How many normal measures can $\aleph_{\omega+1}$ carry?

by

Arthur W. Apter (New York)

Abstract. We show that assuming the consistency of a supercompact cardinal with a measurable cardinal above it, it is possible for $\aleph_{\omega+1}$ to be measurable and to carry exactly τ normal measures, where $\tau \geq \aleph_{\omega+2}$ is any regular cardinal. This contrasts with the fact that assuming AD + DC, $\aleph_{\omega+1}$ is measurable and carries exactly three normal measures. Our proof uses the methods of [6], along with a folklore technique and a new method due to James Cummings.

1. Introduction and preliminaries. It is a consequence of AD + DC that $\aleph_{\omega+1}$ is a measurable cardinal and carries exactly three normal measures. This follows since assuming AD + DC, there are only three regular cardinals (namely \aleph_0 , \aleph_1 , and \aleph_2) below $\aleph_{\omega+1}$, AD + DC implies that $\aleph_{\omega+1}$ satisfies the strong partition property $\aleph_{\omega+1} \to (\aleph_{\omega+1})^{\aleph_{\omega+1}}$, and if a successor cardinal κ satisfies the weak partition property $\forall \delta < \kappa[\kappa \to (\kappa)^{\delta}]$, then κ is measurable and carries exactly the same number of normal measures as regular cardinals below κ . (In fact, if a successor cardinal κ satisfies the weak partition property, then any normal measure κ carries must be of the form $\{x \subseteq \kappa \mid x \text{ contains a set which is } \delta \text{ club}\}$, where $\delta < \kappa$ is a regular cardinal.) The proofs of these last three facts can be found respectively in [14] (see also [13]), [10] (see also [11]), and [15].

When the Axiom of Determinacy is not assumed, however, the situation concerning the number of normal measures that $\aleph_{\omega+1}$ can carry if $\aleph_{\omega+1}$ is measurable is not so clear. In fact, in the articles [3], [4], [1], and [6], in which the measurability of $\aleph_{\omega+1}$ is forced from supercompactness hypotheses, the number of normal measures $\aleph_{\omega+1}$ possesses in the relevant models constructed is completely unclear.

²⁰⁰⁰ Mathematics Subject Classification: 03E35, 03E55.

Key words and phrases: supercompact cardinal, measurable cardinal, normal measure, indestructibility, gap forcing, symmetric inner model.

The author's research was partially supported by PSC-CUNY Grant 66489-00-35 and a CUNY Collaborative Incentive Grant.

The purpose of this paper is to shed new light on the situation mentioned in the preceding paragraph and construct, via forcing, models in which $\aleph_{\omega+1}$ is measurable and carries exactly τ normal measures, where $\tau \geq \aleph_{\omega+2}$ is any regular cardinal. Specifically, we will prove the following two theorems.

Theorem 1. Let $V^* \vDash$ "ZFC + GCH + $\kappa < \lambda$ are such that κ is supercompact and λ is the least measurable cardinal above $\kappa + \tau > \lambda^+$ is a fixed but arbitrary regular cardinal". There is then a generic extension V of V^* , a partial ordering $\mathbb{P} \in V$, and a symmetric submodel $N \subseteq V^{\mathbb{P}}$ such that $N \vDash$ "ZF + DC_{\aleph_{ω}} + $\lambda = \aleph_{\omega+1}$ is a measurable cardinal". In N, the cardinal and cofinality structure at and above λ is the same as in V (which has the same cardinal and cofinality structure at and above λ as V^*), and $\aleph_{\omega+1}$ carries exactly τ normal measures.

Theorem 2. Let $V^* \vDash$ "ZFC + GCH + $\kappa < \lambda$ are such that κ is supercompact and λ is the least measurable cardinal above κ ". There is then a generic extension V of V^* , a partial ordering $\mathbb{P} \in V$, and a symmetric submodel $N \subseteq V^{\mathbb{P}}$ such that $N \vDash$ "ZF + DC $_{\aleph_{\omega}}$ + $\lambda = \aleph_{\omega+1}$ is a measurable cardinal". In N, $\aleph_{\omega+2}$ is regular, and $\aleph_{\omega+1}$ carries exactly $\aleph_{\omega+2}$ normal measures.

Theorems 1 and 2 provide our desired results. Taken together, these theorems show that relative to the appropriate assumptions, it is consistent for $\aleph_{\omega+1}$ to be measurable and to carry τ normal measures, where $\tau \geq \aleph_{\omega+2}$ is any regular cardinal.

We digress now to provide some preliminary information. Essentially, our notation and terminology are standard, although exceptions to this will be noted. For $\alpha < \beta$ ordinals, $[\alpha, \beta]$, $[\alpha, \beta)$, $(\alpha, \beta]$, and (α, β) are as in the usual interval notation. For x a set of ordinals, \overline{x} is the order type of x.

