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On a generalization of Abelian sequential groups
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Saak S. Gabriyelyan (Be’er-Sheva)

Abstract. Let (G, τ) be a Hausdorff Abelian topological group. It is called an s-group
(resp. a bs-group) if there is a set S of sequences in G such that τ is the finest Hausdorff
(resp. precompact) group topology on G in which every sequence of S converges to zero.
Characterizations of Abelian s- and bs-groups are given. If (G, τ) is a maximally almost
periodic (MAP) Abelian s-group, then its Pontryagin dual group (G, τ)∧ is a dense g-
closed subgroup of the compact group (Gd)

∧, where Gd is the group G with the discrete
topology. The converse is also true: for every dense g-closed subgroup H of (Gd)

∧, there is
a topology τ on G such that (G, τ) is an s-group and (G, τ)∧ = H algebraically. It is proved
that, if G is a locally compact non-compact Abelian group such that the cardinality |G|
of G is not Ulam measurable, then G+ is a realcompact bs-group that is not an s-group,
where G+ is the group G endowed with the Bohr topology. We show that every reflexive
Polish Abelian group is g-closed in its Bohr compactification. In the particular case when
G is countable and τ is generated by a countable set of convergent sequences, it is shown
that the dual group (G, τ)∧ is Polish. An Abelian group X is called characterizable if it is
the dual group of a countable Abelian MAP s-group whose topology is generated by one
sequence converging to zero. A characterizable Abelian group is a Schwartz group iff it is
locally compact. The dual group of a characterizable Abelian group X is characterizable
iff X is locally compact.

1. Introduction

I. Notations and preliminaries. A group G with the discrete topol-
ogy is denoted by Gd. The subgroup generated by a subset A of G is de-
noted by 〈A〉. Let X be an Abelian topological group. The filter of all open
neighborhoods at zero of X is denoted by UX . The group of all continuous
characters on X is denoted by X̂. The group X̂ endowed with the compact-
open topology σco is denoted by X∧. Denote by n(X) =

⋂
χ∈X̂ kerχ the

von Neumann radical of X. If n(X) = {0}, then X is called maximally al-
most periodic (MAP). Let H be a subgroup of X. The annihilator of H
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is denoted by H⊥, i.e., H⊥ = {χ ∈ X∧ : (χ, h) = 1 for every h ∈ H}.
We recall that a subgroup H of X is called dually closed in X if for every
x ∈ X \H there exists a character χ ∈ H⊥ such that (χ, x) 6= 1. We call H
dually embedded in X if every character of H can be extended to a character
of X.

Let X be an Abelian topological group and u = {un} be a sequence

of elements of X̂. Following Dikranjan et al. [DMT], we denote by su(X)
the set of all x ∈ X such that (un, x) → 1. Let H be a subgroup of X.
If H = su(X) we say that u characterizes H and that H is characterized
(by u) [DMT].

Following [DMT], the closure operator gX is defined as follows: for every
subgroup H of an Abelian topological group X one puts

g(H) = gX(H) :=
⋂

u∈X̂N

{su(X) : H ≤ su(X)}.

We say that H is g-closed if H = gX(H), and H is g-dense if gX(H) = X.

For an arbitrary subset S of X̂N, one puts

sS(X) :=
⋂
u∈S

su(X).

Let u = {un} be a non-trivial sequence in a group G. The following
important question has been studied by many authors, including Graev [Gr]
and Nienhuys [N]:

Problem 1.1. Is there a Hausdorff group topology τ on G such that
un → eG in (G, τ)?

Protasov and Zelenyuk [ZP, PZ] obtained a criterion that gives the
complete answer to this question. Following [ZP], we say that a sequence
u = {un} in a group G is a T -sequence if there is a Hausdorff group topology
on G in which un converges to the unit. The group G equipped with the
finest Hausdorff group topology τu with this property is denoted by (G, τu).
A T -sequence u = {un} is called trivial if there is n0 such that un = eG for
every n ≥ n0.

Let us denote by ZN
0 the direct sum

⊕
N Z ⊂ ZN. Set e = {en} ∈ ZN

0 ,

where e1 = (1, 0, 0, . . . ), e2 = (0, 1, 0, . . . ), . . . . Then e is a T -sequence
in ZN

0 . Let TN be the direct product of a countable set of copies of T. Set
TH0 := {ω = (zn) ∈ TN : zn → 1}. Then TH0 is a Polish group under the
metric d((z1n), (z2n)) = sup{|z1n− z2n| : n = 1, 2, . . . } (see [G1]). Moreover, the
group (ZN

0 , τe) is reflexive and (ZN
0 , τe)∧ = TH0 [G1].

Let X be an arbitrary infinite compact metrizable Abelian group. For
any (x, ω) = (x, (zn)) ∈ X × TH0 , set πX(x, ω) := x and πn(x, (zn)) := zn.
The following criterion for a subgroup of a compact metrizable Abelian
group to be characterized by a T -sequence u was given in [G2]:
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Theorem 1.2. Let H be a dense subgroup of an infinite compact metriz-

able Abelian group X and u = {un} be a sequence in X̂. Then H is charac-
terized by u if and only if there exists a dually closed subgroup Hu of X×TH0
such that

(a) the restriction to Hu of the projection πX is a bijection onto H, and
(b) un ◦ πX and πn coincide on Hu for every n.

As a corollary of this criterion we obtain the following simple necessary
condition for a subgroup to be characterized [G2]:

Proposition 1.3. Each characterized subgroup H = su(X) of X admits
a finer locally quasi-convex Polish group topology.

We denote the group H = su(X) with this topology by Hu. Follow-
ing [G3], an Abelian Polish group G is called characterizable if there is a
continuous monomorphism p from G into a compact metrizable group X

with dense image such that p(G) = su(X) for some sequence u in X̂.

Let G be a countably infinite Abelian group, X = G∧d , u = {un} be a
T -sequence in G and H = su(X). There is a simple dual connection between
the groups (G, τu) and Hu, and moreover we can compute the von Neumann
radical n(G, τu) of (G, τu) as follows:

Theorem 1.4 ([G2]). (G, τu)∧ = Hu and, algebraically, n(G, τu) = H⊥.

The counterpart of Problem 1.1 for precompact group topologies on Z is
studied by Raczkowski [R]. Following [BDMW1] and motivated by [R], we
say that a sequence u = {un} is a TB -sequence in a group G if there is a
precompact Hausdorff group topology on G in which un → eG. The group G
equipped with the finest precompact Hausdorff group topology τbu with this
property is denoted by (G, τbu).

For an Abelian group G and an arbitrary subgroup H ≤ G∧d , let TH be
the weakest topology on G such that all characters of H are continuous with
respect to TH . One can easily show [CR] that TH is a totally bounded group
topology on G, and it is Hausdorff iff H is dense in G∧d .

Let (G, τ) be a MAP Abelian topological group. The Bohr compactifica-

tion of (G, τ) is denoted by bG = ((̂G, τ)d)
∧. The topology τ+ := T

(̂G,τ)
on

G induced from bG is called the Bohr modification of τ . Clearly, the groups
(G, τ) and G+ := (G, τ+) have the same continuous characters.

A subset A of a topological spaceΩ is called sequentially open if whenever
a sequence {un} converges to a point of A, then all but finitely many of the
members un are contained in A. The space Ω is called sequential if any
subset A is open if and only if A is sequentially open. Franklin [Fr] gave the
following characterization of sequential spaces:
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Theorem 1.5 ([Fr]). A topological space is sequential if and only if it is
a quotient of a metric space.

Let X and Y be topological groups. Following Siwiec [S], a continuous
homomorphism p : X → Y is called sequence-covering if it is surjective
and for every sequence {yn} converging to the unit eY there is a sequence
{xn} converging to eX such that p(xn) = yn. We recall that a continuous
mapping f : X → Y is called compact-covering if for every compact subset
KY of Y there is a compact subset KX of X such that f(KX) = KY .
A mapping f : X → Y is called sequentially continuous if xn → x0 in
X implies that f(xn) → f(x0) in Y . Sequentially continuous mappings on
products of topological spaces were considered by Mazur [M]. The following
important notion was introduced by Noble [Nob1]:

Definition 1.6 ([Nob1]). A Hausdorff topological group (G, τ) is called
an s-group if each sequentially continuous homomorphism from (G, τ) to a
Hausdorff topological group is continuous.

Note that this definition gives an external characterization of s-groups.
Following [Nob1], we denote by s the first cardinal such that there exists
a discontinuous, sequentially continuous mapping f : 2s → R. Mazur [M]
proved that s is weakly inaccessible (i.e., s is an uncountable regular limit
cardinal). In particular, s > ℵ0. The following theorem is proved by
Noble [Nob1, Theorem 5.4], who replaced Mazur’s factorization method by
a stronger one:

Theorem 1.7 ([Nob1]). Every sequentially continuous homomorphism
from a product of less than s s-groups into a Hausdorff group is continuous,
i.e., the product is an s-group.

A simpler proof of Noble’s Theorem 1.7 was given by Hušek [H]. Other
results and historical remarks about s-groups can be found in [AJP, H, Sha].

The following natural generalization of Problem 1.1 was considered
in [G4]:

Problem 1.8. Let G be a group and S be a set of sequences in G. Is there
a Hausdorff group topology τ on G in which every sequence of S converges
to the unit? Is there a precompact Hausdorff group topology τ on G in which
every sequence of S converges to the unit?

In analogy with T - and TB -sequences, we define as in [G4]:

Definition 1.9. Let G be a group and S be a non-empty set of se-
quences in G. The set S is called a Ts-set (resp. Tbs-set) of sequences if
there is a Hausdorff (resp. precompact Hausdorff) group topology on G
in which all sequences of S converge to the unit. The finest Hausdorff
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(resp. precompact Hausdorff) group topology with this property is denoted
by τS (resp. τbS).

