More about spaces with a small diagonal

by

Alan Dow and Oleg Pavlov (Charlotte, NC)

Abstract

Hušek defines a space X to have a small diagonal if each uncountable subset of X^{2} disjoint from the diagonal has an uncountable subset whose closure is disjoint from the diagonal. Hušek proved that a compact space of weight ω_{1} which has a small diagonal will be metrizable, but it remains an open problem to determine if the weight restriction is necessary. It has been shown to be consistent that each compact space with a small diagonal is metrizable; in particular, Juhász and Szentmiklóssy proved that this holds in models of CH . In the present paper we prove that this also follows from the Proper Forcing Axiom (PFA). We furthermore present two (consistent) examples of countably compact non-metrizable spaces with small diagonal, one of which maps perfectly onto ω_{1}.

1. Introduction. We refer the reader to Gruenhage's interesting article [Gru02] for more background on spaces with small diagonal. In particular, as mentioned there, H. X. Zhou [Zho82] is responsible for broadening the question to countably compact and Lindelöf spaces, while Hušek originally asked about compact and ω_{1}-compact spaces. It has already been shown to hold in some models that compact spaces with small diagonal are metrizable (see [Zho82, Dow88a, Dow89, JS92]). As mentioned in the abstract, we prove that PFA implies that compact spaces with small diagonal are metrizable. This is the content of the second section. In the third section, we present two constructions of countably compact spaces with small diagonals. The first, from the hypothesis \diamond^{+}, maps perfectly onto ω_{1} with metric fibers. The second example is presented because the set-theoretic hypothesis that we are able to use is quite weak.

In this section we review some of the already established results concerning spaces with small diagonal that will be useful in our proofs. It is easily seen that a space with a G_{δ}-diagonal has a small diagonal. The Sorgenfrey line is a well known example of a Lindelöf space with a G_{δ}-diagonal which

[^0]is not metrizable. However for countably compact spaces the following very interesting result is well known.

Proposition 1 ([Cha76]). A countably compact space with a G_{δ}-diagonal is metrizable.

Proposition 2 ([JS92]). A compact space with a small diagonal has countable tightness.

Proposition 3 ([Dow88b]). A countably compact space is metrizable if each of its subspaces of cardinality at most \aleph_{1} is metrizable.

Proposition 4 ([Huš77]). A compact space of weight at most \aleph_{1} is metrizable if it has a small diagonal.

Corollary 5. If a compact space has a small diagonal, then it is metrizable if each of its separable subspaces is metrizable.

Proof. By Proposition 3, we may assume that X has a dense subset of cardinality at most \aleph_{1} and, by Proposition 2 , that X has countable tightness. Therefore X can be written as an increasing union of compact separable subspaces. If each of these is metrizable, then each has countable weight. In addition, X would then have a net of cardinality \aleph_{1}. Since the weight of a compact space is equal to the minimum cardinality of a net (i.e. weight is equal to net weight), X would have weight at most ω_{1}, and so by Proposition 4, X would be metrizable.

Proposition 6 ([Gru02]). A first-countable hereditarily Lindelöf space X with a small diagonal will have a G_{δ}-diagonal.
2. PFA and compact spaces with small diagonal. As is well known, it follows from PFA that there is no S -space.

Proposition 7 ([Tod89]). PFA implies that each hereditarily separable $(h S)$ space is also hereditarily Lindelöf $(h L)$.

Proposition 8 ([Tod89]). PFA implies OCA: if X is a separable metric space and K_{0} is a symmetric open subset of $X^{2} \backslash \Delta_{X}$, then either there is an uncountable $Y \subset X$ such that $Y^{2} \backslash \Delta_{X} \subset K_{0}$, or X can be covered by a countable family $\left\{X_{n}: n \in \omega\right\}$ such that for each n, X_{n}^{2} is disjoint from K_{0}.

Our main result of this section is the following theorem.
Theorem 9. PFA implies that each compact space with a small diagonal is metrizable.

By Corollary 5, we may assume that our space of interest is separable. We will use the following characterization from [Gru02, 1.2].

Proposition 10. A Lindelöf space X has a small diagonal iff for each uncountable family $\left\{\left(x_{\alpha}, y_{\alpha}\right): \alpha \in \omega_{1}\right\}$ of pairs of distinct points of X there
is an uncountable $A \subset \omega_{1}$ such that $\left\{x_{\alpha}: \alpha \in A\right\}$ and $\left\{y_{\alpha}: \alpha \in A\right\}$ are separated by disjoint open F_{σ}-sets.

The following result is established by proving that f is a closed mapping on Y, hence a homeomorphism.

Proposition 11. If X is countably compact and f is a continuous function from X into a metric space and $Y \subset X$ is such that f is one-to-one on $Y\left(i . e . f^{-1}(f(y))=\{y\}\right.$ for each $\left.y \in Y\right)$, then Y is metrizable.

In case it may have independent interest, we prove the following strengthening of Theorem 9. The reader will recall that Balogh has shown that PFA implies that each compact space of countable tightness is sequential.

Lemma 12. PFA implies that each separable non-metrizable sequentially compact space X will contain a family of pairs $\left\{\left(y_{\alpha}, z_{\alpha}\right): \alpha \in \omega_{1}\right\}$ such that for each uncountable $A \subset \omega_{1},\left\{y_{\alpha}: \alpha \in A\right\}$ and $\left\{z_{\alpha}: \alpha \in A\right\}$ are not separated by disjoint open sets.

Proof. We may assume that ω is a dense subset of our space X and that X is embedded in $[0,1]^{\kappa}$ for some cardinal κ. We know by Proposition 3 that X must contain a non-metrizable subspace of cardinality ω_{1}, but we will choose a special subspace.

If X were hL, then it would be compact and first countable, hence by Proposition $6, X$ would be metrizable. Therefore X is not hL, so it has a right-separated subspace $\left\{x_{\alpha}: \alpha \in \omega_{1}\right\}$ (i.e. for each $\alpha<\omega_{1}$, the set $\left\{x_{\beta}: \beta<\alpha\right\}$ is relatively open). Additionally, since we are assuming PFA, by Proposition 7 the subspace $\left\{x_{\alpha}: \alpha<\omega_{1}\right\}$ cannot be hS, hence it has an uncountable discrete subspace. Therefore we may assume that $\left\{x_{\alpha}: \alpha \in \omega_{1}\right\}$ is a discrete subspace of X. For each $\alpha<\omega_{1}$, let W_{α}, U_{α} be open subsets of X so that $x_{\alpha} \in W_{\alpha} \subset \bar{W}_{\alpha} \subset U_{\alpha}$, and $\bar{U}_{\alpha} \cap\left\{x_{\beta}: \alpha \neq \beta<\omega_{1}\right\}$ is empty.

For each $\alpha \neq \gamma, x_{\alpha} \notin \bar{U}_{\gamma}$, hence the family $\left\{\omega \cap W_{\alpha} \backslash \bar{U}_{\gamma}: \gamma \neq \alpha\right\}$ has the finite intersection property. Since PFA implies MA $\left(\omega_{1}\right)$, there is an infinite set $a_{\alpha} \subset W_{\alpha} \cap \omega$ such that $a_{\alpha} \cap \bar{U}_{\gamma}$ is finite for all $\gamma \neq \alpha$. Since X is sequentially compact, we may assume that there is a $y_{\alpha} \in \bar{W}_{\alpha}$ such that a_{α} converges to y_{α}. Furthermore, by enlarging W_{α} by a small amount, we may assume that $y_{\alpha} \in W_{\alpha} \subset \bar{W}_{\alpha} \subset U_{\alpha}$.

