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More about spaces with a small diagonal

by

Alan Dow and Oleg Pavlov (Charlotte, NC)

Abstract. Hušek defines a space X to have a small diagonal if each uncountable
subset of X

2 disjoint from the diagonal has an uncountable subset whose closure is dis-
joint from the diagonal. Hušek proved that a compact space of weight ω1 which has a
small diagonal will be metrizable, but it remains an open problem to determine if the
weight restriction is necessary. It has been shown to be consistent that each compact
space with a small diagonal is metrizable; in particular, Juhász and Szentmiklóssy proved
that this holds in models of CH. In the present paper we prove that this also follows
from the Proper Forcing Axiom (PFA). We furthermore present two (consistent) exam-
ples of countably compact non-metrizable spaces with small diagonal, one of which maps
perfectly onto ω1.

1. Introduction. We refer the reader to Gruenhage’s interesting article
[Gru02] for more background on spaces with small diagonal. In particular,
as mentioned there, H. X. Zhou [Zho82] is responsible for broadening the
question to countably compact and Lindelöf spaces, while Hušek originally
asked about compact and ω1-compact spaces. It has already been shown to
hold in some models that compact spaces with small diagonal are metrizable
(see [Zho82, Dow88a, Dow89, JS92]). As mentioned in the abstract, we prove
that PFA implies that compact spaces with small diagonal are metrizable.
This is the content of the second section. In the third section, we present
two constructions of countably compact spaces with small diagonals. The
first, from the hypothesis ♦+, maps perfectly onto ω1 with metric fibers.
The second example is presented because the set-theoretic hypothesis that
we are able to use is quite weak.

In this section we review some of the already established results concern-
ing spaces with small diagonal that will be useful in our proofs. It is easily
seen that a space with a Gδ-diagonal has a small diagonal. The Sorgenfrey
line is a well known example of a Lindelöf space with a Gδ-diagonal which
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is not metrizable. However for countably compact spaces the following very
interesting result is well known.

Proposition 1 ([Cha76]). A countably compact space with a Gδ-diag-

onal is metrizable.

Proposition 2 ([JS92]). A compact space with a small diagonal has

countable tightness.

Proposition 3 ([Dow88b]). A countably compact space is metrizable if

each of its subspaces of cardinality at most ℵ1 is metrizable.

Proposition 4 ([Huš77]). A compact space of weight at most ℵ1 is

metrizable if it has a small diagonal.

Corollary 5. If a compact space has a small diagonal , then it is

metrizable if each of its separable subspaces is metrizable.

Proof. By Proposition 3, we may assume that X has a dense subset of
cardinality at most ℵ1 and, by Proposition 2, that X has countable tight-
ness. Therefore X can be written as an increasing union of compact sep-
arable subspaces. If each of these is metrizable, then each has countable
weight. In addition, X would then have a net of cardinality ℵ1. Since the
weight of a compact space is equal to the minimum cardinality of a net (i.e.
weight is equal to net weight), X would have weight at most ω1, and so by
Proposition 4, X would be metrizable.

Proposition 6 ([Gru02]). A first-countable hereditarily Lindelöf space

X with a small diagonal will have a Gδ-diagonal.

2. PFA and compact spaces with small diagonal. As is well known,
it follows from PFA that there is no S-space.

Proposition 7 ([Tod89]). PFA implies that each hereditarily separable

(hS ) space is also hereditarily Lindelöf (hL).

Proposition 8 ([Tod89]). PFA implies OCA: if X is a separable metric

space and K0 is a symmetric open subset of X2 \ ∆X , then either there is

an uncountable Y ⊂ X such that Y 2 \ ∆X ⊂ K0, or X can be covered by a

countable family {Xn : n ∈ ω} such that for each n, X2
n is disjoint from K0.

Our main result of this section is the following theorem.

Theorem 9. PFA implies that each compact space with a small diagonal

is metrizable.

By Corollary 5, we may assume that our space of interest is separable.
We will use the following characterization from [Gru02, 1.2].

Proposition 10. A Lindelöf space X has a small diagonal iff for each

uncountable family {(xα, yα) : α ∈ ω1} of pairs of distinct points of X there
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is an uncountable A ⊂ ω1 such that {xα : α ∈ A} and {yα : α ∈ A} are

separated by disjoint open Fσ-sets.

The following result is established by proving that f is a closed mapping
on Y , hence a homeomorphism.

Proposition 11. If X is countably compact and f is a continuous func-

tion from X into a metric space and Y ⊂ X is such that f is one-to-one on

Y (i.e. f−1(f(y)) = {y} for each y ∈ Y ), then Y is metrizable.

In case it may have independent interest, we prove the following strength-
ening of Theorem 9. The reader will recall that Balogh has shown that PFA
implies that each compact space of countable tightness is sequential.

