
FUNDAMENTA
MATHEMATICAE

170 (2001)

m-normal theories

by

Ludomir Newelski (Wrocław)

Abstract. Originally, m-independence, M-rank, m-stability and m-normality were
defined only for small stable theories. Here we extend the definitions to an arbitrary
small countable complete theory. Then we investigate these notions in the new, broader
context. As a consequence we show that any superstable theory with < 2ℵ0 countable
models is m-normal. In particular, any ∗-algebraic group interpretable in such a theory is
abelian-by-finite.

0. Introduction. Throughout, T = T eq is a complete countable first-
order theory and we work within a monster model C of T . Also we assume
that T is small, that is, Sn(∅) is countable for every n.

In a series of papers [Ne1–Ne4, Ne6] I investigated the notion of multi-
plicity of a type in a superstable theory with < 2ℵ0 (that is, few) countable
models. This led me to introduce several new notions, like m-independence,
M-rank, m-stability and so on. I believe that these notions, apart from their
relevance to Vaught’s conjecture, may be useful in model theory in general.

In this paper the definitions of these notions are extended to the case of
an arbitrary complete countable small theory. In Section 1 we exhibit basic
properties of these notions. In the next sections we investigate m-normal
theories and ∗-algebraic groups interpretable in such theories. Still the most
important case for us remains the superstable theories with few countable
models. As a consequence of our results on arbitrary m-normal theories we
show that any superstable theory with few countable models is m-normal. In
particular, any ∗-algebraic group interpretable in such a theory is abelian-
by-finite. The most natural example of a ∗-algebraic group is the group
G/G0 for a given (standard) group G interpretable in T .

1. Preliminaries. While originally M-rank and related notions were
defined in a small stable theory for types and finite tuples of standard ele-
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ments of C, in [Ne4] I noticed that the same definitions work for a broader
class of objects, called ∗-finite tuples. Then it turned out that a special kind
of ∗-finite tuples, called ∗-algebraic tuples, are central for the theory of mul-
tiplicities. For instance, to compute theM-rank of any type it is enough to
compute the M-rank of a corresponding ∗-algebraic type.

It turns out that if we restrict our attention just to ∗-algebraic tuples,
then all the definitions work in an arbitrary countable small theory. In this
section we recall the notions of ∗-finite and ∗-algebraic tuple and introduce
the definitions of m-independence and related notions for such tuples within
an arbitrary theory T = T eq.

Definition 1.1. A ∗-finite tuple is a tuple aI = 〈ai, i ∈ I〉 of elements
of C, with the index set I countable, such that aI is contained in the definable
closure dcl(a′) for some a′ ∈ C.

Notice that if T is small and aI is ∗-finite, then Sn(aI) is countable. In
this paper A,B,C, . . . will denote finite sets of ∗-finite tuples of elements of
C and a, b, c . . . will denote ∗-finite tuples. To distinguish between ∗-finite
tuples and elements of C, we call the elements of C standard .

For any ∗-finite tuple aI and any set A we define the type tp(aI/A) (in
variables xI = 〈xi, i ∈ I〉) in a natural way. A ∗-finite type is a type whose
realizations are ∗-finite. SI(A) denotes the set of complete types over A in
variables xI . If p(xI) is a type over A, then SI(A) ∩ [p] denotes the set of
complete types in SI(A) containing p. For p ∈ SI(A), p(C) denotes the set
of realizations of p. Also, in this paper a ≡ b (A) means that tp(a/A) =
tp(b/A).

Remark 1.2. Assume T is small , A ⊆ B are finite and p(xI) ∈ SI(A)
is ∗-finite. Then SI(B)∩ [p] is countable, hence the isolated points are dense
in SI(B) ∩ [p].

Proof. Easy.

Definition 1.3. (1) We say that a ∗-finite tuple aI is ∗-algebraic over
A if aI ⊆ acl(A).

(2) A type in SI(A) is ∗-algebraic if each of its realizations is ∗-algebraic
over A.

Sometimes we omit A in the phrase “∗-algebraic over A” if A = ∅ or
the identity of A is clear from the context. Notice that if p ∈ SI(A) is
∗-algebraic, then p(C) has cardinality ≤ 2ℵ0 . We say that p ∈ SI(A) is
algebraic if p(C) is finite. Clearly in this case p is ∗-finite and ∗-algebraic.
We say that aI is algebraic over A if tp(aI/A) is algebraic. Also now acl(A)
is the set of all ∗-finite tuples algebraic over A. This might raise the question
about the cardinality of acl(A). Notice that any element of a tuple in acl(A)
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is contained in the definable closure of acl(A) in the old sense [Ne4]. For an
infinite set of parameters D we define acl(D) as

⋃{acl(D′) : D′ ⊂ D finite}.
Assume p ∈ SI(A) is ∗-algebraic. There is a natural topology on p(C)

generated by the base consisting of sets of the form [bJ ] = {aI ∈ p(C) :
aJ = bJ}, where bJ ⊆ C and J ⊆ I is finite. Here aJ = 〈ai, i ∈ J〉,
bJ = 〈bi, i ∈ J〉. p(C) with this topology is homeomorphic to a closed
homogeneous subset of the Cantor set.

Definition 1.4. Given any type q(xI) and any set A of parameters, we
define the trace of q over A as the set TrA(q) = {r ∈ SI(acl(A)) : r ∪ q is
consistent}.

We omit A in TrA(q) if A = ∅. In the case of a stable theory T , for
p ∈ SI(A), elements of TrA(p) are called stationarizations of p over A (this
is because they are stationary types with respect to forking independence in
stable theories). Notice that if p ∈ SI(A) is ∗-algebraic, then any r ∈ TrA(p)
is realized by exactly one I-tuple of elements of C. So in this case there
is a natural correspondence between TrA(p) and p(C), which is a homeo-
morphism. So for notational simplicity, for aI ∗-algebraic over A and for B
containing A, we often identify TrA(aI/B) with the set of realizations of
tp(aI/B).

If q ∈ SI(B) is an extension of a ∗-algebraic type p ∈ SI(A) (A ⊆ B),
then clearly either q(C) is nowhere dense in p(C) or q(C) is clopen in p(C).
In the latter case we say that q is an m-free extension of p. This distinction
leads to the definition of the rank M and m-independence.

Definition 1.5. (1) M is the minimal function defined on complete
∗-algebraic types, with values in Ord ∪ {∞}, such that for every complete
∗-algebraic p and every ordinal α we have

(M) M(p) ≥ α+1⇔ for some ∗-algebraic q extending p, q(C) is nowhere
dense in p(C) and M(q) ≥ α.

(2) For aI ∗-algebraic over A and any finite B we say that aI is m-
independent of B over A (aI

m|̂ B (A)) if tp(aI/AB) is an m-free extension
of tp(aI/A).

So M-rank on ∗-algebraic types is the foundation rank for m-indepen-
dence (in the m-stable case, where m-independence is well-founded).

In particular for a ∗-algebraic p,M(p) = 0 iff p is algebraic, andM(p) =
1 iff p(C) is infinite, but for any complete extension q of p, either q is algebraic
or q(C) is open in p(C). We say that T is m-stable if the M-rank of every
∗-algebraic type is <∞.

Remark 1.6. Assume p ∈ SI(A) is ∗-algebraic and q ∈ SI(B) ex-
tends p. Then q(C) is open in p(C) iff q is isolated in SI(B) ∩ [p].
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Proof. ⇒ Assume q(C) is open in p(C). Then q(C) is also closed in
p(C) and for some finite J ⊆ I and finitely many tuples a0

I , . . . , a
n−1
I ∈

p(C), q(C) =
⋃
i<n[aiJ ].

Let ϕ(xI) =
∨
i<n xJ = aiJ . We see that ϕ(C) ∩ p(C) = q(C), hence ϕ(C)

is B-invariant and equivalent to a formula ϕ′ over B. Clearly, ϕ′ isolates q
in SI(B) ∩ [p].
⇐ Assume ϕ(xI) isolates q in SI(B)∩ [p]. Choose a finite set J ⊆ I such

that ϕ = ϕ(xJ) depends on xJ only (i.e. the xi, i 6∈ J , are dummy variables
in ϕ(xI)). Since p is ∗-algebraic, the set {aJ : |= ϕ(aJ) and aJ ⊆ aI for some
aI |= p} is finite, say it consists of a0

J , . . . , a
n−1
J . Clearly q(C) =

⋃
i<n[aiJ ], so

q(C) is open in p(C).