Now we have chosen an uncountable discrete set $Y=\left\{y_{\alpha}: \alpha \in \omega_{1}\right\}$ and a family of sequences $a_{\alpha} \subset \omega$ such that a_{α} converges to y_{α}. It of course follows that $\omega \cup Y$ is not metrizable. We are ready to apply OCA. Let \mathcal{X} denote the family of all pairs (a, b) of subsets of ω such that there is an $\alpha \in \omega_{1}$ and a $z \in X \backslash Y$ such that $a=a_{\alpha}, a \cap b$ is empty, and b converges to z.

We topologize \mathcal{X} by the usual separable metric topology where for each $n \in \omega,\left[(a, b)_{n}\right]$ denotes the family of all pairs $\left(a^{\prime}, b^{\prime}\right) \in \mathcal{X}$ such that $a^{\prime} \cap n=$ $a \cap n$ and $b^{\prime} \cap n=b \cap n$.

Define a set $K_{0} \subset \mathcal{X}^{2}$ by $\left(\left(a_{\alpha}, b_{\alpha}\right),\left(a_{\beta}, b_{\beta}\right)\right) \in K_{0}$ if $\left(a_{\alpha} \cap b_{\beta}\right) \cup\left(a_{\beta} \cap b_{\alpha}\right)$ is not empty. Notice that it follows that $\alpha \neq \beta$ since otherwise $\left(a_{\alpha} \cup a_{\beta}\right) \cap$ $\left(b_{\alpha} \cup b_{\beta}\right)$ would be empty.

One can see that K_{0} is open by simply choosing n large enough so that $\left(a_{\alpha} \cap b_{\beta}\right) \cup\left(a_{\beta} \cap b_{\alpha}\right)$ has a point in it below n.

Assume that $A \subset \omega_{1}$ is uncountable and $\left\{\left(a_{\alpha}, b_{\alpha}\right): \alpha \in A\right\}$ is such that

$$
\left(\left(a_{\alpha}, b_{\alpha}\right),\left(a_{\beta}, b_{\beta}\right)\right) \in K_{0} \quad \text { for each } \alpha \neq \beta \in A
$$

For each $\alpha \in A$, let $z_{\alpha} \in X$ be the point such that b_{α} converges to z_{α}.
Claim 1. The family $\left\{\left(y_{\alpha}, z_{\alpha}\right): \alpha \in A\right\}$ satisfies the conclusion of the lemma.

Assume that U, V are disjoint open subsets of X such that $y_{\alpha} \in U$ and $z_{\alpha} \in V$ for all $\alpha \in A^{\prime}$ for some uncountable $A^{\prime} \subset A$. By shrinking A^{\prime} we may assume that there is an $n \in \omega$ such that $a_{\alpha} \backslash U \subset n$ and $b_{\alpha} \backslash V \subset n$ for all $\alpha \in A^{\prime}$. Furthermore, we may assume that $a_{\alpha} \cap n$ and $b_{\alpha} \cap n$ are independent of $\alpha \in A^{\prime}$. Clearly then, if α, β are distinct members of A^{\prime} we see that $n \cap a_{\alpha} \cap b_{\beta}=n \cap a_{\beta} \cap b_{\beta}$ is empty, and $a_{\alpha} \backslash n \subset U$ while $b_{\beta} \backslash n \subset V$, contradicting that $\left(\left(a_{\alpha}, b_{\alpha}\right),\left(a_{\beta}, b_{\beta}\right)\right) \in K_{0}$.

To finish the proof, we assume that \mathcal{X}_{n} are subsets of \mathcal{X} with the property that \mathcal{X}_{n}^{2} is disjoint from K_{0} and show that \mathcal{X} is not equal to $\bigcup_{n} \mathcal{X}_{n}$. For each n, let $Y_{n}=\bigcup\left\{a_{\alpha}:(\exists b)\left(a_{\alpha}, b\right) \in \mathcal{X}_{n}\right\}$.

Let M be a countable elementary submodel of $H(\theta)$ for some large enough regular cardinal θ and assume that $\left\{y_{\alpha}: \alpha \in \omega_{1}\right\},\left\{a_{\alpha}: \alpha \in \omega_{1}\right\}$, $\left\{W_{\alpha}: \alpha \in \omega_{1}\right\},\left\{\mathcal{X}_{n}: n \in \omega\right\}$, and the embedding of X as a subspace of $[0,1]^{\kappa}$ are each elements of M.

Let f denote the projection map from X into $[0,1]^{M \cap \kappa}$. Let $\delta=M \cap \omega_{1}$ (the minimum ordinal not in M). Let $\left\{U_{m}: m \in \omega\right\}$ be a descending family of basic open subsets of $[0,1]^{\kappa \cap M}$ (using rational intervals in finitely many cooordinates) which form a neighborhood base at $f\left(y_{\delta}\right)$. Although the family $\left\{U_{m}: m \in \omega\right\}$ is actually disjoint from M, the set $f^{-1}\left(U_{m}\right)$, for each m, is an open subset of X which is an element of M. Note that for $\beta \in M \cap \omega_{1}$, $f\left(y_{\beta}\right) \neq f\left(y_{\delta}\right)$ since $W_{\beta} \in M$ and $f\left(y_{\gamma}\right) \notin f\left(W_{\beta}\right)$ for all $\gamma>\beta$.

Let $J=\left\{n \in \omega: a_{\delta} \subset Y_{n}\right\}$.
Claim 2. There is an infinite set $b \subset \omega$ converging to a point $z^{\prime} \in X \backslash Y$ such that for each $m \in \omega$,

$$
b \backslash \bigcap_{n \in J \cap m} Y_{n} \text { is finite. }
$$

To find our set b we again use $\operatorname{MA}\left(\omega_{1}\right)$ to assert that there is a subset $b \subset \omega \backslash a_{\delta}$ such that b is almost contained in $\bigcap_{n \in J \cap m} Y_{n} \cap f^{-1}\left(U_{m}\right) \backslash\left(W_{\delta} \cup W_{\gamma}\right)$ for each $\gamma>\delta$ and $m \in \omega$.

To see this it is sufficient to show that

$$
\bigcap_{n \in J \cap m} Y_{n} \cap f^{-1}\left(U_{m}\right) \backslash\left(\bar{W}_{\gamma_{0}} \cup \cdots \cup \bar{W}_{\gamma_{l}}\right)
$$

is infinite for each $l \in \omega$ and $\delta \leq \gamma_{0}<\cdots<\gamma_{l}<\omega_{1}$.
This again follows from the fact that a_{δ} is almost contained in the set $A=\bigcap_{n \in J \cap m} Y_{n} \cap f^{-1}\left(U_{m}\right)$, which is in M. By elementarity, there is a $\beta \in M$ such that a_{β} is almost contained in A. Since such an a_{β} is almost disjoint from each W_{γ} with $\gamma \geq \delta$, we have shown that the above set is infinite.