When forcing, $q \geq p$ means that q is stronger than p. For κ a regular cardinal, the partial ordering \mathbb{P} is κ -directed closed if every directed set of conditions of size less than κ has a common extension. For κ regular and λ any ordinal, $\mathrm{Add}(\kappa,\lambda)$ is the standard partial ordering for adding λ Cohen subsets to κ . We abuse notation somewhat and use both $V^{\mathbb{P}}$ and V[G] to denote the generic extension by the partial ordering \mathbb{P} . If $x \in V[G]$, then \dot{x} will be a term in V for x. We may, from time to time, confuse terms with the sets they denote and write x when we actually mean \dot{x} or \check{x} , especially when x is some variant of the generic set G, or x is in the ground model V.

For $\kappa < \lambda$ regular cardinals, $\operatorname{Coll}(\kappa, \lambda)$ is the standard Lévy partial ordering for collapsing λ to κ . $\operatorname{Coll}(\kappa, <\lambda)$ is the standard Lévy partial ordering for collapsing every cardinal $\delta \in (\kappa, \lambda)$ to κ . For such a δ and any $S \subseteq \operatorname{Coll}(\kappa, <\lambda)$, we define $S \upharpoonright \delta = \{p \in S \mid \operatorname{dom}(p) \subseteq \kappa \times \delta\}$. It is well known that if G is V-generic over $\operatorname{Coll}(\kappa, <\lambda)$ and $\delta \in (\kappa, \lambda)$ is a cardinal, then $G \upharpoonright \delta$ is V-generic over $\operatorname{Coll}(\kappa, <\lambda) \upharpoonright \delta$.

Note that we are assuming familiarity with the large cardinal notions of measurability and supercompactness. Interested readers may consult [12] for further details.

We conclude Section 1 by mentioning that there are two results critical to the proofs of Theorems 1 and 2 which will be taken as "black boxes". For the convenience of readers, we provide a brief discussion of these facts here. The first concerns the folklore result that if $V \models$ "ZFC + κ is a measurable cardinal + $2^{\kappa} = \kappa^{+}$ ", then any reverse Easton iteration adding a single Cohen subset to every element of an unbounded normal measure 0 subset of κ (such as a set of successor cardinals) preserves the measurability of κ and increases the number of normal measures κ carries to $2^{2^{\kappa}} = 2^{\kappa^{+}}$. This is the essential content of Lemma 1.1 of [2].

The second is Hamkins' Gap Forcing Theorem of [8] and [9]. We state the version of this theorem we will use here, along with some associated terminology, quoting freely from [8] and [9]. Suppose \mathbb{P} is a partial ordering which can be written as $\mathbb{Q} * \mathbb{R}$, where $|\mathbb{Q}| < \delta$ and $\Vdash_{\mathbb{Q}}$ " \mathbb{R} is δ^+ -directed closed". In Hamkins' terminology of [8] and [9], \mathbb{P} admits a gap at δ . Also, as in the terminology of [8] and [9] (and elsewhere), an embedding $j : \overline{V} \to \overline{M}$ is amenable to \overline{V} when $j \upharpoonright A \in \overline{V}$ for any $A \in \overline{V}$. The relevant form of the Gap Forcing Theorem is then the following.

Theorem 3 (Hamkins). Suppose that V[G] is a forcing extension obtained by forcing that admits a gap at some $\delta < \kappa$ and $j : V[G] \to M[j(G)]$ is an embedding with critical point κ for which $M[j(G)] \subseteq V[G]$ and $M[j(G)]^{\delta} \subseteq M[j(G)]$ in V[G]. Then $M \subseteq V$; indeed, $M = V \cap M[j(G)]$. If the full embedding j is amenable to V[G], then the restricted embedding $j \upharpoonright V : V \to M$ is amenable to V. If j is definable from parameters (such as a measure or extender) in V[G], then the restricted embedding $j \upharpoonright V$ is definable from the names of those parameters in V.

It immediately follows from Theorem 3 that any cardinal κ measurable in a generic extension obtained by forcing that admits a gap below κ must also be measurable in the ground model.

2. The Proofs of Theorems 1 and 2. We turn now to the proofs of Theorems 1 and 2. The proofs of these theorems are quite similar to one another, so we prove them in tandem, making the relevant distinctions when necessary.

Proof. Let $V^* \vDash$ "ZFC + GCH + $\kappa < \lambda$ are such that κ is supercompact and λ is the least measurable cardinal above κ ". By Laver's result of [16], we assume that V^* has been generically extended via the partial ordering $\mathbb L$ to a model \overline{V} such that $\overline{V} \vDash$ " κ is indestructibly supercompact", i.e., $\overline{V} \vDash$ " κ is

supercompact and κ 's supercompactness is indestructible under κ -directed closed forcing".

