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Consistency of the Silver dichotomy
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Abstract. Silver’s fundamental dichotomy in the classical theory of Borel reducibility
states that any Borel (or even co-analytic) equivalence relation with uncountably many
classes has a perfect set of classes. The natural generalisation of this to the generalised
Baire space κκ for a regular uncountable κ fails in Gödel’s L, even for κ-Borel equivalence
relations. We show here that Silver’s dichotomy for κ-Borel equivalence relations in κκ for
uncountable regular κ is however consistent (with GCH), assuming the existence of 0#.

A fundamental result in classical descriptive set theory is Silver’s di-
chotomy :

Theorem 1 (Silver [4]). If a Borel (or even co-analytic) equivalence
relation on the reals has uncountably many classes then it has a perfect set
of classes, i.e., there is a perfect set of reals any two distinct elements of
which belong to different classes.

It is convenient to express the conclusion of Silver’s theorem in terms
of the continuous reducibility of equivalence relations. Let id denote the
equivalence relation of equality on Cantor space 2ω. If E,F are equivalence
relations on Polish spaces then we say that E is continuously reducible to F
(written E ≤c F ) if there is a continuous function f such that E(x, y) iff
F (f(x), f(y)). Then Silver’s theorem says that if E is a Borel equivalence
relation on the reals with uncountably many classes then id is continuously
reducible to E. A more generous notion is Borel reducibility, where the
“reduction” f is allowed to be Borel (we then write E ≤B F ).

In this article we look at Silver’s dichotomy in generalised Baire space.
Let κ be an infinite cardinal such that κ<κ = κ. Then the generalised Baire
space κκ associated to κ is the space of functions from κ to κ topologised
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with basic open sets of the form

Nσ = {f : κ→ κ | f extends σ}
where σ belongs to κ<κ. Our hypothesis on κ implies that this gives a
basis for the topology of size κ. Borel sets in this space, the κ-Borel sets,
are obtained by closing the collection of basic open sets under unions and
intersections of size κ. We get closure under complements using the fact
that the complement of a basic open set is the union of at most κ basic
open sets. A function from generalised Baire space to itself is κ-Borel if
the pre-image under this function of any basic open set is κ-Borel. And the
generalised Cantor space 2κ associated to κ is the closed subspace of κκ

consisting of those functions which map κ to 2. As in the classical setting
we have the corresponding notions of κ-continuous and κ-Borel reducibility
(again written as ≤c, ≤B, respectively) of equivalence relations on spaces
like 2κ or κκ which are equipped with a notion of Borel set.

As in the classical case, the reducibility of idκ (the equality relation on 2κ)
to an equivalence relation E on κκ can be reformulated as a statement about
perfect sets. We say that X ⊆ κκ is κ-perfect if X consists of the κ-branches
[T ] through a subtree T of κ<κ which is <κ-closed and has the property
that every node can be extended to a splitting node.

Proposition 2. Suppose that E is an equivalence relation on κκ. Then
idκ is κ-Borel reducible to E iff idκ is κ-continuously reducible to E iff
there is a κ-perfect set X ⊆ κκ any two distinct elements of which belong to
different classes of E.

Proof. Given X = [T ] as above we obtain an order-preserving injection
from 2<κ into the set of splitting nodes of T ; this induces a κ-continuous
σ : 2κ → [T ] which reduces idκ to E. Conversely, if f is a κ-Borel function
that reduces idκ to E then f is κ-continuous on a κ-comeager set (i.e. a
set whose complement is contained in the union of κ closed sets, each with
an empty interior) and this κ-comeager set contains a κ-perfect set; we can
thin out this κ-perfect set to a κ-perfect subset whose f -image is the desired
κ-perfect set X.

Now we ask:

Problem 3. Does Silver’s dichotomy hold for generalised Baire space κκ?
That is, if a κ-Borel equivalence relation E on κκ has more than κ classes,
is there a κ-continuous reduction of idκ on 2κ to E?

The answer is negative in Gödel’s L, in a strong sense.