We may shrink b so that it converges to some $z \in X$ and we observe that $f(z)=f\left(y_{\delta}\right)$. We check that $z \notin Y$. Since b is almost disjoint from W_{γ} for all $\gamma \geq \delta$, we have $z \neq y_{\gamma}$ for all $\gamma \geq \delta$. On the other hand, our construction has ensured that $f\left(y_{\beta}\right) \neq f\left(y_{\delta}\right)$ for each $\beta \in M$.

Finally then, we have produced a pair $\left(a_{\delta}, b\right) \in \mathcal{X}$. Assume that $\left(a_{\delta}, b\right)$ $\in \mathcal{X}_{n}$, hence $a_{\delta} \subset Y_{n}$. By construction, it follows that $n \in J$, hence b is almost contained in Y_{n}. Choose any $j \in b \cap Y_{n}$ and fix $\left(a_{\beta}, b_{\beta}\right) \in \mathcal{X}_{n}$ such that $j \in a_{\beta}$. Since $b \cap a_{\delta}$ is empty, it follows that $\beta \neq \delta$. However, we see that $\left(a_{\beta} \cap b\right) \cup\left(a_{\delta} \cap b_{\beta}\right)$ is not empty, which means that the pair $\left(\left(a_{\delta}, b\right),\left(a_{\beta}, b_{\beta}\right)\right)$ is in K_{0}, a contradiction.
3. Countably compact with small diagonal. Gruenhage has shown that it is consistent with CH that there is no countably compact nonmetrizable space with a small diagonal [Gru02, 4.2]. He has also shown that it is consistent with the failure of CH that there is a countably compact non-metrizable space with a small diagonal [Gru02, 4.3]. In this section we generalize these results in two ways. In the first result we prove that it is consistent with CH that there is a perfect first-countable preimage of ω_{1} (with metrizable fibers) which has a small diagonal (Theorem 13). This example answers several of the questions in [Gru02]. Secondly, we establish, from a much weaker set-theoretic hypothesis than that in [Gru02, 4.3], that there is a countably compact non-metrizable space with a small diagonal (Theorem 16).

Recall that the classical \diamond^{+}(see [Ku80]) is the following statement:
There are sets $\mathcal{A}_{\alpha} \subset \mathcal{P}(\alpha)$, for $\alpha<\omega_{1}$, such that each $\left|\mathcal{A}_{\alpha}\right| \leq \omega$ and, for each $A \subset \omega_{1}$, there is a club $F \subset \omega_{1}$ such that for every $\alpha \in F, A \cap \alpha \in \mathcal{A}_{\alpha}$ and $F \cap \alpha \in \mathcal{A}_{\alpha}$.

Theorem $13\left(\diamond^{+}\right)$. There is a perfect preimage of ω_{1} with a small diagonal.

Proof. Let $C=\{0,1\}^{\omega}$ be a copy of a Cantor set. Let $X=\omega_{1} \times C$. Let π_{1} and π_{2} denote projections of X onto ω_{1} and C respectively. For every $\alpha \in \omega_{1}, C_{\alpha}, X_{<\alpha}$, and $X_{\leq \alpha}$ are subsets of X, where $C_{\alpha}=\{\alpha\} \times C$,
$X_{<\alpha}=\alpha \times C$, and $X_{\leq \alpha}=(\alpha+1) \times C$. We put $X_{<\omega_{1}}=X$. Let ϕ_{1} and ϕ_{2} be the projections of \bar{X}^{2} onto the corresponding coordinates.

We define a topology on X in such a way that π_{1} is a continuous perfect map. We define the topology at points of C_{α} recursively for $\alpha \in \omega_{1}$. Each $X_{\leq \alpha}$ will be a subspace and an open subset of X, so a typical neighborhood of $x \in C_{\alpha}$ in $X_{\leq \alpha}$ will be a typical neighborhood of this x in X.

We introduce some notation for the properties that will ensure that X will have a small diagonal. A set $A \subset X^{2}$ will be said to be simple if $\pi_{1}\left(\phi_{1}(A)\right) \cup \pi_{1}\left(\phi_{2}(A)\right)$ is discrete and for $a \neq a^{\prime}$ both in A, either $\max \left\{\pi_{1}\left(\phi_{2}(a)\right), \pi_{1}\left(\phi_{2}(a)\right)\right\}<\min \left\{\pi_{1}\left(\phi_{2}\left(a^{\prime}\right)\right), \pi_{1}\left(\phi_{2}\left(a^{\prime}\right)\right)\right\}$ or vice versa. A simple set A is well-ordered by the map sending $a \in A$ to $\min \left\{\pi_{1}\left(\phi_{2}(a)\right)\right.$, $\left.\pi_{1}\left(\phi_{2}(a)\right)\right\}$.

We can reformulate \diamond^{+}to a more suitable form as follows. Let h be any function from ω_{1} onto $\omega_{1} \cup X^{2}$ such that for each limit ordinal $\delta, h(\delta)=\delta$ and for each $\alpha<\omega_{1}, h(\{\beta: \beta<\alpha\}) \subset \alpha \cup X_{<\alpha}^{2}$. Let $\left\{\mathcal{A}_{\alpha}: \alpha \in \omega_{1}\right\}$ be the \diamond^{+}-sequence as above. For each α, let $\mathcal{A}_{\alpha}^{\prime}$ be those $A \in \mathcal{A}_{\alpha}$ such that $h(A)$ is a simple set (contained in $\left.\left(X_{<\alpha}\right)^{2}\right)$. Also, let \mathcal{B}_{α} be those $B \in \mathcal{A}_{\alpha}$ such that B is a closed set of limit ordinals. With no loss of generality, we may assume that each of $\mathcal{A}_{\alpha}^{\prime}$ and \mathcal{B}_{α} is infinite for each infinite ordinal α.

Now, for each infnite $\alpha \in \omega_{1}$, let $\left\{B_{\alpha}^{n}: n \in \omega\right\}$ enumerate the set \mathcal{B}_{α}, and let $\left\{A_{\alpha}^{n}: n \in \omega\right\}$ enumerate the set $\left\{h(A): A \in \mathcal{A}_{\alpha}^{\prime}\right\}$. It is a routine exercise to verify that the following will hold:

There are sequences $\mathcal{A}=\left\{A_{\alpha}^{m} \subset\left(X_{<\alpha}\right)^{2}: \alpha \in \omega_{1}, m \in \omega\right\}$ and $\mathcal{B}=$ $\left\{B_{\alpha}^{n} \subset \alpha: \alpha \in \omega_{1}, n \in \omega\right\}$ such that for every simple $A \subset X^{2}$ there are a club $F \subset \omega_{1}$ and sequences $\left\{m(\alpha) \in \omega: \alpha \in \omega_{1}\right\}$ and $\left\{n(\alpha) \in \omega: \alpha \in \omega_{1}\right\}$ such that for every $\alpha \in F, A \cap\left(X_{<\alpha}\right)^{2}=A_{\alpha}^{m(\alpha)}$ and $F \cap \alpha=B_{\alpha}^{n(\alpha)}$.