Both Theorems 1 and 2 will require that \overline{V} first be generically extended to a model V in which λ remains the least measurable cardinal above κ and carries the appropriate number of normal measures. For Theorem 1, let $\tau > \lambda^+$ be a fixed but arbitrary regular cardinal in V^* . We show that \overline{V} may be generically extended further to a model V such that $V \vDash ``\kappa$ is supercompact $+\lambda$ is the least measurable cardinal above $\kappa +\lambda$ carries τ normal measures". To do this, since $\mathbb L$ may be defined so that $|\mathbb L| = \kappa$, standard arguments in tandem with the Lévy–Solovay results [17] allow us to assume in addition that $\overline{V} \vDash ``GCH$ holds at and above $\kappa + \lambda$ is the least measurable cardinal above $\kappa + \Gamma$ he cardinal and cofinality structure at and above κ is the same as in V^* ". In particular, this means we may infer that $\overline{V} \vDash ``\tau > \lambda^+$ is a regular cardinal".

Let V be the generic extension obtained by forcing over \overline{V} with the partial ordering $Add(\lambda^+, \tau) * \dot{\mathbb{R}}$, where $\dot{\mathbb{R}}$ is a term for the reverse Easton iteration of length λ which begins by adding a Cohen subset to κ^+ and then adds a Cohen subset to the successor of each inaccessible cardinal in the open interval (κ^+, λ) . By its definition, $Add(\lambda^+, \tau) * \mathbb{R}$ is κ -directed closed, which means by indestructibility that $V \models$ " κ is supercompact". Further, since $Add(\lambda^+, \tau)$ is λ^+ -directed closed and GCH holds at and above κ in \overline{V} (GCH holding at and above λ in \overline{V} is sufficient for what follows), λ remains the least measurable cardinal above κ in $\overline{V}^{Add(\lambda^+,\tau)}$. and $\overline{V}^{\text{Add}(\lambda^+,\tau)} \models \text{``2}^{\lambda} = \lambda^+ \text{ and } 2^{\lambda^+} = \tau$ ''. Therefore, by Lemma 1.1 of [2], $V \models$ "\(\lambda\) is measurable and carries \(\tau\) normal measures". However, by Theorem 3, any cardinal in the open interval (κ^+, λ) measurable in V had to have been measurable in $\overline{V}^{\text{Add}(\lambda^+,\tau)}$. Since $\overline{V}^{\text{Add}(\lambda^+,\tau)} \models \text{``}\lambda$ is the least measurable cardinal above κ ", $V \models$ " λ is the least measurable cardinal above κ " as well. In addition, by our GCH assumptions, forcing over \overline{V} with $Add(\lambda^+, \tau) * \mathbb{R}$ preserves the cardinality and cofinality structures at and above λ .

For Theorem 2, we need to show that \overline{V} can be generically extended further to a model V such that $V \vDash "\kappa$ is supercompact $+ \lambda$ is the least measurable cardinal above $\kappa + \lambda$ carries λ^+ normal measures". To do this, we use a new method due to James Cummings, which appears in [5] in a broader context. We isolate Cummings' techniques in the following lemma, which we state in a slightly generalized form.

LEMMA 2.1. Suppose $M \vDash$ "ZFC + δ is measurable + GCH holds at and above δ ". Then for any $\gamma < \delta$, there is a γ -directed closed partial ordering \mathbb{P} such that $M^{\mathbb{P}} \vDash$ "ZFC + δ is measurable + δ carries δ^+ normal measures".

Proof. Let M be as in the hypotheses of Lemma 2.1. As above, if we first force over M with $\mathrm{Add}(\delta^+, \delta^{++}) * \dot{\mathbb{R}}$, where $\dot{\mathbb{R}}$ is a term for the reverse Easton iteration of length δ which begins by adding a Cohen subset to γ^+ and then adds a Cohen subset to the successor of each inaccessible cardinal in the open interval (γ^+, δ) , we obtain a model in which δ carries $2^{2^{\delta}} = 2^{\delta^+} = \delta^{++}$ normal measures. By its definition, this forcing is γ -directed closed. With a slight abuse of notation, we denote for the rest of Lemma 2.1 the model which results after the forcing also as M.

