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Coordinatewise de
omposition, Borel 
ohomology,and invariant measuresbyBenjamin D. Miller (Los Angeles, CA)
Abstra
t. Given Polish spa
es X and Y and a Borel set S ⊆ X × Y with 
ountablese
tions, we des
ribe the 
ir
umstan
es under whi
h a Borel fun
tion f : S → R is of theform f(x, y) = u(x) + v(y), where u : X → R and v : Y → R are Borel. This turns out tobe a spe
ial 
ase of the problem of determining whether a real-valued Borel 
o
y
le on a
ountable Borel equivalen
e relation is a 
oboundary. We use several Glimm�E�ros styledi
hotomies to give a solution to this problem in terms of 
ertain σ-�nite measures on theunderlying spa
e. The main new te
hni
al ingredient is a 
hara
terization of the existen
eof type III measures of a given 
o
y
le.Suppose that S ⊆ X × Y and G is a group. A 
oordinatewise de
omposi-tion of a fun
tion f : S → G is a pair (u, v), where u : X → G, v : Y → G,and

∀(x, y) ∈ S (f(x, y) = u(x)v(y)).If X and Y are Polish spa
es, G is a standard Borel group, and u and v areBorel, then we say that (u, v) is a Borel 
oordinatewise de
omposition of f .Our main goal here is to show that when S is a Borel set with 
ountablese
tions, f : S → G is Borel, and G = 〈R, +〉, the existen
e of a Borel 
o-ordinatewise de
omposition 
an be 
hara
terized in terms of 
ertain σ-�nitemeasures on the disjoint union of X and Y (by a measure on a Polish spa
e,we shall always mean a measure on its Borel subsets). Before getting to this,however, we �rst 
onsider the existen
e of 
oordinatewise de
ompositions,without imposing any de�nability restri
tions.For the sake of notational 
onvenien
e, we assume that X ∩ Y = ∅.Asso
iated with ea
h set S ⊆ X × Y is the set ZS = X ∪ Y , the graph
GS = S ∪ S−1 on ZS , the equivalen
e relation ES on ZS whose equivalen
e
lasses are the 
onne
ted 
omponents of GS , and the groupoid ΓS of all2000 Mathemati
s Subje
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ation: Primary 03E15; Se
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82 B. D. Millerpaths through GS . We use γ−1 to denote the reversal of a path γ, and γ1γ2to denote the 
on
atenation of paths γ1 and γ2. Observe that ea
h fun
tion
f : S → G extends to a unique groupoid homomorphism, i.e., there is aunique fun
tion ϕf : ΓS → G su
h that:(1) ∀(x, y) ∈ S (ϕf (〈x, y〉) = f(x, y)).(2) ∀γ ∈ ΓS (ϕf (γ−1) = ϕf (γ)−1).(3) ∀γ, γ1, γ2 ∈ ΓS (γ = γ1γ2 ⇒ ϕf (γ) = ϕf (γ1)ϕf (γ2)).We say that γ ∈ ΓS is a loop if its initial and terminal points 
oin
ide. Thefollowing fa
t was proven essentially by Cowsik�Kªopotowski�Nadkarni [1℄:Proposition 1. Suppose that X and Y are disjoint , S ⊆ X × Y , G isa group, and f : S → G. Then the following are equivalent :(1) f admits a 
oordinatewise de
omposition.(2) ∀γ ∈ ΓS (γ is a loop ⇒ ϕf (γ) = 1G).Proof. To see (1)⇒(2), suppose that (u, v) is a 
oordinatewise de
ompo-sition of f and γ is a loop. If γ = 〈x0, y0, . . . , xn, yn, x0〉, then
ϕf (γ) = f(x0, y0)f(x1, y0)

−1 · · · f(xn, yn)f(x0, yn)−1

= (u(x0)v(y0))(u(x1)v(y0))
−1 · · · (u(xn)v(yn))(u(x0)v(yn))−1 = 1G.The 
ase that γ = 〈y0, x0, . . . , yn, xn, y0〉 is handled similarly.To see (2)⇒(1), �x a transversal B ⊆ ZS of ES (i.e., a set whi
h interse
tsevery ES-
lass in exa
tly one point), and let d be the graph metri
 asso
iatedwith GS . Fix g : ZS \ B → ZS su
h that

∀z ∈ ZS \ B ((z, g(z)) ∈ GS and d(g(z), B) < d(z, B)),and de�ne re
ursively u : X → G and v : Y → G by
u(x) =