Lemma 12. PFA implies that each separable non-metrizable sequentially

compact space X will contain a family of pairs {(yα, zα) : α ∈ ω1} such that

for each uncountable A ⊂ ω1, {yα : α ∈ A} and {zα : α ∈ A} are not

separated by disjoint open sets.

Proof. We may assume that ω is a dense subset of our space X and that
X is embedded in [0, 1]κ for some cardinal κ. We know by Proposition 3
that X must contain a non-metrizable subspace of cardinality ω1, but we
will choose a special subspace.

If X were hL, then it would be compact and first countable, hence by
Proposition 6, X would be metrizable. Therefore X is not hL, so it has
a right-separated subspace {xα : α ∈ ω1} (i.e. for each α < ω1, the set
{xβ : β < α} is relatively open). Additionally, since we are assuming PFA,
by Proposition 7 the subspace {xα : α < ω1} cannot be hS, hence it has an
uncountable discrete subspace. Therefore we may assume that {xα : α ∈ ω1}
is a discrete subspace of X. For each α < ω1, let Wα, Uα be open subsets of
X so that xα ∈ Wα ⊂ Wα ⊂ Uα, and Uα ∩ {xβ : α 6= β < ω1} is empty.

For each α 6= γ, xα /∈ Uγ , hence the family {ω ∩ Wα \ Uγ : γ 6= α}
has the finite intersection property. Since PFA implies MA(ω1), there is an
infinite set aα ⊂ Wα ∩ω such that aα ∩Uγ is finite for all γ 6= α. Since X is
sequentially compact, we may assume that there is a yα ∈ Wα such that aα

converges to yα. Furthermore, by enlarging Wα by a small amount, we may
assume that yα ∈ Wα ⊂ Wα ⊂ Uα.

Now we have chosen an uncountable discrete set Y = {yα : α ∈ ω1} and a
family of sequences aα ⊂ ω such that aα converges to yα. It of course follows
that ω∪Y is not metrizable. We are ready to apply OCA. Let X denote the
family of all pairs (a, b) of subsets of ω such that there is an α ∈ ω1 and a
z ∈ X \ Y such that a = aα, a ∩ b is empty, and b converges to z.

We topologize X by the usual separable metric topology where for each
n ∈ ω, [(a, b)n] denotes the family of all pairs (a′, b′) ∈ X such that a′ ∩ n =
a ∩ n and b′ ∩ n = b ∩ n.
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Define a set K0 ⊂ X 2 by ((aα, bα), (aβ, bβ)) ∈ K0 if (aα ∩ bβ)∪ (aβ ∩ bα)
is not empty. Notice that it follows that α 6= β since otherwise (aα ∪ aβ) ∩
(bα ∪ bβ) would be empty.

One can see that K0 is open by simply choosing n large enough so that
(aα ∩ bβ) ∪ (aβ ∩ bα) has a point in it below n.

Assume that A ⊂ ω1 is uncountable and {(aα, bα) : α ∈ A} is such that

((aα, bα), (aβ, bβ)) ∈ K0 for each α 6= β ∈ A.

For each α ∈ A, let zα ∈ X be the point such that bα converges to zα.

Claim 1. The family {(yα, zα) : α ∈ A} satisfies the conclusion of the

lemma.

Assume that U, V are disjoint open subsets of X such that yα ∈ U and
zα ∈ V for all α ∈ A′ for some uncountable A′ ⊂ A. By shrinking A′ we
may assume that there is an n ∈ ω such that aα \ U ⊂ n and bα \ V ⊂ n
for all α ∈ A′. Furthermore, we may assume that aα ∩ n and bα ∩ n are
independent of α ∈ A′. Clearly then, if α, β are distinct members of A′ we
see that n∩aα ∩ bβ = n∩aβ ∩ bβ is empty, and aα \n ⊂ U while bβ \n ⊂ V ,
contradicting that ((aα, bα), (aβ, bβ)) ∈ K0.

To finish the proof, we assume that Xn are subsets of X with the property
that X 2

n is disjoint from K0 and show that X is not equal to
⋃

n Xn. For
each n, let Yn =

⋃
{aα : (∃b) (aα, b) ∈ Xn}.

Let M be a countable elementary submodel of H(θ) for some large
enough regular cardinal θ and assume that {yα : α ∈ ω1}, {aα : α ∈ ω1},
{Wα : α ∈ ω1}, {Xn : n ∈ ω}, and the embedding of X as a subspace of
[0, 1]κ are each elements of M .