Working in M, let $\mathbb{Q} = \mathbb{Q}_0 * \dot{\mathbb{Q}}_1$, where $\mathbb{Q}_0 = \operatorname{Add}(\gamma^+, 1)$, and $\dot{\mathbb{Q}}_1$ is a term for $\operatorname{Coll}(\delta^+, \delta^{++})$. Since $|\mathbb{Q}_0| < \delta$, by the results of [17], $M^{\mathbb{Q}_0} \models \text{``}\delta$ is measurable". Therefore, as $M^{\mathbb{Q}_0} \models \text{``}\mathbb{Q}_1$ is δ^+ -directed closed" (which means that $M^{\mathbb{Q}_0}$ and $M^{\mathbb{Q}_0 * \dot{\mathbb{Q}}_1}$ contain the same subsets of δ), $M^{\mathbb{Q}_0 * \dot{\mathbb{Q}}_1} \models \text{``}\delta$ is measurable" as well. In particular, any normal measure over δ in $M^{\mathbb{Q}_0}$ remains a normal measure over δ in $M^{\mathbb{Q}_0 * \dot{\mathbb{Q}}_1}$.

Let $M^* = M^{\mathbb{Q}_0 * \dot{\mathbb{Q}}_1}$. By the preceding paragraph, let $\mathcal{U}^* \in M^*$ be a normal measure over δ , with $j^* : M^* \to N^*$ the associated ultrapower embedding. Note that $N^* = N^{j^*(\mathbb{Q}_0 * \dot{\mathbb{Q}}_1)}$ for the appropriate model N. In addition, N^* has the properties that $N^* \subseteq M^*$ and $(N^*)^\delta \subseteq N^*$ (so in particular, for any $\eta < \delta$, $(N^*)^\eta \subseteq N^*$). Since $\mathbb{Q}_0 * \dot{\mathbb{Q}}_1$ is such that $|\mathbb{Q}_0| = |[\gamma^+]^\gamma| < \delta$ and $\|\mathbb{Q}_0\| = \|\mathbb{Q}_0\| + \|\mathbb{Q}_0\| \|\mathbb{Q}_0\| +$

By the results of [17], $\mathcal{U}' = \{x \subseteq \delta \mid \exists y \subseteq x[y \in \mathcal{U}]\}$ is in $M^{\mathbb{Q}_0}$ a normal measure over δ . As was mentioned above, \mathcal{U}' is a normal measure over δ in $M^{\mathbb{Q}_0 * \dot{\mathbb{Q}}_1}$ as well. However, by their definitions, it must be the case that $\mathcal{U}' = \mathcal{U}^*$, since otherwise, if $x \in \mathcal{U}^*$ but $x \notin \mathcal{U}'$, then $\delta - x \in \mathcal{U}'$. This means that x is disjoint from a set in \mathcal{U} , which is absurd since $\mathcal{U} \subseteq \mathcal{U}^*$. Thus, it is actually the case that $\mathcal{U}^* \in M^{\mathbb{Q}_0}$, i.e., any normal measure over δ in $M^{\mathbb{Q}_0 * \dot{\mathbb{Q}}_1}$ is actually an element of $M^{\mathbb{Q}_0}$. However, again by the results of [17], there are the same number of normal measures over δ in $M^{\mathbb{Q}_0}$ as there are in M, i.e., there are $(\delta^{++})^M = (\delta^{++})^{M^{\mathbb{Q}_0}}$ normal measures over δ in $M^{\mathbb{Q}_0}$. Consequently, for $\zeta = (\delta^+)^M = (\delta^+)^{M^{\mathbb{Q}_0}} = (\delta^+)^{M^{\mathbb{Q}_0 * \dot{\mathbb{Q}}_1}}$, as $M^{\mathbb{Q}_0 * \dot{\mathbb{Q}}_1} \models \text{``}|(\delta^{++})^{M^{\mathbb{Q}_0}}| = \zeta^\text{``}, \delta \text{ carries } \delta^+ \text{ normal measures in } M^{\mathbb{Q}_0 * \dot{\mathbb{Q}}_1}$. Since $\mathrm{Add}(\delta^+, \delta^{++}) * \dot{\mathbb{R}} * \mathrm{Add}(\gamma^+, 1) * \mathrm{Coll}(\delta^+, \delta^{++}) \text{ is } \gamma\text{-directed closed over our ground model, this completes the proof of Lemma 2.1. <math>\blacksquare$

Returning to the construction of the model V used in the proof of Theorem 2, let $V^* \models$ "ZFC + GCH + $\kappa < \lambda$ are such that κ is supercompact and λ is the least measurable cardinal above κ ". As in the proof of Theorem 1, again using indestructibility, we may assume that V^* has been generically

