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How many normal measures can R, ; carry?
by

Arthur W. Apter (New York)

Abstract. We show that assuming the consistency of a supercompact cardinal with a
measurable cardinal above it, it is possible for X, 11 to be measurable and to carry exactly
7 normal measures, where 7 > N,;2 is any regular cardinal. This contrasts with the fact
that assuming AD + DC, X1 is measurable and carries exactly three normal measures.
Our proof uses the methods of [6], along with a folklore technique and a new method due
to James Cummings.

1. Introduction and preliminaries. It is a consequence of AD +
DC that N,1 is a measurable cardinal and carries exactly three normal
measures. This follows since assuming AD + DC, there are only three regular
cardinals (namely R, X, and Ry) below X, 11, AD + DC implies that R,4+1
satisfies the strong partition property N, 411 — (Nwl)m“, and if a successor
cardinal r satisfies the weak partition property Vo < [k — (/1)5], then &
is measurable and carries exactly the same number of normal measures as
regular cardinals below k. (In fact, if a successor cardinal  satisfies the
weak partition property, then any normal measure  carries must be of the
form {z C k | z contains a set which is § club}, where § < & is a regular
cardinal.) The proofs of these last three facts can be found respectively in
[14] (see also [13]), [10] (see also [11]), and [15].

When the Axiom of Determinacy is not assumed, however, the situation
concerning the number of normal measures that N, 1 can carry if N, is
measurable is not so clear. In fact, in the articles [3], [4], [1], and [6], in
which the measurability of X, is forced from supercompactness hypothe-
ses, the number of normal measures N, ;1 possesses in the relevant models
constructed is completely unclear.
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The purpose of this paper is to shed new light on the situation mentioned
in the preceding paragraph and construct, via forcing, models in which R,
is measurable and carries exactly 7 normal measures, where 7 > N, 12 is any
regular cardinal. Specifically, we will prove the following two theorems.

THEOREM 1. Let V* E “ZFC + GCH + k < X are such that k s
supercompact and X is the least measurable cardinal above k + T > AT is
a fived but arbitrary reqular cardinal”. There is then a generic extension V
of V*, a partial ordering P € V, and a symmetric submodel N C V¥ such
that N E “ZF + DCyx, + A = Ny41 @5 a measurable cardinal”. In N, the
cardinal and cofinality structure at and above \ is the same as in V (which
has the same cardinal and cofinality structure at and above \ as V*), and
N, 11 carries exactly T normal measures.

THEOREM 2. Let V* E “ZFC + GCH + k < A\ are such that k 1is
supercompact and X is the least measurable cardinal above k”. There is then
a generic extension V of V*, a partial ordering P € V, and a symmetric
submodel N C V¥ such that N E “ZF + DCy, + A =Ny 41 s a measurable
cardinal”. In N, N 19 is regular, and N,11 carries exactly N,1o normal
measures.

Theorems 1 and 2 provide our desired results. Taken together, these
theorems show that relative to the appropriate assumptions, it is consistent
for N,4+1 to be measurable and to carry 7 normal measures, where 7 > N, 49
is any regular cardinal.

We digress now to provide some preliminary information. Essentially,
our notation and terminology are standard, although exceptions to this will
be noted. For a < 3 ordinals, [« 8], [, 5), (o, 8], and («, 3) are as in the
usual interval notation. For x a set of ordinals, T is the order type of x.

When forcing, ¢ > p means that ¢ is stronger than p. For x a regular
cardinal, the partial ordering PP is k-directed closed if every directed set of
conditions of size less than x has a common extension. For x regular and A
any ordinal, Add(k, \) is the standard partial ordering for adding A Cohen
subsets to . We abuse notation somewhat and use both V¥ and V[G] to
denote the generic extension by the partial ordering P. If x € V[G], then &
will be a term in V for x. We may, from time to time, confuse terms with
the sets they denote and write x when we actually mean & or &, especially
when x is some variant of the generic set G, or z is in the ground model V.