Theorem 4 (SDF–Hyttinen–Kulikov [1, 2]). Assume that V = L. Then
Silver’s dichotomy fails in generalised Baire space for all uncountable reg-
ular κ: There are κ-Borel equivalence relations with more than κ classes
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which lie strictly below idκ as well as a family of 2κ κ-Borel equivalence
relations including idκ which are pairwise ≤B-incomparable. If κ is inacces-
sible then there is a family of 2κ κ-Borel equivalence relations which are
pairwise ≤B-incomparable and ≤B-below idκ.

The problem with Silver’s dichotomy in L derives from the existence of
weak κ-Kurepa trees on a regular cardinal κ. These are trees T of height
κ with more than κ branches of length κ such that every node of T splits
and the αth level of T has size at most card(α) for stationary-many ordinals
α < κ. We say that T is κ-Kurepa if “stationary-many ordinals” can be
replaced by “all infinite ordinals”.

Lemma 5. Suppose V = L and κ is regular and uncountable. Then there
exists a weak κ-Kurepa tree on κ. If κ is a successor cardinal then there is
a κ-Kurepa tree on κ.

Proof. Our tree will be a subtree of the binary tree 2<κ. For singular
α < κ let β(α) be the least limit ordinal β > α such that α is singular in Lβ.

First assume that κ is inaccessible. Then T consists of all σ ∈ 2<κ such
that:

(∗) For singular cardinals α ≤ |σ| of cofinality ω, σ|α belongs to Lβ(α).

Any node of T can be extended to nodes in T of any greater length (just
add 0’s). And any node of T of length α splits into two nodes in T of length
α+ 1, so the αth splitting level consists of nodes of length α. It follows that
the αth splitting level of T has size at most card(α) for α a singular cardinal
of cofinality ω.

Main Claim. The tree T has κ+ branches.

Proof. For a limit ordinal β between κ and κ+ we say that β is critical
if some subset of κ is definable over Lβ but not an element of Lβ. The set
of critical ordinals is cofinal in κ+, and for critical β the Skolem hull of κ
in Lβ is all of Lβ.

Now for each critical β define

Cβ = {α < κ | the Skolem hull of α in Lβ
contains no ordinals between α and κ}.

Then Cβ is a club in κ for each critical β and moreover if β0 < β1 are both
critical then sufficiently large elements of Cβ1 are limit points of Cβ0 ; this is
because β0 is an element of the Skolem hull of α in Lβ1 for a large enough α
and therefore so is Cβ0 .

In particular the Cβ’s for critical β are distinct. Now we claim that each
Cβ is a branch through T . For this we need only check that if α < κ is a
singular cardinal of cofinality ω then Cβ ∩ α belongs to Lβ(α). This is clear
if α does not belong to Cβ, for then Cβ ∩α is bounded in α and therefore is
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an element of Lα. Otherwise note that Cβ ∩ α is definable over Lβ̄+1 where
Lβ̄ is the transitive collapse of the Skolem hull of α in Lβ; as α is regular in

Lβ̄, it follows that β̄ is less than β(α), so Cβ ∩ α is an element of Lβ(α), as
desired.

The case of a successor cardinal κ is similar, except one can now obtain
a κ-Kurepa tree on κ as all sufficiently large α < κ are singular. This proves
the Main Claim and therefore Lemma 5.

Now note that if T is weak κ-Kurepa then there can be no κ-continuous
injection from 2κ into [T ], the set of κ-branches through T : If κ is inaccessible
then this would yield a club of α < κ such that the αth level of T has 2α

nodes, and if κ = γ+, it would yield an α < κ such that T has 2γ = κ nodes
on level α. In fact there cannot be such an injection which is κ-Borel by
Proposition 2.

Now to give an indication why Theorem 4 is true, define xET y iff x, y are
not branches through T or x = y. Then ET is a κ-Borel equivalence relation
with κ+ classes, yet idκ cannot κ-Borel reduce to ET for the reasons given
above. Thus Silver’s dichotomy fails at all uncountable regular cardinals
in L. And ET is κ-Borel reducible to idκ via the reduction that sends each
branch of T to itself and the non-branches of T to some fixed non-branch
of T .