Let f denote the projection map from X into [0, 1]M∩κ. Let δ = M ∩ ω1

(the minimum ordinal not in M). Let {Um : m ∈ ω} be a descending family
of basic open subsets of [0, 1]κ∩M (using rational intervals in finitely many
cooordinates) which form a neighborhood base at f(yδ). Although the family
{Um : m ∈ ω} is actually disjoint from M , the set f−1(Um), for each m, is
an open subset of X which is an element of M . Note that for β ∈ M ∩ ω1,
f(yβ) 6= f(yδ) since Wβ ∈ M and f(yγ) /∈ f(Wβ) for all γ > β.

Let J = {n ∈ ω : aδ ⊂ Yn}.

Claim 2. There is an infinite set b ⊂ ω converging to a point z′ ∈ X \Y
such that for each m ∈ ω,

b \
⋂

n∈J∩m

Yn is finite.

To find our set b we again use MA(ω1) to assert that there is a subset
b ⊂ ω\aδ such that b is almost contained in

⋂
n∈J∩m Yn∩f−1(Um)\(Wδ∪Wγ)

for each γ > δ and m ∈ ω.
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To see this it is sufficient to show that
⋂

n∈J∩m

Yn ∩ f−1(Um) \ (W γ0 ∪ · · · ∪ W γl
)

is infinite for each l ∈ ω and δ ≤ γ0 < · · · < γl < ω1.

This again follows from the fact that aδ is almost contained in the set
A =

⋂
n∈J∩m Yn∩f−1(Um), which is in M . By elementarity, there is a β ∈ M

such that aβ is almost contained in A. Since such an aβ is almost disjoint
from each Wγ with γ ≥ δ, we have shown that the above set is infinite.

We may shrink b so that it converges to some z ∈ X and we observe that
f(z) = f(yδ). We check that z /∈ Y . Since b is almost disjoint from Wγ for
all γ ≥ δ, we have z 6= yγ for all γ ≥ δ. On the other hand, our construction
has ensured that f(yβ) 6= f(yδ) for each β ∈ M .

Finally then, we have produced a pair (aδ, b) ∈ X . Assume that (aδ, b)
∈ Xn, hence aδ ⊂ Yn. By construction, it follows that n ∈ J , hence b is
almost contained in Yn. Choose any j ∈ b ∩ Yn and fix (aβ, bβ) ∈ Xn such
that j ∈ aβ. Since b∩aδ is empty, it follows that β 6= δ. However, we see that
(aβ ∩ b)∪ (aδ ∩ bβ) is not empty, which means that the pair ((aδ, b), (aβ, bβ))
is in K0, a contradiction.

3. Countably compact with small diagonal. Gruenhage has shown
that it is consistent with CH that there is no countably compact non-
metrizable space with a small diagonal [Gru02, 4.2]. He has also shown
that it is consistent with the failure of CH that there is a countably com-
pact non-metrizable space with a small diagonal [Gru02, 4.3]. In this section
we generalize these results in two ways. In the first result we prove that it
is consistent with CH that there is a perfect first-countable preimage of ω1

(with metrizable fibers) which has a small diagonal (Theorem 13). This ex-
ample answers several of the questions in [Gru02]. Secondly, we establish,
from a much weaker set-theoretic hypothesis than that in [Gru02, 4.3], that
there is a countably compact non-metrizable space with a small diagonal
(Theorem 16).

Recall that the classical ♦+ (see [Ku80]) is the following statement:

There are sets Aα ⊂ P(α), for α < ω1, such that each |Aα| ≤ ω and , for

each A ⊂ ω1, there is a club F ⊂ ω1 such that for every α ∈ F , A ∩ α ∈ Aα

and F ∩ α ∈ Aα.

Theorem 13 (♦+). There is a perfect preimage of ω1 with a small di-

agonal.

Proof. Let C = {0, 1}ω be a copy of a Cantor set. Let X = ω1 × C.
Let π1 and π2 denote projections of X onto ω1 and C respectively. For
every α ∈ ω1, Cα, X<α, and X≤α are subsets of X, where Cα = {α} × C,
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X<α = α × C, and X≤α = (α + 1) × C. We put X<ω1 = X. Let φ1 and φ2

be the projections of X2 onto the corresponding coordinates.
We define a topology on X in such a way that π1 is a continuous perfect

map. We define the topology at points of Cα recursively for α ∈ ω1. Each
X≤α will be a subspace and an open subset of X, so a typical neighborhood
of x ∈ Cα in X≤α will be a typical neighborhood of this x in X.

We introduce some notation for the properties that will ensure that X
will have a small diagonal. A set A ⊂ X2 will be said to be simple

if π1(φ1(A)) ∪ π1(φ2(A)) is discrete and for a 6= a′ both in A, either
max{π1(φ2(a)), π1(φ2(a))} < min{π1(φ2(a

′)), π1(φ2(a
′))} or vice versa. A

simple set A is well-ordered by the map sending a ∈ A to min{π1(φ2(a)),
π1(φ2(a))}.