extended to a model \overline{V} such that $\overline{V} \models "\kappa$ is indestructibly supercompact + GCH holds at and above $\kappa + \lambda$ is the least measurable cardinal above κ + The cardinal and cofinality structure at and above κ is the same as in V^* ". We then force over \overline{V} with $Add(\lambda^+, \lambda^{++}) * \mathbb{R} * Add(\kappa^+, 1) * Coll(\lambda^+, \lambda^{++})$, where \mathbb{R} is a term for the reverse Easton iteration of length λ which begins by adding a Cohen subset to κ^+ and then adds a Cohen subset to the successor of each inaccessible cardinal in the open interval (κ^+, λ) . Call the resulting model V. Since this partial ordering by its definition is κ -directed closed, $V \models$ " κ is supercompact". By Lemma 2.1, $V \models$ " λ is measurable and carries λ^+ normal measures", and by the remarks immediately prior to the proof of Lemma 2.1, $\overline{V}^{\text{Add}(\lambda^+,\lambda^{++})*\mathbb{R}} \models \text{``}\lambda$ is the least measurable cardinal above κ ". Since $\overline{V}^{\text{Add}(\lambda^+,\lambda^{++})*\mathbb{R}} \models \text{``}[\text{Add}(\kappa^+,1)] < \lambda$ ", by the results of [17], $\overline{V}^{\mathrm{Add}(\lambda^+,\lambda^{++})}*\dot{\mathbb{R}}*\dot{\mathrm{Add}}(\kappa^+,1) \models \text{``}\lambda \text{ is the least measurable cardinal above }\kappa\text{''}.$ Therefore, since $\overline{V}^{\mathrm{Add}(\lambda^+,\lambda^{++})} \times \mathbb{R}^* \mathrm{Add}(\kappa^+,1) = \mathrm{"Coll}(\lambda^+,\lambda^{++})$ is λ^+ -directed closed". $\overline{V}^{\mathrm{Add}(\lambda^+,\lambda^{++})}*\mathbb{R}*\mathrm{Add}(\kappa^+,1)*\mathrm{Coll}(\lambda^+,\lambda^{++})=V\vDash \text{``}\lambda$ is the least measurable cardinal above κ " as well.

We continue with a unified proof of Theorems 1 and 2. We summarize where we are at this point. For both of these theorems, we have that $V \vDash$ "ZFC + $\kappa < \lambda$ are such that κ is supercompact and λ is the least measurable cardinal above κ ". For Theorem 1, for τ as in the statement of that theorem, we have that in addition, $V \vDash$ " λ carries τ normal measures". For Theorem 2, we have that in addition, $V \vDash$ " λ carries λ +" normal measures".

We outline now the construction of the model N witnessing the conclusions of the Theorem of [6], since this model (built within V[G]) will witness the desired conclusions of our theorems. We quote freely from [6], using portions verbatim as necessary. As in [6], the fact that κ is 2^{λ} supercompact for $\lambda > \kappa$ the least measurable cardinal implies there is a supercompact ultrafilter \mathcal{U} over $P_{\kappa}(\lambda)$ with the Menas partition property [18] such that $C_0 = \{p \in P_{\kappa}(\lambda) \mid p \cap \kappa \text{ is a measurable cardinal and } \overline{p} \text{ is the least measurable cardinal greater than } p \cap \kappa\} \in \mathcal{U}$.

The forcing conditions \mathbb{P} used in the proof of Theorems 1 and 2 are the set of all finite sequences of the form $\langle p_1, \ldots, p_n, f_0, \ldots, f_n, A, F \rangle$ satisfying the following properties:

- 1. Each p_i for $1 \le i \le n$ is an element of C_0 , and for $1 \le i < j \le n$, $p_i \subseteq p_j$, where as in [6], $p_i \subseteq p_j$ means $p_i \subseteq p_j$ and $\overline{p_i} < p_j \cap \kappa$. 2. $f_0 \in \operatorname{Coll}(\omega_1, \langle \overline{p_1} \rangle)$, for $1 \le i < n$, $f_i \in \operatorname{Coll}(\overline{p_i^+}, \langle \overline{p_{i+1}} \rangle)$, and $f_n \in \operatorname{Coll}(\overline{p_i^+}, \overline{p_{i+1}})$
- 2. $f_0 \in \text{Coll}(\omega_1, \langle \overline{p_1}), \text{ for } 1 \leq i < n, f_i \in \text{Coll}(\overline{p}_i^+, \langle \overline{p_{i+1}}), \text{ and } f_n \in \text{Coll}(\overline{p}_n^+, \langle \lambda).$
- 3. $A \subseteq C_0$, $A \in \mathcal{U}$, and for every $q \in A$, $p_n \subseteq q$ and the range and domain of f_n are both subsets of q, meaning that if $\langle \langle \alpha, \beta \rangle, \gamma \rangle \in f_n$, then $\alpha, \beta, \gamma \in q$.

4. F is a function defined on A such that for $p \in A$, $F(p) \in \operatorname{Coll}(\overline{p}^+, <\lambda)$, and if $q \in A$, $p \subseteq q$, then the range and domain of F(p) are both subsets of q.