For k < A regular cardinals, Coll(k, A) is the standard Lévy partial or-
dering for collapsing A to k. Coll(k, <\) is the standard Lévy partial or-
dering for collapsing every cardinal 6 € (k,\) to k. For such a ¢ and any
S C Coll(k, <A), we define S[6 = {p € S | dom(p) C kx d}. It is well known
that if G is V-generic over Coll(k, <\) and 6 € (k, \) is a cardinal, then G|
is V-generic over Coll(x, <A)[6.
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Note that we are assuming familiarity with the large cardinal notions
of measurability and supercompactness. Interested readers may consult [12]
for further details.

We conclude Section 1 by mentioning that there are two results critical
to the proofs of Theorems 1 and 2 which will be taken as “black boxes”. For
the convenience of readers, we provide a brief discussion of these facts here.
The first concerns the folklore result that if V E “ZFC + &k is a measurable
cardinal + 2% = k17, then any reverse Easton iteration adding a single
Cohen subset to every element of an unbounded normal measure 0 subset
of k (such as a set of successor cardinals) preserves the measurability of
and increases the number of normal measures « carries to 22° = 2% This
is the essential content of Lemma 1.1 of [2].

The second is Hamkins’ Gap Forcing Theorem of [8] and [9]. We state
the version of this theorem we will use here, along with some associated
terminology, quoting freely from [8] and [9]. Suppose PP is a partial ordering
which can be written as Q % R, where |Q| < § and IFg “R is §*-directed
closed”. In Hamkins’ terminology of [8] and [9], P admits a gap at . Also, as
in the terminology of [8] and [9] (and elsewhere), an embedding j : V — M
is amenable to V' when j[A € V for any A € V. The relevant form of the
Gap Forcing Theorem is then the following.

THEOREM 3 (Hamkins). Suppose that V[G] is a forcing extension ob-
tained by forcing that admits a gap at some 6 < k and j : V]G] — M[j(G)] is
an embedding with critical point r for which M[j(G)] C V[G] and M[j(G)]°
C M[j(G)] in V[G]. Then M C V; indeed, M = VNM][j(G)]. If the full em-
bedding j is amenable to V|G|, then the restricted embedding j|V : V — M
is amenable to V. If j is definable from parameters (such as a measure or
extender) in V[G], then the restricted embedding j|V is definable from the
names of those parameters in V.

It immediately follows from Theorem 3 that any cardinal x measurable
in a generic extension obtained by forcing that admits a gap below x must
also be measurable in the ground model.

2. The Proofs of Theorems 1 and 2. We turn now to the proofs of
Theorems 1 and 2. The proofs of these theorems are quite similar to one
another, so we prove them in tandem, making the relevant distinctions when
necessary.

Proof. Let V* E “ZFC + GCH + k < X are such that k is supercompact
and A is the least measurable cardinal above k”. By Laver’s result of [16], we
assume that V* has been generically extended via the partial ordering IL to
a model V such that V E “k is indestructibly supercompact”, i.e., V E “x is
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supercompact and x’s supercompactness is indestructible under x-directed
closed forcing”.

Both Theorems 1 and 2 will require that V first be generically extended
to a model V' in which )\ remains the least measurable cardinal above k
and carries the appropriate number of normal measures. For Theorem 1,
let 7 > AT be a fixed but arbitrary regular cardinal in V*. We show that
V may be generically extended further to a model V such that V E “x
is supercompact + A is the least measurable cardinal above k 4+ A carries
7 normal measures”. To do this, since . may be defined so that |L| = &,
standard arguments in tandem with the Lévy-Solovay results [17] allow us
to assume in addition that V £ “GCH holds at and above s + X is the least
measurable cardinal above k + The cardinal and cofinality structure at and
above k is the same as in V*”. In particular, this means we may infer that
V E “r > AT is a regular cardinal”.