We can reformulate ♦+ to a more suitable form as follows. Let h be any
function from ω1 onto ω1 ∪ X2 such that for each limit ordinal δ, h(δ) = δ
and for each α < ω1, h({β : β < α}) ⊂ α ∪ X2

<α. Let {Aα : α ∈ ω1} be the
♦+-sequence as above. For each α, let A′

α be those A ∈ Aα such that h(A)
is a simple set (contained in (X<α)2). Also, let Bα be those B ∈ Aα such
that B is a closed set of limit ordinals. With no loss of generality, we may
assume that each of A′

α and Bα is infinite for each infinite ordinal α.

Now, for each infnite α ∈ ω1, let {Bn
α : n ∈ ω} enumerate the set Bα,

and let {An
α : n ∈ ω} enumerate the set {h(A) : A ∈ A′

α}. It is a routine
exercise to verify that the following will hold:

There are sequences A = {Am
α ⊂ (X<α)2 : α ∈ ω1, m ∈ ω} and B =

{Bn
α ⊂ α : α ∈ ω1, n ∈ ω} such that for every simple A ⊂ X2 there are a

club F ⊂ ω1 and sequences {m(α) ∈ ω : α ∈ ω1} and {n(α) ∈ ω : α ∈ ω1}

such that for every α ∈ F , A ∩ (X<α)2 = A
m(α)
α and F ∩ α = B

n(α)
α .

The topology on X will satisfy the following conditions for every α ∈ ω1:

(1α) Cα is homeomorphic to a Cantor set.
(2α) X<α is 0-dimensional.
(3α) X≤α is a compact space.
(4α) π1↾X≤α

is a continuous map.
(5α) If α is a successor ordinal, then Cα is clopen in X≤α.

Let A be a simple subset of X2. We say that A is thin if φ1(A)∩φ2(A) = ∅.
For every β ∈ ω1 and simple A we say that A is simple in β (respectively, A
is thin in β) if A ∩ (X<β)2 is simple (respectively, thin) in the space X<β.
We denote by lim(A) the set {π1(φ1(x)) : x is a limit point of A in X2}
(= {π1(φ2(x)) : x is a limit point of A in X2}). Finally, let F ⊂ γ be a
non-empty closed set. When the context is clear, for each δ ∈ F , δ+ will
denote the next smallest element of F ∪ {γ}, i.e. δ+ is γ if δ = max(F ). If
A ∩ (X<δ+ \ X<δ)

2 is a non-empty set, denote by aδ the smallest element
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of this set (according to the induced well-ordering of A as a simple set). If
A ∩ (X<δ+ \X<δ)

2 is empty, we put aδ = ∅. Denote {aδ : δ ∈ F} by A↾F . If
F is empty, let A↾F be empty as well.

Consider the following condition on a pair (m, n) ∈ ω2:

(∗α) Am
α is simple in α, Bn

α is closed in α, and Am
α ↾Bn

α∩lim(Am
α ) is thin

in α.

The following condition will ensure that X has a small diagonal:

(6α) If (m, n) satisfies (∗α), then Am
α ↾Bn

α∩lim(Am
α ) is thin in α + 1.

Note that if (m, n) satisfies (∗γ), then condition (6γ) essentially means that
γ is not the minimal ordinal such that

φ1(Am
γ ↾Bn

γ ∩lim(Am
γ )

) ∩ φ2(Am
γ ↾Bn

γ ∩lim(Am
γ )

) ∩ Cγ 6= ∅.

Using (6α), we will show that for every uncountable simple subset A
of X2, φ1(A↾G) ∩ φ2(A↾G) = ∅ since there is no minimal γ ∈ ω1 such that

φ1(A↾G) ∩ φ2(A↾G) ∩ Cγ 6= ∅ (here G is a certain club in ω1 which depends
on A and which is produced with the help of ♦+-sequences).

Now let γ ∈ ω1 and suppose that a topology has been defined on X<γ

and satisfies (1α)–(6α) for every α < γ.

Case 1: γ is a successor ordinal. In this case, let Cγ be a clopen subset of
X≤γ which is homeomorphic to a Cantor set. Then (1γ)–(6γ) are obviously
satisfied.