On the other hand, Silver [3] also showed that it is possible to get rid of
κ-Kurepa trees on a regular cardinal κ using an inaccessible above κ: If λ > κ
is inaccessible and a Lévy collapse is performed to make λ into κ+ (where
the conditions are partial functions p of size less than κ from λ× κ to λ so
that p(α, β) < α for (α, β) in Dom(p)) then in the generic extension there
are no κ-Kurepa trees on κ. In fact, there are not even any weak κ-Kurepa
trees on κ in Silver’s model. This suggests that a model like Silver’s may
obey the Silver dichotomy for κκ, provided λ is chosen appropriately. Our
main theorem states that this is indeed the case.

To gain further insight into the problem we next consider the following
ZFC-provable negative result. A relation on (κκ)n is Σ1

1 if it is the projec-
tion of a κ-Borel relation B on (κκ)n × κκ, i.e. equal to {(x0, . . . , xn−1) |
(x0, . . . , xn−1, xn) ∈ B for some xn}; it is ∆1

1 if both itself and its comple-
ment are Σ1

1.

Theorem 6. Let κ be regular and uncountable. Then there is a ∆1
1 equiv-

alence relation E with κ+ classes such that idκ is not κ-Borel reducible to E.
So the Silver dichotomy provably fails for ∆1

1 equivalence relations on κκ.

Proof. The relation is xEranky iff x, y do not code wellorders or x, y code
wellorders of the same length. This has exactly κ+ classes. It is ∆1

1 because
the assumption that κ is uncountable and regular implies that wellfound-
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edness for linear orders of κ is ∆1
1 (it is even closed). Suppose T were a

κ-perfect tree whose distinct κ-branches were Erank-inequivalent. Now let x
be a generic branch through T (treating T as a version of κ-Cohen forcing),
and let p ∈ T be a condition forcing that x codes a wellorder of some rank
α < κ+. Then any sufficiently generic branch through T extending p codes
a wellorder of rank α, which contradicts the fact that there are distinct such
branches in V .

So a first step toward obtaining the consistency of Silver’s dichotomy
for κκ is the following:

Theorem 7. Assume κ<κ = κ. Then the relation Erank of the previous
theorem is not κ-Borel.

Proof. For α < κ+ let Lα denote the forcing to Lévy collapse α to κ
(a condition is a function from an ordinal less than κ into α). If g : κ → α
is Lα-generic then g∗ denotes the subset of κ defined by i ∈ g∗ iff g((i)0) ≤
g((i)1) where i 7→ ((i)0, (i)1) is a bijection between κ and κ× κ.

By induction on κ-Borel rank we show that if B is κ-Borel then there is
a club C in κ+ such that

(∗) For α ≤ β in C of cofinality κ and (p0, p1) a condition in Lα × Lα,
(p0, p1) forces that (g∗0, g

∗
1) belongs to B in the forcing Lα×Lα iff it

forces this in the forcing Lα × Lβ.

If B = U(σ0)× U(σ1) is a basic open set then we may take C to consist of
all ordinals greater than κ in κ+. This is because for any α ≤ β, if (p0, p1)
belongs to Lα×Lβ then (p0, p1) Lα×Lβ-forces (g∗0, g

∗
1) ∈ B exactly if (p∗0, p

∗
1)

extends (σ0, σ1) where p∗0 is the set of i such that (i)0, (i)1 are in the domain
of p0 and p0((i)0) ≤ p0((i)1) (similarly for p∗1); this is independent of the
pair α, β.

Inductively, suppose that B is the intersection of κ-Borel sets Bi, i < κ,
of smaller κ-Borel rank. By intersecting clubs obtained by applying (∗) to
the Bi’s we obtain a club C ensuring the desired conclusion for B, as (p0, p1)
forces (g∗0, g

∗
1) ∈ B iff for each i < κ it forces (g∗0, g

∗
1) ∈ Bi.