Let V be the generic extension obtained by forcing over V with the
partial ordering Add(A*,7) * R, where R is a term for the reverse Easton
iteration of length A\ which begins by adding a Cohen subset to x* and
then adds a Cohen subset to the successor of each inaccessible cardinal in
the open interval (x1,\). By its definition, Add(AT,7) * R is -directed
closed, which means by indestructibility that V' E “k is supercompact”.
Further, since Add(A*,7) is AT-directed closed and GCH holds at and
above x in V (GCH holding at and above A in V is sufficient for what
follows), A remains the least measurable cardinal above k in VAdd(’\+’T), and
VAAQTT) £ ow9d — A+ and 227 = 77. Therefore, by Lemma 1.1 of [2],
V E “X is measurable and carries 7 normal measures”. However, by Theo-
rem 3, any cardinal in the open interval (k*,\) measurable in V' had to
have been measurable in VAMATT)  Gince VAMATT) £ «) is the least
measurable cardinal above x”, V FE “)\ is the least measurable cardinal
above k7 as well. In addition, by our GCH assumptions, forcing over V'
with Add(AT, 7) R preserves the cardinality and cofinality structures at
and above \.

For Theorem 2, we need to show that V' can be generically extended
further to a model V' such that V' F “k is supercompact + A is the least
measurable cardinal above k + A carries AT normal measures”. To do this,
we use a new method due to James Cummings, which appears in [5] in a
broader context. We isolate Cummings’ techniques in the following lemma,
which we state in a slightly generalized form.

LEMMA 2.1. Suppose M E “ZFC + § is measurable + GCH holds at and
above 6”. Then for any v < §, there is a y-directed closed partial ordering P
such that M¥ £ “ZFC + 6 is measurable + & carries 67 normal measures”.



How many normal measures can Ry,41 carry? 61

Proof. Let M be as in the hypotheses of Lemma 2.1. As above, if we first
force over M with Add(dF, 87+)«R, where R is a term for the reverse Easton
iteration of length § which begins by adding a Cohen subset to ™ and then
adds a Cohen subset to the successor of each inaccessible cardinal in the
open interval (y*,d), we obtain a model in which § carries 92" — 90t — §++
normal measures. By its definition, this forcing is y-directed closed. With
a slight abuse of notation, we denote for the rest of Lemma 2.1 the model
which results after the forcing also as M.

Working in M, let Q = Qp % Q, where Qp = Add(yT,1), and Q; is a
term for Coll(6+,67). Since |Qo| < 6, by the results of [17], M@ E 5
is measurable”. Therefore, as M0 E “Qq is 6T-directed closed” (which
means that M@ and M@*@ contain the same subsets of §), MQ*Q  «§
is measurable” as well. In particular, any normal measure over ¢ in M Qo
remains a normal measure over ¢ in M Qo*Q1

Let M* = M@*Q By the preceding paragraph, let U* € M* be a
normal measure over §, with j* : M* — N the associated ultrapower
embedding. Note that N* = NJI"(@+*Q1) for the appropriate model N. In
addition, N* has the properties that N* C M* and (N*)° € N* (so in
particular, for any n < 4, (N*)7 C N*). Since Qg * Q is such that |Qo| =
I[v*]7] < 6 and Ikg, “Qq is |Qo|™ T-directed closed”, by Theorem 3, j* must
lift an elementary embedding j : M — N such that j[A € M for any A € M.
Hence, ford = {x C 6 |d € j(z)}, U € M, U is a normal measure over 9,
and U CU*.