Before we can define the ordering on \mathbb{P} , we need to define, for $p,q\in A$ with $p\subseteq q$ and $f\in \operatorname{Coll}(\overline{p}^+,<\lambda)$ such that the range and domain of f are subsets of q, the collapse of f in q, denoted f_q^* . Let $h:q\to \overline{q}$ be the unique order isomorphism between q and \overline{q} . Then $f_q^*:\overline{p}^+\times\overline{q}\to\overline{q}$ is defined as $f_q^*(\langle \alpha,h^{-1}(\beta)\rangle)=h(f(\langle \alpha,h^{-1}(\beta)\rangle))$ if $h^{-1}(\beta)\in q$. In other words, to define f_q^* given f, we transform using h^{-1} the appropriate $\langle \alpha,\beta\rangle\in\overline{p}^+\times\overline{q}$ into an element of $\overline{p}^+\times\lambda$, apply f to it, and collapse the result using h. It is easily checked $f_q^*\in\operatorname{Coll}(\overline{p}^+,<\overline{q})$.

We are now able to define the ordering on \mathbb{P} . If $\pi_0 = \langle p_1, \ldots, p_n, f_0, \ldots, f_n, A, F \rangle$ and $\pi_1 = \langle q_1, \ldots, q_m, g_0, \ldots, g_m, B, H \rangle$, then $\pi_1 \geq \pi_0$ iff the following conditions hold:

- 1. $n \leq m$, $p_i = q_i$ for $1 \leq i \leq n$, and $q_i \in A$ for $n+1 \leq i \leq m$.
- 2. $f_i \subseteq g_i$ for $0 \le i < n$, and $(f_n)_{q_{n+1}}^* \subseteq g_n$. If n = m, then $f_n \subseteq g_n$.
- 3. $(F(q_i))_{q_{i+1}}^* \subseteq g_i$ for $n+1 \le i < m$, and $F(q_m) \subseteq g_m$.
- $A. B \subseteq A.$
- 5. For every $p \in B$, $F(p) \subseteq H(p)$.

Let G be V-generic over \mathbb{P} . As in [6], we can define sequences $r = \langle p_i \mid i \in \omega - \{0\} \rangle$ and $g = \langle G_i \mid i < \omega \rangle$, where $p_i \in r$ iff $\exists \pi \in G[p_i \in \pi]$ and $G_i = \bigcup \{f_i \mid \exists \pi \in G[\pi = \langle p_1, \ldots, p_n, f_0, \ldots, f_i, \ldots, f_n, A, F \rangle]\}$. These sequences will be well-defined by the genericity of G.

We are now in a position to describe the inner model $N \subseteq V[G]$ which, when appropriately constructed, will witness either the conclusions of Theorem 1 or the conclusions of Theorem 2. For $\delta \in [\kappa, \lambda)$, δ inaccessible, let $r \upharpoonright \delta = \langle p_i \cap \delta \mid i \in \omega - \{0\} \rangle$, and let $g \upharpoonright \delta = \langle G_i^{\delta} \mid i < \omega \rangle$, where $G_i^{\delta} = G_i \upharpoonright \overline{p_{i+1} \cap \delta}$. Intuitively, N is the least model of ZF extending V which contains, for each inaccessible $\delta \in [\kappa, \lambda)$, the sequences $r \upharpoonright \delta$ and $g \upharpoonright \delta$. More formally, let \mathcal{L}_1 be the sublanguage of the forcing language \mathcal{L} with respect to \mathbb{P} which contains symbols \check{v} for each $v \in V$, a unary predicate symbol \check{V} (to be interpreted $\check{V}(\check{v})$ iff $v \in V$), and for $\delta \in [\kappa, \lambda)$, δ inaccessible, symbols $\dot{r} \upharpoonright \delta$ for $r \upharpoonright \delta$ and $\dot{g} \upharpoonright \delta$ for $g \upharpoonright \delta$. Then N can be defined inside V[G] as follows:

$$\begin{split} N_0 &= \emptyset, \\ N_\lambda &= \bigcup_{\alpha < \lambda} N_\alpha \quad \text{if λ is a limit ordinal,} \\ N_{\alpha+1} &= \left\{ \left. x \subseteq N_\alpha \; \right| \; \begin{array}{l} x \text{ is definable over the model } \langle N_\alpha, \in, c \rangle_{c \in N_\alpha} \\ \text{via a term $\tau \in \mathcal{L}_1$ of rank $\leq \alpha$} \end{array} \right\}, \\ N &= \bigcup_{\alpha \in \operatorname{Ord}^V} N_\alpha. \end{split}$$