{

1G if x ∈ B,
f(x, g(x))v(g(x))−1 otherwise,

v(y) =

{

1G if y ∈ B,
u(g(y))−1f(g(y), y) otherwise.To see that (u, v) is a 
oordinatewise de
omposition of f , note �rst that if

g(x) = y, then u(x) = f(x, y)v(y)−1, thus f(x, y) = u(x)v(y). Similarly, if
g(y) = x, then v(y) = u(x)−1f(x, y), thus f(x, y) = u(x)v(y).Finally, suppose that (x0, y0) ∈ S \ (graph(g) ∪ graph(g−1)), and �x aloop γ = 〈x0, y0, . . . , xn, yn, x0〉 su
h that, with the ex
eption of (x0, y0),su

essive pairs along γ are in graph(g)∪graph(g−1). Then γ = γ1γ2, where
γ1 = 〈x0, y0, x1〉 and γ2 = 〈x1, y1, . . . , xn, yn, x0〉. Observe now that

ϕf (γ2) = f(x1, y1)f(x2, y1)
−1 · · · f(xn, yn)f(x0, yn)−1

= u(x1)v(y1)(u(x2)v(y1))
−1 · · ·u(xn)v(yn)(u(x0)v(yn))−1

= u(x1)u(x0)
−1.



Coordinatewise de
omposition 83As ϕf (γ1)ϕf (γ2) = ϕf (γ) = 1, it follows that ϕf (γ1) = ϕf (γ2)
−1, thus

u(x0)u(x1)
−1 = ϕf (γ1) = f(x0, y0)f(x1, y0)

−1 = f(x0, y0)(u(x1)v(y0))
−1,and it easily follows that f(x0, y0) = u(x0)v(y0).We now turn ba
k to our main question, whi
h, in the spe
ial 
ase that

G = 〈C, +〉, was 
onsidered earlier by Cowsik�Kªopotowski�Nadkarni [1℄:Question 2. Suppose that X and Y are disjoint Polish spa
es, S ⊆
X×Y is Borel , G is a standard Borel group, and f : S → G is Borel. Underwhat 
ir
umstan
es does f admit a Borel 
oordinatewise de
omposition?Suppose that X is a Polish spa
e, E is an equivalen
e relation on X, and
G is a standard Borel group. We say that ̺ : E → G is a 
o
y
le if

∀xEyEz (̺(x, z) = ̺(x, y)̺(y, z)).We say that 
o
y
les ̺1, ̺2 : E → G are (Borel) 
ohomologous if there is aBorel fun
tion w : X → G su
h that ∀xEy (̺1(x, y) = w(x)̺2(x, y)w(y)−1),and a 
o
y
le ̺ : E → G is a (Borel) 
oboundary if it is 
ohomologous tothe trivial 
o
y
le, i.e., if there is a Borel fun
tion w : X → G su
h that
∀xEy (̺(x, y) = w(x)w(y)−1). Note that if G is abelian, then ̺1, ̺2 : E → Gare 
ohomologous if and only if ̺(x, y) = ̺1(x, y)̺2(x, y)−1 is a 
oboundary.As we have already answered the non-des
riptive version of Question 2,let us assume that f admits a 
oordinatewise de
omposition. In this 
ase,Proposition 1 ensures that if γ1, γ2 ∈ ΓS have the same initial and terminalpoints, then ϕf (γ1) = ϕf (γ2), so we 
an de�ne ̺f : ES → G by

̺f (x, y) = ϕf (γ),where γ ∈ ΓS is any path from x to y. As ϕf is a groupoid homomorphism,it follows that ̺f is a 
o
y
le. Note also that if ES is Borel (whi
h holds, forexample, if S has 
ountable se
tions), then so too is ̺f .Proposition 3. Suppose that X and Y are disjoint Polish spa
es, S ⊆
X × Y is Borel , G is a standard Borel group, and f : S → G is a Borelfun
tion that admits a 
oordinatewise de
omposition. Then the following areequivalent :(1) f admits a Borel 
oordinatewise de
omposition.(2) ̺f is a 
oboundary.Proof. To see (1)⇒(2), suppose that (u, v) is a Borel 
oordinatewise de-
omposition of f , de�ne w : ZS → G by

w(z) =

{

u(z) if z ∈ X,
v(z)−1 if z ∈ Y ,and set Γ = {〈z1, . . . , zn〉 ∈ ΓS : ϕf (〈z1, . . . , zn〉) = w(z1)w(zn)−1}. If
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(x, y) ∈ S, then

ϕf (〈x, y〉) = f(x, y) = u(x)v(y) = w(x)w(y)−1,thus 〈x, y〉 ∈ Γ . As Γ is 
losed under reversal and 
on
atenation, it followsthat Γ = ΓS . As any two ES-related points z1, z2 ∈ ZS are 
onne
ted by apath γ ∈ ΓS from z1 to z2, it follows that
̺f (z1, z2) = ϕf (γ) = w(z1)w(z2)

−1,thus ̺f is a 
oboundary.To see (2)⇒(1), suppose that w : ZS → G is a Borel fun
tion su
h that
∀z1ESz2 (̺f (z1, z2) = w(z1)w(z2)