The family of all Ts-sets (resp. Tbs-sets) of sequences of a group G is
denoted by T S(G) (resp. T BS(G)). It is clear that, if S ∈ T S(G) (resp.
S ∈ T BS(G)), then S′ ∈ T S(G) (resp. S′ ∈ T BS(G)) for every non-empty
subset S′ of S and every sequence u ∈ S is a T -sequence (resp. u is a
TB -sequence). Evidently, τS ⊆ τS′ (resp. τbS ⊆ τbS′). Also, if S contains
only trivial sequences, then S ∈ T S(G) and τS is discrete.

Note also that we can define a preorder on T S(G) (resp. T BS(G)) as
follows: for S′ and S in T S(G) (resp. T BS(G)), S′ ≤ S iff τS ⊆ τS′ (resp.
τbS ⊆ τbS′), or, in other words, iff every sequence of S′ converges to the unit
in τS (resp. τbS).

Let S be a Ts-set (resp. a Tbs-set) of sequences of a groupG. By definition,
τu is finer than τS (resp. τbu is finer than τbS) for every u ∈ S. Thus, if U is
open (resp. closed) in τS , then it is open (resp. closed) in τu for every u ∈ S.
Let us recall that the topology

∧
u∈S τu is defined as the intersection of

the topologies τu (i.e., U is open in
∧

u∈S τu if and only if U ∈ τu for
every u ∈ S). Therefore, τS ⊆

∧
u∈S τu (resp. τbS ⊆

∧
u∈S τbu). Note also

that, if S is finite, then, by Proposition 5.1 of [G4], the Ts-set S can be
replaced by a single T -sequence (in the sense that τS = τv for some T -
sequence v). Let {τi}i∈I be a family of Hausdorff group topologies on a
group G. Denote by infi∈I τi the infimum of the topologies τi in the lattice
of all group topologies. The following theorem is proved in Section 5:

Theorem 1.10. Let S =
⋃
i∈I Si be the union of Ts-sets of sequences Si

in a group G. Then S ∈ T S(G) if and only if infi∈I τSi is Hausdorff. In that
case, τS = infu∈S τu = infi∈I τSi.

The following class of topological groups is defined in [G4]:

Definition 1.11. A Hausdorff topological group (G, τ) is called an s-
group (resp. a bs-group) and the topology τ is called an s-topology (resp.
a bs-topology) on G if there is S ∈ T S(G) (resp. S ∈ T BS(G)) such that
τ = τS (resp. τ = τbS).

In other words, s-groups are those Hausdorff topological groups whose
topology can be described by a set of convergent sequences. In particular,
for every T -sequence u in a group G the group (G, τu) is an s-group. As
was shown in [G4], Definitions 1.6 and 1.11 of s-groups are equivalent; more
precisely:

Theorem 1.12. For a topological group (G, τ) the following assertions
are equivalent:
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(1) (G, τ) is an s-group (in the sense of Definition 1.11) and τ = τS for
some S ∈ T S(G);

(2) every homomorphism p from (G, τ) to a Hausdorff topological group
(X, ν) is continuous if and only if p(un) → eX for every sequence
{un} ∈ S;

(3) every sequentially continuous homomorphism from (G, τ) to a Haus-
dorff topological group (X, ν) is continuous.

Let us note that Definition 1.11 of s-groups is internal and has many
advantages over Noble’s, as was pointed out in [G4]. Many results of the
article demonstrate other essential advantages of this internal (sequential)
approach to Abelian s-groups over Noble’s external one (see below, for in-
stance, Theorems 1.18 and 1.26). The following theorems proved in [G4] will
be repeatedly used in this article:

Theorem 1.13. Let S be a Ts-set of sequences in a group G, let H be a
closed normal subgroup of (G, τS) and let π be the natural projection from G
onto the quotient group G/H. Then π(S) is a Ts-set of sequences in G/H
and G/H ∼= (G/H, τπ(S)).

Theorem 1.14. Let (G, τ) and (H, ν) be Hausdorff topological groups.
The following conditions are equivalent:

(i) (G, τ) and (H, ν) are s-groups;
(ii) the direct product (G, τ)× (H, ν) is an s-group.

One of the most natural ways to find Ts-sets of sequences is as follows. Let
(G, τ) be a Hausdorff topological group. We denote the set of all sequences
of (G, τ) converging to the unit by S(G, τ):

S(G, τ) = {u = {un} ⊂ G : un → eG in τ}.
It is clear that S(G, τ) ∈ T S(G) and τ ⊆ τS(G,τ). The group s(G, τ) :=

(G, τS(G,τ)) is called the s-refinement of (G, τ) [G4]. In fact, Theorem 1.14
tells us that s((G, τ)×(H,σ)) = s(G, τ)×s(H,σ) for any topological groups
(G, τ) and (H,σ). Thus Theorems 1.13 and 1.14 assert in fact that:

• the family S of all s-groups forms a full subcategory with finite prod-
ucts of the category TopGr of all Hausdorff topological groups;
• the assignment (G, τ) 7→ s(G, τ) is a functor (coreflector) from TopGr

to S.

Let us recall that sequential topological spaces form a coreflective sub-
category SeqSp of the category Top of all Hausdorff topological spaces and
so it is stable under quotients and coproducts in Top. It is worth mentioning
that the class Seq of all sequential groups is not stable under finite products
(see, for instance, the example in [Ba, Theorem 6]), but Seq is closed under
taking closed subgroups. On the other hand, the class S is stable under finite
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products (Theorem 1.14), but it is not closed under taking closed subgroups
(see [G4]).

II. Main results. By Theorems 1.13 and 1.14, the class SA of all
Abelian s-groups is closed under taking quotients and it is finitely multiplica-
tive. This class contains all sequential groups [G4], and hence it contains the
dual groups of all separable metrizable Abelian groups [CMT, Theorem 1.7].
On the other hand, for every countable Ts-set of sequences S in an Abelian
group G the space (G, τS) is complete and sequential (see [G4]). The main
theorem of [G4] asserts that an Abelian topological group G belongs to SA
if and only if G is a quotient group of a Graev free Abelian topological group
over a sequential Tychonoff space. These facts explain our interest in the
study of s-groups.

The main goal of the article is to study the theory of Abelian s-groups
in the following directions: (1) characterization of Abelian s-groups (Sec-
tion 2), (2) Pontryagin duality for Abelian s- and bs-groups (Section 3),
(3) characterization of Abelian bs-groups and sequential properties of the
Bohr modification of (in particular, locally compact) Abelian topological
groups (Section 4), and (4) the countable case, i.e., the case when an s-
topology is generated by a countable set of convergent sequences (Section 5).
Also we give some applications of this theory (Section 6) and pose several
open questions in the last section.

(a) The structure of Abelian s-groups. In Section 2 we give a char-
acterization of Abelian s-groups. First we study countably infinite s-groups
whose topology is generated by a single T -sequence. The following theorem
sharpens Theorem 5.6 of [G4] in the Abelian case:

Theorem 1.15. Let u = {un} be a T -sequence in an Abelian group G
such that 〈u〉 = G. Then (G, τu) is a quotient group of (ZN

0 , τe) under the
sequence-covering and compact-covering homomorphism

π((n1, n2, . . . , nm, 0, . . . )) = n1u1 + n2u2 + · · ·+ nmum,

where m ∈ N and n1, . . . , nm ∈ Z. The dual monomorphism π∧ : (G, τu)∧ →
(ZN

0 , τe)∧ = TH0 is an embedding onto (kerπ)⊥. In particular, (G, τu)∧ is
Polish.

Let {Gi}i∈I , where I is a non-empty set of indices, be a family of Abelian
groups. The direct sum of Gi is denoted by⊕

i∈I
Gi :=

{
(gi)i∈I ∈

∏
i∈I

Gi : gi = 0 for almost all i
}
.

We denote by jk the natural inclusion of Gk into
⊕

i∈I Gi, i.e.

jk(g) = (gi) ∈
⊕
i∈I

Gi, where gi = g if i = k and gi = 0 if i 6= k.
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Note that
⊕

i∈I Gi is the coproduct of the family {Gi}i∈I in the category of
all Abelian groups.

Assume that Gi = (Gi, τi) is an Abelian s-group for every i ∈ I. It is easy
to show that the set

⋃
i∈I ji(S(Gi, τi)) is a Ts-set of sequences in

⊕
i∈I Gi

(see Section 2).

Definition 1.16. Let {(Gi, τi)}i∈I be a non-empty family of Abelian s-
groups. The group

⊕
i∈I Gi endowed with the finest Hausdorff group topol-

ogy Ts in which every sequence of
⋃
i∈I ji(S(Gi, τi)) converges to zero is

called the s-sum of Gi and it is denoted by
⊕(s)

i∈I Gi.

In particular, the s-sum of s-groups is again an s-group. Note that the
s-sum of s-groups can be defined also for non-Abelian s-groups.

For a family {(Gi, τi)}i∈I of Abelian topological groups, denote by Tf
the coproduct topology on

⊕
i∈I Gi. Recall that Tf is the final group topology

with respect to the family of canonical homomorphisms jk : Gk →
⊕

i∈I Gi
(i.e., Tf is the finest group topology on

⊕
i∈I Gi such that all jk are con-

tinuous). The group (
⊕

i∈I Gi, Tf ) is called the coproduct of the family
{(Gi, τi)}i∈I in the category TopAbGr of all Abelian topological groups.

Proposition 1.17. Let {(Gi, τi)}i∈I be a non-empty family of Abelian
s-groups. Then the coproduct and the s-sum of the family {(Gi, τi)}i∈I co-
incide.