The standard arguments show $N \models \mathrm{ZF}$. By Lemmas 1–7 and the intervening remarks of [6], $N \models \text{``}\kappa = \aleph_\omega + \lambda = \kappa^+ = \aleph_{\omega+1} + \text{For any normal}$ measure $\mathcal{U} \in V$ over λ , $\mathcal{U}^* = \{x \subseteq \lambda \mid \exists y \subseteq x[y \in \mathcal{U}]\}$ is a normal measure over $\lambda + \mathrm{DC}_{\aleph_\omega}$ ". Further, Lemmas 3 and 4 of [6] and their proofs tell us that for $\delta < \kappa$ inaccessible, any formula mentioning only (terms for ground model sets and) $\dot{r} \upharpoonright \delta$ and $\dot{g} \upharpoonright \delta$ may be decided in $V[r \upharpoonright \delta, g \upharpoonright \delta]$ the same way as in V[G], and that $V[r \upharpoonright \delta, g \upharpoonright \delta]$ is obtained by forcing with a partial ordering having size less than λ . In particular, any set of ordinals in N is actually a member of $V[r \upharpoonright \delta, g \upharpoonright \delta]$ for the appropriate $\delta < \kappa$. These facts will be critical in the proof of Theorems 1 and 2 and the following two lemmas.

LEMMA 2.2. Suppose $\mathcal{U}^* \in N$ is a normal measure over λ . Then for some normal measure $\mathcal{U} \in V$ over λ , $\mathcal{U}^* = \{x \subseteq \lambda \mid \exists y \subseteq x[y \in \mathcal{U}]\}$.

Proof. We use ideas found in the proof of Theorem 2.3(e) of [7]. Let τ be a term for \mathcal{U}^* . Since $\mathcal{U}^* \in N$, we may choose $\delta < \kappa$, δ inaccessible, such that τ mentions only $\dot{r} \upharpoonright \delta$ and $\dot{g} \upharpoonright \delta$. By our remarks in the paragraph immediately preceding the statement of Lemma 2.2, the set $\mathcal{U}^* \upharpoonright \delta = \mathcal{U}^* \cap V[r \upharpoonright \delta, g \upharpoonright \delta] \in V[r \upharpoonright \delta, g \upharpoonright \delta]$, which immediately implies that $\mathcal{U}^* \upharpoonright \delta$ is in $V[r \upharpoonright \delta, g \upharpoonright \delta]$ a normal measure over λ . Again by our remarks in the paragraph immediately preceding the statement of Lemma 2.2 and by the results of [17], it must consequently be the case that for some $\mathcal{U} \in V$ a normal measure over λ , $\mathcal{U}^* \upharpoonright \delta$ is definable in $V[r \upharpoonright \delta, g \upharpoonright \delta]$ as $\{x \subseteq \lambda \mid \exists y \subseteq x[y \in \mathcal{U}]\}$. Therefore, since in N, \mathcal{U}^* is a normal measure over λ , by the same argument as found in the last paragraph of the proof of Lemma 2.1, for \mathcal{U}' defined in N as $\{x \subseteq \lambda \mid \exists y \subseteq x[y \in \mathcal{U}]\}$, $\mathcal{U}' = \mathcal{U}^*$. This completes the proof of Lemma 2.2.

Lemma 2.3. In N, the cardinal and cofinality structure above λ is the same as in V.

Proof. Let β and γ be arbitrary ordinals, and suppose $N \vDash "f : \beta \to \gamma$ is a function". Since f may be coded by a set of ordinals, by our remarks in the paragraph immediately preceding the statement of Lemma 2.2, $f \in V[r \upharpoonright \delta, g \upharpoonright \delta]$ for some $\delta < \kappa$. Since $V[r \upharpoonright \delta, g \upharpoonright \delta]$ is obtained by forcing with a partial ordering having size less than λ , f cannot witness that any V-cardinal greater than or equal to λ has a different cardinality or cofinality. This contradiction completes the proof of Lemma 2.3. \blacksquare

By Lemmas 2.2 and 2.3 and our earlier work, if V^* is as in Theorem 1, then N witnesses the conclusions of Theorem 1. Similarly, Lemmas 2.2 and 2.3 and our earlier work imply that if V^* is as in Theorem 2, then N witnesses the conclusions of Theorem 2. This completes the proofs of Theorems 1 and 2. \blacksquare

Suppose V is an inner model (e.g., as given in [19]) with $V \models "\kappa < \lambda$ are such that κ is regular and λ is measurable + For some cardinal τ which