−1),de�ne u : X → G and v : Y → G by
u(x) = w(x) and v(y) = w(y)−1,and note that for all (x, y) ∈ S,

f(x, y) = ϕf (〈x, y〉) = ̺f (x, y) = w(x)w(y)−1 = u(x)v(y),thus (u, v) is a Borel 
oordinatewise de
omposition of f .Proposition 3 shows that Question 2 is a spe
ial 
ase of:Question 4. Under what 
ir
umstan
es is a 
o
y
le a 
oboundary?We will answer the spe
ial 
ase of Question 4 in whi
h E is a 
ountableBorel equivalen
e relation, ̺ : E → G is Borel, and G = 〈R, +〉. This will,in turn, give also an answer to the spe
ial 
ase of Question 2 in whi
h Shas 
ountable se
tions and G = 〈R, +〉. For notational 
onvenien
e, we workwith 〈(0,∞), ·〉 instead of 〈R, +〉.We begin by noting a simple measure-theoreti
 restri
tion imposed upon
ohomologous Borel 
o
y
les. We use [E] to denote the group of all Borelautomorphisms f : X → X su
h that graph(f) ⊆ E. A measure µ on X is
E-invariant if every element of [E] is µ-preserving, and µ is ̺-invariant iffor every Borel fun
tion ϕ : X → (0,∞) and f ∈ [E], we have\

ϕ(x) df∗µ(x) =
\
ϕ(x)̺(f−1(x), x) dµ(x).When ̺ is the trivial 
o
y
le, this says exa
tly that µ is E-invariant.Proposition 5. Suppose that X is a Polish spa
e, E is a 
ountableBorel equivalen
e relation on X, and ̺1, ̺2 : E → (0,∞) are 
ohomologousBorel 
o
y
les. Then every ̺1-invariant , σ-�nite measure is equivalent to a

̺2-invariant , σ-�nite measure.Proof. Suppose that µ1 is a ̺1-invariant, σ-�nite measure, �x a Borelfun
tion w : X → (0,∞) su
h that ∀xEy (̺2(x, y)/̺1(x, y) = w(x)/w(y)),



Coordinatewise de
omposition 85and set µ2 =
T
w dµ1. It is 
lear that µ1 ∼ µ2 and µ2 is σ-�nite, and if

ϕ : X → (0,∞) is Borel and f ∈ [E], then\
ϕ(x) df∗µ2(x) =

\
ϕ(f(x)) dµ2(x) =

\
ϕ(f(x))w(x) dµ1(x)

=
\
ϕ(x)w(f−1(x)) df∗µ1(x)

=
\
ϕ(x)w(f−1(x))̺1(f

−1(x), x) dµ1(x)

=
\
ϕ(x)̺2(f

−1(x), x)w(x) dµ1(x)

=
\
ϕ(x)̺2(f

−1(x), x) dµ2(x),thus µ2 is ̺2-invariant.In parti
ular, we obtain the following:Corollary 6. Suppose that X is a Polish spa
e, E is a 
ountable Borelequivalen
e relation on X, and ̺ : E → (0,∞) is a Borel 
o
y
le. If ̺ isa 
oboundary , then for every σ-�nite measure µ on X, the following areequivalent :(1) There is a σ-�nite, E-invariant measure equivalent to µ.(2) There is a σ-�nite, ̺-invariant measure equivalent to µ.The main result of this paper is that 
onversely, if 
onditions (1) and(2) of Corollary 6 are equivalent, then ̺ is a 
oboundary. The proof 
onsistsessentially of 
haining together 3 di�erent Glimm�E�ros style di
hotomies,ea
h of whi
h 
hara
terizes the 
ir
umstan
es under whi
h E admits a σ-�nite measure of a parti
ular type, in terms of appropriate σ-ideals on theunderlying spa
e. We des
ribe next these di
hotomy theorems whi
h, for thesake of 
larity, we a
tually state as equivalen
es.A set A ⊆ X is a partial transversal of E if it interse
ts every equivalen
e
lass of E in at most one point. Let Ismooth denote the σ-ideal generated bythe Borel partial transversals of E. Given x ∈ X, we use [x]E to denote the
E-
lass of x, and we say that a set A ⊆ X is E-invariant if for all x ∈ A, theset [x]E is 
ontained in A. A measure µ on X is E-ergodi
 if every E-invariantBorel set is µ-null or µ-
onull. Shelah�Weiss [5℄ have shown essentially thefollowing:Theorem 7. Suppose that X is a Polish spa
e and E is a 
ountableBorel equivalen
e relation on X. Then the following are equivalent :(1) X /∈ Ismooth.(2) There is an atomless, E-ergodi
, E-invariant , σ-�nite measure.A set A ⊆ X is ̺-dis
rete if there exists ε > 0 su
h that

∀x, y ∈ A (xEy ⇒ (x = y or ̺(x, y) ≤ 1/(1 + ε) or ̺(x, y) ≥ 1 + ε)).Let Idiscrete denote the σ-ideal generated by the ̺-dis
rete Borel sets.