Fact 1.7. Assume p ⊆ q are ∗-algebraic.

(1) If q(C) is open in p(C), then M(q) =M(p).
(2) If M(q)<∞ and q(C) is nowhere dense in p(C), then M(q)<M(p).

Proof. This is an easy induction.

Corollary 1.8. If T is small and p ∈ SI(A) is ∗-algebraic, then p has
an m-free extension in SI(B) for any finite B containing A.

Proof. This follows from Remarks 1.2 and 1.6.

Assume aI is a ∗-finite tuple and A ⊆ B are finite. The topology on
TrA(aI/A) is induced by A-definable finite equivalence relations. Let FEI(A)
denote the set of such equivalence relations. If E(xJ , x′J) ∈ FEI(A) (for
some finite J ⊆ I), then let aE be the (standard) name of the set of E-
classes meeting TrA(aI/B) (which is a closed subset of TrA(aI/A)). Clearly,
the tuple a+ consisting of all such aE ’s is ∗-algebraic over A. We call
it the name of TrA(aI/B). Similarly, the tuple a∗ consisting of elements
aJ/E(xJ , x′J), E ∈ FEI(A), is ∗-algebraic over A. We call it the name of
stp(aI/A).

Assume Z ⊂ X×Y, a ∈ X and b ∈ Y . The set Za = {y ∈ Y : (a, y) ∈ Z}
is called the vertical section of Z at a, while Zb = {x ∈ X : (x, b) ∈ Z} is
the horizontal section of Z at b.

m-independence has the following properties.

Lemma 1.9. Assume A, B, C are finite sets of ∗-finite tuples and a, b
are ∗-algebraic over A.

(1) (transitivity) a m|̂ B (A) and a
m|̂ C (AB) iff a

m|̂ BC (A).
(2) (symmetry) a m|̂ b (A) implies b m|̂ a (A).
(3) If B ∈ acl(A) then a

m|̂ B (A).
(4) If B∗ is the ∗-algebraic name of stp(B/A), then a

m|̂ B (AB∗). In
particular , a m|̂ B (A) iff a

m|̂ B∗ (A) and M(a/AB) =M(a/AB∗).
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(5) If a+ is the name of TrA(a/AB) then a
m|̂ B (Aa+) and M(a/AB)

=M(a/Aa+).
(6) ab m|̂ B (A)⇔ a

m|̂ B (A) and b
m|̂ B(Aa).

Proof. (1) is obvious. (2) Let p = tp(a/A), q = tp(b/A), s = tp(ab/A),
pb = tp(a/Ab) and qa = tp(b/Aa). Then s(C) is a closed topological subspace
of p(C) × q(C), pb(C) is the horizontal section of s(C) at b and qa(C) is the
vertical section of s(C) at a. Now the following conditions are equivalent.

(a) a m|̂ b (A).
(b) pb(C) is open in p(C).
(c) s(C) is open in p(C)× q(C).
(d) qa(C) is open in q(C).
(e) b m|̂ a (A).

(a)⇔(b) and (d)⇔(e) follow from definition. (b)⇔(c) and (c)⇔(d) follow
from the fact that all the horizontal [respectively, vertical] sections of s(C)
are conjugate and from the Kuratowski–Ulam category theorem [Ox].

(3) follows from (2) and the fact that TrA(B/A) is finite for B ∈ acl(A).
(4) By the choice of B∗ we have tp(B/AB∗) ` tp(B/acl(A)), hence

also tp(B/AB∗) ` tp(B/AB∗a). By symmetry of isolation, tp(a/AB∗) `
tp(a/AB∗B), hence TrAB∗(a/AB∗) = TrAB∗(a/AB∗B) and the first clause
follows. Then the second clause follows from (1)–(3) and the fact that B∗ ∈
dcl(AB).

(5), (6) are left as an exercise.

(4) and (5) of Lemma 1.9 explain why ∗-algebraic tuples are central
to describing m-independence in the case of a small stable theory (in that
case m-independence is defined for arbitrary ∗-finite tuples, but it is still
determined by its restriction to ∗-algebraic tuples).

For a ∗-algebraic over A we writeM(a/A) forM(tp(a/A)).M-rank on
∗-algebraic types satisfies Lascar-style inequalities.

Fact 1.10. Assume a, b are ∗-algebraic over A. Then

M(a/Ab) +M(b/A) ≤M(ab/A) ≤M(a/Ab)⊕M(b/A).

Proof. This is an easy application of the properties of m-independence
from Corollary 1.8 and Lemma 1.9. The proof is similar to the case of the
Lascar inequalities for U -rank.

2. m-normal theories. There are some similarities between the theory
of forking and the theory of m-independence. From the geometric point of
view forking is most regular in a 1-based (that is, weakly normal) stable
theory. In the case of m-independence, the corresponding notion is that of
an m-normal theory. In this paper we will study m-normal theories. We will
prove that any superstable theory with few countable models is m-normal.
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Definition 2.1. We say that T is m-normal if for every finite A and
a, b ∗-algebraic over A, there is a c ∈ aclA(a) ∩ aclA(b) with a

m|̂ b (Ac).

This definition differs from the definition of m-normal theory given in
[Ne4], but [Ne4, Theorem 1.10] shows that for stable T both definitions
are equivalent. We will generalize [Ne4, Theorem 1.10] to arbitrary small
theories below.

Assume A ⊆ B are finite. We say that TrA(a/B) is locally [almost ]
Aa-invariant if for some E ∈ FE(A) the set [E(x, a)]∩TrA(a/B) is fixed by
Aut(C/Aa) [respectively: there are finitely many Aa-conjugates of this set].

We shall use the following lemma from [Ne4, Remark 0.2].

Lemma 2.2. Assume a is ∗-algebraic over A and A ⊆ B. Then
TrA(a/B) is locally almost Aa-invariant iff for some e ∈ acl(A), TrA(a/Be)
is Aae-invariant.

The next theorem is proved in [Ne4] under the additional assumption
that T is stable. In the proof there we use non-forking extensions of types,
which may not exist in an arbitrary small theory. So now we have to replace
carefully non-forking extensions by m-free extensions of some ∗-algebraic
types.

Theorem 2.3. Assume T is small. Then the following conditions are
equivalent.

(1) T is m-normal.
(2) For every finite A ⊆ B and every a ∗-algebraic over A, TrA(a/B) is

locally almost Aa-invariant.
(3) For every finite A ⊆ B and every ∗-finite a, TrA(a/B) is locally

almost Aa-invariant.
(4) For every finite A ⊆ B ⊆ C= (C= is the “standard” sort of Ceq)

and every finite tuple a of elements of C=, TrA(a/B) is locally almost Aa-
invariant.

Proof. (1)⇒(2). Let a+ be the name of TrA(a/B). So a+ is ∗-algebraic
over A and TrA(a/B) = TrA(a/Aa+). By (1) choose c ∈ aclA(a) ∩ aclA(a+)
with a

m|̂ a+ (Ac). Now TrA(a/Aa+c) is clopen both in TrA(a/Ac) and in
TrA(a/Aa+). This implies that TrA(a/Aa+) is locally almost Ac-invariant,
hence also locally almost Aa-invariant.

(2)⇒(1). Let a, b be ∗-algebraic over A. Choose an E ∈ FE(A) such that
the set X = [E(xI , a)] ∩ TrA(a/Ab) is almost Aa-invariant. Let a+ be the
name of X. We see that a+ ∈ aclA(a) ∩ aclA(b) and a

m|̂ b (Aa+).
(2)⇒(3) and (3)⇒(4) are clear.
(4)⇒(2). Assume that A ⊆ B are finite and a is ∗-algebraic over A.

Without loss of generality (as in the proof of (1)⇒(2)) B is ∗-algebraic
over A. We need to show that TrA(a/B) is locally almost Aa-invariant.
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First choose finite A0 ⊆ B0 ⊆ C= so that A ⊆ dcl(A0), B ⊆ dcl(B0), aB m|̂
A0 (A) and a

m|̂ B0 (A0B). Then a
m|̂ A0 (A) and a

m|̂ B0 (B), hence
TrA(a/A0) is clopen in TrA(a/A) and TrA(a/B0) is clopen in TrA(a/B) and
homeomorphic to TrA0(a/B0). It is enough to show that

(a) TrA0(a/B0) is locally almost A0a-invariant.