Finally if B is the complement of the κ-Borel set B0 then by induction
we have a club C0 such that for α ≤ β in C0 of cofinality κ and (p0, p1) in
Lα × Lα, (p0, p1) Lα × Lα-forces (g∗0, g

∗
1) ∈ B0 iff it Lα × Lβ-forces it. Now

thin out the club C0 to a club C so that for α in C of cofinality κ, if (p0, p1)
is in Lα×Lα and there is some β ≥ α in C0 of cofinality κ and some (q0, q1)
in Lα ×Lβ below (p0, p1) which Lα ×Lβ-forces (g∗0, g

∗
1) in B0, then there is

such a (q0, q1) in Lα×Lα (which then Lα×Lα-forces (g∗0, g
∗
1) in B0). So for

α ≤ β of cofinality κ in this thinner club C, (p0, p1) Lα ×Lα-forces (g∗0, g
∗
1)

in B iff none of its extensions in Lα×Lα forces (g∗0, g
∗
1) in B0 in the forcing

Lα×Lα iff none of its extensions in Lα×Lα forces (g∗0, g
∗
1) in B0 in the forcing
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Lα×Lβ iff none of its extensions in Lα×Lβ forces (g∗0, g
∗
1) in B0 in the forcing

Lα × Lβ iff (p0, p1) Lα × Lβ-forces (g∗0, g
∗
1) in B, completing the induction.

It follows that Erank is not κ-Borel, as otherwise we have g∗0E
rankg∗1 where

g0 and g1 are sufficiently generic for Lα × Lβ with α < β.

Now using an analogous argument we have:

Theorem 8. Suppose that 0# exists, κ is regular in L, and λ is the κ+

of V . Then after forcing over L with the Lévy collapse turning λ into κ+,
the Silver dichotomy holds for κκ.

Proof. Suppose that E is a κ-Borel equivalence relation in the Lévy
collapse extension L[G]. For simplicity we assume that E has a κ-Borel
code in L and therefore has κ-Borel rank less than (κ+)L. Suppose that E
has more than κ classes in L[G] and let p be a Lévy collapse condition forcing
that the Lévy collapse names (σα | α < λ) are pairwise E-inequivalent. We
can assume that the σα’s are of size less than λ and choose f : λ→ λ in L
so that for each α < λ, σα is an Lf(α)-name where Lβ denotes the part of
the Lévy collapse forcing which collapses ordinals less than β to κ. We may
assume that for each α, the E-equivalence class of σα does not depend on
the choice of Lf(α)-generic, as otherwise this would fail for a pair of mutual
Lf(α)-generics and by building a κ-perfect set of mutual Lf(α)-generics we
obtain a κ-perfect set of distinct E-equivalence classes. It follows that if
α < β and p belongs to Lf(α) then (p, p) forces in Lf(α)×Lf(β) that σα and
σβ are E-inequivalent.

Let I consist of the Silver indiscernibles between κ and λ, and for i < j
in I let πij be an elementary embedding from L to L with critical point i,
sending i to j. As p, the sequence (σα | α < λ) and the function f defined
above are constructible, they are L-definable from parameters less than some
i ∈ I together with indiscernibles ≥ λ. Then for j < k in I above i, we
have σk = πjk(σj) and f(k) = πjk(f(j)). Let I0 be the final segment of I
consisting of all elements of I greater than i.

In analogy to the previous proof we show that for each κ-Borel B there
is a club C contained in I0 such that:

(∗) Suppose that i0 < i1 < · · · < in = j < in+1 = k belong to C,
(p0, p1) ≤ (p, p) belongs to Lf(j) × Lf(j) and is L-definable from
the parameters in i0 ∪ {i0, i1, . . . , in} together with indiscernibles
> j. Then (p0, p1) forces that (σg0j , σ

g1
j ) belongs to B in the forc-

ing Lf(j) × Lf(j) iff (p0, πi0i1πi1i2 · · · πin−1inπinin+1(p1)) forces that

(σg0j , σ
g1
k ) belongs to B in the forcing Lf(j) × Lf(k).

Note that the composition πi0i1πi1i2 · · ·πin−1inπink sends (i0, i1, . . . , in) to
(i1, i2, . . . , in+1).
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We now prove (∗) (with an appropriate choice of C) by induction on the
κ-Borel rank of B. If B = U(τ0) × U(τ1) is a basic open set then (p0, p1)
forces that (σg0j , σ

g1
j ) belongs to B iff both p0 forces that σg0j belongs to

U(τ0) and p1 forces that σg1j belongs to U(τ1); as the latter is equivalent to

πi0i1πi1i2 · · ·πin−1inπinin+1(p1) forcing that σg1k belongs to U(τ1), the conclu-
sion of (∗) follows, where we can take C to be the entire club I0.