Case 2: γ is a limit ordinal. In this case, X<γ is a free topological sum of
sets with zero large inductive dimension, so (2γ) holds. Enumerate all pairs
(m, n) ∈ ω2 which satisfy (∗γ) by {(mk, nk) : k ∈ ω}. We can assume that the
family of such pairs is infinite (if not, replace some Am

γ , Bn
γ so that infinitely

many pairs (m, n) ∈ ω2 satisfy (∗γ)). For every k ∈ ω, let Ik = {0, 1}k be the
set of all binary sequences of length k, and let I =

⋃
{Ik : k ∈ ω}. Let U0, U1

be complementary clopen subsets of X<γ such that φ1(A
m0
γ ↾B

n0
γ ∩lim(A

m0
γ )

)

⊂ U0 and φ2(A
m0
γ ↾B

n0
γ ∩lim(A

m0
γ )

) ⊂ U1. Such sets exist according to (2γ)

and (∗γ). Now assume that a family {UI : I ∈ Ik} of clopen subsets of
X<γ has been defined for some k ∈ ω. For every I ∈ Ik, let UÎ0, UÎ1 be
complementary clopen subsets of UI such that φ1(A

mk
γ ↾B

nk
γ ∩lim(A

mk
γ )

) ∩ UI

⊂ UÎ0 and φ2(A
mk
γ ↾B

nk
γ ∩lim(A

mk
γ )

) ∩ UI ⊂ UÎ1. Let c = {ip ∈ {0, 1} : p ∈

ω} be an element of C. Then a typical neighborhood of (γ, c) in X≤γ is
({γ} × CI) ∪ (UI \ X≤δ) for various I ∈ I and δ < γ, where CI denotes the
set of all elements of C which extend I.

Now we check properties (1γ) and (3γ)–(6γ) in Case 2.
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It is well known that {CI : I ∈ I} is a base of C. Hence {{γ} × CI :
I ∈ I} is a base of Cγ . Therefore Cγ is homeomorphic to a Cantor set and
(1γ) holds.

Assume towards a contradiction that (3γ) fails. Since X≤γ is separable
metrizable, there is a countably infinite subset S of X≤γ without an accu-
mulation point in X≤γ . Therefore for every x ∈ Cγ , there is I(x) ∈ I such
that the sets UI(x) ∩ S and CI(x) ∩ S are finite. The family {CI(x) : x ∈ Cγ}
is an open cover of Cγ , so it contains a finite subcover, which we denote
by U . It then follows from the definition of topology in Cγ that

⋃
U con-

tains X≤γ \ X≤δ for some δ < γ. Therefore S ∩ X≤δ is an infinite subset
of X≤δ with accumulation point in X≤δ. However, X≤δ is a compact space
according to (3δ). This contradiction proves (3γ).

(4γ) is true since (4α) is true for every α < γ and since (π1)
−1((α, γ]) is

open in X≤γ from the definition of topology on X≤γ .

(5γ) holds trivially in Case 2.

(6γ) holds because
⋃
{UÎ0 : I ∈ Ik} contains φ1(A

mk
γ ↾B

nk
γ ∩lim(A

mk
γ )

) and,

similarly,
⋃
{UÎ1 : I ∈ Ik} contains φ2(A

mk
γ ↾B

nk
γ ∩lim(A

mk
γ )

).

We next show that π1 is a continuous perfect map. Fix x ∈ X. Then
there is α ∈ ω1 such that x ∈ X<α. But X<α is an open neighborhood of
x and π1↾X<α

is a continuous map by (4α). Therefore π1 is continuous at x.
Hence π1 is a continuous map. Now fix a closed set F ⊂ X. To prove that
π1(F ) is closed in ω1, it is enough to show that π1(F ) ∩ [0, α] is closed for
every α ∈ ω1. The latter statement is true since π1(F )∩[0, α] = π1(F ∩X≤α)
and since F ∩ X≤α is a compact set by (3α). Further, every fiber of π1 is a
compact set by (1α). So π1 is a continuous perfect map.

The last step is to show that X has a small diagonal. Recall that ∆(X)
denotes the diagonal of X. Fix an uncountable set A ⊂ X2. If A∩(X \ X≤δ)

2

is countable for some δ ∈ ω1, then either A∩(X≤δ×(X\X≤δ)) is uncountable,
or A∩((X \X≤δ)×X≤δ) is uncountable, or A∩(X≤δ)

2 is uncountable. In the

first two cases, A \ ((X≤δ)
2 ∪ (X \ X≤δ)

2) is uncountable. In the third case,
there is a neighborhood U ⊂ (X≤δ)

2 of ∆(X≤δ) such that (A ∩ (X≤δ)
2) \U

is uncountable. Either way, U ∪ (X \ X≤δ)
2 is a neighborhood of ∆(X)

which misses uncountably many elements of A. So we can assume that A ∩
(X \ X≤δ)

2 is an uncountable set for every δ ∈ ω1. Then A contains an
uncountable simple set. Therefore, we can just assume that A is simple
itself.