The topology on X will satisfy the following conditions for every $\alpha \in \omega_{1}$:
$\left(1_{\alpha}\right) C_{\alpha}$ is homeomorphic to a Cantor set.
(2 $\left.2_{\alpha}\right) X_{<\alpha}$ is 0 -dimensional.
$\left(3_{\alpha}\right) X_{\leq \alpha}$ is a compact space.
$\left(4_{\alpha}\right) \pi_{1 \upharpoonright X_{\leq \alpha}}$ is a continuous map.
$\left(5_{\alpha}\right)$ If α is a successor ordinal, then C_{α} is clopen in $X_{\leq \alpha}$.
Let A be a simple subset of X^{2}. We say that A is thin if $\overline{\phi_{1}(A)} \cap \overline{\phi_{2}(A)}=\emptyset$. For every $\beta \in \omega_{1}$ and simple A we say that A is simple in β (respectively, A is thin in β) if $A \cap\left(X_{<\beta}\right)^{2}$ is simple (respectively, thin) in the space $X_{<\beta}$. We denote by $\lim (A)$ the set $\left\{\pi_{1}\left(\phi_{1}(x)\right): x\right.$ is a limit point of A in $\left.X^{2}\right\}$ $\left(=\left\{\pi_{1}\left(\phi_{2}(x)\right): x\right.\right.$ is a limit point of A in $\left.\left.X^{2}\right\}\right)$. Finally, let $F \subset \gamma$ be a non-empty closed set. When the context is clear, for each $\delta \in F, \delta^{+}$will denote the next smallest element of $F \cup\{\gamma\}$, i.e. δ^{+}is γ if $\delta=\max (F)$. If $A \cap\left(X_{<\delta^{+}} \backslash X_{<\delta}\right)^{2}$ is a non-empty set, denote by a_{δ} the smallest element
of this set (according to the induced well-ordering of A as a simple set). If $A \cap\left(X_{<\delta^{+}} \backslash X_{<\delta}\right)^{2}$ is empty, we put $a_{\delta}=\emptyset$. Denote $\left\{a_{\delta}: \delta \in F\right\}$ by $A_{\upharpoonright F}$. If F is empty, let $A_{\upharpoonright F}$ be empty as well.

Consider the following condition on a pair $(m, n) \in \omega^{2}$:
$\left(*_{\alpha}\right) A_{\alpha}^{m}$ is simple in α, B_{α}^{n} is closed in α, and $A_{\alpha}^{m}{ }^{\prime} B_{\alpha}^{n} \cap \lim \left(A_{\alpha}^{m}\right)$ is thin in α.

The following condition will ensure that X has a small diagonal:
$\left(6_{\alpha}\right)$ If (m, n) satisfies $\left(*_{\alpha}\right)$, then $A_{\alpha}^{m}{ }_{\mid B_{\alpha}^{n} \cap \lim \left(A_{\alpha}^{m}\right)}$ is thin in $\alpha+1$.
Note that if (m, n) satisfies $\left(*_{\gamma}\right)$, then condition $\left(6_{\gamma}\right)$ essentially means that γ is not the minimal ordinal such that

$$
\left.\left.\overline{\phi_{1}\left(A_{\gamma}^{m} B_{\gamma}^{n} \cap \lim \left(A_{\gamma}^{m}\right)\right.}\right) \cap \overline{\phi_{2}\left(A_{\gamma}^{m} B_{\gamma}^{n} \cap \lim \left(A_{\gamma}^{m}\right)\right.}\right) \cap C_{\gamma} \neq \emptyset .
$$

Using $\left(6_{\alpha}\right)$, we will show that for every uncountable simple subset A
 $\overline{\phi_{1}\left(A_{\lceil G}\right)} \cap \overline{\phi_{2}\left(A_{\upharpoonright G}\right)} \cap C_{\gamma} \neq \emptyset$ (here G is a certain club in ω_{1} which depends on A and which is produced with the help of \diamond^{+}-sequences).

Now let $\gamma \in \omega_{1}$ and suppose that a topology has been defined on $X_{<\gamma}$ and satisfies $\left(1_{\alpha}\right)-\left(6_{\alpha}\right)$ for every $\alpha<\gamma$.

CASE 1: γ is a successor ordinal. In this case, let C_{γ} be a clopen subset of $X_{\leq \gamma}$ which is homeomorphic to a Cantor set. Then $\left(1_{\gamma}\right)-\left(6_{\gamma}\right)$ are obviously satisfied.

CASE 2: γ is a limit ordinal. In this case, $X_{<\gamma}$ is a free topological sum of sets with zero large inductive dimension, so $\left(2_{\gamma}\right)$ holds. Enumerate all pairs $(m, n) \in \omega^{2}$ which satisfy $\left(*_{\gamma}\right)$ by $\left\{\left(m_{k}, n_{k}\right): k \in \omega\right\}$. We can assume that the family of such pairs is infinite (if not, replace some $A_{\gamma}^{m}, B_{\gamma}^{n}$ so that infinitely many pairs $(m, n) \in \omega^{2}$ satisfy $\left.\left(*_{\gamma}\right)\right)$. For every $k \in \omega$, let $\mathcal{I}_{k}=\{0,1\}^{k}$ be the set of all binary sequences of length k, and let $\mathcal{I}=\bigcup\left\{\mathcal{I}_{k}: k \in \omega\right\}$. Let U_{0}, U_{1} be complementary clopen subsets of $X_{<\gamma}$ such that $\phi_{1}\left(A_{\gamma}^{m_{0}}{ }_{\upharpoonright B_{\gamma}^{n_{0}} \cap \lim \left(A_{\gamma}^{m_{0}}\right)}\right)$ $\subset U_{0}$ and $\phi_{2}\left(A_{\gamma}^{m_{0}}{ }_{\mid B_{\gamma}^{n_{0}} \cap \lim \left(A_{\gamma}^{m_{0}}\right)}\right) \subset U_{1}$. Such sets exist according to $\left(2_{\gamma}\right)$ and $\left(*_{\gamma}\right)$. Now assume that a family $\left\{U_{I}: I \in \mathcal{I}_{k}\right\}$ of clopen subsets of $X_{<\gamma}$ has been defined for some $k \in \omega$. For every $I \in \mathcal{I}_{k}$, let $U_{I^{\wedge} 0}, U_{I^{\wedge} 1}$ be complementary clopen subsets of U_{I} such that $\phi_{1}\left(A_{\gamma}^{m_{k}}{ }_{\upharpoonright B_{\gamma}^{n_{k}} \cap \lim \left(A_{\gamma}^{m_{k}}\right)}\right) \cap U_{I}$ $\subset U_{I \subset 0}$ and $\phi_{2}\left(A_{\gamma}^{m_{k}}{ }_{\mid B_{\gamma}^{n_{k}} \cap \lim \left(A_{\gamma}^{m_{k}}\right)}\right) \cap U_{I} \subset U_{I^{\wedge} 1}$. Let $c=\left\{i_{p} \in\{0,1\}: p \in\right.$ $\omega\}$ be an element of C. Then a typical neighborhood of (γ, c) in $X_{\leq \gamma}$ is $\left(\{\gamma\} \times C_{I}\right) \cup\left(U_{I} \backslash X_{\leq \delta}\right)$ for various $I \in \mathcal{I}$ and $\delta<\gamma$, where C_{I} denotes the set of all elements of C which extend I.

