n−1)

Yr,kr =
⋂

r≤L(n)

Yr,kr .

So choose x0n+1 , x0n∧1 ∈ A0n so that x0n+1 ≡m x0n∧1 (as m ≤ L(n)) and
g−1
s1 g

±1
l gt1 · (x0n+1)km 6= (x0n∧1)km for all l ≤ n and all s1, t1 ∈ 2n. This is

possible since A0n ⊆ Ym,km . Let g0n+1 = 1 and g′
0n∧1

∈ GN be such that
g′

0n∧1
· x0n+1 = x0n∧1. As x0n+1 ≡m x0n∧1, we can assume that (g′

0n∧1
)i = 1

for i ≤ m.
Define g0n∧1 by

(g0n∧1)i =
{

(g′
0n∧1

)i for i ≤ kL(n),
1 for i > kL(n).

Then for s ∈ 2n+1, s = s∧i define gs by

gs =
{
gs if i = 0,
gsg0n∧1 if i = 1.

(Notice that this is consistent with the previous definitions of g0n+1 , g0n∧1.)
Then (iv) is clearly satisfied, as L(n) = L(n− 1).

We next verify (vi).
Take s, t ∈ 2n+1, say s = s1

∧i, t = t1
∧j. If i = j then gs,t = gs1,t1 .

Moreover, as g0n∧1 ≡m 1, we always clearly have gs,t ≡m gs1,t1 .
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Now consider n < n, (s, t ) ⊆ (s, t), s, t ∈ 2n+1 and fix l such that

∀l ≤ l ∀〈l, i〉 ∈ (n+ 1) \ (n+ 1) (s(〈l, i〉) = t(〈l, i〉)).
Case 1: i = j. If n = n− 1, then s = s1, t = t1 and gs,t = gs1,t1 = gs,t,

so we are done. If n < n− 1, then, by induction hypothesis, gs1,t1 ≡l gs,t, so
gs,t(= gs1,t1) ≡l gs,t.

Case 2: i 6= j. Then we must have l < m. Since gs,t ≡m gs1,t1 , and thus
gs,t ≡l gs1,t1 , we are done as in Case 1.

Since x0n+1 , x0n∧1 ∈ A0n , by induction hypothesis ((v)—recall that
L(n) = L(n − 1)) we can find xs1∧0 ∈ As1 so that gs1 · x0n+1 ≡kL(n)

xs1∧0 (s1 ∈ 2n) and xs1∧1 ∈ As1 so that gs1 · x0n∧1 ≡kL(n) xs1∧1 (s1 ∈ 2n).
(Again x0n+1 , x0n∧1 are consistently defined.) Then gs1∧0 · x0n+1 ≡kL(n) xs1∧0
and

gs1∧1 · x0n+1 = gs1 · (g0n∧1 · x0n+1) = gs1 · x0n∧1 ≡kL(n) xs1∧1.

Next notice that, as km ≤ kL(n), we have (gs1∧0)km ·(x0n+1)km = (xs1∧0)km
and (xt∧11)km = (gt1)km · x0n∧1, so we cannot have gl · (xs1∧0)km = (xt1∧1)km ,
and similarly we cannot have gl · (xs1∧1)km = (xt1∧0)km , for any l ≤ n and
any s1, t1 ∈ 2n. Clearly, this conclusion can be guaranteed by fixing only
finitely many values of (xs)km , s ∈ 2n+1.

Thus it is routine to define As ∈ Σ1
1 with xs ∈ As, s ∈ 2n+1, so that all

conditions (i)–(vii) are satisfied (for (vii) we just make sure that all x ∈ As
agree with xs on enough, but finitely many, values).

(B) j = 0. Then L(n) = L(n− 1) + 1 = m.
Again we may assume that we have shrunk the As, s ∈ 2n, so that

(i) will be satisfied at level n + 1. Next fix y0 ∈ A0n . Then y0 ∈ Y0, so
∀n′ ∃k′ > n′ (y0 ∈ Yn′,k′), and by taking n′ = km−1 = kL(n−1) we can
find km = k′ > km−1 with y0 ∈ Ykm−1,km , so, in particular, y0 ∈ Ym,km
as km−1 ≥ m. Hence, by shrinking again if necessary, we can assume that
A0n ⊆

⋂
r≤L(n) Yr,kr =

⋂
r≤L(n−1) Yr,kr ∩ Ym,km . Next choose xs ∈ As,

s ∈ 2n, so that gs · x0n ≡kL(n−1) xs, and fix gs ∈ GN so that gs ≡kL(n−1) gs,
(gs)i = 0 if i > kL(n) and gs·x0n ≡kL(n) xs. Then, as gs ≡kL(n−1) gs, it is clear
that (vi) is still satisfied if (for s ∈ 2n) we replace gs by gs. It follows that
we can shrink As, s ∈ 2n, to As, s ∈ 2n, so that all of (i)–(vii) are satisfied
with As, gs replacing As, gs, and moreover, As satisfies (i) for level n + 1,
A0n+1 ⊆ ⋂r≤L(n) Yr,kr , (gs)i = 0 for all i > kL(n), and ∀x ∈ A0n ∃y ∈ As
(gs · x ≡kL(n) y). So, to avoid complicated notation, we may as well assume
that at step n we already have As, gs (s ∈ 2n) satisfying all these conditions.
But then we can repeat exactly the construction of the previous case (A).

Proof of 7.3. We will first deal with the case E = EXG , which is simpler.
For each n fix a clopen basis {Unk }k∈N for Gn closed under right multiplica-
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tion. Identifying Unk with Unk ×Gn+1×Gn+2× . . . , we derive that {Unk }k∈N
is closed under multiplication by elements of G and {Unk }n,k∈N is a basis
for G.

If E∞ lives on Y , let h be a Borel function witnessing that EXG ≤B E∞.
Fix x ∈ X, and let [h(x)]E∞ = {yi}i∈N. Then G =

⋃
i{g : h(g · x) = yi}, so

for some i, {g : h(g · x) = yi} is non-meager, thus comeager in some Unk . So

∀x ∃n P (x, n) with P (x, n) ⇔ ∃k ∃y∈ [h(x)]E∞∀∗g ∈ Unk (h(g·x) = y).

Clearly, P is Borel. Moreover, it is EXG -invariant, i.e., if P (x, n) & x′EXG x,
then P (x′, n). To see this, let x′ = g−1

0 · x. Then

∃k ∃y ∈ [h(x)]E∞ ∀∗g ∈ Unk (h(gg0 · x′) = y),

so
∃k ∃y ∈ [h(x′)]E∞ ∀∗g′ ∈ Unk g0 (h(g′ · x′) = y).

Since Unk g0 = Unk′ for some k′, we see that P (x′, n) holds. Thus, by the
invariant uniformization theorem, there is an EXG -invariant Borel function
F : X → N with P (x, F (x)), ∀x ∈ X. Let Xn = F−1({n}). Then Xn

is an EXG -invariant Borel set. We will find a Borel Gn-space Yn so that
EXG |Xn ≤B EYnGn , which will complete the proof.