According to our version of ♦+, there is a club F ⊂ ω1 and sequences

{m(α) ∈ ω : α ∈ ω1}, {n(α) ∈ ω : α ∈ ω1} such that A ∩ (X<α)2 = A
m(α)
α

and F ∩ α = B
n(α)
α for every α ∈ F . The set G = F ∩ lim(A) is a club since

lim(A) is a club. We show that A↾G is an uncountable thin set. In particular,
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A↾G ∩∆(X) = ∅, which implies that X has a small diagonal. First of all, for
every δ1, δ2 ∈ G with δ1 < δ2, (X<δ2 \X<δ1)

2∩A is a non-empty set since A
is simple and since δ1, δ2 ∈ lim(A). Therefore A↾G is uncountable. Assume
towards a contradiction that A↾G is not thin. Then there is a minimal ordinal
γ ∈ ω1 such that

(1) φ1(A↾G) ∩ φ2(A↾G) ∩ Cγ 6= ∅.

It is possible to check that γ ∈ G, in particular γ ∈ F . Therefore A
m(γ)
γ =

A∩ (X<γ)2 and B
n(γ)
γ ∩ γ = F ∩ γ. Also lim(A∩ (X<γ)2) = lim(A)∩ γ. This

means that

Am(γ)
γ ↾B

n(γ)
γ ∩lim(A

m(γ)
γ )

= (A ∩ (X<γ)2)
↾(F∩γ)∩(lim(A)∩γ)

= (A ∩ (X<γ)2)
↾F∩lim(A)∩γ = (A ∩ (X<γ)2)

↾G∩γ

= A↾G ∩ (X<γ)2.

The latter set is thin in γ by the minimality of γ. So the pair (m(γ), n(γ))

satisfies (∗γ) and A
m(γ)
γ

↾B
n(γ)
γ ∩lim(A

m(γ)
γ ))

is thin in γ + 1 by (6γ), hence

(2) φ1(A↾G) ∩ (X<γ)2 ∩ φ2(A↾G) ∩ (X<γ)2 ∩ Cγ = ∅.

However, (2) contradicts (1) since φi(A↾G)∩Cγ = ∅ for i ∈ {1, 2}. Therefore
A↾G is thin.

For our next result, we need another set-theoretic principle.

Definition 14. The statement MA(Cohen) is the Martin’s Axiom type
assertion that if P is a poset for adding any number of Cohen reals, i.e. for
some set I, P is the poset Fn(I, 2) of finite functions from I into 2, and if D

is a family of fewer than c dense subsets of P , then there is a filter G ⊂ P
which meets each member of D.

The actual consequence of MA(Cohen) that we need is the following.

Proposition 15. (MA(Cohen)) If A is a family of fewer than c count-

ably infinite sets, then there is a set Y ⊂
⋃

A such that neither Y nor⋃
A \ Y contains any of the members of A.

The proof is of course very straightforward. One simply uses the poset
Fn(

⋃
A, 2) and with G meeting |A| dense sets, Y = (

⋃
G)−1(0) works.

Theorem 16. (MA(Cohen) + 2ω1 = 2ω) Each of the spaces 2c and βω
contains dense countably compact subsets of cardinality c which have small

diagonals.

Proof. We will define a subspace X = {xα : α ∈ c} of 2c by induction on
α ∈ c. At stage α, we will have chosen, for each β < α, the values of xβ↾α
for each β < α. At stage α we will extend each xβ↾α by defining its value
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at α, i.e. xβ(α) will be defined to be either 0 or 1, and we will also choose
xα↾α + 1 to be some member of 2α+1.

In order to ensure that X will be countably compact, let {Aγ : γ ∈ c} be
an enumeration of the countably infinite subsets of c such that An = ω \ n
for each n ∈ ω, and Aγ ⊂ γ for all γ ≥ ω. Our inductive hypothesis will
include the condition, for γ ≤ α, that the point xγ↾α is a limit point (in the
space 2α) of the set {xβ↾α : β ∈ Aγ}. We will also preserve the property
that {xn↾α : n ∈ ω} is dense in 2α.

In order to ensure that X will have a small diagonal, let {hγ : γ ∈ c}
enumerate all functions from ω1 into [c]2 (the two-element subsets of c)
so that for each γ, the range of hγ is contained in [γ]2. We will arrange
that for each α, there is an uncountable I ⊂ ω1 such that for each ζ ∈ I,
hα(ζ) = {ζ0 < ζ1} and xζ0(α) = 0 and xζ1(α) = 1. Note then that if
U(α, 0) is the subset of 2c consisting of all points that have value 0 at α
and U(α, 1) = 2c \ U(α, 0), then (U(α, 0)× U(α, 0))∪ (U(α, 1)× U(α, 1)) is
an open neighborhood of the diagonal of X in X2 but contains none of the
points in {(xζ0 , xζ1) : ζ ∈ I and hα(ζ) = {ζ0, ζ1}}.