86 B. D. MillerA measure µ is E-quasi-invariant if every f ∈ [E] sends µ-null sets to
µ-null sets. As noted in �2 of Miller [4℄, every E-quasi-invariant, σ-�nitemeasure is invariant with respe
t to some Borel 
o
y
le ̺ : E → (0,∞), andmoreover, this 
o
y
le is unique modulo E-invariant null sets. The familyof E-ergodi
, E-quasi-invariant, σ-�nite measures 
an be broken into threetypes. We say that µ is of type I if it is atomi
, µ is of type II if it isequivalent to an atomless, E-invariant, E-ergodi
, σ-�nite measure on X,and µ is of type III otherwise. The following fa
t was shown essentially in�3 of Miller [4℄:Theorem 8. Suppose that X is a Polish spa
e, E is a 
ountable Borelequivalen
e relation on X, and ̺ : E → (0,∞) is a Borel 
o
y
le. Then thefollowing are equivalent :(1) X /∈ Idiscrete.(2) There is a ̺-invariant measure of type II.(3) There is a ̺-invariant measure of type II or III.We will a
tually need only the easy dire
tion of Theorem 8; the full resultis stated above so as to present a more detailed pi
ture of the intera
tionbetween the σ-ideal generated by the ̺-dis
rete Borel sets and the set ofmeasures on the underlying spa
e.A set A ⊆ X is ̺-bounded if there exists ε > 0 su
h that

∀x, y ∈ A (xEy ⇒ 1/(1 + ε) ≤ ̺(x, y) ≤ 1 + ε).Let Ibounded denote the σ-ideal generated by the ̺-bounded Borel sets.Proposition 9. Suppose that X is a Polish spa
e, E is a 
ountableBorel equivalen
e relation on X, and ̺ : E → (0,∞) is a Borel 
o
y
le.Then the following are equivalent :(1) X ∈ Ibounded.(2) ̺ is a 
oboundary.Proof. To see (1)⇒(2), suppose that B0, B1, . . . ⊆ X are ̺-bounded Borelsets su
h that X =
⋃

n∈N
Bn, asso
iate with ea
h x ∈ X the least n(x) ∈ Nsu
h that Bn(x) ∩ [x]E 6= ∅, and de�ne w : X → (0,∞) by

w(x) = sup{̺(x, z) : z ∈ Bn(x) ∩ [x]E}.Suppose now that x, y lie in the same E-
lass C. Fix ε > 0, 
hoose z ∈ Csu
h that w(x) ≤ ̺(x, z)(1 + ε) and w(y) ≤ ̺(y, z)(1 + ε), and observe that
̺(x, z)/̺(y, z)(1 + ε) ≤ w(x)/w(y)

≤ ̺(x, z)(1 + ε)/̺(y, z).As ̺(x, z)/̺(y, z) = ̺(x, y) and ε > 0 was arbitrary, it follows that ̺(x, y) =
w(x)/w(y), thus ̺ is a 
oboundary.



Coordinatewise de
omposition 87To see (2)⇒(1), suppose that w : X → (0,∞) is a Borel fun
tion su
hthat ̺(x, y) = w(x)/w(y), and observe that the sets w−1([1/n, n]) for n ∈ Z
+are ̺-bounded and 
over X.This leads to the last of our three di
hotomies, whi
h is also the only onethat is new, and 
onsequently, the only one that we shall prove here. We willstate this di
hotomy in terms of the σ-ideal

Ibounded ∨ Idiscrete = {A ∪ B : A ∈ Ibounded and B ∈ Idiscrete}.Theorem 10. Suppose that X is a Polish spa
e, E is a 
ountable Borelequivalen
e relation on X, and ̺ : E → (0,∞) is a Borel 
o
y
le. Then thefollowing are equivalent :(1) X /∈ Ibounded ∨ Idiscrete.(2) There is a ̺-invariant measure of type III.Proof. The E-saturation of a set A ⊆ X is given by
[A]E = {x ∈ X : ∃y ∈ A (xEy)}.In �3 of Miller [4℄, it is shown that Idiscrete is 
losed under E-saturation.While we 
ould get away with just this, it seems worth noting the following:Lemma 11. Ibounded is 
losed under E-saturation.Proof. It is enough to show that the E-saturation of every ̺-boundedBorel set is in Ibounded. Towards this end, suppose that A ⊆ X is a ̺-boundedBorel set, and note that the sets