Now we check properties $\left(1_{\gamma}\right)$ and $\left(3_{\gamma}\right)-\left(6_{\gamma}\right)$ in Case 2.

It is well known that $\left\{C_{I}: I \in \mathcal{I}\right\}$ is a base of C. Hence $\left\{\{\gamma\} \times C_{I}\right.$: $I \in \mathcal{I}\}$ is a base of C_{γ}. Therefore C_{γ} is homeomorphic to a Cantor set and $\left(1_{\gamma}\right)$ holds.

Assume towards a contradiction that $\left(3_{\gamma}\right)$ fails. Since $X_{\leq \gamma}$ is separable metrizable, there is a countably infinite subset S of $X_{\leq \gamma}$ without an accumulation point in $X_{\leq \gamma}$. Therefore for every $x \in C_{\gamma}$, there is $I(x) \in \mathcal{I}$ such that the sets $U_{I(x)} \cap S$ and $C_{I(x)} \cap S$ are finite. The family $\left\{C_{I(x)}: x \in C_{\gamma}\right\}$ is an open cover of C_{γ}, so it contains a finite subcover, which we denote by \mathcal{U}. It then follows from the definition of topology in C_{γ} that $\cup \mathcal{U}$ contains $X_{\leq \gamma} \backslash X_{\leq \delta}$ for some $\delta<\gamma$. Therefore $S \cap X_{\leq \delta}$ is an infinite subset of $X_{\leq \delta}$ with accumulation point in $X_{\leq \delta}$. However, $X_{\leq \delta}$ is a compact space according to $\left(3_{\delta}\right)$. This contradiction proves $\left(3_{\gamma}\right)$.
$\left(4_{\gamma}\right)$ is true since $\left(4_{\alpha}\right)$ is true for every $\alpha<\gamma$ and since $\left(\pi_{1}\right)^{-1}((\alpha, \gamma])$ is open in $X_{\leq \gamma}$ from the definition of topology on $X_{\leq \gamma}$.
$\left(5_{\gamma}\right)$ holds trivially in Case 2.
$\left(6_{\gamma}\right)$ holds because $\bigcup\left\{U_{I^{\wedge} 0}: I \in \mathcal{I}_{k}\right\}$ contains $\phi_{1}\left(A_{\gamma}^{m_{k}}{ }_{\mid B_{\gamma}^{n_{k}} \cap \lim \left(A_{\gamma}^{m_{k}}\right)}\right)$ and, similarly, $\bigcup\left\{U_{I^{\prime} 1}: I \in \mathcal{I}_{k}\right\}$ contains $\phi_{2}\left(A_{\gamma}^{m_{k}}{ }_{\mid B_{\gamma}^{n_{k}} \cap \lim \left(A_{\gamma}^{m_{k}}\right)}\right)$.

We next show that π_{1} is a continuous perfect map. Fix $x \in X$. Then there is $\alpha \in \omega_{1}$ such that $x \in X_{<\alpha}$. But $X_{<\alpha}$ is an open neighborhood of x and $\pi_{1 \upharpoonright X_{<\alpha}}$ is a continuous map by $\left(4_{\alpha}\right)$. Therefore π_{1} is continuous at x. Hence π_{1} is a continuous map. Now fix a closed set $F \subset X$. To prove that $\pi_{1}(F)$ is closed in ω_{1}, it is enough to show that $\pi_{1}(F) \cap[0, \alpha]$ is closed for every $\alpha \in \omega_{1}$. The latter statement is true since $\pi_{1}(F) \cap[0, \alpha]=\pi_{1}\left(F \cap X_{\leq \alpha}\right)$ and since $F \cap X_{\leq \alpha}$ is a compact set by $\left(3_{\alpha}\right)$. Further, every fiber of π_{1} is a compact set by $\left(1_{\alpha}\right)$. So π_{1} is a continuous perfect map.

The last step is to show that X has a small diagonal. Recall that $\Delta(X)$ denotes the diagonal of X. Fix an uncountable set $A \subset X^{2}$. If $A \cap\left(X \backslash X_{\leq \delta}\right)^{2}$ is countable for some $\delta \in \omega_{1}$, then either $A \cap\left(X_{\leq \delta} \times\left(X \backslash X_{\leq \delta}\right)\right)$ is uncountable, or $A \cap\left(\left(X \backslash X_{\leq \delta}\right) \times X_{\leq \delta}\right)$ is uncountable, or $A \cap\left(X_{\leq \delta}\right)^{2}$ is uncountable. In the first two cases, $A \backslash\left(\left(X_{\leq \delta}\right)^{2} \cup\left(X \backslash X_{\leq \delta}\right)^{2}\right)$ is uncountable. In the third case, there is a neighborhood $U \subset\left(X_{\leq \delta}\right)^{2}$ of $\Delta\left(X_{\leq \delta}\right)$ such that $\left(A \cap\left(X_{\leq \delta}\right)^{2}\right) \backslash U$ is uncountable. Either way, $U \cup\left(X \backslash X_{\leq \delta}\right)^{2}$ is a neighborhood of $\Delta(X)$ which misses uncountably many elements of A. So we can assume that $A \cap$ $\left(X \backslash X_{\leq \delta}\right)^{2}$ is an uncountable set for every $\delta \in \omega_{1}$. Then A contains an uncountable simple set. Therefore, we can just assume that A is simple itself.

According to our version of \diamond^{+}, there is a club $F \subset \omega_{1}$ and sequences $\left\{m(\alpha) \in \omega: \alpha \in \omega_{1}\right\},\left\{n(\alpha) \in \omega: \alpha \in \omega_{1}\right\}$ such that $A \cap\left(X_{<\alpha}\right)^{2}=A_{\alpha}^{m(\alpha)}$ and $F \cap \alpha=B_{\alpha}^{n(\alpha)}$ for every $\alpha \in F$. The set $G=F \cap \lim (A)$ is a club since $\lim (A)$ is a club. We show that $A_{\upharpoonright G}$ is an uncountable thin set. In particular,
$\overline{A_{\uparrow G}} \cap \Delta(X)=\emptyset$, which implies that X has a small diagonal. First of all, for every $\delta_{1}, \delta_{2} \in G$ with $\delta_{1}<\delta_{2},\left(X_{<\delta_{2}} \backslash X_{<\delta_{1}}\right)^{2} \cap A$ is a non-empty set since A is simple and since $\delta_{1}, \delta_{2} \in \lim (A)$. Therefore $A_{\upharpoonright G}$ is uncountable. Assume towards a contradiction that $A_{\lceil G}$ is not thin. Then there is a minimal ordinal $\gamma \in \omega_{1}$ such that

$$
\begin{equation*}
\overline{\phi_{1}\left(A_{\lceil G}\right)} \cap \overline{\phi_{2}\left(A_{\lceil G}\right)} \cap C_{\gamma} \neq \emptyset \tag{1}
\end{equation*}
$$