Indeed, suppoose we have proved that. Since a is ∗-algebraic over A,
the topology on TrA0(a/A0) is induced by FE(A), so for some E ∈ FE(A),
the set X = [E(x, a)] ∩ TrA0(a/B0) is almost A0a-invariant. Let c be the
name of X (as a closed subset of TrA(a/A)). So c is ∗-algebraic over A and
c ∈ acl(A0a). Also, since X is clopen in TrA(a/B) we see that c ∈ acl(B).
Now B

m|̂ A0 (Aa) hence c ∈ aclAa(B)∩ aclAa(A0) gives c ∈ acl(Aa), i.e. X
is almost Aa-invariant.

To prove (a) we may assume that A = A0 and B = B0, that is, that the
original sets A ⊆ B are subsets of C=. Now let b be a tuple of elements of
C= with a ⊆ dcl(b). Let b∗ be the name of stp(b/A), so b∗ is ∗-algebraic over
A. By Lemma 1.9(4), a m|̂ b (Ab∗), so M(a/Ab∗) = 0 and a ∈ aclA(b∗). In
fact, one can prove that a ∈ dclA(b∗). We can choose b so that b∗ m|̂ B (Aa).
Also, TrA(b/B) = TrA(b∗/B).

By (4), TrA(b/B) is locally almost Ab-invariant. Hence for some E ′ ∈
FE(A), the set Y = [E′(x, b∗)] ∩ TrA(b∗/B) is almost Ab-invariant. Let c′

be the name of Y . So c′ ∈ aclA(b). Also, c ∈ aclA(b∗). Then b∗ m|̂ B (Aa)
implies that c′ ∈ aclA(a).

Let f : TrA(b∗/A) → TrA(a/A) be the definable function witnessing
a ∈ dclA(b∗). So f is an open continuous surjection and TrA(a/B) =
f [TrA(b∗/B)]. We see that f [Y ] is a clopen neighbourhood of a in TrA(a/B),
which is almost Aa-invariant (as c′ ∈ aclA(a)). So TrA(a/B) is locally almost
Aa-invariant.

Condition (4) in Theorem 2.3 (or rather a condition intermediate be-
tween (3) and (4)) was given as the definition of m-normal theories in [Ne4].
We see that that definition agrees with the new one. Moreover, the current
definition is easier to work with in particular applications. On the other
hand, condition (4) in Theorem 2.3 seems easier to verify for a concrete the-
ory T , so it may serve as a tool for proving that such a theory is m-normal.
(4) is parallel to the condition “Cb(a/A) ⊆ acl(a)” defining 1-based theories.

The following theorem has the same proof as [Ne4, Theorem 1.4], with
standard types replaced by ∗-algebraic types.

Theorem 2.4. In a small m-normal theory the M-rank of any ∗-alge-
braic type is either finite or ∞.

Corollary 2.5. In a small m-stable m-normal theory the M-rank of
any ∗-algebraic type is finite.



148 L. Newelski

I do not know of any small theory which is not m-normal. In [Ne3, Ne4]
I formulated the M-gap conjecture, saying that in a small stable theory
there is no type p with ω ≤ M(p) < ∞. In order to refute this conjecture
one would have to find a theory which is not m-normal.

In [Bu1] Buechler characterized 1-based theories among superstable the-
ories of finite rank as those theories in which every U -rank 1 type is lo-
cally modular. We are now heading towards a similar characterization of
m-normal theories of finite M-rank (that is, m-normal m-stable theories).
Such a characterization will be given in the next section. We will need the
following lemma.

Lemma 2.6. Assume T is m-stable, A ⊆ B are finite and a is ∗-alge-
braic over A. Then TrA(a/B) is invariant over A and some finitely many
realizations of tp(a/B).

Proof. Let b be the name of TrA(a/B). Then b is ∗-algebraic over A. We
prove the lemma by induction on M(b/A).

Case 1. If M(b/A) = 0, then b ∈ acl(A). Let b = b0, . . . , bk be all the
A-conjugates of b and let X0 = TrA(a/B),X1, . . . ,Xk be the closed subsets
of TrA(a/A) named by them. Choose ai ∈ X0 4 Xi for every i = 1, . . . , k.
Clearly X0 is invariant over Aa1 . . . ak.

Case 2. Now suppose M(b/A) = α > 0. It follows that TrA(a/B) is
nowhere dense in TrA(a/A), hence a m6̂ | b (A). In particular,M(b/Aa) < α.
Choose a′ ≡ a (Ab) with a′ m|̂ a (Ab). Let A′ = Aa and b′ be the name of
TrA′(a′/A′b) = TrA(a′/A′b).

It follows that TrA(a′/A′b)) is clopen in TrA(a′/Ab) = TrA(a/Ab), hence
b′ ∈ aclA(b) and M(b′/A′) ≤ M(b/A′) < α. By the induction hypothesis
(applied to a′, A′ and B′ = A′b′), b′ is definable over Aa and finitely many
realizations of tp(a′/A′b′).

But TrA(a/B) is a union of finitely many Ab-conjugates of TrA(a′/A′b).
Each of these conjugates is invariant over A and some finitely many realiza-
tions of tp(a/B). So TrA(a/B) also has this property.

Lemma 2.6 corresponds to the fact that for every stationary type
p ∈ S(A) in a stable theory, every element of Cb(p) is contained in the
definable closure of any infinite Morley sequence in p.

Even though there are strong analogies between the theory of forking
and the theory of multiplicities, which suggest the way to characterize m-
normality by geometric means, this task is not straightforward due to some
differences between the two subjects. The main difference is the absence
of “stationary” types in the case of m-independence on ∗-algebraic tuples.
That is, if a is ∗-algebraic over A, then stp(a/A) is realized just by a alone,
so there is no point in speaking of Morley sequences in it. Instead we use
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flat Morley sequences, introduced in [Ne6]. This notion makes use of an
additional tool, which we are given in the case of m-independence: the set
of realizations of a ∗-algebraic type carries a natural topology.

As in the theory of forking, here we have the notion of m-orthogonality.

Definition 2.7. Assume p ∈ S(A) and q ∈ S(B) are ∗-algebraic.

(1) If A = B, then we say that p and q are almost m-orthogonal if for
every a ∈ p(C) and b ∈ q(C) we have a m|̂ b (A).

(2) If A = B then we say that p and q are weakly m-orthogonal if
p(x) ∪ q(y) extends uniquely to a complete type in variables x, y over A.

(3) We say that p and q are m-orthogonal if any their m-free extensions
over a common domain are almost m-orthogonal.

Remark 2.8. Assume p, q ∈ S(A) are ∗-algebraic. Then p and q are
almost m-orthogonal iff p(x) ∪ q(y) has finitely many completions over A.

Proof. Let a ∈ p(C). For b ∈ q(C), the type of ab over A is determined
by TrA(b/Aa). If p and q are almost m-orthogonal, then this trace is always
clopen in q(C), hence by the compactness of q(C), there are finitely many
possibilities for tp(ab/A).

For the other direction, if q(C) is covered by finitely many closed disjoint
sets of the form TrA(b/Aa), then it follows that all these sets are clopen,
meaning that a m|̂ b (A).

Now suppose p ∈ SI(A) is ∗-algebraic ofM-rank 1. In this case aclA is a
pregeometry on p(C). However this pregeometry is not homogeneous, mean-
ing for instance that the type of an aclA-independent pair of realizations of
p is not uniquely determined. In order to make this geometry homogeneous
we must localize it with respect to a flat Morley sequence J in p.

The notion of a flat Morley sequence in a type p is defined in [Ne6]. Recall
that J ⊆ p(C) is a flat Morley sequence in p if the following conditions hold.

(1) J is m-independent over A (that is, every finite set J ′ ⊂ J is m-
independent over A).

(2) J is dense in p(C).

It is rather easy to see that flat Morley sequences exist. In our case, since
M(p) > 0, each flat Morley sequence in p is infinite. More importantly, by
[Ne6, Lemma 3.1], if J and J ′ are two countably infinite Morley sequences
in p, then J and J ′ are isomorphic via an elementary mapping over A.

Definition 2.9. Assume p ∈ SI(A) is ∗-algebraic of M-rank 1.

(1) We say that p is locally modular if for some (equivalently: any) count-
able flat Morley sequence J in p, the localized pregeometry induced on p(C)
by aclAJ is modular.
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(2) We say that p is unidimensional if any two m-free extensions of p are
m-non-orthogonal.