An = {x ∈ X : ∃y ∈ A (1/n ≤ ̺(y, x) ≤ n)}are ̺-bounded and 
over [A]E, thus [A]E ∈ Ibounded.To see ¬(1)⇒¬(2) of Theorem 10, suppose that X ∈ Ibounded ∨ Idiscrete,and note that Lemma 11 ensures the existen
e of an E-invariant Borel set
B ∈ Idiscrete su
h that X \ B ∈ Ibounded. Theorem 8 ensures that there areno ̺|B-invariant measures of types II or III, and Corollary 6 and Proposition9 ensure that there are no ̺|(X \ B)-invariant measures of type III.It remains to show (1)⇒(2). Roughly speaking, we will produ
e an em-bedding of a spe
i�
 sort of 
o
y
le into ̺, and then push an appropriatemeasure through this embedding in order to obtain the measure we desire.To better motivate the sort of embedding we will produ
e, we des
ribe �rsta family of measures of type III whi
h 
ontains the measure that we shallpush forward.For k ∈ Z

+, let µk be the probability measure on {0, . . . , k} given by
µk({i}) =

{

1/2 if i = 0,
1/2k otherwise.



88 B. D. MillerFor k = 〈kn〉n∈N in (Z+)N, set Xk =
∏

n∈N
{0, . . . , kn}, de�ne µk on Xk by

µk =
∏

n∈N
µkn

, and de�ne Ek on Xk by
αEkβ ⇔ ∃n ∈ N ∀m ≥ n (α(m) = β(m)).Set ̺k(i, j) = µk({i})/µk({j}), and de�ne ̺k : Ek → (0,∞) by

̺k(α, β) =
∏

n∈N

̺kn
(α(n), β(n)).

It follows from Proposition 2.4 of Miller [4℄ that µk is ̺k-invariant.Lemma 12. If lim supn→∞ kn = ∞, then (Xk, Ek, µk) is of type III.Proof. It is 
lear that µk is atomless, and it follows from the analogof the Lebesgue density theorem in Xk (see �2 of Miller [4℄) that µk is
Ek-ergodi
. Suppose, towards a 
ontradi
tion, that there is an Ek-invariant,
σ-�nite measure µ ∼ µk. Fix a Borel fun
tion w : Xk → (0,∞) su
h that
µk =

T
w dµ, and note that if ϕ : X → (0,∞) is Borel and f ∈ [Ek], then\

ϕ(α) df∗µk(α) =
\
ϕ(f(α)) dµk(α) =

\
ϕ(f(α))w(α) dµ(α)

=
\
ϕ(f(α))(w(α)/w(f(α)))w(f(α)) dµ(α)

=
\
ϕ(α)(w(f−1(α))/w(α))w(α) dµ(α)

=
\
ϕ(α)(w(f−1(α))/w(α)) dµk(α).We 
an therefore assume that ̺k(α, β) = w(α)/w(β).Fix 0 < ε < 1 su�
iently small that the set B = w−1([ε, 1/ε]) is of

µk-measure stri
tly greater than 1/2. Fix n ∈ N su
h that kn > 1/ε2, andfor ea
h i ≤ kn, de�ne fi ∈ [Ek] by
[fi(α)](j) =







0 if j = n and α(n) = i,
i if j = n and α(n) = 0,
α(j) otherwise.Let A = {α ∈ Xk : α(n) = 0}, and note that if α ∈ A and i ∈ {1, . . . , kn},then ̺k(α, fi(α)) = ̺kn

(0, i) = kn > 1/ε2. In parti
ular, if α ∈ A ∩ B, thennone of f1(α), . . . , fkn
(α) are in B. This, in turn, implies that

∑

i≤kn

χB(fi(α))̺k(fi(α), α) ≤
1

2

∑

i≤kn

̺k(fi(α), α)

for all α ∈ A. It now follows that
µk(B) =

∑

i≤kn

µk(fi(A) ∩ B) =
∑

i≤kn

µk(fi(A ∩ f−1
i (B)))
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=

∑

i≤kn

\
A∩f−1

i
(B)

̺k(fi(α), α) dµk(α)

=
\
A

∑

i≤kn

χB(fi(α))̺k(fi(α), α) dµk(α)