It is possible to check that $\gamma \in G$, in particular $\gamma \in F$. Therefore $A_{\gamma}^{m(\gamma)}=$ $A \cap\left(X_{<\gamma}\right)^{2}$ and $B_{\gamma}^{n(\gamma)} \cap \gamma=F \cap \gamma$. Also $\lim \left(A \cap\left(X_{<\gamma}\right)^{2}\right)=\lim (A) \cap \gamma$. This means that

$$
\begin{aligned}
A_{\gamma}^{m(\gamma)}{ }_{\left\lceil B_{\gamma}^{n(\gamma)} \cap \lim \left(A_{\gamma}^{m(\gamma)}\right)\right.} & =\left(A \cap\left(X_{<\gamma}\right)^{2}\right)_{\upharpoonright(F \cap \gamma) \cap(\lim (A) \cap \gamma)} \\
& =\left(A \cap\left(X_{<\gamma}\right)^{2}\right)_{\upharpoonright F \cap \lim (A) \cap \gamma}=\left(A \cap\left(X_{<\gamma}\right)^{2}\right)_{\upharpoonright G \cap \gamma} \\
& =A_{\upharpoonright G} \cap\left(X_{<\gamma}\right)^{2} .
\end{aligned}
$$

The latter set is thin in γ by the minimality of γ. So the pair $(m(\gamma), n(\gamma))$ satisfies $\left(*_{\gamma}\right)$ and $A_{\gamma}^{m(\gamma)}{ }_{\left.\mid B_{\gamma}^{n(\gamma)} \cap \lim \left(A_{\gamma}^{m(\gamma)}\right)\right)}$ is thin in $\gamma+1$ by $\left(6_{\gamma}\right)$, hence

$$
\begin{equation*}
\overline{\phi_{1}\left(A_{\upharpoonright G}\right)} \cap\left(X_{<\gamma}\right)^{2} \cap \overline{\phi_{2}\left(A_{\upharpoonright G}\right)} \cap\left(X_{<\gamma}\right)^{2} \cap C_{\gamma}=\emptyset . \tag{2}
\end{equation*}
$$

However, (2) contradicts (1) since $\phi_{i}\left(A_{\lceil G}\right) \cap C_{\gamma}=\emptyset$ for $i \in\{1,2\}$. Therefore $A_{\lceil G}$ is thin.

For our next result, we need another set-theoretic principle.
Definition 14. The statement MA(Cohen) is the Martin's Axiom type assertion that if P is a poset for adding any number of Cohen reals, i.e. for some set I, P is the poset $\operatorname{Fn}(I, 2)$ of finite functions from I into 2 , and if \mathcal{D} is a family of fewer than \mathfrak{c} dense subsets of P, then there is a filter $G \subset P$ which meets each member of \mathcal{D}.

The actual consequence of MA(Cohen) that we need is the following.
Proposition 15. (MA(Cohen)) If \mathcal{A} is a family of fewer than \mathfrak{c} countably infinite sets, then there is a set $Y \subset \bigcup \mathcal{A}$ such that neither Y nor $\cup \mathcal{A} \backslash Y$ contains any of the members of \mathcal{A}.

The proof is of course very straightforward. One simply uses the poset $\operatorname{Fn}(\bigcup \mathcal{A}, 2)$ and with G meeting $|\mathcal{A}|$ dense sets, $Y=(\bigcup G)^{-1}(0)$ works.

Theorem 16. (MA(Cohen) $+2^{\omega_{1}}=2^{\omega}$) Each of the spaces $2^{\mathfrak{c}}$ and $\beta \omega$ contains dense countably compact subsets of cardinality \mathfrak{c} which have small diagonals.

Proof. We will define a subspace $X=\left\{x_{\alpha}: \alpha \in \mathfrak{c}\right\}$ of $2^{\mathfrak{c}}$ by induction on $\alpha \in \mathfrak{c}$. At stage α, we will have chosen, for each $\beta<\alpha$, the values of $x_{\beta} \upharpoonright \alpha$ for each $\beta<\alpha$. At stage α we will extend each $x_{\beta} \upharpoonright \alpha$ by defining its value
at α, i.e. $x_{\beta}(\alpha)$ will be defined to be either 0 or 1 , and we will also choose $x_{\alpha}\left\lceil\alpha+1\right.$ to be some member of $2^{\alpha+1}$.

In order to ensure that X will be countably compact, let $\left\{A_{\gamma}: \gamma \in \mathfrak{c}\right\}$ be an enumeration of the countably infinite subsets of \mathfrak{c} such that $A_{n}=\omega \backslash n$ for each $n \in \omega$, and $A_{\gamma} \subset \gamma$ for all $\gamma \geq \omega$. Our inductive hypothesis will include the condition, for $\gamma \leq \alpha$, that the point $x_{\gamma} \upharpoonright \alpha$ is a limit point (in the space 2^{α}) of the set $\left\{x_{\beta} \upharpoonright \alpha: \beta \in A_{\gamma}\right\}$. We will also preserve the property that $\left\{x_{n} \upharpoonright \alpha: n \in \omega\right\}$ is dense in 2^{α}.

In order to ensure that X will have a small diagonal, let $\left\{h_{\gamma}: \gamma \in \mathfrak{c}\right\}$ enumerate all functions from ω_{1} into $[\mathfrak{c}]^{2}$ (the two-element subsets of \mathfrak{c}) so that for each γ, the range of h_{γ} is contained in $[\gamma]^{2}$. We will arrange that for each α, there is an uncountable $I \subset \omega_{1}$ such that for each $\zeta \in I$, $h_{\alpha}(\zeta)=\left\{\zeta_{0}<\zeta_{1}\right\}$ and $x_{\zeta_{0}}(\alpha)=0$ and $x_{\zeta_{1}}(\alpha)=1$. Note then that if $U(\alpha, 0)$ is the subset of $2^{\mathfrak{c}}$ consisting of all points that have value 0 at α and $U(\alpha, 1)=2^{\mathfrak{c}} \backslash U(\alpha, 0)$, then $(U(\alpha, 0) \times U(\alpha, 0)) \cup(U(\alpha, 1) \times U(\alpha, 1))$ is an open neighborhood of the diagonal of X in X^{2} but contains none of the points in $\left\{\left(x_{\zeta_{0}}, x_{\zeta_{1}}\right): \zeta \in I\right.$ and $\left.h_{\alpha}(\zeta)=\left\{\zeta_{0}, \zeta_{1}\right\}\right\}$.

We begin the induction by choosing $\left\{x_{n} \upharpoonright \omega: n \in \omega\right\}$ to be any countable dense subset of 2^{ω}. At stage $\alpha \geq \omega$, we may assume that we have chosen $x_{\gamma} \upharpoonright \alpha$ for all $\gamma \in \alpha$ and have, by induction, preserved the property that $x_{\gamma} \upharpoonright \alpha$ is a limit point of $\left\{x_{\beta} \upharpoonright \alpha: \beta \in A_{\gamma}\right\}$. We must first choose a set $J \subset \alpha$ and define $x_{\gamma}(\alpha)=0$ for all $\gamma \in J$ and $x_{\gamma}(\alpha)=1$ for all $\gamma \in \alpha \backslash J$. Then we simply choose a point $x_{\alpha}\left\lceil\alpha+1\right.$ which is a limit point of $\left\{x_{\beta}: \beta \in A_{\alpha}\right\}$.