(3) We say that p is non-trivial if aclA is non-trivial on p(C), that is,
there is some finite set B ⊆ p(C) of size ≥ 3 which is m-dependent over A,
but every two-element subset of it is m-independent over A.

Notice that any unidimensional type p is non-trivial.

Remark 2.10. If T is small and p ∈ S(A) is ∗-algebraic of M-rank 1,
then for any finite B, aclA(B) ∩ p(C) is finite.

Proof. The proof is similar to the proof of [Ne4, Lemma 2.1].

Remark 2.10 implies that for countable B, aclA(B) ∩ p(C) is countable,
hence meager in p(C). The next lemma shows that a non-trivial ∗-algebraic
type of M-rank 1 splits into finitely many unidimensional types.

Lemma 2.11. If T is small and p ∈ S(A) is non-trivial , ∗-algebraic,
and of M-rank 1, then for some E ∈ FE(A), E splits p(C) into finitely
many pairwise m-orthogonal unidimensional types p0, . . . , pk. More specif-
ically , {p0, . . . , pk} = {tp(a/Aa∗) : a ∈ p(C) and a∗ is the E-class of a}
(so each a∗ is standard).

Proof. This corresponds to a result of Buechler [Bu2] saying that if T
is small and q ∈ S(∅) is an isolated weakly minimal non-trivial type, then
for some E′ ∈ FE(∅), any two E′-equivalent stationarizations of q are non-
orthogonal. Here the proof is similar. Let J be a flat Morley sequence in p.
For any a ∈ p(C) \ aclA(J) let O(a) be the topological closure of aclAJ(a) ∩
p(C). It is easy to see that sets of the form O(a) partition p(C) into finitely
many clopen sets, hence are E-classes (on p(C)) for some E ∈ FE(A). Clearly
E is good.

Theorem 2.12 ([Ne5, Corollary 3.9]). If T is superstable with few
countable models, then any ∗-algebraic type p ∈ SI(A) of M-rank 1 is
locally modular and non-trivial. Also, if p is unidimensional , then the ge-
ometry on p(C) localized with respect to a countable flat Morley sequence in
p is projective over some locally finite field.

Lemma 2.13. Assume T is m-normal and p ∈ SI(A) is ∗-algebraic of
M-rank 1. Then p is locally modular and if additionally p is unidimensional ,
then the localized geometry on p is projective.

Proof. We can assume A = ∅. Let J be a countable flat Morley sequence
in p. To prove that aclJ is locally modular it is enough to show that any
two lines on a plane in this pregeometry intersect. That is, choose a set
{a, b, c, d} ⊂ p(C) \ acl(J) of dimension 3 of over J and assume that any
3 of its elements are aclJ -independent. We must find an e ∈ p(C) with
e ∈ aclJ(ab) ∩ aclJ(cd) \ aclJ(∅).
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By the finite character of acl, choose a finite J ′ ⊂ J such that ab m6̂ |
cd (J ′). By m-normality, there is an e′ ∈ aclJ ′(ab) ∩ aclJ ′(cd) with ab

m|̂
cd (J ′e). The Lascar inequalities forM-rank yieldM(e′/J ′) = 1, e′ 6∈ acl(J)
and b and e′ are aclJ ′a-interdependent.

Also a
m|̂ J ′e′, hence Tr(a/J ′e′) is open in p(C). By denseness of J ,

we can choose a′ ∈ J with a ≡ a′ (J ′e′) and then an e ∈ p(C) with ab ≡
a′e (J ′e′). We see that e and e′ are aclJ ′a′-interdependent. Since e′ 6∈ acl(J),
also e 6∈ acl(J). Clearly, e ∈ aclJ(ab) ∩ aclJ(cd), so we are done.

In order to prove that aclJ is projective on p, it is enough to show that
any aclJ -line has at least 3 points. This may be proved similarly, using
unidimensionality of p.

The next ingredient we shall need to characterize m-normality is m-
coordinatization.

Definition 2.14. (1) We say that T has weak m-coordinatization if ev-
ery ∗-algebraic type of M-rank > 0 is m-non-orthogonal to a ∗-algebraic
type of M-rank 1.

(2) We say that T has full m-coordinatization if for every A and a ∗-
algebraic over A with M(a/A) > 0 there is b ∈ aclA(a) with M(b/A) = 1.

Theorem 2.15 ([Ne5, Theorem 2.1]). If T is superstable with few count-
able models, then T has weak m-coordinatization.

Lemma 2.16. If T is m-normal and m-stable, then T has full m-coordi-
natization.

Proof. Assume a is ∗-algebraic over A and M(a/A) > 0. By Corol-
lary 2.5, M(a/A) is finite. Choose a b ∗-algebraic over A with M(a/Ab) =
M(a/A)−1. By m-normality, choose c ∈ aclA(a)∩aclA(b) with a m|̂ b (Ac).
The Lascar inequalities yield M(c/A) = 1.

3. m-normality, m-coordinatization and local modularity. In this
section we show that for small theories of finite M-rank, m-normality is
equivalent to m-coordinatization and local modularity of all ∗-algebraic
types of M-rank 1. The hard part of the proof is to show that m-coordi-
natization and the local modularity assumption imply m-normality. First
we deal with some special cases.

Remark 3.1. Assume A ⊆ B are finite and a is ∗-algebraic over A. If
a

m|̂ B (A) or M(a/B) = 0 then TrA(a/B) is locally almost Aa-invariant.

Proof. If a m|̂ B (A) then for some E ∈ FE(A), TrA(a/B) ∩ [E(x, a)] =
TrA(a/A)∩ [E(x, a)], hence TrA(a/B)∩ [E(x, a)] is Aa-invariant. IfM(a/B)
= 0, then TrA(a/B) is finite, hence locally almost Aa-invariant.

Lemma 3.2. Assume T is small , m-stable and every ∗-algebraic type of
M-rank 1 is locally modular.
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(1) Assume A ⊆ B are finite, p ∈ S(A) is ∗-algebraic of M-rank 1 and
a1, a2 are m-independent realizations of p. Then TrA(a1a2/B) is locally
almost Aa1a2-invariant.

(2) Assume A ⊆ B are finite, a1, a2 are ∗-algebraic and m-independent
over A and M(a1/A) =M(a2/A) = 1. Then TrA(a1a2/B) is locally almost
Aa1a2-invariant.

Proof. (1) Let q = tp(a1a2/A) and let X = TrA(a1a2/B). Since we are
interested in local almost invariance of X, we may freely add to A finitely
many parameters algebraic over A. By Remark 3.1 we are reduced to the
case whenM(a1a2/B) = 1. Notice that q(C) is a clopen subset of p(C)×p(C).
So M(a1a2/B) = 1 means just that X is an infinite closed nowhere dense
subset of p(C) × p(C). Let πi : p(C) × p(C) → p(C) be the projection onto
the ith coordinate, i = 1, 2. Notice that πi(X) = TrA(ai/B). Let b be the
∗-algebraic (over A) name of X.

Case 1: For some i, πi(X) is finite. Say, this happens for i = 1. Extend-
ing A by an algebraic parameter we may assume that π1(X) = {a1}. Then
X is an open subset of {a1} × q(C)a1, where q(C)a1 is the vertical section of
q(C) at a1.

But q(C)a1 is open in p(C), hence X is open in {a1} × p(C). So for some
E ∈ FE(A) we have

X ∩ [E(x1x2, a1a2)] = {a1} × q(C)a1 ∩ [E(x1x2, a1a2)].

The latter set is clearly Aa1a2-invariant.

Case 2: For i = 1, 2, πi(X) is infinite. Then each Xi = πi(X) is
clopen in p(C) (as M(p) = 1) and X ⊆ X1 × X2. So ai

m|̂ b (A). Since
M(a1a2/B) = 1, all vertical and horizontal sections of X are finite. Extend-
ing A if necessary, we may assume these sections have size ≤ 1.

By Lemma 2.6 we find a finite set C ⊆ p(C) with b ∈ aclA(C). Without
loss of generality, a1a2

m|̂ C (Ab). So ai
m|̂ C (A). Let J be a countable

flat Morley sequence in p. We can assume that J ∪{a1, C} is m-independent
over A.

We haveM(a1a2/A) = 2 andM(a1a2/AC) = 1. By modularity of aclAJ
on p(C), there is an e ∈ p(C) with

e ∈ aclAJ(a1a2) ∩ aclAJ(C) \ aclA(J).