is either less than or equal to κ or is one of the cardinals λ , λ^+ , or λ^{++} , λ carries τ normal measures". We observe that a simplified version of the proof of Theorem 3.1 of [7] shows the existence of a partial ordering \mathbb{P} and a symmetric inner model $N \subseteq V^{\mathbb{P}}$ such that $N \models$ " κ is regular $+\lambda = \kappa^+ + \tau$ is a cardinal $+\lambda$ is measurable and carries τ normal measures". In addition, suppose we start with a model $V^* \models$ "ZFC + GCH holds at and above λ + $\kappa < \lambda$ are such that κ is regular and λ is measurable $+\tau > \lambda^+$ is a regular cardinal" and then force with the partial ordering $Add(\lambda^+,\tau)*\dot{\mathbb{R}}$, where \mathbb{R} is a term for the reverse Easton iteration of length λ which begins by adding a Cohen subset to κ^+ and then adds a Cohen subset to the successor of each inaccessible cardinal in the open interval (κ^+, λ) . If we denote the resulting generic extension by V, then by standard arguments, κ remains regular in V. In addition, by our earlier remarks, $V \models "\tau$ is a regular cardinal $+\lambda$ is measurable and carries τ normal measures". Once again, a simplified version of the proof of Theorem 3.1 of [7] shows the existence of a partial ordering \mathbb{P} and a symmetric inner model $N \subseteq V^{\mathbb{P}}$ such that $N \models "\kappa$ is regular $+\lambda = \kappa^+ + \tau$ is a regular cardinal $+\lambda$ is measurable and carries τ normal measures". Note that in both cases mentioned above, $\mathbb{P} = \text{Coll}(\kappa, <\lambda)$, and if G is V-generic over \mathbb{P} , N may intuitively be described as the least model of ZF extending V which contains, for each inaccessible cardinal δ in the open interval (κ, λ) , the set $G \upharpoonright \delta$.

It is thus true that because of the existence of the relevant inner models, it is relatively consistent for the successor of a regular cardinal to be measurable and to carry essentially any desired (regular) cardinality of normal measures. Due to the current state of knowledge, however, the existence of a model in which $\aleph_{\omega+1}$ carries, say, exactly four normal measures remains open. We therefore conclude this paper by reiterating and expanding upon the title question, i.e., by asking how many normal measures $\aleph_{\omega+1}$, or indeed, the successor of any singular cardinal, can carry. More specifically, is it relatively consistent for $\aleph_{\omega+1}$ to carry exactly τ normal measures, where τ is a cardinal and either $\tau = 1$, $\tau = 2$, or $4 \le \tau \le \aleph_{\omega+1}$?

References

- A. Apter, On the class of measurable cardinals without the Axiom of Choice, Israel J. Math. 79 (1992), 367–379.
- [2] —, Some remarks on normal measures and measurable cardinals, Math. Logic Quart. 47 (2001), 35–44.
- [3] —, Successors of singular cardinals and measurability, Adv. Math. 55 (1985), 228–241.
- [4] —, Successors of singular cardinals and measurability revisited, J. Symbolic Logic 55 (1990), 492–501.

- [5] A. Apter, J. Cummings and J. D. Hamkins, Large cardinals with few measures, submitted to Proc. Amer. Math. Soc.
- [6] A. Apter and M. Magidor, Instances of dependent choice and the measurability of ℵ_{ω+1}, Ann. Pure Appl. Logic 74 (1995), 203–219.
- [7] E. Bull and E. M. Kleinberg, A consistent consequence of AD, Trans. Amer. Math. Soc. 247 (1979), 211–226.
- [8] J. D. Hamkins, Gap forcing, Israel J. Math. 125 (2001), 237–252.
- [9] —, Gap forcing: Generalizing the Lévy-Solovay theorem, Bull. Symbolic Logic 5 (1999), 264–272.
- [10] S. C. Jackson, A computation of δ_5^1 , Mem. Amer. Math. Soc. 140 (1999), no. 670.
- [11] —, AD and the very fine structure of $L(\mathbb{R})$, Bull. Amer. Math. Soc. 21 (1989), 77–81.
- [12] A. Kanamori, The Higher Infinite, Springer, Berlin, 1994.
- [13] E. M. Kleinberg, $AD \vdash$ "The \aleph_n are Jonsson cardinals and \aleph_ω is a Rowbottom cardinal", Ann. Math. Logic 12 (1977), 229–248.
- [14] —, Infinitary Combinatorics and the Axiom of Determinateness, Lecture Notes in Math. 612, Springer, Berlin, 1977.
- [15] —, Strong partition properties for infinite cardinals, J. Symbolic Logic 35 (1970), 410–428.
- [16] R. Laver, Making the supercompactness of κ indestructible under κ-directed closed forcing, Israel J. Math. 29 (1978), 385–388.
- [17] A. Lévy and R. Solovay, Measurable cardinals and the continuum hypothesis, ibid. 5 (1967), 234–248.
- [18] T. Menas, A combinatorial property of $P_{\kappa}(\lambda)$, J. Symbolic Logic 41 (1976), 225–234.
- [19] W. Mitchell, Sets constructible from sequences of ultrafilters, ibid. 39 (1974), 57–66.

Department of Mathematics

Baruch College of CUNY

New York, NY 10010, U.S.A.

E-mail: awabb@cunyvm.cuny.edu

Web: http://faculty.baruch.cuny.edu/apter

Received 5 September 2005