In particular, this proposition asserts that the subcategory SA of the
category TopAbGr is stable under taking coproducts.

The following theorem gives a characterization of Abelian s-groups and
it can be considered as a natural group analogue of Franklin’s Theorem 1.5:

Theorem 1.18. Let (X, τ) be a Hausdorff Abelian topological group. The
following statements are equivalent:

(i) (X, τ) is an s-group;
(ii) (X, τ) is a quotient group of the coproduct (or the s-sum) of a non-

empty family of copies of (ZN
0 , τe); moreover, the quotient map may

be chosen to be sequence-covering.

(b) Pontryagin duality for Abelian s- and bs-groups. In Section 3
we study the dual groups of Abelian s- and bs-groups and prove the following
generalization of the algebraic part of Theorem 1.4:

Theorem 1.19. Let S ∈ T S(G) for an infinite Abelian group G and
iS : Gd → (G, τS), iS(g) = g, be the identity map. Then algebraically

(1) i∧S((G, τS)∧) = sS(G∧d );

(2) n(G, τS) = [sS(G∧d )]⊥.
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In the following theorem we describe all bs-topologies on an infinite
Abelian group G. In [DMT] (see Lemma 3.1 below), it was pointed out
that τbu = Tsu(G∧d ) for one TB -sequence u. The next theorem generalizes
this fact:

Theorem 1.20. Let S ∈ T BS(G) for an infinite Abelian group G and
let jS : Gd → (G, τbS), jS(g) = g, be the identity map. Then

(1) j∧S ((G, τbS)∧) = sS(G∧d ) algebraically;

(2) τbS = τ+S = TsS(G∧d ).

Using Theorem 1.19 we obtain the following:

Theorem 1.21. A dense subgroup H of an infinite compact Abelian
group X is g-closed if and only if H algebraically is the dual group of X̂
endowed with some MAP s-topology.

Note that Hart and Kunen [HK1, HK2] proved that every compact
metrizable Abelian group X contains a g-dense proper Borel subgroup.
Hence not every (even Borel) subgroup ofX can be considered (algebraically)

as the dual group of (X̂, τ) for some s-topology τ on X̂. On the other hand,
non-trivial g-closed dense non-characterized subgroups of the torus T were
found by Biró [Bir, §5]: every subgroup H of T generated by an uncount-
able Kronecker set K is g-closed (recall that K is called a Kronecker set
if it is a compact set on which every continuous function can be uniformly
approximated by characters of T).

(c) A characterization of bs-groups and sequential properties
of the Bohr modification of Abelian groups. Our main goal of this
section is to obtain two characterizations of Abelian bs-groups. The first
one follows from Theorem 1.20 and it is analogous to the characterization
of MAP s-groups given in Theorem 1.21. Let us recall that Theorem 1.12
gives a characterization of s-groups by the requirement of continuity of all
sequentially continuous homomorphisms. If we weaken this requirement to
the continuity of only sequentially continuous characters, we obtain a new
characterization of Abelian bs-groups that was pointed out to the author
by Lukács. We summarize these results in the following theorem where the
equivalence of assertions (ii) and (iii) is stated in [Luk, Theorem 4.1(a)] (here
we give an independent proof of this equivalence). It is worth mentioning
that by [CR] every precompact Hausdorff group topology (in particular,
every bs-topology) on an Abelian group G has the form TH for some dense
subgroup H of G∧d .

Theorem 1.22. Let G be an infinite Abelian group and H be a dense
subgroup of G∧d . The following assertions are equivalent:
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(i) (G,TH) is a bs-group;
(ii) every sequentially continuous character of (G,TH) is continuous;

(iii) H is a g-closed subgroup of G∧d .

One says (see for example [GJ]) that a cardinal κ is not Ulam measur-
able if no set X of cardinality κ admits a {0, 1}-valued countably additive
measure µ, defined on the family of all subsets of X, such that µ(X) = 1
and µ({x}) = 0 for every x ∈ X.

Let G be a compact Abelian group. In [G4] the question whether G is
an s-group is posed. It is also natural to ask whether G is a bs-group. The
next theorem gives a complete answer to the last question and it is a simple
corollary of Theorem 1.22 and [CHT, HM].

Theorem 1.23. A compact Abelian group is a bs-group if and only if
the cardinality of its dual group is not Ulam measurable.

Let us suppose now that G is a locally compact non-compact Abelian
group. It is also natural to ask whether G+ is an s-group or a bs-group.

Theorem 1.24. Let G be a locally compact non-compact Abelian group
whose cardinality is not Ulam measurable. Then

(i) G+ is a realcompact bs-group;
(ii) G+ is not an s-group;

(iii) the natural homomorphism αG+ : G+ → (G+)∧∧ is discontinuous.

So this theorem gives examples of bs-groups which are not s-groups. For
instance, Z+(= (Zd)+) is a bs-group but it is not an s-group (it is well-
known that Z+ even has no non-trivial convergent sequences, and hence
s(Z+) = Zd 6= Z+). Note also that the first example of a topological group
X for which αX is discontinuous is given in [Lep].

Let G be a precompact Abelian group. It trivially follows from the defi-
nitions that if G is an s-group then it is also a bs-group. Theorem 1.24 shows
that in general the converse does not hold.

Theorem 1.25. Let G be a locally compact non-compact Abelian group.
If its cardinality is not Ulam measurable (in particular, if G is separable),
then G is a g-closed dense subgroup of its Bohr compactification bG.

Theorems 1.22–1.25 are proved in Section 4.

(d) The countable case. Let G be an infinite Abelian group. In Sec-
tion 5 we consider the case of countable S ∈ T S(G). In this case, the
topology τS has a simple description (see Proposition 5.1). The main result
of the section is the following:

Theorem 1.26. Let G be a countably infinite Abelian group and let S =
{un}n∈ω ∈ T S(G). Then (G, τS) is a complete sequential group with Polish
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dual group. More precisely, (G, τS)∧ is topologically isomorphic to a closed
subgroup of the Polish group

∏
n∈ω(G, τun)∧.

(e) Applications. In Section 6 we give some applications of the results
obtained.

Let (G, τ) be an Abelian non-compact MAP topological group. It is
natural to ask whether (G, τ) is a g-closed subgroup of bG. Theorem 1.25
gives an answer for locally compact groups. For Polish groups we prove the
following:

Theorem 1.27. Every reflexive Polish Abelian group (in particular,
every separable Banach space) is g-closed in its Bohr compactification.

As a consequence of Theorem 1.15 we prove the following theorem that
completes Theorem 1.2:

Theorem 1.28. If a Polish Abelian group H is characterizable, then
there is a compact subgroup K of H such that H/K embeds into TH0 .

Since a Banach space has no compact subgroups, we obtain the following
necessary condition for a Banach space to be characterizable:

Corollary 1.29. Every characterizable separable Banach space embeds
into TH0 .

The concept of a Schwartz topological Abelian group appeared in [ACDT].
This notion generalizes the well-known notion of a Schwartz locally convex
space. All nuclear groups as well as the Pontryagin dual groups of metrizable
Abelian groups are Schwartz groups.

Proposition 1.30. A characterizable Abelian group is a Schwartz group
if and only if it is locally compact.

Using this proposition we prove the following:

Theorem 1.31. Let G be a characterizable Abelian group. Then G∧ is
characterizable if and only if G is locally compact.

Denote by ComplCount the class of all complete countable Abelian
groups and set ComplCount∧ = {G∧ : G ∈ ComplCount}. Problems
2.20–2.22 of [G3] concern the description of the class ComplCount∧. The
following proposition shows that this class contains the countable direct
products of second countable locally compact Abelian groups:

Proposition 1.32. Let {Xn}n∈ω be a sequence of second countable lo-
cally compact Abelian groups. Then there is a complete sequential countably
infinite Abelian MAP group (G, τ) such that

(G, τ)∧ =
∏
n∈ω

Xn.
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In a particular case of Proposition 1.32 when all Xn = R, we can find G
explicitly:

Proposition 1.33. There is a complete sequential MAP group topology
τ on ZN

0 such that
(ZN

0 , τ)∧ = RN.

In the last section we pose some open questions.

2. The structure of Abelian s-groups. Let u be a T -sequence in an
Abelian group G. To prove that the homomorphism π in Theorem 1.15 is
sequence-covering we have to describe all sequences converging to zero in
(G, τu). Let a sequence v converge to zero in τu. Then, by the definition of τv,
we have τu ⊆ τv. The converse is trivially true. Thus, v converges to zero
in τu if and only if τu ⊆ τv. So the following proposition is a reformulation
of Exercise 2.1.2 of [PZ]. Since the solution of this exercise has never been
published, we give its complete proof. Following [ZP], for every k,m ≥ 0 one
puts

Au
k = Ak := {0,±un : n ≥ k}, Au(m, k) = A(m, k) = Ak + · · ·+Ak︸ ︷︷ ︸

m+1

.

Proposition 2.1. Let u = {un} be a T -sequence in an Abelian group G.
A sequence v = {vn} converges to zero in (G, τu) if and only if there are
m ∈ ω and n0 ∈ ω such that for every n ≥ n0 each member vn 6= 0 can be
represented in the form

vn = an1ukn1 + · · ·+ anlnuknln
,

where kn1 < · · · < knln, |an1 |+ · · ·+ |anln | ≤ m+ 1 and kn1 →∞.