In particular, for some finite J ′ ⊆ J we have e ∈ aclAJ ′(a1a2) ∩ aclAJ ′(C),
a1a2

m6̂ | J ′e (A) and a1a2
m|̂ J ′ (A) (as a1C

m|̂ J ′ (A)). Since ai
m|̂

CJ ′ (A), also ai
m|̂ J ′e (A).

Let Y = TrA(a1a2/AJ
′e). So πi(Y ) is open in p(C) for i = 1, 2. Since

M(a1a2/AJ
′e) = 1, all sections of Y are finite, so we may assume they have
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size at most 1. In particular,

(a) Xa1 = Ya1 .

Clearly, (a) also holds for any a′1 ≡ a1 (AbJ ′e). But a1
m|̂ bJ ′e (A), so

TrA(a1/AbJ
′e) is open in p(C). This means that for some E(x1x2, x

′
1x
′
2) ∈

FE(A), X ∩ [E(x1x2, a1a2)] = Y ∩ [E(x1x2, a1a2)].
Let d be the name of X ∩ [E(x1x2, a1a2)]. We see that d ∈ aclA(b) ∩

aclA(J ′e). Hence M(d/AJ ′) = 1 and d
m|̂ J ′ (A) (as b m|̂ J ′ (A)). Hence

M(d/A) = 1. Also, a1a2
m6̂ | d (A), hence d ∈ aclA(a1a2). We have shown

that X is locally almost Aa1a2-invariant, proving (1).
(2) Let pi = tp(ai/A). As in the proof of (1) we can assume B = Ab,

where b is the name of TrA(a1a2/B). Also, neglecting some easy cases we
can assume that a1

m|̂ b (A), a2
m|̂ b (A) andM(a1a2/Ab) = 1. This means

that a1
m6̂ | a2(Ab), hence p1 and p2 are m-non-orthogonal. We can assume

that all sections of TrA(a1a2/B) ⊆ p1(C)× p2(C) have size ≤ 1.
Choose b′a′1a

′
2 ≡ ba1a2 (A) with b′a′1a

′
2

m|̂ ba1a2 (A) and let U =
TrA(a′1a

′
2/Ab

′), Ui = TrA(a′i/Ab
′), i = 1, 2. We see that Ui ⊆ pi(C), i = 1, 2,

are clopen and U is the graph of an Ab′-definable bijection h : U1 → U2.
We can assume that a1 ∈ U1. Let X = TrA(a1a2/Abb

′) ⊆ U1 × p2(C)
and let Y = TrA(h(a1)a2/Abb

′) = (h × id)(X). Since a1a2
m|̂ b′ (Ab),

X is clopen in TrA(a1a2/B). By (1), Y is locally almost Ah(a1)a2-invariant,
hence locally almost Aa1a2b

′-invariant. So X is also locally almost Aa1a2b
′-

invariant. Let b∗ be the name of a clopen neighbourhood of a1a2 in X, which
is algebraic over Aa1a2b

′. Also, b∗ ∈ aclA(b). As b′ m|̂ b (Aa1a2), we conclude
that b∗ ∈ acl(Aa1a2). So TrA(a1a2/B) is locally almost Aa1a2-invariant.

The next theorem is the main result of this section.

Theorem 3.3. Assume T is small and the M-rank of any ∗-algebraic
type in T is finite. Then the following conditions are equivalent.

(1) T is m-normal.
(2) Every ∗-algebraic M-rank 1 type in T is locally modular and T has

full m-coordinatization.
(3) Every ∗-algebraic M-rank 1 type in T is locally modular and T has

weak m-coordinatization.

Proof. By the results from Section 2 we see that (1)⇒(2)⇒(3). So we
must prove (3)⇒(1). Assuming (3) we will prove that condition (2) of The-
orem 2.3 holds. That is, we shall prove that

(∗) if A ⊆ B are finite and a is ∗-algebraic over A, then TrA(a/B) is
locally almost Aa-invariant.
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We prove (∗) by induction on n = M(a/A). For n = 0, 1, (∗) follows
from Remark 3.1.

Step 1: n = 2. We can assume that B = Ab, where b is the name of
TrA(a/B). Let rb = tp(a/Ab). By Remark 3.1 we can assume thatM(a/B)
= 1. By weak m-coordinatization there is a finite set C and a tuple c ∗-
algebraic over C such that c ∈ aclAC(a), M(c/AC) = 1 and a

m|̂ C (A).
Without loss of generality, c ∈ dclAC(a) and ab

m|̂ C (A).
So a

m|̂ C (Ab) and M(a/ACb) = M(a/Ab) = 1. If b′ is the name
of any clopen neighbourhood of a in TrA(a/Ab), then b′ ∈ aclA(b), so also
ab′ m|̂ C (A). Hence if we prove that b′ ∈ aclAC(a), then b′ m|̂ C (Aa)
gives b′ ∈ aclA(a). Therefore it is enough to prove that TrA(a/AbC) =
TrAC(a/AbC) is locally almost ACa-invariant. So we can assume that C = ∅.

Let p = tp(a/A) and q = tp(c/A). Since c ∈ dclA(a), there is a tuple
of A-definable functions f : p(C) → q(C) with f(a) = c. This gives a type-
definable equivalence relation Ef on p defined by

a0 Ef a1 ⇔ f(a0) = f(a1).

Let pc = tp(a/Ac). So M(pc) = 1 and pc(C) is the Ef -class of a. For any
c′ ∈ q(C) let pc′ be the A-conjugate of pc.

If TrA(c/Ab) is finite, then we prove that TrA(a/Ab) is locally almost
Aa-invariant as in the proof of Lemma 3.2, case 1.

So we may assume that TrA(c/Ab) is clopen in q(C) and that pc(C) ∩
TrA(a/Ab) = TrA(a/Abc) is finite. As in the proof of Lemma 3.2 we may
assume that pc(C) ∩ TrA(a/Ab) has size 1 and TrA(c/Ab) = q(C). So a ∈
dclAb(c).

Now we can think of the type p and the function f : p(C) → q(C)
as a “cover” of q, with fibers pc′(C), c′ ∈ q(C), and a transversal section
TrA(a/Ab). Let gb : q(C) → p(C) be the Ab-definable function mapping c
to a. So gb is a bijection between q(C) and TrA(a/Ab).

We will reduce proving that TrA(a/Ab) is locally almost Aa-invariant to
the situation considered in Lemma 3.2. The main point of this reduction
is that in our case all the types pc′ , c′ ∈ q(C), are m-non-orthogonal to q
(although this is not clear at this point yet).

Choose b∗ ≡ b (A) with b∗ m|̂ ab (A). Let rb∗ , gb∗ be the A-conjugates of
rb, gb respectively. Notice that rb∗ = tp(gb∗(c)/Ab∗). By Lemma 2.6 choose
a finite set D of realizations of rb∗ such that TrA(rb∗) is AD-invariant. We
can assume that c m|̂ D (A). Since TrA(rb∗) = TrA(gb∗(c)/Ab∗), we see that
gb∗ is AD-definable, hence gb∗(c) ∈ aclA(Dc).

Now we can choose D ⊂ rb∗(C) as in the last paragraph of minimal size
such that c m|̂ D (A) and gb∗(c) ∈ aclA(Dc). Say, D = {d0, . . . , dk} = d≤k.
Let ck = f(dk). By the minimality of D there are two cases: either gb∗(c) ∈
aclA(d<kckc) \ aclA(d<kc) or gb∗(c) ∈ aclA(Dc) \ aclA(d<kckc).
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Case 1.1: gb∗(c) 6∈ aclA(d<kckc). Then dk 6∈ aclA(d<kckc). Let D′ =
d<kck. Since dk and gb∗(c) are interalgebraic over AD′c, we can find an
e ∈ acl(A) such that they are interdefinable over AD′ce.

Let s(x, y, z) = tp(cdkgb∗(c)/AD′e). Then M(s) = 2, s(C) ⊆ q(C) ×
pck(C)× p(C).

Let πij , πi, i = 1, 2, 3, be the projections from q(C) × pck(C) × p(C) to
suitable subproducts or coordinates.

Since M(gb∗(c)/AD′e) = 2 = M(p), we see that all the sets Ui =
πi(s(C)), i = 1, 2, 3, are clopen in the respective axes and U12 = π12(s(C)) is
clopen in q(C)×pck(C). Also, s(C) is the graph of an AD′e-definable bijection
h(x, y) : U12 → U3.