By the results of [17], U’ = {&x € 6 | Iy C z[y € U]} is in M a
normal measure over J. As was mentioned above, U’ is a normal measure
over § in M@*Q a5 well. However, by their definitions, it must be the case
that U’ = U*, since otherwise, if x € U* but = € U’, then § — x € U'. This
means that z is disjoint from a set in I/, which is absurd since U CU*.
Thus, it is actually the case that U* € M Q@ je., any normal measure
over § in MQ*Q is actually an element of M@ . However, again by the
results of [17], there are the same number of normal measures over § in M0

as there are in M, i.e., there are (577)" = (6++)MQO normal measures
over § in M®. Consequently, for ¢ = (67)" = (5+)MQO = (5+)MQO*Q1, as
MQo*Q “]((5+f)MQO'] = (7, 6 carries 6 normal measures in M®*1. Since
Add(6F,07F) « R+ Add(y™,1) * Coll(6T,51T) is y-directed closed over our
ground model, this completes the proof of Lemma 2.1. u

Returning to the construction of the model V' used in the proof of Theo-
rem 2, let V* E “ZFC 4+ GCH + x < A are such that & is supercompact and
A is the least measurable cardinal above k”. As in the proof of Theorem 1,
again using indestructibility, we may assume that V* has been generically
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extended to a model V such that V E “k is indestructibly supercompact
+ GCH holds at and above x + A is the least measurable cardinal above k
+ The cardinal and cofinality structure at and above & is the same as in V*”.
We then force over V with Add(AT, \TT) « R « Add(kT, 1) * Coll(AT, AT,
where R is a term for the reverse Easton iteration of length A which be-
gins by adding a Cohen subset to kT and then adds a Cohen subset to the
successor of each inaccessible cardinal in the open interval (k1 \). Call the
resulting model V. Since this partial ordering by its definition is x-directed
closed, V F “k is supercompact”. By Lemma 2.1, V' F “X is measurable and
carries AT normal measures”, and by the remarks immediately prior to the
proof of Lemma 2.1, VAdd()‘+’.)‘++)*R F “X is the least measurable cardinal
above k7. Since VAMOATAT+R =« Add(k+,1)] < A7, by the results of [17],
AT N ReAdd(m 1) | ) is the least measurable cardinal above k”.
Therefore, since VAMATATNReAdA(T.1) = «Coll( A+, ATT) is At-directed

VAdd(A+,A++)*R*Aad(n+,1)*0611(A+,A++)
b

closed” =V E “)\ is the least measur-

able cardinal above xk” as well.

We continue with a unified proof of Theorems 1 and 2. We summarize
where we are at this point. For both of these theorems, we have that V E
“ZFC + k < X are such that k is supercompact and A is the least measurable
cardinal above x”. For Theorem 1, for 7 as in the statement of that theorem,
we have that in addition, V' F “X carries 7 normal measures”. For Theorem 2,
we have that in addition, V F “)\ carries AT normal measures”.

We outline now the construction of the model N witnessing the conclu-
sions of the Theorem of [6], since this model (built within V[G]) will witness
the desired conclusions of our theorems. We quote freely from [6], using por-
tions verbatim as necessary. As in [6], the fact that k is 2 supercompact
for A > k the least measurable cardinal implies there is a supercompact
ultrafilter U over P, (\) with the Menas partition property [18] such that
Co = {p € P;()\) | pNk is a measurable cardinal and p is the least measurable
cardinal greater than p Nk} € U.

The forcing conditions P used in the proof of Theorems 1 and 2 are the
set of all finite sequences of the form (p1,...,pn, fo,- .., fn, A, F) satisfying
the following properties:

1. Each p; for 1 < ¢ < n is an element of Cy, and for 1 < ¢ < j < n,
pi C pj, where as in [6], p; C p; means p; C p; and p; < pj N K.

2. fo € Coll(wy,<p1), for 1 < i < n, fi € Coll(p;, <Pit1), and f,, €
Coll(p;f, <).

3. A C Cy, AeclU, and for every ¢ € A, p, C ¢ and the range and
domain of f,, are both subsets of ¢, meaning that if ((«, 3),7) € fn,
then «, 8,7 € q.
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4. F is a function defined on A such that for p € A, F(p) € Coll(p™, <)),
and if ¢ € A, p C g, then the range and domain of F'(p) are both
subsets of ¢.