Fix ∞ 6∈ Y and let

Yn = (Y ⊕ {∞}){Unk }k∈N .
Then have Gn act on Yn by right-shift, i.e.,

g ·H(Unk ) = H(Unk g).

Clearly, this is a Borel action. Now define Qn : Xn → Yn as follows:
Qn(x)(Unk ) = the unique y ∈ [h(x)]E∞ such that ∀∗g ∈ Unk (h(g · x) = y), if
such exists;∞ otherwise. Clearly, Qn is Borel. We verify that for x, x′ ∈ Xn,

xEXG x
′ ⇔ Q(x)EYnGnQ(y).

⇒ Say g0 · x = x′. Let g0 = (g1, g2, . . .) and gn = (g1, . . . , gn). We will
check that gn · Qn(x) = Qn(x′), i.e., Qn(x)(Unk g

n) = Q(x′)(Unk ). Indeed,
for y ∈ [h(x)]E∞ = [h(x′)]E∞ , we have Q(x)(Unk g

n) = y iff ∀∗g′ ∈ Unk
(h(g′ · x′) = y) iff Q(x′)(Unk ) = y.
⇐ Now assume that Q(x)EYnGnQ(x′). Since x ∈ Xn, fix k so that ∀∗g ∈

Unk (h(g · x) = y), for some y ∈ [h(x)]E∞. Thus Q(x)(Unk ) = y. Let gn ∈ Gn
be such that gn · Q(x) = Q(x′). Then Q(x′)(Unl ) = Q(x)(Unl g

n) for any l,
so if l is so chosen that Unk = Unl g

n, we have Q(x′)(Unl ) = Q(x)(Unk ) = y,
thus y ∈ [h(x′)]E∞ and h(x)E∞h(x′), and xEXG x

′.
Now consider the general case. Assume that E lives on Z and that the

functions f, h witnessing, resp., that E ≤B EXG and E ≤B E∞ are continu-
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ous. Fix a basis {Wm} for Z and a basis {Np} for Y . Put

P (x, g, z, y) ⇔ f(z) = g · x & h(z) = y.

This is closed in X ×G×Z ×Y . For each x ∈ [f(z)]EXG , projY (P (x)) is Σ1
1,

non-empty and countable, so there are n, k, m, p such that projY (P (x) ∩
(Unk ×Wm ×Np)) is a singleton, say y ∈ [h(x)]E∞. Then for Nq ⊆ Np,

y ∈ Nq ⇔ projY (P (x) ∩ (Unk ×Wm ×Nq)) 6= ∅.
Put

R(x, n, k,m, p) ⇔ projY (P (x) ∩ (Unk ×Wm ×Np)) = ∅.
This is Π1

1 and invariant under the Σ1
1 equivalence relation

(x, n, k,m, p) ∼ (x′, n′, k′,m′, p′)

⇔ n = n′, m = m′, p = p′ & ∃g0 (g−1
0 · x = x′ & Unk g0 = Unk′).

So, by Solovay’s Theorem (see [14], 34.6(ii)), there is an ∼-invariant
Π1

1-rank ϕ : R→ ω1 on R. As usual, let ϕ = ω1 off R. We have

∀z ∃y ∈ [h(z)]E∞ ∃n, k,m, p [y ∈ Np & ∀q (Nq ⊆ Np ⇒
• y ∈ Nq ⇒ ϕ(f(z), n, k,m, q) = ω1,

• y 6∈ Nq ⇒ ϕ(f(z), n, k,m, q) < α < ωz,a1 )],

where a ∈ NN is an appropriate fixed parameter, independent of z. So

∀z ∃α < ωz,a1 ∃y ∈ [h(z)]E∞∃n, k,m, p
[y ∈ Np & ∀q (Nq ⊆ Np ⇒ (y ∈ Nq ⇔ ϕ(f(z), n, k,m, q) ≥ α))].

By boundedness there is some fixed α0 < ω1 so that

(∗) ∀z ∃n ∃y ∈ [h(z)]E∞ ∃α < α0 ∃k,m, p
[y ∈ Np & ∀q (Nq ⊆ Np ⇒ (y ∈ Nq ⇔ ϕ(f(z), n, k,m, q) ≥ α))].

Let, for α < α0, n,m, p ∈ N,

Zn,α,m,p = {z : ∃y ∈ [h(z)]E∞ ∃k [y ∈ Np & ∀q (Nq ⊆ Np ⇒ (∗))]}.
Then Zn,α,m,p is Borel and E-invariant, and Z =

⋃
n,α,m,p Zn,α,m,p, so, in

the notation of the special case, it is enough to show that E|Zn,α,m,p ≤B

EYnGn . For that define Qn,α,m,p : Zn,α,m,p → Yn by Q(z)(Unk ) = the unique
y ∈ [h(z)]E∞ such that y ∈ Np & ∀q (Nq ⊆ Np ⇒ (∗)), if such exists; ∞
otherwise. This works as in the special case.

8. The Seventh Dichotomy Theorem. Finally, we prove the follow-
ing result, labeled the Seventh Dichotomy Theorem in [12].

Theorem 8.1. Let G ⊆ S∞ be a closed subgroup of S∞, admitting an
invariant metric. If X is a Borel G-space and EXG is Borel , then for any
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E ≤B EXG ,
E ≤B E∞ or E3 ≤B E.

Proof. We start with the following:

Lemma 1. If G ⊆ S∞ is a closed subgroup of S∞ admitting an invariant
metric, there is a sequence Gn of countable (discrete) groups so that G is
isomorphic to a closed subgroup of

∏
nGn.

Proof. Fix a conjugation invariant nbhd basis {Vn} at the identity. Let
Un be the subgroup generated by Vn. Since G has a nbhd basis at the
identity consisting of open subgroups, it follows that {Un} is a nbhd basis
consisting of normal open subgroups. Fix an invariant metric d for G and
assume without loss of generality that d(Un) < 2−n.

Put Ωn = G/Un. Clearly, Ωn is countable. G acts on Ωn by g · hUn =
ghUn. It is easily seen that g ·Un = g′ ·Un implies g ·hUn = ghUn = gUnh =
g′Unh = g′hUn = g′ · hUn, so πng (hUn) = g · hUn is completely determined
by πng (Un) and so πn(g) = πng is a homomorphism of G onto a countable
subgroup Gn of the symmetric group of Ωn. If we define π : G → ∏

nGn
by π(g)n = πn(g), clearly π is a continuous injection of G into

∏
nGn. It

remains to show that it has continuous inverse on π(G). So assume π(gn)→
π(g) in the product topology of

∏
nGn. Then for any fixed k, for all large

enough n, we have π(gn)k = π(g)k, i.e., πk(gn) = πk(g), so gnUk = gUk and
then g−1gn ∈ Uk. So d(g−1gn, 1) = d(gn, g) < 2−k, thus gn → g.