Now we can assume that D m|̂ ab (A) and a ∈ U3. Then also a
m|̂

D′e (Ab) and Y = TrA(a/AbD′e) is clopen in TrA(a/Ab) and contained
in U3.

Let Z = h−1[Y ] = TrAck(h−1(a)/AbD′e) ⊆ q(C)×pck(C). By Lemma 3.2,
Z is locally almostAckh−1(a)-invariant, hence locally almostADa-invariant.
It follows that also Y is locally almost ADa-invariant. Choose a name b+ of
a clopen neighbourhood of a in Y with b+ ∈ aclA(Da). Also, b+ ∈ aclA(b).
Since Da m|̂ b (Aa), we deduce that b+ ∈ aclA(a), so Y and TrA(a/Ab) are
locally almost Aa-invariant.

Case 1.2: gb∗(c) ∈ aclA(d<kckc) \ aclA(d<kc). In this case proceed as in
Case 1.1, this time however considering s = tp(cckgb∗(c)/Ad<ke) for suitable
e ∈ acl(A), with s(C) ⊆ q(C)× q(C)× p(C).

This finishes the proof of (∗) in the case where n = 2.

Step 2: Suppose n > 2 and (∗) is true for every n′ < α. Again we
may assume B = Ab, where b is the name of TrA(a/B). By weak m-
coordinatization, for some finite C with ab

m|̂ C (A) there is c1 ∈ aclAC(a)
∗-algebraic over C with M(c1/AC) = 1. As in Step 1 we can assume
that C = ∅ and c1 ∈ dclA(a). Now M(a/Ac1) = n − 1. Choose c2 ∗-
algebraic over A with M(a/Ac1c2) = n − 2. Again we may assume that
c2 is the name of TrA(a/Ac1c2) = TrAc1(a/Ac1c2). By the induction hypoth-
esis, TrAc1(a/Ac1c2) is locally almost Ac1a-invariant, meaning that we can
take c2 ∈ aclAc1(a), which implies M(c2/Ac1) = 1. Again without loss of
generality, c2 ∈ dclAc1(a).

Continuing in this manner we get a tower of elements c1, . . . , cn−1 ∈
dclA(a) with M(ci/Ac<i) = 1 and M(a/Ac<n) = 1. Let di = c≤i. So
M(di/A) = i for i = 1, . . . , n− 1. We can assume that 0 <M(a/Ab) < n.

Case 2.1:M(dn−1/Ab) < n− 1. By the induction hypothesis, we know
that TrA(dn−1/Ab) is locally almost Adn−1-invariant. Extending A by an
e ∈ acl(A) (by Lemma 2.2) we may assume that TrA(dn−1/Ab) is Adn−1-
invariant. Let c be the name of TrA(dn−1/Ab). Then M(a/Ac) < n (as
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dn−1
m6̂ | c (A)), so TrAc(a/Acb) is locally almost Aca-invariant. But

TrAc(a/Acb) = TrA(a/Acb) = TrA(a/Ab), as c ∈ dcl(Ab) ∩ dcl(Aa). So
TrA(a/Ab) is locally Aa-invariant.

Case 2.2: M(dn−1/Ab) = n − 1. This implies dn−1
m|̂ b (A), hence for

each i, di
m|̂ b (A). We haveM(a/Ad1b) > 0. Indeed, otherwiseM(d2/Ad1b)

= 0, soM(d2/Ab) =M(d1/Ab) = 1 <M(d2/A), contradicting d2
m|̂ b (A).

Also,M(a/Ad1) = n−1 andM(a/Ad1b) = l < n−1. So by the induction
hypothesis, TrA(a/Ad1b) is locally almost Ad1a-invariant. By Lemma 2.2 we
may assume it is Ad1a-invariant, hence also Aa-invariant.

Let bn−l ∈ dclA(a) be the name of TrA(a/Ad1b). So M(a/Abn−l)
= M(a/Ad1b) = l and 0 < l < n − 1, hence M(bn−l/A) = n − l and
a

m|̂ b (Abn−l). As above we can find elements bn−l+1, . . . , bn−1 ∈ dclA(a)
such that bi ∈ dclA(bi+1) and M(bi/A) = i for all i. But bn−l

m6̂ | b (A), so
also bn−1

m6̂ | b (A) and M(bn−1/Ab) < n − 1, which reduces the proof to
Case 2.1.

Comparing Theorem 3.3 with the characterization of 1-based theories
among superstable theories of finite rank from [Bu1] we see that in [Bu1]
the (full) coordinatization follows from 1-basedness, but the local modularity
assumption alone implies 1-basedness (i.e. we do not need “weak coordina-
tization” as in condition (2) of Theorem 3.3). This is because within the
theory of forking, weak coordinatization holds for every superstable the-
ory of finite rank, meaning that any non-algebraic type in such a theory
is non-orthogonal to a regular type of U -rank 1. As the reader sees from
Theorem 2.15, in order to prove that a superstable theory has weak m-
coordinatization we needed the few models assumption. It is not clear if this
assumption may be weakened to smallness.

By Theorems 2.12 and 2.15 we can draw the following corollary. Notice
that (2) in this corollary improves [Ne5, Theorem 2.1].

Corollary 3.4. If T is superstable with few countable models, then

(1) T is m-normal and
(2) T has full m-coordinatization.

I think that thus far Corollary 3.4, together with the results from the
next section, is the main justification for introducing the notion of m-normal
theory.

4. ∗-algebraic groups in m-normal theories. Recall from [Ne5] that
a ∗-algebraic group G is a type-definable (over some finite set) group of
uniformly ∗-finite tuples. That is, there is a finite set A, a set X of standard
elements, type-definable over A, and a tuple of A-definable functions f on
X such that G = {f(a) : a ∈ X} and the group operation is type-definable
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over A. When elements of G are ∗-algebraic over A, we call G a ∗-algebraic
group (over A).

The most natural example of a ∗-algebraic group arises as follows. Sup-
pose H is a (standard) group in T , type-definable over A, and Hn, n < ω,
is a family of relatively A-definable subgroups of finite index in H. Let
H∞ =

⋂
nHn. Then any element a/H∞ of H/H∞ is interdefinable over A

with the ∗-algebraic tuple 〈a/Hn, n < ω〉. Hence if H∞ is normal in H, then
the quotient group H/H∞ is a ∗-algebraic group. In particular, if T is stable
then the group H/H0 is ∗-algebraic (H0 is the connected component of H).
In fact, we can regard H/H0 as the group of generic types of H.

In this section we assume G is a ∗-algebraic group over ∅. Again, there
is a natural compact 0-dimensional topology on G induced by the base of
open sets of the form [bJ ] = {aI ∈ G : aJ = bJ} (here I is the index set for
the ∗-algebraic tuples in G, J ⊆ I is finite and bJ is any J-tuple). Hence
G is a topological, profinite group and has a basis of neighbourhoods of 1
consisting of 0-definable normal subgroups Gn, n < ω, of finite index. We
assume that Gn+1 ⊆ Gn for all n.

We call a type p ∈ S(A) of elements of G m-generic (over A) if p(C)
is open in G. We say that a ∈ G is m-generic over A if tp(a/A) is m-
generic. It is not hard to see that if p, q are two m-generic types in G, then
M(p) =M(q).

Indeed, we can assume p and q have a common domainA. Choose a∈p(C)
and b ∈ q(C) with a m|̂ b (A). Let c = a−1b. Then c m|̂ a(A), c m|̂ b (A) and
the right translation by c carries TrA(a/Ac) to TrA(b/Ac). This shows that

M(a/A) =M(a/Ac) =M(b/Ac) =M(b/A).

So we define the M-rank of G, M(G), as M(p) for any m-generic type p.
The results of this section correspond to the classical results of Hrushovski
and Pillay on 1-based stable groups [HP]. The proofs are often similar to
the ones in [Pi].

WhileM-rank turns out to be quite a good relative measure of the size of
a ∗-algebraic type (“relative”, since it really measures the sizes of ∗-algebraic
types by comparing them to each other), it is useless when the theory is not
m-stable. In that case we can use another, “absolute” measure of the size of
a ∗-algebraic type (used in [Ne1, Ne2]), which we now recall.

Assume p is a complete type of elements of G, over a finite domain. We
associate with p a function f(p) : ω → ω in the following way. Suppose
X is a Gn−1-coset meeting p(C). We define f(p)(n) as the number of Gn-
cosets contained in X and meeting p(C). We stipulate G−1 = G, and f(a/A)
abbreviates f(tp(a/A)).