≤
1

2

\
A

∑

i≤kn

̺k(fi(α), α) dµk(α) =
1

2

∑

i≤kn

µk(fi(A)) =
1

2
,whi
h is the desired 
ontradi
tion.An ε-embedding of ̺k into ̺ is an embedding π : Xk → X of Ek into Esu
h that ∀αEkβ (̺k(α, β)/(1 + ε) ≤ ̺(π(α), π(β)) ≤ ̺k(α, β)(1 + ε)). Wewill 
omplete the proof of Theorem 10 by showing �rst the following des
rip-tive strengthening:Theorem 13. Suppose that X is a Polish spa
e, E is a 
ountable Borelequivalen
e relation on X, ̺ : E → (0,∞) is a Borel 
o
y
le, and ε > 0.Then the following are equivalent :(1) X /∈ Ibounded ∨ Idiscrete.(2) There is a 
ontinuous ε-embedding of ̺k into ̺ for some k = 〈kn〉n∈Nsu
h that limn→∞ kn = ∞.Proof. In order to see that ¬(1)⇒¬(2) suppose, towards a 
ontradi
tion,that both ¬(1) and (2) hold. Note that pre-images under ε-embeddings pre-serve the bounded and dis
rete σ-ideals, so that the join of the bounded anddis
rete σ-ideals 
orresponding to ̺k trivializes. However, Lemma 12 impliesthat µk is a ̺k-invariant measure of type III, thus (2)⇒(1) of Theorem 10implies that the the join of the bounded and dis
rete σ-ideals 
orrespondingto ̺k does not trivialize, whi
h is the desired 
ontradi
tion.It remains to show (1)⇒(2). By Theorem 1 of Feldman�Moore [2℄, thereis a 
ountable group Γ ≤ [E] su
h that E = EX

Γ . By 
hange of topologyresults (see, for example, �13 of Ke
hris [3℄), there is a �ner zero-dimensionalPolish topology τ , 
ompatible with the underlying Borel stru
ture of X, withrespe
t to whi
h Γ a
ts by homeomorphisms and ea
h of the sets {x ∈ X :
k ≤ ̺(x, γ · x) < r} is open, where γ ∈ Γ , k ∈ Z

+, and r ∈ (k,∞). Fix
εn > 0, for n ∈ N, su
h that

∏

n∈N

(1 + εn) ≤ 1 + ε,as well as �nite, symmetri
 sets {1Γ } = Γ0 ⊆ Γ1 ⊆ · · · ⊆ Γ su
h that
Γ =

⋃

n∈N
Γn. It will be 
onvenient to set I = Ibounded ∨ Idiscrete for theremainder of the proof.We will re
ursively �nd τ -
lopen sets Bn ⊆ X, kn ∈ Z

+, and γn,k ∈ Γ , for
n ∈ N and k ≤ kn. Asso
iated with these are the sets Xn =

∏

i<n{0, . . . , ki},
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∏

i<n γi,s(i) for s ∈ Xn, and the sets
∆n = {γ−1

s γγt : γ ∈ Γn and s, t ∈ Xn}.We will ensure that, for all n ∈ N, the following 
onditions are satis�ed:(1) Bn 6∈ I.(2) kn ≥ n.(3) γn,0 = 1Γ .(4) ∀x ∈ Bn+1 ∀k ≤ kn (̺kn
(0, k) ≤ ̺(x, γn,k · x) < ̺kn

(0, k)(1 + εn)).(5) ∀s ∈ Xn+1 (diam(γs(Bn+1)) ≤ 1/n).(6) ∀j < k ≤ kn (∆nγn,j(Bn+1) ∩ γn,k(Bn+1) = ∅).(7) ∀k ≤ kn (γn,k(Bn+1) ⊆ Bn).We begin by setting B0 = X. Suppose now that we have B0 ⊇ B1 ⊇ · · ·
· · · ⊇ Bn, as well as ki and γi,k for k ≤ ki and i < n. Set C0 = Bn.Lemma 14. There is an I-positive, τ -open set C1 ⊆ C0, γn,1 ∈ Γ , and
kn ≥ n su
h that , for all x ∈ C1, the following 
onditions are satis�ed :(a) γn,1 · x ∈ C0 \ ∆n · x.(b) ̺kn

(0, 1) ≤ ̺(x, γn,1 · x) < ̺kn
(0, 1)(1 + εn).Proof. For ea
h γ ∈ Γ and k ≥ max(n, 1/εn), de�ne Cγ,k ⊆ C0 by

Cγ,k = {x ∈ C0 : γ · x ∈ C0 \ ∆n · x and k ≤ ̺(x, γ · x) < k + 1},and set C = C0 \
⋃

{Cγ,k : γ ∈ Γ and k ≥ max(n, 1/εn)}.Sublemma 15. C ∈ Ibounded.Proof. De�ne w : C → [1,∞] by
w(x) = sup{̺(x, y) : y ∈ C ∩ [x]E},and given x ∈ C, note that if y ∈ C ∩ [x]E and ̺(x, y) ≥ max(n, 1/εn) + 1,then y ∈ ∆n · x. In parti
ular, it follows that ∀x ∈ C (w(x) < ∞), thus

C =
⋃

n∈Z+ w−1([1, n]). As ea
h of the sets w−1([1, n]) is ̺-bounded, itfollows that C ∈ Ibounded.Consequently, there exist γ∈Γ and k ≥ max(n, 1/εn) su
h that Cγ,k 6∈ I.Put C1 = Cγ,k, γn,1 = γ, and kn = k, and note that ̺kn
(0, 1) = kn and

̺kn
(0, 1)(1 + εn) ≥ kn(1 + 1/kn) = kn + 1,thus ∀x ∈ C1 (̺kn

(0, 1) ≤ ̺(x, γn,1 · x) < ̺kn
(0, 1)(1 + εn)).Suppose now that 1 ≤ k < kn and we have found I-positive, τ -open sets