By [3, 2.3.5], if G is a closed subgroup of H, then for any Borel G-space X
there is a Borel H-space Y with EXG ∼B EYH . So it is enough to prove the
theorem for G a countable product of countable (discrete) groups and since
every such group is a homomorphic image of Fℵ0 (the free group on ℵ0

generators) which in turn is a homomorphic image of H =
⊕

n Fℵ0 = the
direct sum of countably many copies of Fℵ0 , it is enough to prove it for
G = HN. Note that Hn+1 ∼= H for each n ∈ N.

We will next describe a countable structure with automorphism group G.
Let

A0 =
〈 ∞⋃

n=0

Hn+1, {QA0
n }n∈N, {FA0

h }h∈H , {pA0
ij }0≤i<j

〉

be defined as follows: Putting A0 =
⋃∞
n=0H

n+1, Qn are unary relations such
that

QA0
n (a) ⇔ a ∈ Hn+1.

Next, using Hn+1 ∼= H for each n, we fix an isomorphism %n : H → Hn+1,
say %n(h) = (hn0 , . . . , h

n
n). Then each FA0

h is the unary function such that

FA0
h ((g0, . . . , gn)) = (g0(hn0 )−1, . . . , gn(hnn)−1).



40 G. Hjorth and A. S. Kechris

Thus
FA0
h1
◦ FA0

h2
= FA0

h1h2

and FA0
h is a permutation of each (Qn)A0 , and in fact h · (g0, . . . , gn) =

FA0
h ((g0, . . . , gn)) is a free transitive action of H on (Qn)A0 .

Finally, pA0
ij is the unary function defined by

pA0
ij ((g0, . . . , gn)) =

{
(g0, . . . , gn) if j 6= n,
(g0, . . . , gi) if j = n.

We deduce, using FA0
h , pA0

ij , that every a ∈ (Qn)A0 is definable (by a
term) from any b ∈ (Qk)A0 , if k ≥ n.

It is clear that every g = (h0, h1, . . .) ∈ HN gives rise to an automorphism
%g of A0 by

%g(g0, . . . , gn) = (h0g0, . . . , hngn)

and it is easy to check that every automorphism π of A0 is of the form %g.
Thus g 7→ %g is an isomorphism of G with Aut(A0).

By a simple coding we can assume that the universe of A0 is A0 = N.
By identifying g with %g we identify G = HN with Aut(A0). Denote by L0

the language of A0.
Suppose now X is a Borel G-space with EXG Borel and E ≤B EXG . As in

the proof of Theorem 7.2 we can assume that the Borel reduction is actually
1-1. By [3, pp. 31–32], the G-space X is Borel embeddable in the relativized
logic action JA0

L0∪L (where L is a countable relational language disjoint from
L0) of Aut(A0) = G on Y A0

L0∪L = {M ∈ XL0∪L : M|L0 = A0}, with
XL0∪L denoting the Polish space of all L0 ∪ L-structures with universe N.
The equivalence relation associated with JA0

L0∪L is ∼=|Y A0
L0∪L. Let Y ⊆ Y A0

L0∪L
be the range of this G-embedding, so Y is an ∼=|Y A0

L0∪L-invariant subset of
Y A0
L0∪L. Clearly, EXG is Borel isomorphic to ∼=|Y . Put

Z = {M ∈ XL0∪L : ∃B ∈ Y (B ∼=M)}.
We claim that Z is Borel. This is because

M ∈ Z ⇔ M|L0
∼= A0 & ∀g ∈ S∞ (g ·M|L0 = A0 ⇒ g ·M ∈ Y ).

We now claim that ∼=|Z is also Borel. This is because for M,N ∈ Z,

M∼= N
⇔ ∀g ∈ S∞ ∀h ∈ S∞ (g ·M|L0 = A0 & g · N |L0 = A0 ⇒ g ·M ∼= g · N ).

Of course, there is a sentence σ ∈ (L0 ∪ L)ω1 such that Z = Mod(σ).
In summary: We have the countable structure A0 with universe N in the

language L0 such that:

(i) L0 = {Qn : n ∈ N} ∪ {Fg : g ∈ H} ∪ {pij : 0 ≤ i < j}.
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(ii) N is the disjoint union of (Qn)A0 .
(iii) FA0

g ◦FA0
h =FA0

gh ; Fg maps each (Qn)A0 1-1 and onto itself; Fg(a)=a
⇔ g = 1, for any a ∈ N, g ∈ H.

(iv) If a ∈ (Qn)A0 , then pA0
i,n(a) ∈ (Qi)A0 .

Moreover, we have a sentence σ ∈ (L0 ∪ L)ω1 such that ∼=|Mod(σ) is
Borel, and everyM ∈Mod(σ) is isomorphic to an expansion of A0. Finally,
there is a Borel injection f : W → Mod(σ), where E lives on W , such that

xEy ⇔ f(x) ∼= f(y) and f [W ] = X0 ⊆ {A ∈ Mod(σ) : A|L0 = A0}.
By relativization, we can assume that L0 ∪ L is recursive, σ ∈ Lωck1 ,

∼=|Mod(σ) is ∆1
1, also f,X0 ∈ ∆1

1, and Aut(A0) has a dense subgroup con-
sisting of recursive elements. (Notice that A0, L0 are also recursive.)

Fix now for each n an element pn ∈ (Qn)A0 . Using this we can define an
action of H on (Qn)A0 by

h · Fh1(pn) = Fh1h−1(pn).

(Notice that every a ∈ (Qn)A0 is of the form Fh1(pn) for a unique h1 ∈ H.)
This defines a homomorphism π : G(= HN)→ S∞ by letting π((h0, h1, . . .))
act on (Qn)A0 via hn. It is now easy to check that π(G) ⊇ Aut(A0). We put
πg = π(g). By relativization, we can also assume that the closed set {g ∈ G :
πg ∈ Aut(A0)} admits a countable dense set consisting of recursive elements.

Below, fragment of a language Lω1ω means countable fragment. (The
definitions concerning the theory of Lω1ω are as in [2].) For M = 〈M,−〉
an L-structure, F a fragment and a ∈ M<N, let ThF (M,a) = {ϕ ∈ F :
M |= ϕ(a)}.

If A ⊆ Mod(σ), M ∈ Mod(σ), a ∈M<N then put

(M, a) |= A ⇔ ∃g ∈ S∞ (g(ai) = ai and g ·M ∈ A).

Definition. Let F ⊆ (L0 ∪ L)ω1ω be a fragment, A ⊆ Mod(σ), M ∈
Mod(σ) and a ∈ (Qn)M, b0 ∈ (Qk0)M, . . . , bi ∈ (Qki)

M with n < k0 <
. . . < ki. We say that A isolates ThF (M, a, b) over (M, a) if

(i) (M, a, b) |= A,
(ii) for all M0 ∈ Mod(σ) and all g ∈ S∞ with g(a) = a, we have

(M0, a, b) |= A & (g ·M0, a, b) |= A⇒ ThF (M0, a, b) = ThF (g ·M0, a, b).