Similarly toM-rank, this notion is also related to m-independence, as the
next lemma shows. For f, g ∈ ωω, f =∗ g means that f(n) = g(n) for almost
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all n. Similarly we define the partial order ≤∗ on ωω. 1 denotes the function
constantly equal to 1. Also we define fmax ∈ ωω by fmax(n) = [Gn : Gn−1].

Lemma 4.1. Assume a ∈ G and A ⊆ B are finite.

(1) a m|̂ B (A)⇔ f(a/A) =∗ f(a/B).
(2) 1 ≤ f(a/A) ≤ fmax and f(a/A) =∗ fmax iff a is m-generic over A.
(3) f(a/A) =∗ 1⇔M(a/A) = 0.

Proof. Easy.

f(p) is an “absolute” measure of p (relative to the choice of Gn’s), be-
cause in its definition we do not refer to f(q) for any extension q of p.
Unfortunately this measure does not behave as well as M-rank. We do not
have Lascar-style inequalities for f(p).

For X ⊆ G we define the (left) stabilizer of X in G to be the set
Stab(X) = {a ∈ G : a ·X = X}. So Stab(X) is a subgroup of G.

Remark 4.2. If X ⊆ G is closed and A-invariant (equivalently : type-
definable over A), then Stab(X) is also closed and A-invariant.

Proof. For any n let Bn(X) be the union of Gn-cosets meeting X.
So a ∈ Stab(X) iff a · Bn(X) = Bn(X) for every n. Hence Stab(X) =⋂
n Stab(Bn(X)). Every Stab(Bn(X)) is a clopen A-definable subgroup of G,

so we are done.

Theorem 4.3. Assume T is small and m-normal , a ∈ G, A is finite
and p = tp(a/A). Then there is a relatively clopen subset X of p(G) which
is a (right) coset of Stab(X). In particular ,M(Stab(X)) =M(p) and p(C)
is a union of finitely many cosets of type-definable subgroups of G.

Proof. We can assume that A = ∅. Since for any e ∈ acl(∅), any comple-
tion of p over e is an m-free extension of p, we will be freely adding finitely
many elements of acl(∅) to the signature.

Choose b ∈ G m-generic over a and let c = b ·a. Hence c is also m-generic
over a. Since Tr(b/a) is clopen in G, its name is algebraic. So adding this
name to the signature we may assume that all the elements of p(C) have the
same type over b. It follows that all the elements of b · p(C) have the same
type over b, i.e. Tr(c/b) = b · p(C), hence

(a) f(c/b) = f(p).

The idea of the proof consists in the following. b determines a function
fb : p(C) → G given by fb(x) = b · x. We identify fb with the ∗-finite
∗-algebraic tuple naming its graph. For b′ ≡ b let fb′ : p(C) → G be the
conjugate of fb. By m-normality, a “germ” gb of fb at a is algebraic over
(a, c) (gb is the restriction of fb to some open neighbourhood Y of a in
p(C)). Now using some trace calculations we find a type q extending tp(b)
such that for b′, b′′ ∈ q(C), gb′ and gb′′ have the same range and f(q) = f(p).
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So q(C) · q(C)−1 ⊆ Stab(Y ). It follows that Stab(Y ) is large enough, i.e.
f(Stab(Y )) = f(p).

The details are as follows. We have a m|̂ c and b = c · a−1, hence

f(b/c) = f(a−1/c) = f(a/c) =∗ f(a/∅) = f(p).

By m-normality, choose d ∈ acl(c) ∩ acl(b) with c
m|̂ b (d). Without loss of

generality, Tr(c/d) ⊆ Tr(c/b). Since Tr(c/bd) is clopen in both Tr(c/b) =
b · p(C) and Tr(c/d), for some clopen V,U ⊆ G we have

(b) Tr(c/bd) = b · p(C) ∩ V = Tr(c/d) ∩ U.
Let d1 be the name of Tr(c/bd) and d2 the name of W = b−1 · V . We see
that d1 ∈ acl(c)∩dcl(bd), d2 ∈ acl(∅) and Tr(c/bd) = Tr(c/d1) = Tr(c/bd1).

Let q = tp(b/cd1d2). Clearly, f(q) =∗ f(b/c) =∗ f(p) and for every
b′ ∈ q(C),

Tr(c/b′d1) = Tr(c/d1) = b · p(C) ∩ V.
On the other hand, Tr(c/b′d1) = b′·p(C)∩V . Hence b·p(C)∩V = b′·p(C)∩V

and b−1 · V = (b′)−1 · V = W . Therefore

p(C) ∩W = b−1(b′ · p(C) ∩ V ) = b−1 · b′ · p(C) ∩ b−1 · V(c)

= b−1 · b′ · p(C) ∩W = b−1 · b′ · p(C) ∩ b−1 · b′ ·W
= (b−1 · b′)(p(C) ∩W ).

Let Y = p(C)∩W , a clopen subset of p(C). Clearly, Stab(Y ) is a closed,
d2-invariant subgroup of G. Also, for any complete type s of elements of
Stab(Y ), f(s) ≤∗ f(p) (as p(C) ∩W is a union of right cosets of Stab(Y )).

On the other hand, by (c), q−1(C) · q(C) ⊆ Stab(Y ), so for any m-generic
type s of Stab(Y ), f(s) ∗≥ f(q) =∗ f(p), hence

(d) f(s) =∗ f(p).

Now, Y is a union of right cosets of Stab(Y ), and by (d) these cosets have
non-empty interior in Y , hence are open in Y . Therefore Y is a finite union
of them. Let X be the coset of Stab(Y ) containing a. Clearly, Stab(Y ) =
Stab(X) and X is clopen in p(C).

Theorem 4.4. Assume T is small and m-normal , A is finite and H is
an A-type-definable subgroup of G. Then H contains a closed subgroup H ′

of finite index such that H ′ is type-definable over some e ∈ acl(∅).

Proof. We can replace A by the name of H. So without loss of generality,
A is ∗-algebraic. Choose b ∈ G m-generic over A. Let d be the name of
Hb. Clearly, Tr(b/Ad) = Tr(b/A) ∩ Hb. So Tr(b/Ad) is open in Hb. By
m-normality, choose c ∈ acl(b) ∩ acl(Ad) with b

m|̂ Ad (c). We can assume
that Tr(b/c) ⊆ Tr(b/Ad). So Tr(b/c) is open in Hb.
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Let q = tp(b/c). By Theorem 4.3, possibly expanding c a little, we can
assume that q(C) is a right coset of Hc = Stab(q(C)). Clearly, Hc is type-
definable over c and is open in H, hence it has finite index in H.

Say, Hc = H ∩ U for some clopen U ⊆ G. Let a be the name of U, a ∈
acl(∅). Choose b′ ≡ b (Aa) with b′ m|̂ b (Aa). Hence b′ m|̂ b. Choose c′ with
Aabc ≡ Aab′c′ and letHc′ be the conjugate ofHc. Clearly,Hc = H∩U = Hc′ ,
so Hc is type-definable also over c′. Let e be the name of Hc. Since bc m|̂ b′c′,
we see that e ∈ acl(∅).

Corollary 4.5. Assume T is small , m-normal and G is a ∗-algebraic
group. Then G contains a clopen abelian subgroup of finite index.

Proof. For any b ∈ G let Hb ⊆ G×G be the graph of the inner automor-
phism x 7→ bxb−1. Now let b ∈ G be m-generic. Choose H ′ < Hb such that
H ′ is open in H and type-definable over an e algebraic over ∅. Also, choose
a clopen U ⊆ G×G with H ′ = Hb ∩ U . We can assume that U is definable
over e. Let p = tp(b/e). So p(C) is open in G. Let V be the projection of H ′

to the first coordinate. So V is an open subgroup of G. We shall prove that

(a) b−1
1 b2 ∈ C(V ) for b1, b2 ∈ p(C).

Indeed, since b1, b2 ∈ p(C), we have Hb1 ∩ U = H ′ = Hb2 ∩ U , so for
x ∈ V we have b1xb−1

1 = b2xb
−1
2 . Hence b−1

1 b2 ∈ C(x).
By (a), p(C)−1 · p(C) ⊆ C(V ), hence C(V ) is a clopen subgroup of G.

Clearly, V ∩ C(V ) is an abelian open subgroup of finite index in G.