Before we can define the ordering on PP, we need to define, for p,q € A
with p C ¢ and f € Coll(p™, <) such that the range and domain of f are
subsets of ¢, the collapse of f in g, denoted f;. Let h: ¢ — 7 be the unique
order isomorphism between ¢ and g. Then f; : P x q — q is defined as
filla, h71(B))) = h(f (o, h71(B)))) if h~(B) € q. In other words, to define
fq given f, we transform using h~! the appropriate (a, ) € p* x g into an
element of p™ x A, apply f to it, and collapse the result using h. It is easily
checked f € Coll(7", <7).

We are now able to define the ordering on P. If mg = (p1, - . ., Pns fou - - - [y
A, F) and 71 = {(q1,-.,49m, 90, - - - s Gm, B, H), then 7w > my iff the following
conditions hold:

lL.n<m,p=qgforl<i<n,and ¢ € Aforn+1<i<m.

2. fi Cgifor 0<i<mn,and (fa),,,, Cgn If n=m, then f, C g,.
3. (F(qi));+1 Cgiforn+1<i<m,and F(qn) C gm.

4

)

.BCA
. For every p € B, F(p) C H(p).

Let G be V-generic over P. As in [6], we can define sequences r = (p; |
i € w—{0}) and g = (G; | i < w), where p; € r iff Ir € Glp; € 7]
and G; = U{fi | Im € G[mr = (p1,-- - Dns fo, -+ fis- vy fny A, F)]}. These
sequences will be well-defined by the genericity of G.

We are now in a position to describe the inner model N C V[G] which,
when appropriately constructed, will witness either the conclusions of The-
orem 1 or the conclusions of Theorem 2. For § € [k, \), 0 inaccessible,
let 7[0 = (p;NJ | i € w—{0}), and let g0 = (G? | i < w), where
Gf = G;[pix+1 N §. Intuitively, IV is the least model of ZF extending V' which
contains, for each inaccessible § € [k, \), the sequences r[d and g[d. More
formally, let £; be the sublanguage of the forcing language £ with respect
to P which contains symbols @ for each v € V, a unary predicate symbol V
(to be interpreted V(v) iff v € V), and for § € [k, \), § inaccessible, symbols
716 for r[§ and ¢[d for g[d. Then N can be defined inside V[G] as follows:

No =0,
Ny = UgexNa if Ais a limit ordinal,

x is definable over the model (N, €, c>c€Na}
via a term 7 € L1 of rank < « ’

Na+1:{nga

N = UaGOrdV Na‘
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The standard arguments show N F ZF. By Lemmas 1-7 and the inter-
vening remarks of [6], N F “s = R, + A = kT = Ny41 + For any normal
measure U € V over \, U* = {x C X\ | Jy C z[y € U]} is a normal measure
over A + DCy,”. Further, Lemmas 3 and 4 of [6] and their proofs tell us
that for 6 < k inaccessible, any formula mentioning only (terms for ground
model sets and) 7[0 and ¢[0 may be decided in V[r[d, g[d] the same way as
in V[G], and that V[r[d, g[d] is obtained by forcing with a partial ordering
having size less than A. In particular, any set of ordinals in IV is actually a
member of V[r[d, gd] for the appropriate § < k. These facts will be critical
in the proof of Theorems 1 and 2 and the following two lemmas.

LEMMA 2.2. Suppose U* € N is a normal measure over \. Then for
some normal measure U € V over A\, U* = {x C X\ | Jy C z[y € U]}.