If ψ ∈ (L0 ∪ L)ω1ω, we say that ψ isolates ThF (M, a, b) over (M, a) if

(i) (M, a, b) |= ψ (i.e.,M |= ψ(a, b)),
(ii) for all M0 ∈ Mod(σ), all a0 ∈ (Qn)M0 and all bi0, (b

i
0)′ ∈ (Qki)

M0 ,
we have

(M0, a0, b0) |= ψ & (M0, a0, b
′
0) |= ψ

⇒ ThF (M0, a0, b0) = ThF (M0, a0, b
′
0).
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Let us note that if A ⊆ Mod(σ) is ∆1
1 and invariant under all g ∈ S∞

with g(a) = a, g(bi) = bi, then by [21], there is a formula ψ ∈ (L0 ∪ L)ω1ω

with
(N , a, b) |= ψ ⇔ (N , a, b) |= A ⇔ N ∈ A,

for all N ∈ Mod(σ). We check then that if A isolates ThF (M, a, b) over
(M, a), so does ψ.

Indeed, assume M0, a0, b0, b
′
0 are as in (ii) of the definition of isolation

for ψ and assume (M0, a0, b0) |= ψ, (M0, a0, b
′
0) |= ψ. Choosing g̃ ∈ S∞

with g̃(a0) = a, g̃(bi0) = bi, we see that by replacing M0 by g̃ · M0, a0 by
g̃(a0) = a, bi0 by g̃(bi0) = bi, it is enough to assume that a0 = a, b0 = b.
Let then g ∈ S∞ be such that g(a) = a, g((bi0)′) = bi. Then we have
(M0, a, b) |= ψ, so (M0, a, b) |= A and (g · M0, a, b) |= ψ, so (g · M0, a, b)
|= A, thus, since A isolates ThF (M, a, b) over (M, a) we get ThF (M0, a0, b0)
= ThF (g ·M0, a, b) = ThF (M0, a, b

′
0), so we are done.

Lemma 2. If F,F ′ are fragments, a ∈ (Qn)M and for all k > n and all
b ∈ (Qk)M there is ψ ∈ F ′ isolating ThF (M, a, b) over (M, a), then for any
b as in the preceding definition there is ψ ∈ F ′ isolating ThF (M, a, b) over
(M, a).

Proof. Fix b = (b0, . . . , bi) and put b = bi. Fix terms t0, . . . , ti−1 with
tMj (b) = bj . Let ψ ∈ F ′ isolate ThF (M, a, b) over (M, a). Put

ψ′(x, y0, . . . , yi) ⇔ ψ(x, yi) &
∧

j<i

(tj(yi) = yj).

Then (M, a, b) |= ψ′. We claim that ψ′ isolates ThF (M, a, b) over (M, a).
To check this fix M0, a0, b0, b

′
0 so that

(M0, a0, b0) |= ψ′, (M0, a0, b
′
0) |= ψ′.

Thus bj0 = tM0
j (bi0), (b′0)j = tM0

j ((b′0)i) and (M0, a0, b
i
0) |= ψ, (M0, a0, (b′0)i)

|= ψ, so ThF (M0, a0, b
i
0) = ThF (M0, a0, (b′0)i). If now θ ∈ ThF (M0, a0, b0),

then θ(x, t0(y), . . . , ti−1(y), y) ∈ ThF (M0, a0, b
i
0), so

θ(x, t0(y), . . . , ti−1(y), y) ∈ ThF (M0, a0, (b′0)i),

thus θ ∈ ThF (M0, a0, b
′
0) and so ThF (M0, a0, b0) = ThF (M0, a0, b

′
0).

Lemma 3. If F,F ′ are fragments a ∈ (Qn)M and for all k > n and all
b ∈ (Qk)M there is ψ ∈ F ′ isolating ThF (M, a, b) over (M, a), then for any
n′ > n, a′ ∈ (Qn′)M and every k′ > n′, b ∈ (Qk′)M there is ψ ∈ F ′ isolating
ThF (M, a′, b) over (M, a′).

Proof. Fix such n′, a′, b. By the preceding lemma there is a formula ψ ∈
F ′ isolating ThF (M, a, a′, b) over (M, a). Let t be a term with tM(a′) = a.
Put

ψ′(x, y) ⇔ ψ(t(x), x, y).
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Then (M, a′, b) |= ψ and we claim that ψ′ isolates (M, a′, b) over (M, a′).
Indeed, let (M0, a

′
0, b0) |= ψ′, (M0, a

′
0, b
′
0) |= ψ′. If a0 = tM0(a′0), then

(M0, a0, a
′
0, b0) |= ψ and (M0, a0, a

′
0, b
′
0) |= ψ, so ThF (M0, a0, a

′
0, b0) =

ThF (M0, a0, a
′
0, b0), thus ThF (M0, a

′
0, b0) = ThF (M0, a

′
0, b
′
0).

We now consider 2 cases:

Case I: ∀ fragments F ⊆ (L0 ∪ L)ω1ω, F ∈ Lωck1 ∀M ∈ X0 ∃n ∃a ∈
(Qn)M ∀k > n ∀b ∈ (Qk)M ∃A ∈ Σ1

1 (A isolates ThF (M, a, b) over (M, a)).
We will then show that E ≤B E∞.

Lemma 4. Assume F ∈ Lωck1 and A ∈ Σ1
1 isolates ThF (M, a, b) over

(M, a). Then there is ψ ∈ Lωck1 which isolates ThF (M, a, b) over (M, a).

Proof. By reflection, as property (ii) in the definition of isolation is Π1
1

in the codes for A, there is Mod(σ) ⊇ A∗0 ⊇ A,A∗0 ∈ ∆1
1 satisfying (ii),

and so having the same isolation property. Let A0 = {M : ∃g ∈ S∞
(g(a) = a & g(b) = b & g · M ∈ A∗0)}. Then A∗0 ⊆ A0 and A∗0 still satisfies
this property (ii). Clearly, A∗0 ∈ Σ1

1. We can repeat effectively this process
to get A ⊆ A∗0 ⊆ A0 ⊆ A∗1 ⊆ A1 ⊆ . . . with An ∈ ∆1

1 uniformly in n, An iso-
lating ThF (M, a, b) over (M, a), and An closed under all g ∈ S∞ fixing
a, b. Let A∗ =

⋃
nAn. Then A∗ ∈ ∆1

1 is invariant under all such g and iso-
lates ThF (M, a, b) over (M, a). If ψ is the corresponding formula, then ψ ∈
(L0 ∪ L)ω1ω, ψ ∈ Lωck1 , and ψ isolates ThF (M, a, b) over (M, a).