Proof. If either u or v is trivial, the proposition is evident. Assume that
u and v are non-trivial. The sufficiency is clear. Let us prove the necessity.
Since the subgroup 〈u〉 of G is open in τu, there is n0 such that vn ∈ 〈u〉
for every n ≥ n0. Thus, without loss of generality, we may assume that
〈u〉 = G and hence G =

⋃
m∈ω A

u(m, 0). Since v converges to zero, by
[PZ, Lemma 2.3.3] (see also Theorem 5.7 of [G4]) there is m ∈ ω such that
v ⊂ Au(m, 0). So, if vn 6= 0, then

(2.1) vn = an1ukn1 + · · ·+ anlnuknln
,

where kn1 < · · · < knln , an1 · · · anln 6= 0 and |an1 | + · · · + |anln | ≤ m + 1. We can
choose a representation of vn of the form (2.1) with the minimal value of the
sum |an1 |+ · · ·+ |anln |. Clearly, for this chosen representation of vn every sum
of terms of the form ani ukni in (2.1) is non-zero (in particular, ani ukni 6= 0 for
i = 1, . . . , ln).

Let us show that kn1 → ∞. Assuming the converse and passing to a
subsequence we may suppose that kn1 = k1, a

n
1 = a1 and ankn1

ukn1 = a1uk1 6= 0
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for every n. So

vn = a1uk1 + an2ukn2 + · · ·+ anlnuknln
= a1uk1 + w1

n.

If kn2 → ∞, we observe that w1
n converges to zero. Hence 0 6= a1uk1 =

vn − w1
n → 0. This is impossible. Thus, there is a bounded subsequence of

{kn2 }. Passing to a subsequence we may suppose that kn2 = k2, a
n
2 = a2 and

an2ukn2 = a2uk2 6= 0 for every n. So

vn = a1uk1 + a2uk2 + an3ukn3 + · · ·+ anlnuknln
= a1uk1 + a2uk2 + w2

n.

By hypothesis, a1uk1 + a2uk2 6= 0. Continuing this process and taking into
account that

0 < |a1| < |a1|+ |a2| < · · · ≤ m+ 1,

after at most m+ 1 steps, we see that there is a fixed and non-zero subse-
quence of v. Thus vn 9 0. This contradiction shows that kn1 →∞.

A. Leiderman asked the author: when do two T -sequences define the
same topology? As a corollary of Proposition 2.1 we obtain:

Proposition 2.2. Let u = {un}n∈ω and v = {vn}n∈ω be T -sequences in
an Abelian group G. Then τu = τv if and only if there are positive integers
m and n0 such that for every n ≥ n0 each vn 6= 0 and each un 6= 0 can be
represented in the form

(2.2)

vn = an1ukn1 + · · ·+ anlnuknln
, kn1 < · · · < knln , k

n
1 →∞,

ln∑
i=1

|ani | ≤ m+ 1;

un = bn1vsn1 + · · ·+ bnqnvsnqn , sn1 < · · · < snqn , s
n
1 →∞,

qn∑
i=1

|bni | ≤ m+ 1.

Proof. Assume that τu = τv. Then vn → 0 in τu and v has represen-
tation (2.2) for some positive integers m(u) and n0(u) by Proposition 2.1.
The same is true for the sequence u. Putting m = max{m(u),m(v)} and
n0 = max{n0(u), n0(v)} we obtain (2.2).

Conversely, if vn 6= 0 has representation (2.2), then vn → 0 in τu. Thus,
τu ⊆ τv by the definition of τv. Analogously, τv ⊆ τu. Hence τu = τv.

Proof of Theorem 1.15. By Theorem 5.6 of [G4], π is a quotient mapping.

In particular, π∧ is a continuous monomorphism from (G, τu)∧ onto (kerπ)⊥.
By [G2, Lemma 2], π is compact-covering. Hence, by Lemma 5.17 of [Auß],
π∧ is an embedding.

Let us show that π is sequence-covering. Let v = {vn} ∈ S(G, τu). By
Proposition 2.1, for some natural number m we can represent every vn 6= 0
in the form

vn = an1ukn1 + · · ·+ anlnuknln
,
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where kn1 < · · · < knln , |an1 |+ · · ·+ |anknln | ≤ m+ 1 and kn1 →∞. Set

zn = an1ekn1 + · · ·+ anlneknln
if vn 6= 0, and zn = 0 if vn = 0.

Then zn → 0 in (ZN
0 , τe) and π(zn) = vn.

Note that Proposition 1.3 can be derived from this theorem and Lem-
ma 2.2 of [BCM].

Let {(Gi, τi)}i∈I , where I is a non-empty set of indices, be a family of
Hausdorff topological groups. For every i ∈ I fix Ui ∈ UGi and put⊕

i∈I
Ui :=

{
(gi)i∈I ∈

⊕
i∈I

Gi : gi ∈ Ui for all i ∈ I
}
.

Then the sets of the form
⊕

i∈I Ui, where Ui ∈ UGi for every i ∈ I, form a
neighborhood basis at the unit of a Hausdorff group topology Tr on

⊕
i∈I Gi

that is called the rectangular (or box) topology.
Let u = {gn} be an arbitrary sequence in S(Gi, τi). Evidently, the se-

quence ji(u) converges to the unit in Tr. Thus, the set
⋃
i∈I ji(S(Gi, τi)) is

a Ts-set of sequences in
⊕

i∈I Gi. So, if (Gi, τi) is an s-group for all i ∈ I,
we can define the s-sum of Gi (see Definition 1.16). Moreover, we can prove
the following:

Proposition 2.3. Let G =
⊕

i∈I Gi, where (Gi, τi) is an s-group for
every i ∈ I. Set S :=

⋃
i∈I ji(S(Gi, τi)). The topology τS on G coincides

with the finest Hausdorff group topology τ ′ on G for which all inclusions ji
are continuous.

Proof. Fix i∈ I. By construction, for every {un} ∈ S(Gi, τi), ji(un)→ eG
in τS . By Theorem 1.12, the inclusion ji is continuous. Thus, τS ⊆ τ ′. Con-
versely, if ji is continuous with respect to τ ′, then ji(S(Gi, τi)) ⊂ S(G, τ ′).
Hence S ⊆ S(G, τ ′) and τ ′ ⊆ τS by the definition of τS .

Proof of Proposition 1.17. The result immediately follows from Proposi-
tion 2.3.

Theorem 2.4. Let (X, τ) be an Abelian s-group. Set I = S(X, τ). For
every u ∈ I, let pu : (〈u〉, τu) → X, pu(g) = g, be the natural inclusion of
(〈u〉, τu) into X. Then the natural homomorphism

p :
⊕(s)

u∈S(X,τ)

(〈u〉, τu)→ X, p((xu)) =
∑
u

pu(xu) =
∑
u

xu,

is a quotient map and a sequence-covering map.

Proof. Set

G :=
⊕(s)

u∈S(X,τ)

(〈u〉, τu) and S :=
⋃

u∈S(X,τ)

ju(S(〈u〉, τu)) ∈ T S(G).
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Since each element of X can be regarded as the first element of some se-
quence u ∈ S(X, τ), p is surjective. By construction, p is sequence-covering.

Let v = {vn} ∈ S. By construction, p(vn) = vn → 0 in τ . Thus, by
Theorem 1.12, p is continuous. Set H = ker p. By Theorem 1.13, G/H ∼=
(X, τp(S)). Since, by construction, p(S) = S(X, τ), we obtain G/H ∼= (X, τ)
by Proposition 3.3 of [G4].

To prove Theorem 1.18 we need the following proposition.

Proposition 2.5. Let {(Xi, νi)}i∈I and {(Gi, τi)}i∈I be non-empty fam-
ilies of Abelian s-groups and let πi : Gi → Xi be a quotient sequence-covering

map for every i ∈ I. Set X =
⊕(s)

i∈I Xi, G =
⊕(s)

i∈I Gi and π : G → X,

π((gi)) = (πi(gi)). Then π is a quotient map.

Proof. It is clear that π is surjective. Set

SX :=
⋃
i∈I

ji(S(Xi, νi)) and SG :=
⋃
i∈I

ji(S(Gi, τi)).

Since πi is sequence-covering, we have πi(S(Gi, τi)) = S(Xi, νi). Hence
π(SG) = SX . Thus, by Theorem 1.12, π is continuous. By Theorem 1.13,
G/kerπ ∼= (X, τπ(SG)). Hence G/kerπ ∼= X and π is a quotient map.

Proof of Theorem 1.18. Let I = S(X, τ). For every u ∈ I, put Gu =
(ZN

0 , τe), Xu = (〈u〉, τu) and let πu be the unique group homomorphism from
Gu onto Xu defined by πu(ei) = ui for every i ∈ N. Let pu : (〈u〉, τu)→ X,
pu(g) = g, be the natural inclusion of (〈u〉, τu) into X. Then the result
immediately follows from Theorems 1.15 and 2.4 and Proposition 2.5.

The following theorem is a natural counterpart of [S, Theorem 4.1]:

Theorem 2.6. Let (X, τ) be a non-trivial Hausdorff Abelian topological
group. The following statements are equivalent:

(i) (X, τ) is an s-group;
(ii) every continuous sequence-covering homomorphism from an Abelian

s-group onto (X, τ) is quotient.

Proof. (i)⇒(ii). Let p : G → X be a sequence-covering continuous ho-
momorphism from an s-group (G, ν) onto X. Set H = ker p. We have to
show that p is quotient, i.e., X ∼= G/H. Since p is surjective, by Theo-
rem 1.13, we have G/H ∼= (X, τp(S(G,ν))). By hypothesis and Proposition 3.3
of [G4], p(S(G, ν)) = S(X, τ) and τ = τS(X,τ). Thus G/H ∼= X.