Define \mathcal{A}_{α} to be the family of all countably infinite sets B of α such that there is a basic clopen subset W of 2^{α} and a $\gamma<\alpha$ such that B is a cofinite subset of $\left\{\xi \in D_{\gamma}: x_{\xi} \mid \alpha \in W\right\}$. Clearly \mathcal{A}_{α} has cardinality at most $|\alpha|$. By $\mathbf{M A}($ Cohen $)$, there is an uncountable set I_{0} of ω_{1} such that $\left\{\zeta_{0}: \zeta \in I_{0}\right\}$ contains no member of \mathcal{A}_{α}. Similarly, there is an uncountable $I_{1} \subset I_{0}$ such that $\left\{\zeta_{1}: \zeta \in I_{1}\right\}$ contains no member of \mathcal{A}_{α}. Let $I_{2}=\left\{\zeta_{0}, \zeta_{1}: \zeta \in I_{1}\right\}$ and \mathcal{A}_{1} be the family $\left\{A \backslash I_{2}: A \in \mathcal{A}_{\alpha}\right\}$ and, by MA(Cohen), choose a set $J \subset \alpha \backslash I_{2}$ so that neither J nor $\alpha \backslash J$ contains any member of \mathcal{A}_{1}. Finally, define $x_{\gamma}(\alpha)=0$ for all $\gamma \in J \cup\left\{\zeta_{0}: \zeta \in I_{1}\right\}$, and $x_{\gamma}(\alpha)=1$ for other $\gamma \in \alpha$.

It is routine, by the choice of \mathcal{A}_{1}, to prove by the inductive hypothesis that $x_{\gamma} \upharpoonright \alpha+1$ is in the closure of $\left\{x_{\beta} \upharpoonright \alpha+1: \beta \in A_{\gamma}\right\}$ for each $\gamma \leq \alpha$. We have also preserved the property that $\left\{x_{n}\lceil\alpha+1: n \in \omega\}\right.$ is dense since \mathcal{A}_{α} will list (the indices of) all the basic clopen subsets of 2^{α} intersected with $\left\{x_{n} \upharpoonright \alpha: n \in \omega\right\}$.

This completes the proof for the dense subset of $2^{\mathfrak{c}}$. One could make a minor modification of the proof in order to arrange that one particular countable discrete subset of X had closure in $2^{\mathfrak{c}}$ which was homeomorphic to $\beta \omega$, and then the closure of this subset in X would be our desired dense subset of $\beta \omega$. However, instead we can make one very minor additional
requirement on our construction, namely that $x_{\gamma} \neq x_{\alpha}$ for all $\gamma \neq \alpha$. Then let f be the canonical map from $\beta \omega$ onto $2^{\mathfrak{c}}$ which sends n to x_{n} for each n. For each integer n, let y_{n} denote $n \in \beta \omega$. Recursively choose $y_{\alpha} \in \beta \omega$ (for $\alpha \in \mathfrak{c}$) so that $f\left(y_{\alpha}\right)=x_{\alpha}$ and y_{α} is a limit point of $\left\{y_{\beta}: \beta \in A_{\alpha}\right\}$. Now f will be a one-to-one map from $Y=\left\{y_{\alpha}: \alpha \in \mathfrak{c}\right\}$ onto X and Y is easily seen to be a countably compact dense subset of $\beta \omega$. Then Y has a small diagonal since the map onto X is one-to-one.

It would be interesting to determine if simply the failure of CH implies that there is a countably compact non-metrizable space with a small diagonal. Gruenhage's example was also initially ω_{1}-compact; the above construction can be modified to moreover ensure that every set of cardinality ω_{1} has a complete accumulation point by using the following stronger consequence of MA(Cohen).

Proposition 17. (MA(Cohen)) If \mathcal{A} is a family of fewer than \mathfrak{c} infinite sets, then there is set $Y \subset \bigcup \mathcal{A}$ such that for all $A \in \mathcal{A}$, each of $A \cap Y$ and $A \backslash Y$ has the same cardinality as that of A.
4. Lindelöf and small diagonal. In this section we present a simple observation about Lindelöf spaces with a small diagonal which generalizes a result by Zhou [Zho82] for compact spaces. We also show that the failure of CH implies there is a Lindelöf space with a small diagonal which does not have a G_{δ}-diagonal.

Proposition 18. If a space X is Lindelöf and every continuous image of X has a small diagonal, then X has a G_{δ}-diagonal.

Proposition 18 is actually a corollary to the following.
Proposition 19. For a Lindelöf space X, either
(1) X has a continuous image with weight (precisely) ω_{1} which does not have a small diagonal, or
(2) X can be mapped onto a metric space by a one-to-one map.

Proof. We may assume that X is embedded in $[0,1]^{\kappa}$ for some cardinal κ. For each set $I \subset \kappa$, let X_{I} denote the image of X by the projection map $\pi_{I}:[0,1]^{\kappa} \rightarrow[0,1]^{I}$. If I is countable, then of course X_{I} is metrizable; hence if there is a countable $I \subset \kappa$ such that $\pi_{I} \upharpoonright X$ is one-to-one then the second condition holds. Therefore we assume otherwise, and inductively choose an increasing sequence $\left\{I_{\alpha}: \alpha \in \omega_{1}\right\}$ of countable sets as follows. Let I_{0} be any non-empty countable subset of κ, and for limit α let I_{α} be the union $\bigcup_{\beta<\alpha} I_{\beta}$. For each α, if $\pi_{I_{\alpha}}$ is not one-to-one, then let x_{α}, y_{α} be a pair of points of X such that $\pi_{I_{\alpha}}\left(x_{\alpha}\right)=\pi_{I_{\alpha}}\left(y_{\alpha}\right)$. Choose $I_{\alpha+1} \supset I_{\alpha}$ large enough so that $\pi_{I_{\alpha+1}}\left(x_{\alpha}\right) \neq \pi_{I_{\alpha+1}}\left(y_{\alpha}\right)$.

Let $I=I_{\omega_{1}}$ and consider the sequence $\left\{\left(x_{\alpha}^{\prime}, y_{\alpha}^{\prime}\right): \alpha \in \omega_{1}\right\} \subset X_{I}^{2}$ where $x_{\alpha}^{\prime}=\pi_{I}\left(x_{\alpha}\right)$ and $y_{\alpha}^{\prime}=\pi_{I}\left(y_{\alpha}\right)$. To show that X_{I}^{2} does not have a small diagonal, let A be any uncountable subset of ω_{1}. Now by the hypothesis that X_{I} is Lindelöf we may choose a point $x^{\prime} \in X_{I}$ which is a complete accumulation point of the set $\left\{x_{\alpha}^{\prime}: \alpha \in A\right\}$. Of course, if U is any basic open neighborhood of x^{\prime} in X_{I} then of the uncountably many $\alpha \in A$ with $x_{\alpha}^{\prime} \in U$, we will also have $y_{\alpha}^{\prime} \in U$ for all but countably many of them. Therefore the point $\left(x^{\prime}, x^{\prime}\right)$ on the diagonal of X_{I} is a limit point of $\left\{\left(x_{\alpha}^{\prime}, y_{\alpha}^{\prime}\right)\right.$: $\alpha \in A\}$.

Gruenhage shows in [Gru02] that it is consistent with CH (and holds in Gödel's constructible universe L) that there is a Lindelöf space with a small diagonal which does not have a G_{δ}-diagonal. We show that the failure of CH alone will also provide such an example.