Thus ∀F ∈ Lωck1 ∀M ∈ X0 ∃n ∃a ∈ (Qn)M ∀k > n ∀b ∈ (Qk)M

∃ψ ∈ Lωck1 (ψ isolates ThF (M, a, b) over (M, a)). By reflection we can
then find, for each fragment F ∈ Lωck1 , a fragment F+ ∈ Lωck1 so that
F ⊆ F+ and F 7→ F+ is ∆1(Lωck1 ) such that ∀M ∈ X0 ∃n ∃a ∈ (Qn)M

∀k > n ∀b ∈ (Qk)M ∃ψ ∈ F+ (ψ isolates ThF (M, a, b) over (M, a)).
Define then recursively (Fα)α<ωck1 by

F0 = the fragment generated by σ,

F<α =
( ⋃

β<α

Fβ

)
,

Fα = (F<α)+,

so that each Fα ∈ Lωck1 .
For convenience, given M ∈ Mod(σ), a ∈ (Qn)M, γ < ωck1 , we say that

(M, a) is γ-good if for all k > n and all b ∈ (Qk)M there is ψ ∈ Fγ isolating
ThF<γ (M, a, b) over (M, a). Thus for any γ < ωck1 ,M ∈ X0, there are n
and a ∈ (Qn)M such that (M, a) is γ-good, so that by Lemma 3, this is also
true for any n′ > n.

Below, rank means quantifier rank, as in [2].
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Lemma 5. Fix γ < ωck1 . If M,M0 ∈ X0, a ∈ (Qn)M, a0 ∈ (Qn)M0 ,
(M, a), (M0, a0) are γ-good and ThFγ (M, a) = ThFγ (M0, a0), then (M, a),
(M0, a0) satisfy the same formulas of rank γ.

Proof. By induction on γ. For γ = 0 this is obvious as F0 ⊇ quantifier-
free formulas. Let now γ be limit and ϕ be of rank γ with (M, a) |= ϕ.
Without loss of generality we can assume that ϕ =

∨
i ϕi with each ϕi of

rank γi < γ. Thus (M, a) |= ϕi for some i. Fix n′ > n and b ∈ (Qn′)M

so that (M, b) is γi-good. As (M, a) is γ-good there is ψ ∈ Fγ isolat-
ing ThFγi (M, a, b) over (M, a). Since ThFγ (M, a) = ThFγ (M0, a0), there
is b0 ∈ (Qn′)M with (M0, a0, b0) |= ψ. We claim that (M0, b0) is γi-
good and that ThFγi (M, a, b) = ThFγi (M0, a0, b0) so that, in particular,
ThFγi (M, b) = ThFγi (M0, b0). Then by induction hypothesis (M, b) and
(M0, b0) satisfy the same formulas of rank γi. But there is a term t such
that tM(b) = a and tM0(b0) = a0, so as (M, a) |= ϕi, (M, b) |= ϕi(t) and
so we have (M0, b0) |= ϕi(t), i.e., (M0, a0) |= ϕi, and we are done.

First we check that ThFγi (M, a, b) = ThFγi (M0, a0, b0). Suppose
(M, a, b) |= θ, θ ∈ Fγi . Then there is b′0 ∈ (Qn′)M0 with (M0, a0, b

′
0) |= θ

and (M0, a0, b
′
0) |= ψ, so, as then ThFγi (M0, a0, b0) = ThFγi (M0, a0, b

′
0),

we have (M0, a0, b0) |= θ.
Next we check that (M0, b0) is γi-good. Fix k > n′, d0 ∈ (Qk)M0 .

Take any d ∈ (Qk)M and, since (M, b) is γi-good, let %′ ∈ Fγi isolate
ThF<γi (M, b, d) over (M, b). Then there is d′0 ∈ (Qk)M0 with (M0, b0, d

′
0)

|= %′. So %′ isolates ThF<γi (M0, b0, d
′
0) over (M0, b0). If %′ = %′(x, y) and

we fix h ∈ H with Fh(d0) = d′0, we see that % = %′(x, Fh(y)) isolates
ThF<γi (M0, b0, d0) over (M0, b0) and % ∈ Fγi , so we are done.

Finally, consider the successor case γ = δ+1. Without loss of generality,
let ϕ = ∃x ψ(x) be of rank δ + 1 and assume that (M, a) |= ϕ. Then
fix n′ > n and b ∈ (Qn′)M so that (M, a) |= ψ(tM(b)) for some term
t, and (M, b) is δ-good. As before, we can find b0 ∈ (Qn′)M0 which is δ-
good and ThFγ (M, a, b) = ThFγ (M0, a0, b0). Then by induction hypothesis
(M, b), (M0, b0) satisfy the same formulas of rank δ, so (as also a = tM1 (b0),
a0 = tM0

1 (b0) for some term t1), we have (M0, a0) |= ψ(tM0(b0)), thus
(M, a0) |= ϕ and we are done.

Since ∼=|Mod(σ) is ∆1
1, it follows from Vaught’s work (see, e.g., [14, 16.9])

that there is γ0 < ωck1 such that if M,M0 are in Mod(σ) and satisfy the
same formulas of rank γ0, then M∼=M0.

By Kreisel Selection, there is a ∆1
1 function which assigns to each

M ∈ X0 some nM ∈ N and aM ∈ (QnM)M so that (M, aM) is γ0-good.
Put, for M ∈ X0,

U(M) = ThFγ0
(M, aM).
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Then U is a ∆1
1 function (from X0 into 2Fγ0 ) and, by the preceding

lemma, if M,M0 ∈ X0 and U(M) = U(M0), then M ∼= M0. Moreover,
for each M ∈ X0, {U(M0) : M0 ∈ X0 & M ∼= M0} is countable, since
it is contained in {ThFγ0

(M, a) : a ∈ M}. It follows that U maps each
∼=|X0-class into a countable set and distinct isomorphic classes are mapped
to disjoint sets, so ∼=|X0 ≤B E∞. As EXG is Borel isomorphic to ∼=|X0, this
shows that E ≤B EXG ≤B E∞, so E ≤B E∞.

Case II: There are F ∈ Lωck1 andM ∈ X0 so that for all n, a ∈ (Qn)M

there are k > n and b ∈ (Qk)M such that no A ∈ Σ1
1 isolates ThF (M, a, b)

over (M, a). Fix such an F from now.
Let

X ′0 = {M ∈ Mod(σ) :M|L0 = A0 and ∃N ∈ X0 (M∼= N )}
Y ′0 = {M ∈ Mod(σ) :M|L0 = A0 and ∀n ∀a∈(Qn)M ∃k>n ∃b ∈ (Qk)M

(no A ∈ Σ1
1 isolates ThF (M, a, b) over (M, a))}

= {M ∈ Mod(σ) :M|L0 = A0 and ∀n ∀a∈(Qn)M ∃k>n ∃b ∈ (Qk)M

(no ψ ∈ Lωck1 isolates ThF (M, a, b) over (M, a))}.
Then X ′0, Y

′
0 are invariant under the action of Aut(A0) (i.e., under ∼=|Y A0

L0∪L)
and by the Case II assumption

Y0 = X ′0 ∩ Y ′0 6= ∅
and clearly Y0 ∈ Σ1

1. We will show that

(∗) EN0 ≤c (∼=|Y0).