C0 ⊇ C1 ⊇ · · · ⊇ Ck and γn,0, γn,1, . . . , γn,k ∈ Γ . Set
∆n,k = {δγn,i : δ ∈ ∆n and i ≤ k}.Lemma 16. There is an I-positive, τ -open set Ck+1 ⊆ Ck and γn,k+1 ∈ Γsu
h that , for all x ∈ Ck+1, the following 
onditions are satis�ed :
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omposition 91(a) γn,k+1 · x ∈ γn,k(Ck) \ ∆n,k · x.(b) ̺kn
(0, k + 1) ≤ ̺(x, γn,k+1 · x) < ̺kn

(0, k + 1)(1 + εn).Proof. For ea
h γ ∈ Γ , let Dγ be the set of x ∈ γn,k(Ck) su
h that
γγ−1

n,k · x ∈ γn,k(Ck) \∆n,kγ
−1
n,k · x and kn ≤ ̺(γ−1

n,k · x, γγ−1
n,k · x) < kn(1 + εn),and set D = γn,k(Ck) \

⋃

γ∈Γ Dγ .Sublemma 17. D ∈ Idiscrete.Proof. De�ne F ⊆ E by
xFy ⇔ (xEy and ̺(x, y) = 1).Given x ∈ D, note that kn ≤ ̺(γ−1

n,k ·x, x) < kn(1+ εn), so there exists δ > 0su
h that if y ∈ D ∩ [x]E and 1 ≤ ̺(x, y) < 1 + δ, then y ∈ ∆n,kγ
−1
n,k · x. Inparti
ular, it follows that every equivalen
e 
lass of F |D is of 
ardinality atmost |∆n,k|, hen
e there are Borel partial transversals D′

i of F , for i < |∆n,k|,whose union is D. For ea
h i < |∆n,k| and j ∈ N, let D′
i,j be the set of all

x ∈ D′
i su
h that
∀y ∈ D′

i ∩ [x]E (x = y or ̺(x, y) ≥ 1 + 1/j or ̺(y, x) ≥ 1 + 1/j).These are 
learly ̺-dis
rete Borel sets whi
h 
over D, thus D ∈ Idiscrete.It now follows that there exists γ ∈ Γ su
h that the set Dγ is I-positive.Put Ck+1 = γ−1
n,k(Dγ) and γn,k+1 = γ, and observe that ̺kn

(0, k + 1) = kn,thus ∀x ∈ Ck+1 (̺kn
(0, k + 1) ≤ ̺(x, γn,k+1 · x) < ̺kn

(0, k + 1)(1 + εn)).This 
ompletes the des
ription of C0, C1, . . . , Ckn
and γn,0, γn,1, . . . , γn,kn

.As Ckn
is the union of 
ountably many τ -
lopen sets D ⊆ Ckn

whi
h satisfythe analogs of 
onditions (5) and (6) in whi
h Bn+1 is repla
ed with D, itfollows that there is an I-positive, τ -
lopen set Bn+1 ⊆ Ckn
whi
h satis�es
onditions (1)�(7).This 
ompletes the re
ursive 
onstru
tion. For ea
h s ∈ Xn, set As =

γs(Bn). Put k = 〈kn〉n∈N, and note that for ea
h α ∈ Xk, 
onditions (5) and(7) ensure that Aα(0), Aα(0)α(1), . . . is a de
reasing sequen
e of 
lopen setswith vanishing diameter. It follows that their interse
tion 
onsists of a singlepoint. Let π(α) denote this point. By 
onditions (5) and (6), the fun
tion
π : Xk → X is a 
ontinuous inje
tion.To see αEkβ ⇒ π(α)Eπ(β), it is enough to observe the following:Lemma 18. If n ∈ N, s ∈ Xn, and sα ∈ Xk, then π(sα) = γs · π(0nα).
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{π(sα)} =

⋂

i≥n

A(sα)|i =
⋂

i∈N

γsγ0n(α|i)(Bi+n) = γs

(

⋂

i∈N

γ0n(α|i)(Bi+n)
)

= γs

(

⋂

i≥n

A0n(α|i)

)

= {γs · π(0nα)},

thus π(sα) = γs · π(0nα).To see (α, β) 6∈ Ek ⇒ (π(α), π(β)) 6∈ E, it is enough to 
he
k the follow-ing:Lemma 19. If α(n) 6= β(n), then ∀γ ∈ Γn (γ · π(α) 6= π(β)).Proof. Suppose, towards a 
ontradi
tion, that there exists γ ∈ Γn with
γ ·π(α) = π(β). By reversing the roles of α and β if ne
essary, we 
an assumethat α(n) < β(n). Set s = α|n and t = β|n, and put

x = γ−1
n,α(n)γ

−1
s · π(α), y = γ−1

n,β(n)γ
−1
t · π(β),noting that these are both elements of Bn+1. As γγsγn,α(n) ·x = γtγn,β(n) · y,it follows that γ−1

t γγsγn,α(n) · x = γn,β(n) · y, thus
∆nγn,α(n)(Bn+1) ∩ γn,β(n)(Bn+1) 6= ∅,whi
h 
ontradi
ts 
ondition (6).It only remains to 
he
k that if αEkβ, then