Inductively, suppose that B is the intersection of κ-Borel sets Bα, α < κ,
of smaller κ-Borel rank. Then (∗) for the Bα’s implies (∗) for B by inter-
secting κ clubs.

Finally, suppose that B is the complement of the κ-Borel set B0 and the
club C0 witnesses (∗) for B0. Let C consist of all limit points of C0; we show
that C witnesses (∗) for B. Suppose that i0 < i1 < · · · < in = j < in+1 = k
and (p0, p1) are as in the hypothesis of (∗) where i0, i1, . . . , in+1 belong to C.
Let π denote the composition πi0i1πi1i2 · · ·πin−1inπinin+1 .

If (p0, π(p1)) does not force that (σg0j , σ
g1
k ) belongs to B then there is an

extension (q0, q1) of (p0, π(p1)) in Lf(j) × Lf(k) which forces that (σg0j , σ
g1
k )

belongs to B0. As i0 is a limit point of C0, we can choose i−1 < i0 in C0

(greater than the parameters used in the definition of (p0, p1)) so that (q0, q1)
is L-definable from parameters in i0∪{i0, i1, . . . , in+1} together with param-
eters < i−1 and indiscernibles > k. Now we consider the condition (q0, q

∗
1)

in Lf(j) × Lf(j), where q∗1 is defined in L from i−1 < i0 < · · · < in (to-
gether with indiscernibles greater than in = j) just like q1 is defined from
i0 < i1 < · · · < in+1 (together with the same parameters < i−1 and indis-
cernibles greater than in+1 = k). By induction, (q0, q

∗
1) forces that (σg0j , σ

g1
j )

belongs to B0. Moreover (q0, q
∗
1) is an extension of (p0, p1) as (q0, q1) is an

extension of (p0, π(p1)) (this implies that q∗1 is an extension of p1). So (p0, p1)
does not force that (σg0j , σ

g1
j ) belongs to B.

Conversely, suppose that (p0, p1) does not force that (σg0j , σ
g1
j ) belongs

to B. Then there is an extension (q0, q1) of (p0, p1) which forces that (σg0j , σ
g1
j )

belongs to B0. We may assume that (q0, q1) is definable in L from param-
eters in i0 ∪ {i0, i1, . . . , in} together with indiscernibles greater than in. By
induction (q0, π(q1)) forces that (σg0j , σ

g1
k ) belongs to B0 where π is the

composition πi0,i1πi1i2 · · ·πin−1inπinin+1 . This condition extends the condi-
tion (p0, π(p1)) and therefore establishes that (p0, π(p1)) does not force that
(σg0j , σ

g1
j ) belongs to B.

Now apply (∗) to the κ-Borel set E, producing a club C. As mentioned

before, we can assume that (p, p) does Lf(i)×Lf(i)-force σġ0i Eσ
ġ1
i . It follows

that for i < j in C, (p, p) also Lf(i)×Lf(j)-forces σiEσj , as p is not moved by
any elementary embedding which is the identity below an element of I0. But
this contradicts our assumption that σα, σβ are forced by (p, p) in Lα ×Lβ
to be E-inequivalent when p belongs to Lα and α < β.
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I close with two remarks. The first is that if 0# exists and κ is an L-
cardinal which is countable in V then the Silver dichotomy holds for κκ in
some inner model with the same cardinals as L up to κ. This is because
the Lévy collapse forcing which turns the κ+ of V = ω1 of V into the κ+ of
the generic extension has a generic in V (it is built as the limit of countable
generics along the indiscernibles less than ω1 of V ). The second remark is
that I do not know if the above use of 0# is necessary. Surely one needs to
start with an inaccessible λ > κ to obtain the Silver dichotomy by forcing
over L (preserving cardinals up to κ) but as far as I know it is indeed possible
that inaccessibility is sufficient:

Question. Does the consistency of ZFC plus an inaccessible suffice for
the consistency of ZFC plus the Silver dichotomy for the generalised Baire
space ωω1

1 ?
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