Then EN0 ≤c (∼=|X ′0). Since clearly (∼=|X ′0) ≤C-meas (∼=|X0) vB E, it
follows that EN0 ≤C-meas E. So there is a comeager set D with EN0 |D ≤c E.
We then claim that EN0 vc E

N
0 |D, which completes the proof. To see this

notice that by the Sixth Dichotomy Theorem it is enough to show that
EN0 |D 6≤B E∞. Identifying, as usual, (2N)N with 2N×N we see that EN0 = EI3 .
If EN0 |D = EI3 |D ≤B E∞, then, by [17], I3 ∈ Σ0

2, which is a contradiction,
as I3 is complete Π0

3.
So it remains to prove (∗). We keep the notation 〈m, j〉, L(n) from the

proof of Theorem 7.2. We assume without loss of generality that {0, . . . ,
n− 1} ⊆ ⋃i<n(Qi)A0 , and for anyM∈ Mod(σ) we letM|n be the restric-
tion of M to n (for this we view M as relational by replacing functions by
their graphs). We also fix a recursive free T∅ such that

M ∈ Y0 ⇔ ∃y ∀n (M|n, y|n) ∈ T∅.
Let also, for each n,

Vn = {g = (h0, h1, . . .) ∈ HN : πg ∈ Aut(A0) & h0 = . . . = hn = 1}.
We will define the following, by induction on n ≥ 0:



46 G. Hjorth and A. S. Kechris

(i) Non-empty Σ1
1 sets As, s ∈ 2n+1, with A∅ = Y0, As∧i ⊆ As.

(ii) km ∈ N, m ≤ L(n), chosen so that 0 < k0 < k1 < . . .

(iii) We will also have

M ∈ A0n+1 ⇒ ∀r ≤ L(n) ∀a ∈ (Qr)M ∃b ∈ (Qkr)
M

(no A ∈ Σ1
1 isolates ThF (M, a, b) over (M, a)).

(iv) Each As, s ∈ 2n+1, will be invariant under π(VkL(n)).
(v) For each s ∈ 2n+1 we will also have µs, ys of length kL(n) + 1 and

ps ∈ HkL(n)+1 such that (M|(kL(n) + 1) = µs) & ∀M ∈ As ∃g ∈ HN, g ⊇ ps
∃y ⊇ ys [(πg ·M, y) ∈ [T∅]]. Moreover, s ⊆ t ⇒ µs ⊆ µt, ys ⊆ yt, ps ⊆ pt.

(v)′ We can view (v) as a requirement concerning As relative to A∅
= Y0. We will also impose a similar requirement relative to each As0 , with
s0 ∈ 2n0+1, n0 = 〈m0, 0〉, for all As, s ∈ 2n+1, n > n0, s ⊇ s0, i.e., we will
fix a free Ts0 for As0 and define µs0s , ys0s , ps0s with similar properties, with
the stipulation that µs0s = µs and ps0s (i) = 1 if i ≤ kL(n0).

(vi) gs ∈ HN, for each s ∈ 2n+1, with g0n+1 = 1, gs recursive, and
πgs ∈ Aut(A0).

(vii) Links. We will also have, for s ∈ 2n+1,

πgs ·A0n+1 = As.

(viii) Positive requirements. For s, t ∈ 2n+1, put gs,t = gtg
−1
s . If n < n,

(s, t) ⊆ (s, t), s, t ∈ 2n+1, then we must have, for l ≤ L(n),

[∀l ≤ l ∀〈l, i〉 ∈ (n+ 1) \ (n+ 1) (s(〈l, i〉) = t(〈l, i〉))]⇒ gs,t ≡l gs,t,
where for g, h ∈ HN, l ∈ N we let

g ≡l h ⇔ ∀i ≤ l (gi = hi).

(ix) Negative requirements. If s, t ∈ 2n+1, n = 〈m, j〉, and s(n) 6= t(n),
then

M ∈ As & g ∈ HN & πg ∈ Aut(A0) & g(m), g(km) ∈ {h̃0, . . . , h̃n}
⇒ πg ·M 6∈ At,

where {h̃0, h̃1, . . .} is a recursive enumeration of H with h̃0 = 1.

Assume all this can be done. For each x ∈ 2N, let

Mx =
⋃

n

µx|n+1.

We first claim that Mx ∈ Y0. To see this let yx =
⋃
n yx|n+1 and gx =⋃

n px|n+1 ∈ HN. For each n, fix Mn ∈ Ax|n+1. Then Mn|(kL(n) + 1) =
Mx|(kL(n) + 1), so Mn →Mx (in the usual topology of XL0∪L).
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Also, fix gn∈HN, gn⊇px|n+1 and yn⊇yx|n+1 with (πgn ·Mn, yn)∈ [T∅].
Notice that πgn ∈ Aut(A0), as Mn, πgn · Mn ∈ Y0, so they are both ex-
pansions of A0. As πgn → πgx , Mn →Mx, yn → y we have (πgx · Mx, y)
∈ [T∅], so πgx · Mx ∈ Y0, and πgx ∈ Aut(A0), so as Y0 is invariant under
Aut(A0), we have Mx ∈ Y0.

By (v), x 7→ Mx is clearly continuous. Finally, we check that

(∗∗) xEN0 y ⇔ Mx
∼=My.

Indeed, assume xEN0 y. By (viii), there is an element (h0, h1, . . .) ∈ HN
such that gx|n+1,y|n+1 → (h0, h1, . . .). Clearly,

πgx|n+1,y|n+1 ·Ax|n+1 = Ay|n+1,

so if Mn ∈ Ax|n+1, we have

πgx|n+1,y|n+1 ·Mn = N n ∈ Ay|n+1.

Since Mn → Mx, N n → My it follows that π(h0,h1,...) · Mx = My, so
Mx
∼=My.

Conversely, assume ¬xEN0 y. Fix m such that x(〈m, j〉) 6= y(〈m, j〉) for
infinitely many j. Assume, towards a contradiction, that Mx

∼= My, and
let g = (h0, h1, . . .) ∈ HN be such that πg · Mx = My. Let n = 〈m, j〉 be
large enough so that hm, hkm ∈ {h̃0, . . . , h̃n}. Then by (ix), πg · Mx|n+1 ∩
My|n+1 = ∅. Now by (v)′, exactly as in the argument thatMx ∈ Y0 (and us-
ing the fact that each As, s ∈ 2n+1, is π(VkL(n))-invariant), we conclude that
Mx ∈

⋂
nAx|n+1, My ∈

⋂
nAy|n+1, thus πg ·Mx 6=My, a contradiction.