(ii)⇒(i). Let I = S(X, τ), S :=
⋃

u∈S(X,τ) ju(S(〈u〉, τu)) ∈ T S(G), G :=⊕(s)
u∈S(X,τ)(〈u〉, τu) and

p : G→ X, p((xu)) =
∑
u

pu(xu) =
∑
u

xu.
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By Theorem 1.12, p is continuous. Since p is sequence-covering, by hypoth-
esis, p is quotient. Thus (X, τ) ∼= G/ker p. By Theorem 1.13, we also have
G/ker p ∼= (X, τp(S)). Thus τ = τp(S) and (X, τ) is an s-group.

3. Duality. The following lemma will be used several times in what
follows:

Lemma 3.1 ([DMT, Lemma 3.1]). Let G be an Abelian topological group
and let H ≤ G∧. Then, for a sequence u = {un} in G, one has un → 0 in
(G,TH) if and only if H ≤ su(G∧).

We will use the following notations. For a T - or respectively TB -sequence
u in an Abelian group G, let iu : Gd → (G, τu) and ju : Gd → (G, τbu),
iu(g) = ju(g) = g, be the identity maps. The following proposition connects
the notions of T - and TB -sequences and in one way or another it can be
found in [DMT]:

Proposition 3.2 ([DMT]). Let u = {un} be a sequence in an Abelian
group G. Then

(i) u is a TB-sequence if and only if it is a T -sequence and (G, τu) is
MAP;

(ii) if u is a TB-sequence, then

τbu = τ+u = Tsu(G∧d ) and i∧u((G, τu)∧) = j∧u ((G, τbu)∧) = su(G∧d ).

Proof. (i) Clearly, if a sequence u = {un} is a TB -sequence, then it is
a T -sequence and (G, τu) is MAP. Conversely, if (G, τu) is MAP, then the
sequence u converges to zero in τ+u as well. Thus u is a TB -sequence.

(ii) Let u be a TB -sequence. By the definition of τbu we have τ+u ⊆ τbu.
On the other hand, τbu is a precompact group topology coarser than τu by
the definition of τbu and τu. So τbu ⊆ τ+u , since τ+u is the finest precompact
group topology on G below τu. Hence, τbu = τ+u and, by Theorem 1.4,
i∧u((G, τu)∧) = j∧u ((G, τbu)∧) = su(G∧d ). So τbu = Tsu(G∧d ).

Proof of Theorem 1.19. (1) For every u ∈ S, let tu : (G, τu) → (G, τS),
tu(g) = g, be the identity continuous map. Then iS = tu◦iu and i∧u((G, τu)∧)
= su(G∧d ) by Proposition 3.2(ii). Hence i∧S((G, τS)∧) ⊆ su(G∧d ) for every
u ∈ S. So i∧S((G, τS)∧) ⊆ sS(G∧d ).

Conversely, let x ∈ sS(G∧d ). By Proposition 3.2(ii), x ∈ i∧u((G, τu)∧) for
every u = {un} ∈ S. Thus, x is an algebraic homomorphism from (G, τS)
into T such that, by the definition of the topology τu, (un, x) → 1 for
every u ∈ S. By Theorem 1.12, x is a continuous character of (G, τS). So
x ∈ i∧S((G, τS)∧).



Generalization of Abelian sequential groups 111

(2) By (1), algebraically we have

n(G, τS) =
⋂

χ∈(G,τS)∧
kerχ =

⋂
x∈sS(G∧d )

kerx = [sS(G∧d )]⊥.

Corollary 3.3. Let G be an infinite Abelian group and S be an arbi-
trary set of sequences in G. Then the following statements are equivalent:

(1) S ∈ T BS(G);
(2) S ∈ T S(G) and (G, τS) is MAP;
(3) sS(G∧d ) is dense in G∧d .

Proof. (1)⇒(2) is trivial.

(2)⇒(3). By Theorem 1.19, (G, τS) is MAP iff sS(G∧d ) is dense in G∧d .

(3)⇒(1). For simplicity we setH := sS(G∧d ). By Lemma 3.1, every u ∈ S
converges to zero in TH . Since H is dense in G∧d , by [CR, Theorem 1.9], TH
is Hausdorff. So S ∈ T BS(G).

Example 3.4. If τu = τv for TB -sequences u and v in an Abelian
group G, then, by Proposition 3.2, τbu = τbv. But, in general, the converse
is not true, i.e., from the equality τbu = τbv it does not follow that τu = τv.
Let us consider the following example. Define two sequences u = {un} and
v = {vn} in G = Z as follows:

un = pn, v2n = pn, v2n+1 =
n∑
i=0

pn
3−in for n ∈ ω.

By [Ar] (see also [BDMW2, Remark 3.8]), su(T) = Z(p∞). Clearly, for each
x ∈ Z(p∞) we have (v2n+1, x) = 1 for all sufficiently large n. Thus, also
sv(T) = Z(p∞). Since Z(p∞) is dense in T, by Corollary 3.3, u and v are
TB -sequences. By Proposition 3.2, τbu = τbv = TZ(p∞). Let us show that
τv ( τu. Since u is a subsequence of v, we have un → 0 in τv. Thus τv ⊆ τu
by the definition of the topology τu. Let us show that τv 6= τu. To prove this
it is enough to show that vn 9 0 in τu.

Suppose for a contradiction that vn → 0 in τu. Then v ∪ {0} is compact
in τu. Taking into account that Z =

⋃
m∈ω A

u(m, 0), Lemma 2.3.3 of [PZ]
(see also Theorem 5.7 of [G4]) implies that v ⊂ Au(m, 0) for some m > 0.
Note that every element of Au(m, 0) contains at most m+ 1 non-zero sum-
mands of the form pn. On the other hand, v2(2m)+1 contains 2m+1 (> m+1)
non-zero summands of the form pn. Hence v2(2m)+1 6∈ Au(m, 0). This con-
tradiction shows that vn 9 0 in τu.

Proof of Theorem 1.20. Since every sequence u ∈ S converges to zero
in τS , u converges to zero in τ+S as well. Thus τ+S ⊆ τbS by the definition
of τbS . On the other hand, τbS is a precompact group topology coarser than
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τS by the definition of τbS and τS . So τbS ⊆ τ+S , since τ+S is the finest precom-
pact group topology onG below τS . Thus τbS = τ+S . Hence, by Theorem 1.19,
τbS = TsS(G∧d ) and j∧S ((G, τbS)∧) = sS(G∧d ).

As an immediate consequence of Theorems 1.19 and 1.20 we obtain:

Corollary 3.5. Let S ∈ T BS(G) for an infinite Abelian group G, and
j : (G, τS) → (G, τbS), j(g) = g, be the natural continuous isomorphism.
Then its conjugate homomorphism j∧ : (G, τbS)∧ → (G, τS)∧ is a continuous
isomorphism.

The following corollary generalizes [DMT, Proposition 3.2]:

Corollary 3.6. Let G be an infinite Abelian group and S ∈ T BS(G).
Then:

(1) w(G, τbS) = |sS(G∧d )|;
(2) τbS is metrizable iff sS(G∧d ) is countable.

Proof. Item (1) follows from Theorem 1.20 and the property w(G,TY )
= |Y | of the topology TY generated by any subgroup Y ≤ G∧d (see [CR,
Theorem 1.2] and [HR, 24.15]).

Item (2) immediately follows from item (1) since a precompact group is
metrizable precisely when it is second countable.

Remark 3.7. For τS , in general, the equality w(G, τS) = |sS(G∧d )| does
not hold. The following examples demonstrate that the weight w(G, τS) may
be both less than |sS(G∧d )| and greater than |sS(G∧d )| even for countable G.
Note that |sS(G∧d )| = |(G, τS)∧| by Theorem 1.19.

(a) Let G be a countably infinite Abelian group and H be a countably
infinite dense subgroup of G∧d . By [DK], there is a TB -sequence u such that
su(G∧d ) = H. Set S = {u}. Then, by Theorem 1.19, |(G, τS)∧| = |sS(G∧d )|
= ℵ0. On the other hand, by corollary from Theorem 6 of [ZP], (G, τS)
is not metrizable and hence w(G, τS) > ℵ0. Thus, w(G, τS) > |(G, τS)∧|
= |sS(G∧d )|.

(b) Let G = Gd be a discrete countably infinite Abelian group. Then
w(G) = ℵ0 and S = S(Gd) consists of only trivial sequences. So sS(G∧d ) =G∧d
has size c. Thus w(G) < |sS(G∧d )|. The same conclusion holds true for ev-
ery dense countable subgroup of a locally compact non-compact Abelian
metrizable group.

Note that Theorem 1.20 describes the dual group of (G, τbS) only alge-
braically. In a simple partial case the next corollary gives also a topological
description of (G, τbS)∧.

Corollary 3.8. Let G be a countably infinite Abelian group and let
S ∈ T BS(G). If sS(G∧d ) is countable, then (G, τbS)∧ is discrete. In particu-
lar, (G, τbS) is not reflexive.
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Proof. By Corollary 3.6, (G, τbS) is a metrizable precompact countably
infinite group. Hence the dual group (G, τbS)∧ is countably infinite and dis-
crete by [Auß, 4.10] (see also [Cha]). So the bidual group (G, τbS)∧∧ is com-
pact and has size continuum by [HR, 24.47]. Therefore, the countable group
(G, τbS) is not reflexive.

Corollary 3.9. Let G be a countably infinite Abelian group, u be a TB-
sequence and j : (G, τu)→ (G, τbu) be the identity continuous isomorphism.
If su(G∧d ) is countable, then j∧ is a topological isomorphism.

Proof. By Corollary 3.5, j∧ is a continuous isomorphism. Since su(G∧d ) is
countable, by Theorem 1.4, (G, τu)∧ is a countable Polish group. So (G, τu)∧

is discrete. Thus (G, τbu)∧ is also discrete and j∧ is a topological isomor-
phism.