Corollary 4.6. If T is superstable, with few countable models, and G
is a ∗-algebraic group, then G is abelian-by-finite. In particular , if H is a
standard group type-definable in T , then the group H/H0 is abelian-by-finite.

I do not know of any stable group H for which the group H/H0 is not
abelian-by-finite. If such a group exists in a small stable theory T , then T
cannot be m-normal.

5. m-non-orthogonality. In this section we examine the notion of
m-non-orthogonality of ∗-algebraic types. We show that it has properties
similar to non-orthogonality in the theory of forking independence. Also,
we analyze m-non-orthogonality among locally modular ∗-algebraic types of
M-rank 1, in an m-normal theory. The next remark will facilitate the proofs
in this section.

Remark 5.1. Assume A is finite and p, q ∈ S(A) are ∗-algebraic. Then
p and q are m-orthogonal iff for every b ∗-algebraic over A, all m-free
extensions of p and of q over Ab are almost m-orthogonal.

Proof. This follows from Lemma 1.9.



m-normal theories 161

Lemma 5.2. Assume T is small , m-stable and p, q ∈ S(∅) are ∗-alge-
braic. Then p is m-orthogonal to q iff for all finite m-independent I ⊆ p(C)
and all finite m-independent J ⊆ q(C), we have I

m|̂ J .

Proof. ⇒ is clear from definition.
⇐ Suppose a ∈ p(C), b ∈ q(C), C is finite, a m|̂ C, b m|̂ C and a

m6̂ |
b(C). By Remark 5.1 we can assume that C is ∗-algebraic. Suppose a m|̂ b.
Then ab

m6̂ | C. Choose an infinite sequence {anbn}n<ω of realizations of
tp(ab/C), m-independent over C. Since T is m-stable, the set {anbn : n < ω}
cannot be m-independent. On the other hand, each of {an}n<ω, {bn}n<ω is
m-independent over C. Since a m|̂ C and b

m|̂ C, we conclude that each of
{an}n<ω, {bn}n<ω is m-independent. Hence for some n, a<n

m6̂ | b<n.

Lemma 5.3. Assume T is small , m-stable and a and pa ∈ S(a) are ∗-
algebraic. Then pa

m⊥ ∅ iff for every a′ ≡ a with a′ m|̂ a, we have pa′
m⊥ pa,

where pa′ is the conjugate of pa.

Proof. ⇒ Let qa, qa′ ∈ S(aa′) be m-free extensions of pa, pa′ respectively.
It is enough to show that qa m⊥ qa′ . Let I ⊆ qa(C), J ⊆ qa′(C) be finite
m-independent sequences. By Lemma 5.2 it is enough to show that I m|̂
J (aa′).

Now J
m|̂ a (a′) gives Ja′ m|̂ a hence pa m⊥ ∅ yields Ja′ m|̂ Ia and we

are done.
⇐ Suppose pa is m-non-orthogonal to some q ∈ S(A) which is m-free

over ∅. By Lemma 5.2 choose finite m-independent sequences I ⊆ pa(C) and
J ⊆ q(C) with I m6̂ | J (a). Hence aI m|̂ J . Take an m-independent sequence
{anIn}n<ω of realizations of tp(aI/J). Then {anIn}n<ω is m-independent
over ∅ (by m-orthogonality of pa and pa′) and anIn

m6̂ | J , contradicting
m-stability.

Now we turn to m-normal theories and ∗-algebraic types of M-rank 1.
For such types, Lemmas 5.2 and 5.3 remain true without the m-stability
assumption.

Lemma 5.4. Assume T is small and m-normal.

(1) If p, q ∈ S(∅) are ∗-algebraic of M-rank 1, then p m⊥ q ⇔ for all
finite m-independent I ⊂ p(C) and all finite m-independent J ⊆ q(C), we
have I

m|̂ J .
(2) If a and pa ∈ S(a) are ∗-algebraic and M(pa) = 1, then pa

m⊥ ∅ iff
pa

m⊥ pa′ for every a′ ≡ a with a m|̂ a′, where pa′ is the conjugate of pa.

Proof. (1)⇒ is obvious. For⇐ we repeat the proof of Lemma 5.2. Keep-
ing the notation from that proof, notice that it is enough to show that if
a ∈ p(C), b ∈ q(C), a m|̂ C, b

m|̂ C and ab
m6̂ | C, then the sequence

{anbn}n<ω cannot be m-independent.
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Suppose that it is. By m-normality, for each n choose a cn ∈ acl(anbn)∩
acl(C) with anbn

m|̂ C (cn), so that all the cn’s realize the same type
r ∈ S(∅). By the Lascar inequalities, M(r) = 1. By m-independence of
{anbn}, we conclude that cn, n < ω, are m-independent, and cn ∈ acl(C).
This contradicts Remark 2.10.

(2) The proof of ⇒ is the same as in Lemma 5.3. For ⇐, suppose pa
is m-non-orthogonal to some q ∈ S(∅). This means that for some finite B
containing a, some m-free extensions p′ and q′ over B of pa and q respectively
are not almost m-orthogonal. Without loss of generality, B is ∗-algebraic, so
we may assume B = a. The rest of the proof is as before, with modifications
similar to those in (1), only now the sets I, J have size 1.

In the theory of forking, if p, q ∈ S(∅) are stationary regular locally
modular types and p 6⊥q, then p2 6a⊥ q2. Also, for any a |= p, the type p|a
is modular. I was unable to bound the size of the sets I, J appearing in
Lemma 5.4(1). Also, it is not clear which object should play the role of a
modular type in the context of m-independence and ∗-algebraic types. It
seems that ∗-algebraic groups of M-rank 1 behave like modular types.

Theorem 5.5. Assume T is small , m-normal and G,H are m-non-
orthogonal ∗-algebraic groups of M-rank 1, type-definable over ∅. Then lo-
cally G and H are definably isomorphic (over some parameter from acl(∅)).

Proof. Choose a finite set B and elements a ∈ G and b ∈ H, m-generic
over B, such that a m6̂ | b (B). We can assume that a and b are interdefinable
over B and the set of realizations of tp(ab/B) in G × H is a coset of the
subgroup S = Stab(tp(ab/B)) ⊆ G × H. Choose S ′ < S of finite index
in S and type-definable over some e ∈ acl(∅), provided by Theorem 4.4.
Clearly S′ is the graph of an e-definable isomorphism between some clopen
subgroups of G and H.

Theorem 5.5 improves [Ne5, Theorem 4.10], where we obtained only a
local isomorphism between G and H definable over some parameters not
necessarily in acl(∅).

We end this paper stating some open problems. Fortunately, in small
superstable theories with few countable models every ∗-algebraic type of
M-rank 1 is m-non-orthogonal to a ∗-algebraic group of M-rank 1 (which,
in virtue of Theorem 5.5, may play the role of a “modular type”). It is not
clear if this is true in any small m-normal theory (1). Hrushovski [Hr] used
germs of definable functions to construct, starting from a locally modular
non-trivial regular type p, a definable regular group non-orthogonal to p.
In an m-normal theory any ∗-algebraic non-trivial M-rank 1 type q is lo-

(1) In the meantime I proved this: see my paper Small profinite structures, to appear
in Trans. Amer. Math. Soc.
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cally modular, so it would be natural to expect that some modification of
Hrushovski’s argument would work here, yielding a ∗-algebraic M-rank 1
group m-non-orthogonal to q. However this approach does not work, because
in m-independence we lack the notion of a stationary type. Still, the above
idea of Hrushovski influenced me in the proof of Theorem 4.3.

Hrushovski used an analogue of Theorem 4.3 to describe forking on G0

in terms of pseudo-endomorphisms, for a regular locally modular stable
group G. Here we cannot expect a similar result, since ∗-algebraic groups
have trivial connected components. In model theory there is a long list of
results showing that a group minimal in some respect is abelian, or abelian-
by-finite. Here we proved that in a small m-normal theory any ∗-algebraic
group G is abelian-by-finite. Still, if we restrict just to G ofM-rank 1 (which
is a kind of minimality assumption), can we omit the m-normality assump-
tion in the proof that G is abelian-by-finite? I am pessimistic about that,
despite the fact that by the results of Baudisch [Ba], for any standard group
G interpretable in a superstable theory, the group G/G0 is solvable-by-finite,
and if moreover M(G/G0) = 1, then G/G0 is abelian-by-finite. But, again,
I know of no small theory which is not m-normal.
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