CONSTRUCTION

We start with A∅ = Y0. Let also k−1 = 0, L(−1) = −1. Assume now the
construction of As has been done up to level n, i.e., for s ∈ ⋃k≤n 2n (n ≥ 0),
ki has been defined for i ≤ L(n− 1) and consider 2n+1; put n = 〈m, j〉. We
consider cases as j = 0 or j > 0.

(A) j = 0, i.e., n = 〈m, 0〉. Thus L(n) = L(n−1)+1 = m. We first choose
km = kL(n) > km−1 so that there is M ∈ A0n such that for a ∈ (Qkm−1)M,
b ∈ (Qkm)M, no Σ1

1 set isolates ThF (M, a, b) over (M, a). (This can be done
as A0n ⊆ Y0. Note that if this is true for some a ∈ (Qkm−1)M, b ∈ (Qkm)M

then it is true for all such a, b.)
Note also that for such anM and any a ∈ (Qm)M, there is b ∈ (Qkm)M

with no Σ1
1 set isolating ThF (M, a, b) over (M, a). This is because m ≤

km−1. Indeed, fixing such an a ∈ (Qm)M, let a′ ∈ (Qkm−1)M and a term
t be such that tM(a′) = a. Then let b ∈ (Qkm)M be such that no Σ1

1
set isolates ThF (M, a′, b) over (M, a′) and let s be a term such that s(b)
= a′. If, towards a contradiction, A ∈ Σ1

1 isolates ThF (M, a, b) over (M, a),
then there is a formula ψ ∈ Lωck1 isolating ThF (M, a, b) over (M, a) (by
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Lemma 4). Then the formula ψ(t(x), y) ∧ s(y) = x isolates ThF (M, a′, b)
over (M, a′), a contradiction.

So

C = {M ∈ A0n : for a ∈ (Qm)M, b ∈ (Qkm)M

no A ∈ Σ1
1 isolates ThF (M, a, b) over (M, a)}

is Σ1
1 and non-empty. Since C ⊆ A0n it follows that any M ∈ C satisfies

condition (iii) as well.
We will next find a recursive h ∈ HN with h ∈ VkL(n) , πh ∈ Aut(A0) and

a set Â0n+1 ⊆ C, Â0n+1 6= ∅, Â0n+1 ∈ Σ1
1, Â0n+1 invariant under π(VkL(n)),

such that πh · Â0n+1 ⊆ A0n , and such that if we let gt∧0 = gt, gt∧1 = gth for
t ∈ 2n and Ât∧0 = πgt · Â0n+1 = πgt∧0 · Â0n+1 and Ât∧1 = πgt · (πh · Â0n+1) =
πgt∧1 · Â0n+1 , then Âs, s ∈ 2n+1, satisfy the negative requirements (ix).

Then it is clear that (vi) is satisfied and (ix) will be satisfied even if we
shrink each Âs. It is also clear, as in the proof of Theorem 7.2, that since
h ∈ Vkm−1 ⊆ Vm = VkL(n) (as km−1 ≥ m), the positive requirements (viii)

are satisfied. Notice that we also have (vii) for the Âs, and (iv) for Âs (as
π(VkL(n)) · Âs = π(VkL(n)gs) · Â0n+1 = π(gsVkL(n)) · Â0n+1 = gs · (π(VkL(n)) ·
Â0n+1) = gs · Â0n+1 = Âs), and also (iii) for Â0n+1 (and thus any subset of
it), since Â0n+1 ⊆ C.

It remains to shrink As, s ∈ 2n+1, to Âs to achieve also (v), (v)′ and
make sure that (iv), (vii) are preserved.

To do this, we fixMs ∈ Âs so that πgs ·M0n+1 =Ms. By applying (v) to
n−1, for each s ∈ 2n+1 we have µs|n ⊆Ms, ys|n, ps|n ∈ HkL(n−1)+1, so that
for some g ∈ HN, g ⊇ ps|n, y ⊇ ys, we get (πg ·Ms, y) ∈ [T∅]. Let then µs =
Ms|(kL(n) + 1) ⊇ µs|n, ps = g|(kL(n) + 1) ⊇ ps|n, ys = y|(kL(n) + 1) ⊇ ys|n.

Then let ̂̂As = {x ∈ Âs : M|(kL(n) + 1) = µs & ∃g ∈ HN, g ⊇ ps ∃y ⊇ ys

((πg ·M, y) ∈ [T∅])}. So ̂̂
As ∈ Σ1

1 and Ms ∈ ̂̂As ⊆ Âs.
Put A′0n+1 =

⋂
s∈2n+1 π−1

gs ·
̂̂
As and A′s = πgs · A′0n+1 . Then (v), (vii) are

satisfied for A′s.
We have dealt only with (v) for notational simplicity, but it is clear that

fixing witnesses for each Ms with respect to all relevant As0 , Ts0 we can

make sure that actually both (v), (v)′ are satisfied by ̂̂
As, and hence A′s. So

it only remains to modify A′s to As ⊆ Âs to satisfy (iv) without affecting
(v), (v)′, (vii). But this is clear if we just take As = π(VkL(n)) ·A′s and notice
that by arranging that (v), (v)′ remain unaffected, since g ∈ VkL(n) ⇒
(πg ·M)(|kL(n) + 1) =M|(kL(n) + 1) and hg|(kL(n) + 1) = h|(kL(n) + 1) for
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any h ∈ HN. But also

πgs ·A0n+1 = πgs · (π(VkL(n)) ·A′0n+1)

= π(gsVkL(n)) ·A′0n+1 = π(VkL(n)gs) ·A′0n+1

= π(VkL(n)) · (πgs ·A′0n+1) = π(VkL(n)) ·A′s = As,

so (vii) remains true as well.
So it only remains to find h, Â0n+1 satisfying the earlier specifications.

The key claim is the following:

Lemma 6. Fix a finite set S ⊆ H. There are M ∈ C, b ∈ (Qkm)M,
h ∈ Vm such that for all g1, g2 ∈ S,

ThF (M, Fg1(pm), Fg2(b)) 6= ThF (M, pm, pkm),

πh · M ∈ C, and πh(b) = pkm . (Recall that we have previously fixed pn ∈
(Qn)A0 .)

Let us assume this and proceed to complete the construction. Let

Sn = {gt1(m)h̃±1
i gs1(m)−1, gt1(km)h̃±1

i gs1(km)−1 : t1, s1 ∈ 2n, i ≤ n}.
Let M, b, h come from Lemma 6 for this Sn. For g1, g2 ∈ Sn fix a formula
ψg1,g2(x, y)∈F withM|=ψg1,g2(pm, pkm) butM|=¬ψg1,g2(Fg1(pm), Fg2(b)).
Let

ψ(x, y) =
( ∧

g1,g2∈Sn
ψg1,g2(x, y)

)

and θ(x, y) =
∧
g1,g2∈Sn ¬ψ(Fg1(x), Fg2(y)). Then we have θ(x, y) |=

¬ψ(Fg1(x), Fg2(y)) for all g1, g2 ∈ Sn and M |= ψ(pm, pkm), M |= θ(pm, b).
Now notice that if M, b, h satisfy the lemma, so do M, b, h′ for any
h′ ∈ hVkm . Since hVkm is an open set in {g ∈ HN : πg ∈ Aut(A0)}, there is
a recursive h′ ∈ hVkm , so we can assume without loss of generality that h
itself is recursive.