Theorem 1.21 immediately follows from the following:

Theorem 3.10. Let G be an infinite Abelian group. Set X = G∧d .

(i) If S ∈ T S(G) and iS : Gd → (G, τS) is the natural continuous
isomorphism, then i∧S((G, τS)∧) is a g-closed subgroup of X.

(ii) If H is a g-closed subgroup of X, then there is S ∈ T BS(ĉlH) such

that H = (ĉlH, τS)∧ algebraically.

Proof. (i) follows from Theorem 1.19(1) and the definition of g-closed
subgroup.

(ii) It is clear that H is a g-closed dense subgroup of clH. Put

S := {u ∈ (ĉlH)N : H ≤ su(clH)}.

By the definition of g-closed subgroups, H = sS(clH). Since H is dense

in clH, S ∈ T BS(ĉlH) by Corollary 3.3. Now the assertion follows from
Theorem 1.19(1).

Since every sequential group is an s-group [G4], we obtain:

Corollary 3.11. The dual group of a sequential (in particular, metriz-
able) group (G, τ) is a g-closed subgroup of the compact group G∧d .

Let S be a Ts-set of sequences of an Abelian group G. As was noted in
the introduction, if S is finite it can be replaced by a single T -sequence.
If S is countable, then (G, τS) is a complete sequential group [PZ, G4],
and (G, τS)∧ is Polish by Theorem 1.26. On the other hand, if (G, τS) is
a metrizable group, then the cardinality |S| of S must be uncountable by
Corollary 1.18 of [G4]. Hence topological properties of an s-group depend on
the cardinality of the Ts-set of sequences that generates the original topology
(and conversely). These facts justify the following definition:
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Definition 3.12. Let G be an Abelian group.

(1) If S ∈ T S(G), one puts

rs(S) = min{|B| : B ∈ T S(G) and τB = τS},
r∧s (S) = min{|B| : B ∈ T S(G) and sB(G∧d ) = sS(G∧d )}.

(2) If S ∈ T BS(G), one puts

rb(S) = min{|B| : B ∈ T BS(G) and τbB = τbS},
r∧b (S) = min{|B| : B ∈ T BS(G) and sB(G∧d ) = sS(G∧d )}.

Remark 3.13. Let (G, τ) be an s-group and τ = τS for some S ∈ T S(G).
Then the number rs(S) coincides with the number rs(G, τ) that is defined
in [G4].

Proposition 3.14. Let G be an infinite Abelian group.

(1) If S ∈ T S(G), then r∧s (S) ≤ rs(S) ≤ |S|.
(2) If S ∈ T BS(G), then r∧s (S) = r∧b (S) = rb(S).

(3) If S ∈ T S(G) is finite, then rs(S) = r∧s (S) = 1.

Proof. (1) Let B ∈ T S(G) be such that τB = τS . By Theorem 1.19(1),
algebraically,

sB(G∧d ) = ̂(G, τB) = ̂(G, τS) = sS(G∧d ).

So |B| ≥ r∧s (S). Thus r∧s (S) ≤ rs(S).

(2) Let S ∈ T BS(G). By Corollary 3.3, sS(G∧d ) is dense in G∧d . Hence,
if sB(G∧d ) = sS(G∧d ) for B ∈ T S(G), then, by Corollary 3.3, B ∈ T BS(G).
Thus, r∧s (S) = r∧b (S).

Let B ∈ T BS(G). By Theorem 1.20 and [CR, Theorem 1.3], sB(G∧d ) =
sS(G∧d ) if and only if τbB = τbS . So rb(S) = r∧b (S).

(3) By Proposition 5.1 of [G4], rs(S) = 1 and the assertion follows from
item (1).

Example 3.15. Let (G, τ) be a dense countably infinite subgroup of a
compact infinite metrizable Abelian group X with the induced topology.
Then (G, τ) is an s-group. Set S = S(G, τ). It is known [ZP] that for every
T -sequence v in G the group (G, τv) is either discrete or non-metrizable. So,
by Proposition 3.14(3), we have rs(S) ≥ ℵ0. On the other hand, by Theo-

rem 1.19, algebraically, sS(G∧d ) = (̂G, τ) is a countable subgroup ofG∧d . Since
G is dense in X, we know that (G, τ)∧ = X∧ is dense in G∧d by [HR, 24.21].
So, by [DK], there exists a TB -sequence u in G such that su(G∧d ) = sS(G∧d ).
Thus r∧s (S) = 1 and hence rs(S) > r∧s (S). We do not know any characteri-
zation of those Abelian s-groups (G, τS) for which rs(S) = r∧s (S).
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4. A characterization of bs-groups and sequential properties of
the Bohr modification of Abelian groups

Proof of Theorem 1.22. (i)⇒(ii). Set S = S(G,TH). Since (G,TH) is
a bs-group, τbS = TH . By [CR] and Theorems 1.19 and 1.20, we have
H = (G, τbS)∧ = (G, τS)∧ algebraically. Let χ be a sequentially continuous
character of (G,TH), i.e., (χ, un)→ 1 for every {un} ∈ S. By Theorem 1.12,
χ ∈ (G, τS)∧. Thus χ ∈ H is a continuous character of (G,TH).

(ii)⇒(iii). Set S = S(G,TH). By Theorem 1.12, every sequentially con-
tinuous character of (G,TH) is continuous in τS . Hence, by hypothesis,
H = (G,TH)∧ = (G, τS)∧ algebraically. By Theorem 1.19, H = sS(G∧d ),
and hence H is g-closed in G∧d .

(iii)⇒(i). Let S be a set of sequences of G such that H = sS(G∧d ). Since
H is dense in G∧d , S ∈ T BS(G) by Corollary 3.3. By Theorem 1.20 we have
τbS = TsS(G∧d ) = TH . Thus (G,TH) is a bs-group.

Denote by BSA the class of all Abelian bs-groups.

Corollary 4.1. The class BSA is closed under taking finite products
and quotients.

Proof. Let G,H ∈ BSA. By Theorem 1.22, to prove that G×H is a bs-
group it is enough to show that every sequentially continuous character χ of
G×H is continuous. Set (η, g) := (χ, (g, 0)) and (ψ, h) := (χ, (0, h)), where
g ∈ G and h ∈ H. Then η and ψ are sequentially continuous characters
of G and H respectively. By hypothesis, η and ψ are continuous. Thus
(χ, (g, h)) = (η, g) · (ψ, h) is continuous as well.

Let G ∈ BSA and Q be a closed subgroup of G. Denote by q : G→ G/Q
the quotient homomorphism. Then for every sequentially continuous char-
acter χ of G/Q the composition χ ◦ q is a sequentially continuous character
of G. By hypothesis, χ◦ q is continuous. Since q is quotient, χ is continuous.
Now Theorem 1.22 implies that G/Q is a bs-group.

Some sequential properties of the Bohr modification of s-groups are con-
sidered in the next proposition:

Proposition 4.2. Let (G, τ) be a MAP s-group. Then

(a) (G, τ+) is a bs-group.
(b) For the s-modification s(G, τ+) of (G, τ+) the following hold:

(b1) the topology of s(G, τ+) is included in τ ;
(b2) s(G, τ+) = (G, τ) if and only if S(G, τ+) = S(G, τ), i.e., when

(G, τ+) and (G, τ) have the same set of convergent sequences.

(c) If S(G, τ+) = S(G, τ), then (G, τ+) is an s-group if and only if
(G, τ) is precompact. In that case τ = τ+.
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Proof. (a) By Theorem 1.22 it is enough to show that every sequentially
continuous character χ of (G, τ+) is continuous in τ+. Let (χ, un) → 1 for
every {un} ∈ S(G, τ+). In particular, (χ, un)→ 1 for every {un} ∈ S(G, τ).
Thus χ is continuous in τ by Theorem 1.12. So χ is continuous in τ+ as well
by Theorem 1.20.

(b) Set S = S(G, τ) and Q = S(G, τ+). Denote by ν the topology of
s(G, τ+). Set Q′ = S(G, τQ). By Proposition 3.3 and [G4, Lemma 4.2] we
have

(4.1) τ = τS and S = S(G, τS); ν = τQ = τQ′ and Q′= S(G, τQ′).

Since S ⊆ Q, we have ν = τQ ⊆ τS = τ and (b1) follows.

Let us prove (b2). Clearly, s(G, τ+) = (G, τ) if and only if S(s(G, τ+)) =
S(G, ν) = S(G, τQ) = Q′ coincides with S(G, τ) = S. So to prove (b2),
by (4.1) it is enough to show that Q = Q′. Clearly, Q ⊆ Q′. Let us prove
the reverse inclusion. Take a sequence u ∈ Q′. This means that u → 0 in
τQ′ = τQ. Since τ+ ⊆ τQ, u→ 0 in τ+ as well. Thus u ∈ S(G, τ+) = Q.

(c) By hypothesis, the identity map id : (G, τ+)→ (G, τ) is sequentially
continuous. So, if (G, τ+) is an s-group, id is continuous and τ ⊆ τ+. Since
τ+ ⊆ τ , we obtain τ+ = τ and (G, τ) is precompact.

Conversely, if (G, τ) is precompact, then τ = τ+. Hence (G, τ+) is an
s-group.

Remark 4.3. Let us denote by MAPAb the subcategory of TopGrAb
consisting of all MAP abelian groups. Let B : MAPAb→MAPAb be the
Bohr functor, i.e., B(G, τ) = (G, τ+) for every (G, τ) ∈ MAPAb. (Note
that B is finitely multiplicative.) Proposition 4.2(b1) says that s ◦B(τ) ⊆ τ
for every MAP s-group (G, τ). Example 3.4 shows that in general this in-
clusion is strict.