Proof. We use ideas found in the proof of Theorem 2.3(e) of [7]. Let 7 be
a term for U*. Since U* € N, we may choose § < k, d inaccessible, such that
7 mentions only 7[d and ¢[d. By our remarks in the paragraph immediately
preceding the statement of Lemma 2.2, the set U*[§ = U* N V[r[d, g[d] €
V[rld, g1d], which immediately implies that U*[d is in V[r[d, g[d] a nor-
mal measure over A\. Again by our remarks in the paragraph immediately
preceding the statement of Lemma 2.2 and by the results of [17], it must
consequently be the case that for some U/ € V a normal measure over A,
U*10 is definable in Vr[o,gld] as {x C X\ | Jy C z[y € U]}. Therefore,
since in N, U* is a normal measure over A, by the same argument as found
in the last paragraph of the proof of Lemma 2.1, for &’ defined in N as
{r C\| Ty Cz[y € U]}, U =U*. This completes the proof of Lemma 2.2. =

LEMMA 2.3. In N, the cardinal and cofinality structure above X\ is the
same as in V.

Proof. Let 8 and ~ be arbitrary ordinals, and suppose N F “f : 8 — ~
is a function”. Since f may be coded by a set of ordinals, by our remarks
in the paragraph immediately preceding the statement of Lemma 2.2, f €
V[rld, g1d] for some § < k. Since V[r[d, g[d] is obtained by forcing with
a partial ordering having size less than A\, f cannot witness that any V-
cardinal greater than or equal to A has a different cardinality or cofinality.
This contradiction completes the proof of Lemma 2.3. u

By Lemmas 2.2 and 2.3 and our earlier work, if V* is as in Theorem 1,
then N witnesses the conclusions of Theorem 1. Similarly, Lemmas 2.2
and 2.3 and our earlier work imply that if V* is as in Theorem 2, then
N witnesses the conclusions of Theorem 2. This completes the proofs of
Theorems 1 and 2. =

Suppose V' is an inner model (e.g., as given in [19]) with V F “k < A
are such that x is regular and )\ is measurable 4+ For some cardinal 7 which
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is either less than or equal to x or is one of the cardinals X\, AT, or AT,
A carries 7 normal measures”. We observe that a simplified version of the
proof of Theorem 3.1 of [7] shows the existence of a partial ordering P and a
symmetric inner model N C VP such that N E “x is regular + A = * + 7 is
a cardinal + A is measurable and carries 7 normal measures”. In addition,
suppose we start with a model V* E “ZFC + GCH holds at and above A +
k < X are such that k is regular and X is measurable + 7 > AT is a regular
cardinal” and then force with the partial ordering Add(A™*, 7) R, where
R is a term for the reverse Easton iteration of length A which begins by
adding a Cohen subset to x* and then adds a Cohen subset to the successor
of each inaccessible cardinal in the open interval (k*,\). If we denote the
resulting generic extension by V', then by standard arguments, x remains
regular in V. In addition, by our earlier remarks, V' F “r is a regular cardinal
+ A is measurable and carries 7 normal measures”. Once again, a simplified
version of the proof of Theorem 3.1 of [7] shows the existence of a partial
ordering P and a symmetric inner model N C V¥ such that N E “k is regular
+ A= xT + 7is a regular cardinal + ) is measurable and carries 7 normal
measures”. Note that in both cases mentioned above, P = Coll(k, <)), and
if G is V-generic over P, N may intuitively be described as the least model
of ZF extending V which contains, for each inaccessible cardinal § in the
open interval (k, A), the set G|9.

It is thus true that because of the existence of the relevant inner models,
it is relatively consistent for the successor of a regular cardinal to be mea-
surable and to carry essentially any desired (regular) cardinality of normal
measures. Due to the current state of knowledge, however, the existence of
a model in which N, carries, say, exactly four normal measures remains
open. We therefore conclude this paper by reiterating and expanding upon
the title question, i.e., by asking how many normal measures N, 1, or in-
deed, the successor of any singular cardinal, can carry. More specifically, is
it relatively consistent for N1 to carry exactly 7 normal measures, where
7 is a cardinal and either =1, 7 =2,0r 4 <7 <N, 17
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