Now let

Â0n+1 = {M ∈ C : πh ·M ∈ C &M |= ψ(pm, pkm) ∧ θ(pm, b)},
and define the corresponding Âs, gs for s ∈ 2n+1, as described earlier. All
the other required properties are true, so it is enough to verify that they
satisfy the negative requirements (ix).

Assume not, towards a contradiction, and fix s1, t1 ∈ 2n, M0 ∈ Âs1∧0,
πg ∈ Aut(A0), with g(m), g(km) ∈ {h̃±1

0 , . . . , h̃±1
n }, and πg · M0 ∈ Ât1∧1.

Then there is M ∈ Â0n+1 such that πg−1
t1
ggs1
· M ∈ πh · Â0, so there is

M′ ∈ Â0n+1 such that N = πg−1
t1
ggs1
· M = πh · M′. Let g−1

t1 ggs1(m) =

g−1
1 , g−1

t1 ggs1(km) = g−1
2 , so that g1, g2 ∈ Sn, πg−1

t1
ggs1

(pm) = Fg1(pm),
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πg−1
t1
ggs1

(pkm) = Fg2(pkm). Then, as M |= ψ(pm, pkm), we have N |=
ψ(Fg1(pm), Fg2(pkm)). But also M′ |= θ(pm, b) and πh(pm) = pm, πh(b) =
pkm , so N |= θ(pm, pkm), contradicting θ(x, y) |= ¬ψ(Fg1(x), Fg2(y)).

So it remains to give the

Proof of Lemma 6. Assume it fails, towards a contradiction. Then for
any given M ∈ C, b ∈ (Qkm)M, h ∈ Vm with πh · M ∈ C, πh(b) = pkm , we
have

ThF (M, Fg1(pm), Fg2(b)) = ThF (M, pm, pkm)

for some g1, g2 ∈ S, and thus

ThF (M, pm, b) = ThF (M, Fg−1
1

(pm), Fg−1
2

(pkm)),

so for any fixed M ∈ C, if BM = {b ∈ (Qkm)M : ∃h ∈ Vm (πh · M ∈ C,
πh(b) = pkm)} then {ThF (M, pm, b) : b ∈ BM} is finite. Enumerating
F = {ϕ0, ϕ1, . . .}, we see then that for every M ∈ C, there must be some
N ∈ N such that for any b ∈ BM,

∀i ≤ N (ϕi ∈ ThF (M, pm, b) ⇔ ϕi ∈ ThF (M, pm, pkm))

⇒ ThF (M, pm, b) = ThF (M, pm, pkm).

For each b ∈ BM, we let

ψb =
∧

i≤N
{ϕi :M |= ϕi(pm, b)} ∧

∧

i≤N
{¬ϕi :M |= ¬ϕi(pm, b)},

so that M |= ψb(pm, b). If then {ψ0, . . . , ψk} = {ψb : b ∈ BM}, we see that
if b ∈ BM and h ∈ Vm with πh ·M ∈ C, πh(b) = pkm , then

πh ·M |= ψ0(pm, pkm) ∨ . . . ∨ ψk(pm, pkm),

together with

πh ·M |= ψi(pm, pkm), M |= ψi(pm, pkm)

for some i ≤ k, implies that

ThF (M, pm, b) = ThF (M, pm, pkm).

Thus we see that

∀M ∈ C ∃{ψ0, . . . , ψk} ⊆ F
[
∀b ∈ BM ∀h ∈ Vm

(
πh ·M ∈ C & πh(b) = pkm ⇒ πh ·M |=

∨

i≤k
ψi(pm, pkm)

)

∧ ∀i ≤ k ∀b ∈ BM ∀h ∈ Vm [(πh ·M ∈ C & πh(b) = pkm

& πh ·M |= ψi(pm, pkm) &M |= ψi(pm, pkm))

⇒ ThF (M, pm, b) = ThF (M, pm, pkm)]
]
,
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so by Π1
1-uniformization on N we can find C0 ⊆ C, C0 non-empty Σ1

1 on
which these {ψ0, . . . , ψk} are constant, say {ψ0, . . . , ψk0

}. Taking b = pkm ,
h = 1, we see that for any M ∈ C0 there is some i ≤ k0 with M |=
ψi(pm, pkm), so fix i0 ≤ k0 such that

C1 = {M ∈ C0 :M |= ψi0(pm, pkm)}
is non-empty and clearly Σ1

1. If M ∈ C1 then we claim that C1 isolates
ThF (M, pm, pkm) over (M, pm), violating the fact that M ∈ C. Indeed,
first (M, pm, pkm) |= C1 as M ∈ C1. Now fix M0 ∈ Mod(σ), g ∈ S∞ with
g(pm) = pm, and (M0, pm, pkm) |= C1, (g · M0, pm, pkm) |= C1, in order to
show that ThF (M0, pm, pkm) = ThF (g ·M0, pm, pkm). Then h1 ·M0 ∈ C1,
h2g ·M0 = h2gh

−1
1 · (h1 · M0) ∈ C1 for some h1, h2 ∈ S∞ that fix pm, pkm ,

so it is enough to show that if M ∈ C1, h′ · M ∈ C1, h′ fixes pm then
ThF (M, pm, pkm) = ThF (h′ · M, pm, pkm). As M, h′ · M are expansions of
A0, we see that h′ ∈ Aut(A0), so h′ = πh for some h ∈ HN. As h′ fixes pm
and every a ∈ (Qi)A0 for i ≤ m is definable from pm, h′ fixes all such (Qi)A0 ,
so h ∈ Vm. Let b = (πh)−1(pkm). Then we have πh · M |= ψi0(pm, pkm) as
πh ·M ∈ C1, andM |= ψi0(pm, pkm) asM ∈ C1. So ThF (πh ·M, pm, pkm) =
ThF (M, pm, b) = ThF (M, pm, pkm).

(B) n = 〈m, j〉 with j > 0. Then L(n) = L(n− 1). Thus kr has already
been defined for all r ≤ L(n) and by (iii) for A0n we have

M ∈ A0n ⇒ ∀r ≤ L(n) ∀a ∈ (Qr)M ∃b ∈ (Qkr )
M

(no A ∈ Σ1
1 isolates ThF (M, a, b) over (M, a)).

So the proof in this case proceeds by defining C exactly as before, i.e.,

C = {M ∈ A0n : for a ∈ (Qm)M, b ∈ (Qkm)M

no A ∈ Σ1
1 isolates ThF (M, a, b) over (M, a)}

and then literally repeating the rest of the proof of Case (A).
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