Theorem 20. If $\mathfrak{c}>\omega_{1}$, then there is a Lindelöf space which has a small diagonal but not a G_{δ}-diagonal.

Proof. Recall that a set $B \subset[0,1]$ is a Bernstein set if B meets, but does not contain, each uncountable closed subset of $[0,1]$. It is well known that there is a family of \mathfrak{c} pairwise disjoint Bernstein sets, so let $\left\{B_{\alpha}: \alpha \in \omega_{2}\right\}$ be any subfamily of such a family. Our space X will simply be a subspace of the product space $\left(\omega_{2}+1\right) \times[0,1]$ where $\omega_{2}+1$ is the compact order topology on the set of ordinals. For each $\alpha<\omega_{2}$, we choose $X \cap(\{\alpha\} \times[0,1])$ to be $\{\alpha\} \times B_{\alpha}$ and we take $\left\{\omega_{2}\right\} \times[0,1] \subset X$. Basic open sets for X will be taken to be of the form $X \cap([\alpha, \beta] \times I)$ for $\alpha \leq \beta \leq \omega_{2}$, with α not a limit ordinal, and I any (relatively) open interval in $[0,1]$.

For each $\lambda \leq \omega_{2}$, we show, by induction on λ, that the subspace

$$
X_{\lambda}=X \cap([0, \lambda] \times[0,1])
$$

is Lindelöf.
If λ has countable cofinality, then $X_{\lambda}=\bigcup_{\mu<\lambda} X_{\mu} \cup\left(\{\lambda\} \times B_{\lambda}\right)$ is a countable union of Lindelöf subsets, hence is Lindelöf itself. To see that X_{λ} is Lindelöf when λ has uncountable cofinality, let \mathcal{W} be a cover of X_{λ} by basic open sets. Since $\{\lambda\} \times B_{\lambda}$ (or $\left.\left\{\omega_{2}\right\} \times[0,1]\right)$ is Lindelöf, there is a countable subcollection \mathcal{W}^{\prime} of \mathcal{W} whose union covers $X_{\lambda} \cap(\{\lambda\} \times[0,1])$. We may assume that \mathcal{W}^{\prime} is the family $\left\{\left[\alpha_{n}, \lambda\right] \times I_{n}: n \in \omega\right\}$ where each I_{n} is an open subinterval of $[0,1]$. Since each B_{α} is Bernstein, $[0,1] \backslash \bigcup_{n} I_{n}$ is countable. In addition, the sets in the family $\left\{B_{\alpha}: \alpha<\lambda\right\}$ are pairwise disjoint (and λ has uncountable cofinality), hence there is a $\gamma<\lambda$ such that $\alpha_{n}<\gamma$ for each n, and $B_{\beta} \subset \bigcup_{n} I_{n}$ for each $\gamma<\beta \leq \lambda$. It follows that $X_{\lambda} \backslash X_{\gamma}$ is contained in $\bigcup \mathcal{W}^{\prime}$. Since X_{γ} is Lindelöf (by inductive assumption),
it follows that \mathcal{W} has a countable subcover of X_{λ}. This shows that X_{λ} is Lindelöf.

A similar argument shows that X does not have a G_{δ}-diagonal. Indeed, if $\left\{U_{n}: n \in \omega\right\}$ is a family of open sets in X^{2} which contain Δ_{X}, then for each n, there is a countable (finite in fact) cover, \mathcal{W}_{n}, of $\left\{\omega_{2}\right\} \times[0,1]$ consisting of basic open sets W with the property that $W \times W \subset U_{n}$ for each $W \in \mathcal{W}_{n}$. Letting \mathcal{W}^{\prime} be the collection of all the \mathcal{W}_{n}, choose $\gamma<\omega_{2}$ as in the above argument. Fix any β with $\gamma<\beta<\omega_{2}$, and notice that for each $x \in B_{\beta}$, the pair $p_{x}=\left((\beta, x),\left(\omega_{2}, x\right)\right) \in X^{2}$ has the property that for each n, there is a $W \in \mathcal{W}_{n}$ such that $p_{x} \in W \times W \subset U_{n}$. This proves that Δ_{x} is not equal to $\bigcap_{n} U_{n}$.

Finally, we prove that X has a small diagonal. Observe that the second coordinate projection map into $[0,1]$ is one-to-one on X_{λ} for $\lambda<\omega_{2}$. Therefore, for each such λ, X_{λ} is a clopen subset of X which has a G_{δ}-diagonal. Let A be an uncountable subset of $X^{2} \backslash \Delta_{X}$. If there is any $\lambda<\omega_{2}$ such that $A \cap X_{\lambda}^{2}$ is uncountable, then clearly there is an uncountable $B \subset A$ whose closure is disjoint from Δ_{X}. Similarly it follows that A meets the square of $\left\{\omega_{2}\right\} \times[0,1]$ in a countable set. Therefore we may assume that A has cardinality ω_{1} and there is a $\lambda<\omega_{2}$ such that each point in A has one point from X_{λ} and one point from $\left\{\omega_{2}\right\} \times[0,1]$. It follows then that $X_{\lambda}^{2} \cup\left(X \backslash X_{\lambda}\right)^{2}$ is a neighborhood of Δ_{X} which is disjoint from A.

References

[Cha76] J. Chaber, Conditions which imply compactness in countably compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), 993-998.
[Dow88a] A. Dow, Two applications of reflection and forcing to topology, in: General Topology and Its Relations to Modern Analysis and Algebra, VI (Prague, 1986), Res. Exp. Math. 16, Heldermann, Berlin, 1988, 155-172.
[Dow88b] —, An empty class of nonmetric spaces, Proc. Amer. Math. Soc. 104 (1988), 999-1001.
[Dow89] -, Compact spaces of countable tightness in the Cohen model, in: Set Theory and Its Applications (Toronto, ON, 1987), Lecture Notes in Math. 1401, Springer, Berlin, 1989, 55-67.
[Gru02] G. Gruenhage, Spaces having a small diagonal, Proc. Internat. Conf. on Topology and its Applications (Yokohama, 1999), Topology Appl. 122 (2002), 183200.
[Huš77] M. Hušek, Topological spaces without κ-accessible diagonal, Comment. Math. Univ. Carolin. 18 (1977), 777-788.
[JS92] I. Juhász and Z. Szentmiklóssy, Convergent free sequences in compact spaces, Proc. Amer. Math. Soc. 116 (1992), 1153-1160.
[Ku80] K. Kunen, Set Theory: An Introduction to Independence Proofs, North-Holland, Amsterdam, 1980.
[Tod89] S. Todorčević, Partition Problems in Topology, Contemp. Math. 84, Amer. Math. Soc., Providence, RI, 1989.
[Zho82] H. X. Zhou, On the small diagonals, Topology Appl. 13 (1982), 283-293.

Department of Mathematics
UNC-Charlotte
9201 University City Blvd.
Charlotte, NC 28223-0001, U.S.A.
E-mail: adow@uncc.edu
opavlov@email.uncc.edu
URL: http://www.math.uncc.edu/ ~adow

Received 24 November 2005;
in revised form 25 February 2006

[^0]: 2000 Mathematics Subject Classification: Primary 54D20.
 Key words and phrases: PFA, countably compact, small diagonal, metrizable.
 The first author acknowledges support provided by NSF grant DMS-0103985.