We begin the induction by choosing {xn↾ω : n ∈ ω} to be any countable
dense subset of 2ω. At stage α ≥ ω, we may assume that we have chosen
xγ↾α for all γ ∈ α and have, by induction, preserved the property that xγ↾α
is a limit point of {xβ↾α : β ∈ Aγ}. We must first choose a set J ⊂ α and
define xγ(α) = 0 for all γ ∈ J and xγ(α) = 1 for all γ ∈ α \ J . Then we
simply choose a point xα↾α + 1 which is a limit point of {xβ : β ∈ Aα}.

Define Aα to be the family of all countably infinite sets B of α such that
there is a basic clopen subset W of 2α and a γ < α such that B is a cofinite
subset of {ξ ∈ Dγ : xξ↾α ∈ W}. Clearly Aα has cardinality at most |α|. By
MA(Cohen), there is an uncountable set I0 of ω1 such that {ζ0 : ζ ∈ I0}
contains no member of Aα. Similarly, there is an uncountable I1 ⊂ I0 such
that {ζ1 : ζ ∈ I1} contains no member of Aα. Let I2 = {ζ0, ζ1 : ζ ∈ I1}
and A1 be the family {A \ I2 : A ∈ Aα} and, by MA(Cohen), choose a set
J ⊂ α \ I2 so that neither J nor α \ J contains any member of A1. Finally,
define xγ(α) = 0 for all γ ∈ J ∪{ζ0 : ζ ∈ I1}, and xγ(α) = 1 for other γ ∈ α.

It is routine, by the choice of A1, to prove by the inductive hypothesis
that xγ↾α + 1 is in the closure of {xβ↾α + 1 : β ∈ Aγ} for each γ ≤ α. We
have also preserved the property that {xn↾α + 1 : n ∈ ω} is dense since Aα

will list (the indices of) all the basic clopen subsets of 2α intersected with
{xn↾α : n ∈ ω}.

This completes the proof for the dense subset of 2c. One could make
a minor modification of the proof in order to arrange that one particular
countable discrete subset of X had closure in 2c which was homeomorphic
to βω, and then the closure of this subset in X would be our desired dense
subset of βω. However, instead we can make one very minor additional
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requirement on our construction, namely that xγ 6= xα for all γ 6= α. Then
let f be the canonical map from βω onto 2c which sends n to xn for each n.
For each integer n, let yn denote n ∈ βω. Recursively choose yα ∈ βω (for
α ∈ c) so that f(yα) = xα and yα is a limit point of {yβ : β ∈ Aα}. Now f
will be a one-to-one map from Y = {yα : α ∈ c} onto X and Y is easily seen
to be a countably compact dense subset of βω. Then Y has a small diagonal
since the map onto X is one-to-one.

It would be interesting to determine if simply the failure of CH implies
that there is a countably compact non-metrizable space with a small diago-
nal. Gruenhage’s example was also initially ω1-compact; the above construc-
tion can be modified to moreover ensure that every set of cardinality ω1 has
a complete accumulation point by using the following stronger consequence
of MA(Cohen).

Proposition 17. (MA(Cohen)) If A is a family of fewer than c infinite

sets, then there is set Y ⊂
⋃

A such that for all A ∈ A, each of A ∩ Y and

A \ Y has the same cardinality as that of A.

4. Lindelöf and small diagonal. In this section we present a simple
observation about Lindelöf spaces with a small diagonal which generalizes a
result by Zhou [Zho82] for compact spaces. We also show that the failure of
CH implies there is a Lindelöf space with a small diagonal which does not
have a Gδ-diagonal.

Proposition 18. If a space X is Lindelöf and every continuous image

of X has a small diagonal , then X has a Gδ-diagonal.

Proposition 18 is actually a corollary to the following.

Proposition 19. For a Lindelöf space X, either

(1) X has a continuous image with weight (precisely) ω1 which does not

have a small diagonal , or

(2) X can be mapped onto a metric space by a one-to-one map.

Proof. We may assume that X is embedded in [0, 1]κ for some cardinal κ.
For each set I ⊂ κ, let XI denote the image of X by the projection map
πI : [0, 1]κ → [0, 1]I . If I is countable, then of course XI is metrizable; hence
if there is a countable I ⊂ κ such that πI↾X is one-to-one then the second
condition holds. Therefore we assume otherwise, and inductively choose an
increasing sequence {Iα : α ∈ ω1} of countable sets as follows. Let I0 be
any non-empty countable subset of κ, and for limit α let Iα be the union⋃

β<α Iβ. For each α, if πIα is not one-to-one, then let xα, yα be a pair of
points of X such that πIα(xα) = πIα(yα). Choose Iα+1 ⊃ Iα large enough
so that πIα+1(xα) 6= πIα+1(yα).
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Let I = Iω1 and consider the sequence {(x′
α, y′α) : α ∈ ω1} ⊂ X2

I where
x′

α = πI(xα) and y′α = πI(yα). To show that X2
I does not have a small

diagonal, let A be any uncountable subset of ω1. Now by the hypothesis
that XI is Lindelöf we may choose a point x′ ∈ XI which is a complete
accumulation point of the set {x′

α : α ∈ A}. Of course, if U is any basic
open neighborhood of x′ in XI then of the uncountably many α ∈ A with
x′

α ∈ U , we will also have y′α ∈ U for all but countably many of them. There-
fore the point (x′, x′) on the diagonal of XI is a limit point of {(x′

α, y′α) :
α ∈ A}.