(†) ̺k(α, β)/(1 + ε) ≤ ̺(π(α), π(β)) ≤ ̺k(α, β)(1 + ε).Towards this end, suppose that αEkβ, �x n ∈ N su
h that ∀m > n (α(m) =
β(m)), put x = π(α) and y = π(β), and set s = α(0)α(1) . . . α(n) and
t = β(0)β(1) . . . β(n), noting that γ−1

s · x = γ−1
t · y, by Lemma 18. Put

δ0 = 1Γ , and for i < n, set δi+1 = γ−1
i,s(i)δi. Then

̺(γ−1
s · x, x) = ̺(γ−1

n,s(n) · · · γ
−1
0,s(0) · x, x) =

∏

i≤n

̺(γ−1
i,s(i)δi · x, δi · x),

thus 
ondition (4) ensures that
∏

i≤n

̺ki
(0, s(i)) ≤ ̺(γ−1

s · x, x) <
∏

i≤n

̺ki
(0, s(i))(1 + εi).An identi
al argument shows that

∏

i≤n

̺ki
(0, t(i)) ≤ ̺(γ−1

t · y, y) <
∏

i≤n

̺ki
(0, t(i))(1 + εi),
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e ̺(x, y) = ̺(γ−1
t · y, y)/̺(γ−1

s · x, x), it follows that
∏

i≤n

̺ki
(0, t(i))/̺ki

(0, s(i))(1 + εi) ≤ ̺(x, y)

≤
∏

i≤n

̺ki
(0, t(i))(1 + εi)/̺ki

(0, s(i)).

As ∏

i≤n ̺ki
(0, t(i))/̺ki

(0, s(i)) =
∏

i≤n ̺ki
(s(i), t(i)) = ̺k(α, β), we obtain

̺k(α, β)/
∏

i≤n

(1 + εi) ≤ ̺(x, y) ≤ ̺k(α, β)
∏

i≤n

(1 + εi),and (†) follows. This �nishes the proof of Theorem 13.We 
an now 
omplete the proof of (1)⇒(2) of Theorem 10. Fix ε > 0. ByTheorem 13, there is a 
ontinuous ε-embedding π : Xk → X of ̺k into ̺,for some k ∈ N
N su
h that limn→∞ kn = ∞. It follows from Lemma 12that µk is of type III, thus so too is the measure π∗µk on π(Xk). As the
o
y
le π∗̺k/̺|(E|π(Xk)) is bounded, it follows from Proposition 9 thatthe 
o
y
les π∗̺k and ̺|(E|π(Xk)) are 
ohomologous, thus Proposition 5ensures that there is a ̺|(E|π(Xk))-invariant, σ-�nite measure µ ∼ π∗µk.By Theorem 1 of Feldman�Moore [2℄, there is a 
ountable group of Borelautomorphisms whi
h generates E, and using this, we 
an easily extend µto a ̺-invariant, σ-�nite measure on X of type III.With this �nal di
hotomy result in hand, we 
an �nally prove:Theorem 20. Suppose that X is a Polish spa
e, E is a 
ountable Borelequivalen
e relation on X, and ̺ : E → (0,∞) is a Borel 
o
y
le. Then thefollowing are equivalent :(1) ̺ is a 
oboundary.(2) For every σ-�nite measure µ on X, the following are equivalent :(a) There is a σ-�nite, E-invariant measure equivalent to µ.(b) There is a σ-�nite, ̺-invariant measure equivalent to µ.Proof. As Corollary 6 gives (1)⇒(2), it is enough to show (2)⇒(1). To-wards this end, suppose that 
ondition (2) holds, so that there are no ̺-invariant, σ-�nite measures of type III, whi
h by Theorem 10 implies that

X ∈ Ibounded ∨ Idiscrete. By Lemma 11, there is an E-invariant Borel set
B ∈ Idiscrete su
h that X \ B ∈ Ibounded. Theorem 8 ensures that thereare no atomless, E|B-ergodi
, ̺|B-invariant, σ-�nite measures, and 
ondi-tion (2) then implies that there are no atomless, E|B-ergodi
, E|B-invariant,
σ-�nite measures. It then follows from Theorem 7 that B ∈ Ismooth, and sin
e
Ismooth ⊆ Ibounded, it follows that X ∈ Ibounded, and Proposition 9 �nallyimplies that ̺ is a Borel 
oboundary.
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