Proposition 4.2(b2) shows that the functors s ◦B ◦ s and s on MAPAb
coincide only on those groups X ∈MAPAb for which B ◦ s(X) and s(X)
have the same set of convergent sequences.

Theorem 1.23 is a part of the following theorem in which, for the con-
venience of the reader, we summarize also some known results from [CHT],
[HM] and [GJ].

Theorem 4.4. Let G be a compact Abelian group and X = G∧. Then
the following are equivalent:

(i) G is a bs-group;
(ii) X is realcompact;

(iii) X+ is realcompact;
(iv) |X| is not Ulam measurable.
(v) |G| is not Ulam measurable.
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Proof of Theorem 4.4. (i)⇔(iii) follows from Theorem 1.22 and [HM,
Theorem 3.1].

(iii)⇔(iv) is Theorem 3.3 of [CHT].
(ii)⇔(iv) is Theorem 12.2 of [GJ].
(iv)⇔(v) follows from [HR, 24.15 and 24.47] and [GJ, 12.5].

Even if the following proposition is proved in [F, Re, V2], we give here
its simple proof using Glicksberg’s theorem [Gl] in order to make the paper
more self-contained.

Proposition 4.5. Let G be a locally compact Abelian group. Then G+

and G have the same convergent to zero sequences. In particular, the identity
map id : G+ → G is sequentially continuous.

Proof. Let a sequence u = {un} converge to zero in G+. Then the set
K = u∪{0} is compact in G+. By Glicksberg’s theorem [Gl], K is compact
in G. Since only zero is a non-isolated point in K, u converges to zero also
in G.

Proposition 4.6. Let G be a locally compact non-compact Abelian
group. Then G+ is not an s-group.

Proof. Suppose for a contradiction that G+ is an s-group. Then, by
Proposition 4.5 and Theorem 1.12, the identity map id : G+ → G is contin-
uous. Hence G is bounded, a contradiction.

Proof of Theorem 1.24. (i) Taking into consideration [GJ, 12.5], the
group G+ is realcompact by [CHT, Theorem 3.8]. Let us show that G+

is a bs-group. By Theorem 1.22, it is enough to show that every sequentially
continuous character of G+ is continuous. Let χ be a sequentially continuous
character of G+. Clearly, χ is also a sequentially continuous character of G.
It immediately follows from Varopoulos [V1] that χ is a continuous charac-
ter of G, i.e., χ ∈ G∧. Thus χ is a continuous character of (G,TG∧) = G+

as well.
(ii) follows from Proposition 4.6.
(iii) follows from Example 6.1 of [CDM].

Note that the local compactness in Theorem 1.24 is important. Indeed,
for (Z, τu) from Example 3.4 we have the following: (1) (Z, τu) is an
s-group that is not locally precompact by [PZ, 2.3.12]; (2) (Z, τ+u ) =
(Z, TZ(p∞)) is a metrizable bs-group by Corollary 3.6 and hence it is also
an s-group.

Recall that a topological group G is called a k-group if every homo-
morphism from G to a topological group H which is continuous on every
compact subset of G is continuous [Nob2]. The next proposition is of inde-
pendent interest:
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Proposition 4.7.

(i) Every s-group is a k-group.
(ii) If G is an Abelian MAP s-group, then the natural homomorphism

αG : G→ G∧∧ is a continuous monomorphism.

Proof. (i) Let G be an s-group. Since every convergent sequence with its
limit point is compact in G, the group G is a k-group by the definition of
k-groups and Theorem 1.12.

(ii) immediately follows from Theorem 2.3 of [Nob2] and item (i).

Proof of Theorem 1.25. Set X = G∧. Assuming that |X| is not Ulam
measurable, by Theorem 1.24 we deduce that X+ = (X,TG) is a bs-group.
Hence G is g-closed in (Xd)

∧ = bG by Theorem 1.22. Thus it only remains
to show that |X| is not Ulam measurable.

Denote by m the least Ulam measurable cardinal. It is known that m is
strongly inaccessible (i.e., regular and a strong limit cardinal, which means
that 2λ < m whenever λ < m). By hypothesis, |G| is not Ulam measurable,
hence |G| < m and 2|G| < m. To prove that |X| is not Ulam measurable
it suffices to note that w(X) = w(G) ≤ |G| (see [HR, 24.14]), so that
|X| ≤ 2w(X) = 2w(G) < m.

In general, from the g-closedness of a locally compact non-compact
Abelian group G in bG it does not follow that |G| is not Ulam measurable.
That is, the condition of Ulam non-measurability of |G| in Theorem 1.25 is
essential (we do not discuss the existence of Ulam measurable cardinals). To
show this we need the next lemma.

Lemma 4.8. Let {Gα}α∈I be a family of Abelian topological groups and,
for every α ∈ I, Hα be a g-closed subgroup of Gα. Then H :=

∏
α∈I Hα is

g-closed in G :=
∏
α∈I Gα.

Proof. Let Hα =
⋂

u∈Jα su(Gα), where Jα is a set of sequences in the
dual of Gα. Naturally considering every sequence u ∈ Jα as a sequence in
G∧ =

⊕
α∈I G

∧
α we set J =

⋃
α∈I Jα. Then⋂

u∈J
su(G) =

⋂
α∈I

( ⋂
u∈Jα

su(G)
)

=
⋂
α∈I

(
Hα ×

∏
β∈I\{α}

Gβ

)
= H.

Example 4.9. Let us show that there exists a locally compact non-
compact Abelian group G that is g-closed in bG but |G| is Ulam measur-
able. Indeed, choose a compact Abelian group G1 such that |G1| is Ulam
measurable. And let G2 be a discrete countably infinite Abelian group. By
Lemma 4.8 and Theorem 1.25, the locally compact non-compact group G :=
G1 × G2 is g-closed in bG = bG1 × bG2 = G1 × bG2, but |G| is Ulam mea-
surable.
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5. The countable case

Proof of Theorem 1.10. Let S be a Ts-set of sequences in G. Then, by
definition, τS = infu∈S τu is Hausdorff and τS ⊆ τSi for every i ∈ I. Thus,
by the definition of inf, τS ⊆ infi∈I τSi . So infi∈I τSi is Hausdorff.

Conversely, let infi∈I τSi be Hausdorff. Then, by definition, every u ∈
Si ⊆ S converges to the unit in τSi and hence in infi∈I τSi as well. Thus,
infi∈I τSi ⊆ τS by the definition of τS . Hence τS is Hausdorff. Therefore, if
τS and infi∈I τSi are Hausdorff, we have τS = infu∈S τu = infi∈I τSi .

As an immediate corollary of Proposition 7 of [CD] and Theorem 1.10
we obtain:

Proposition 5.1. Let S = {Sn}n∈ω ∈ T S(G) for an Abelian group G.
Then the family U of all sets of the form∑

n

Wn =
⋃
n∈ω

(W0 +W1 + · · ·+Wn), where 0 ∈Wn ∈ τSn ,

forms an open basis at 0 of τS.

Let us recall that Tr, Ta and Tf denote the rectangular, the asterisk and
the coproduct group topologies respectively on the direct sum of Abelian
topological groups. We will use the following important facts:

Proposition 5.2.

(i) ([CD, Proposition 11]) Let {(Gn, τn)}n∈ω be a countable family of
Abelian topological groups. Then Tr = Ta = Tf on

⊕
n∈ω Gn.

(ii) ([CD, Corollary 22]) Let {(Gi, τi)}i∈I be a family of locally quasi-
convex Abelian groups. Then the asterisk topology on

⊕
i∈I Gi is

the finest locally quasi-convex topology on
⊕

i∈I Gi which is coarser
than the coproduct topology Tf .

(iii) ([Nic, Theorem 4.3]) Let {(Gi, τi)}i∈I be a family of reflexive Abelian
topological groups. Then(⊕

i∈I
Gi, Tf

)∧
=
(⊕
i∈I

Gi, Ta
)∧

=
∏
i∈I

(Gi, τi)
∧.

The next corollary immediately follows from Propositions 5.2 and 1.17.

Corollary 5.3. Let {(Gn, τSn)}n∈ω be a countable family of Abelian
s-groups. Set G =

⊕
n∈ω Gn and S =

⋃
n∈ω jn(Sn). Then τS = Ta on⊕

n∈ω Gn.

Let us note that Higgins [Hig] was the first who proved that in general
the s-topology on an uncountable coproduct of s-groups may be strictly
finer than the asterisk topology Ta (see also [CD, Nic]). For example, the
s-topology of each uncountable coproducts of the reals R is strictly finer
than the asterisk topology (see a simple right proof of this fact in [Pr]).
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Taking into account that the group (ZN
0 , τe) is reflexive and (ZN

0 , τe)∧

= TH0 (see [G1]), as a corollary of Propositions 5.2 and 1.17 and Theo-
rem 1.18 we obtain:

Corollary 5.4. The dual group of an Abelian s-group imbeds into some
direct product of the group TH0 .

To prove Theorem 1.26, we need the following proposition:

Proposition 5.5. Let {Gn}n∈ω be a sequence of Abelian groups and
let un be a T -sequence in Gn for every n ∈ ω. Set G =

⊕
n∈ω Gn and

S = {jn(un)}n∈ω. Then (G, τS) is a complete sequential group, τS = Ta and

(G, τS)∧ =
∏
n∈ω

(Gn, τun)∧.

Moreover, if all Gn are countably infinite, then (G, τS)∧ is a Polish group.

Proof. (G, τS) is a complete sequential group by [G4, Theorem 5.2]. By
Corollary 5.3, τS = Ta. Hence (G, τS)∧ =

∏
n∈ω(Gn, τun)∧ by [K]. If all

Gn are countably infinite, then, by Theorem 1.4, all (Gn, τun)∧ are Polish.
Hence (G, τS)∧ is a Polish group as well.