Gruenhage shows in [Gru02] that it is consistent with CH (and holds in
Gödel’s constructible universe L) that there is a Lindelöf space with a small
diagonal which does not have a Gδ-diagonal. We show that the failure of CH
alone will also provide such an example.

Theorem 20. If c > ω1, then there is a Lindelöf space which has a small

diagonal but not a Gδ-diagonal.

Proof. Recall that a set B ⊂ [0, 1] is a Bernstein set if B meets, but does
not contain, each uncountable closed subset of [0, 1]. It is well known that
there is a family of c pairwise disjoint Bernstein sets, so let {Bα : α ∈ ω2}
be any subfamily of such a family. Our space X will simply be a sub-
space of the product space (ω2 + 1) × [0, 1] where ω2 + 1 is the com-
pact order topology on the set of ordinals. For each α < ω2, we choose
X ∩ ({α} × [0, 1]) to be {α} × Bα and we take {ω2} × [0, 1] ⊂ X. Ba-
sic open sets for X will be taken to be of the form X ∩ ([α, β] × I) for
α ≤ β ≤ ω2, with α not a limit ordinal, and I any (relatively) open interval
in [0, 1].

For each λ ≤ ω2, we show, by induction on λ, that the subspace

Xλ = X ∩ ([0, λ] × [0, 1])

is Lindelöf.

If λ has countable cofinality, then Xλ =
⋃

µ<λ Xµ ∪ ({λ} × Bλ) is a
countable union of Lindelöf subsets, hence is Lindelöf itself. To see that
Xλ is Lindelöf when λ has uncountable cofinality, let W be a cover of Xλ

by basic open sets. Since {λ} × Bλ (or {ω2} × [0, 1]) is Lindelöf, there is
a countable subcollection W

′ of W whose union covers Xλ ∩ ({λ} × [0, 1]).
We may assume that W

′ is the family {[αn, λ] × In : n ∈ ω} where each
In is an open subinterval of [0, 1]. Since each Bα is Bernstein, [0, 1] \

⋃
n In

is countable. In addition, the sets in the family {Bα : α < λ} are pairwise
disjoint (and λ has uncountable cofinality), hence there is a γ < λ such
that αn < γ for each n, and Bβ ⊂

⋃
n In for each γ < β ≤ λ. It follows that

Xλ\Xγ is contained in
⋃

W
′. Since Xγ is Lindelöf (by inductive assumption),
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it follows that W has a countable subcover of Xλ. This shows that Xλ is
Lindelöf.

A similar argument shows that X does not have a Gδ-diagonal. Indeed,
if {Un : n ∈ ω} is a family of open sets in X2 which contain ∆X , then
for each n, there is a countable (finite in fact) cover, Wn, of {ω2} × [0, 1]
consisting of basic open sets W with the property that W × W ⊂ Un for
each W ∈ Wn. Letting W

′ be the collection of all the Wn, choose γ < ω2

as in the above argument. Fix any β with γ < β < ω2, and notice that for
each x ∈ Bβ , the pair px = ((β, x), (ω2, x)) ∈ X2 has the property that for
each n, there is a W ∈ Wn such that px ∈ W × W ⊂ Un. This proves that
∆x is not equal to

⋂
n Un.

Finally, we prove that X has a small diagonal. Observe that the second
coordinate projection map into [0, 1] is one-to-one on Xλ for λ < ω2. There-
fore, for each such λ, Xλ is a clopen subset of X which has a Gδ-diagonal.
Let A be an uncountable subset of X2 \∆X . If there is any λ < ω2 such that
A ∩ X2

λ is uncountable, then clearly there is an uncountable B ⊂ A whose
closure is disjoint from ∆X . Similarly it follows that A meets the square of
{ω2}× [0, 1] in a countable set. Therefore we may assume that A has cardi-
nality ω1 and there is a λ < ω2 such that each point in A has one point from
Xλ and one point from {ω2} × [0, 1]. It follows then that X2

λ ∪ (X \ Xλ)2 is
a neighborhood of ∆X which is disjoint from A.
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