Proof of Theorem 1.26. Set G′ =
⊕

n∈ω Gn, where Gn = G for every
n ∈ ω, and S′ = {jn(un)}n∈ω. Then, by Proposition 5.5,

(G′, τS′)
∧ =

∏
n∈ω

(G, τun)∧

is a Polish group.

Set p : (G′, τS′) → (G, τS), p((gn)) =
∑

n gn. Since p(jn(un)) = un
converges to zero in (G, τS), p is continuous by Theorem 1.12. Set H =
ker p. Since p(S′) = S, by Theorem 1.13, (G, τS) ∼= (G′, τS′)/H. Then the
conjugate homomorphism p∧ is a continuous isomorphism from (G, τS)∧

onto the annihilator H⊥ of H in (G′, τS′)
∧. Since the subgroup 〈u0,u1, . . . 〉

is open in τG, by [G4, Theorem 5.2], every compact subset of (G, τS) is
contained in a compact subset Kn of the form

Kn :=
[ n⋃
i=0

(ui ∪ (−ui))
]

+ · · ·+
[ n⋃
i=0

(ui ∪ (−ui))
]

+ {gi}ti=1

with n+ 1 summands in square brackets and a finite {gi}ti=1 ⊂ G. It is clear
that a subset K ′n of G′ of the form

K ′n :=
[ n⋃
i=0

(ji(ui)∪(−ji(ui)))
]

+ · · ·+
[ n⋃
i=0

(ji(ui)∪(−ji(ui)))
]

+{j0(gi)}ti=1

with n + 2 summands is compact. Since p(K ′n) = Kn and p is onto and
continuous, p is compact-covering. Thus, by [Auß, Lemma 5.17], p∧ is an
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embedding of (G, τS)∧ into the Polish group (G′, τS′)
∧. So (G, τS)∧ ∼= H⊥

is a Polish group.

Remark 5.6. Let K be an uncountable Kronecker subset of the torus
T and H a subgroup of T generated by K. Then H is g-closed by [Bir, §5].
So, by Theorem 1.21, H is (algebraically) the dual group of (Z, τS) for some
MAP s-topology τS on Z generated by a Ts-set S of sequences. On the other
hand, since H does not admit any Polish group topology [G2, Theorem 2],
by Theorem 1.26, the set S must be uncountable, i.e., rs(Z, τS) ≥ ω1. It is
interesting to know the explicit value of this number. Also we do not know
whether the group (Z, τS) is sequential.

6. Applications. Let G be a MAP Abelian topological group, X = Ĝ
and α be the natural homomorphism from G into G∧∧. Since G is MAP,
α is injective. The weak and weak∗ group topologies on X are denoted
by σw and σw∗ respectively, i.e., σw = σ(X,G∧∧) and σw∗ = σ(X,G). Then
σw∗ ⊆ σw ⊆ σco. Let t : Xd → (X,σco) (= G∧), t(x) = x, be the identity map
and b := t∧ be its conjugate continuous monomorphism. Set bG := X∧d . It is
well-known that the compact group bG with the continuous monomorphism
b ◦α is the Bohr compactification of G (although α need not be continuous,
b ◦α is always continuous since (b ◦α(g), x) = (α(g), t(x)) = (x, g) for every
g ∈ G and x ∈ Xd). We shall algebraically identify G and G∧∧ with their
images b ◦ α(G) and b(G∧∧) respectively saying that they are subgroups of
bG. It is clear that

(6.1) gbG(b ◦ α(G)) ⊆ gbG(b(G∧∧)).

If α is surjective, the reverse inclusion is trivially satisfied. In the general
case we prove the following:

Proposition 6.1. Let G be a MAP Abelian topological group and X = Ĝ.
The following statements are equivalent:

(i) s(X,σw) = s(X,σw∗);
(ii) gbG(b ◦ α(G)) = gbG(b(G∧∧)).

Proof. (i)⇒(ii). By (6.1), we have to show gbG(b◦α(G)) ⊇ gbG(b(G∧∧)).
Let u = {un}n∈ω ⊂ X be such that b ◦ α(G) ⊆ su(bG). This means that
(b ◦ α(g), un) = (un, g) → 1 for every g ∈ G, i.e., u ∈ S(X,σw∗). By
hypothesis, u ∈ S(X,σw) too. Hence

(b(χ), un) = (χ, un)→ 1 for every χ ∈ G∧∧,

i.e., b(G∧∧) ⊆ su(bG). So gbG(b ◦ α(G)) ⊇ gbG(b(G∧∧)).

(ii)⇒(i). Since σw∗ ⊆ σw, we have only to show that if u = {un}n∈ω ∈
S(X,σw∗), then also u ∈ S(X,σw). Assuming the converse we can find
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χ ∈ G∧∧ such that

(χ, un) 9 1 as n→∞.
Then b(χ) 6∈ su(bG). Thus b(χ) 6∈ gbG(b ◦ α(G)). This is a contradiction.

Since G∧ is MAP, Theorem 1.21 and Corollary 3.3 imply:

Corollary 6.2. Let an Abelian topological group (G, τ) be such that
G∧ is an s-group. Then G∧∧ is a dense g-closed subgroup of bG.

Proof of Theorem 1.27. By [CMT, Theorem 2.4], the dual group G∧

is sequential. By [G4, Theorem 1.14], G∧ is an s-group. Hence, by Corol-
lary 6.2, b ◦ α(G) = b(G∧∧) is a g-closed subgroup of bG.

Proof of Theorem 1.28. Let H be characterizable and p be a continuous
monomorphism from H into a compact metrizable group X with dense
image such that p(H) = su(X) for some sequence u in X̂. By Corollary 3.3,

u is a TB -sequence. Since 〈u〉 is open in (X̂, τu), the subgroup K := 〈u〉⊥
is compact in (X̂, τu)∧ and 〈u〉∧ ∼= (X̂, τu)∧/K by [BCM, Lemma 2.2].
By Proposition 1.3 and the uniqueness of the Polish group topology, H ∼=
(X̂, τu)∧. Thus, by Theorem 1.15, H/K embeds into TH0 .

Remark 6.3. We do not know whether the image of H/K in TH0 is
dually closed (as in Theorem 1.2), but it may not be dually embedded.
Indeed, by [G3], R is characterizable and hence it embeds into TH0 . Since
R∧ = R is uncountable and (TH0 )∧ = ZN

0 is countable, R is not dually
embedded in TH0 .

Proof of Proposition 1.30. Let H be a Schwartz group. Choose a com-
pact subgroup K of H such that the quotient group H/K embeds into TH0
(Theorem 1.28). In particular, H/K is locally quasi-convex. By [ACDT,
Proposition 3.6], H/K is a Schwartz Polish locally quasi-convex group. By
[CDT, Theorem 15], the embedding H/K → TH0 is compact. Thus H/K is
locally compact. So H is a locally compact Polish group.

The converse assertion is trivial.

Proof of Theorem 1.31. Assume that G∧ is characterizable. Since G∧ is
a Schwartz group [ACDT, Corollary 5.6], by Proposition 1.30, G∧ is locally
compact. So G∧ and G∧∧ are reflexive. As was shown before the section
“The proofs” in [G2], G is also reflexive. So G = G∧∧ is locally compact.

Conversely, if G is locally compact, then the locally compact group G∧

is characterizable by [G3, Theorem 2.7].

Proof of Proposition 1.32. For every Xn there is a countably infinite
Abelian group Gn and a TB -sequence un in Gn such that (Gn, τun)∧∼=Xn

(see [G3]). Set G =
⊕

n∈ω Gn and S = {jn(un)}n∈ω. Then the proposition
follows from Proposition 5.5.
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Proof of Proposition 1.33. By [G3, Proposition 2.9], there is a TB -
sequence u in Z2 such that (Z2, τu)∧ ∼= R. Since

⊕
n∈ω Z2 ∼= ZN

0 , the as-
sertion follows from Proposition 5.5.

7. Open questions. We start with a question which is related to The-
orem 3.10:

Problem 7.1. Let X be a compact Abelian group and H be a g-closed
non-dense subgroup of X. Is there S ∈ T S(X̂) such that i∧S((X̂, τS)∧) = H?

As already noted, if G is a separable metrizable Abelian group, then
the dual group G∧ is sequential by [CMT, Theorem 1.7]. Hence G∧ is an
s-group. The following questions are open:

Problem 7.2. Let an Abelian topological group G have one of the prop-
erties: non-separable metrizable, Fréchet–Urysohn, sequential or an s-group.
When is G∧ an s-group?

Problem 7.3. Let an Abelian topological group G be such that G and
G∧ have one of the properties: metrizable, Fréchet–Urysohn, sequential or
an s-group. What more can we say about G and G∧?

For example, if G is metrizable and G∧ is Fréchet–Urysohn, then G∧ is
a locally compact metrizable group by [CMT, Theorem 2.2].

Let G be an Abelian group and S ∈ T BS(G). Theorem 1.20 gives a
complete description of the topology τbS on G. On the other hand, we do
not know any description of the topology on the dual group.

Problem 7.4. Describe the topology of (G, τbS)∧.

By Corollary 3.5, (G, τbS)∧ = (G, τS)∧ algebraically. It is natural to ask:

Problem 7.5. When are the groups (G, τbS)∧ and (G, τS)∧ topologically
isomorphic? In particular, when (G, τu)∧ ∼= (G, τbu)∧?

Let G be a countably infinite Abelian group and S ∈ T BS(G). By Corol-
lary 3.8, if (G, τbS)∧ is countable, then (G, τbS) is not reflexive.

Problem 7.6. Is there an S ∈ T BS(G) for a countable Abelian group G
of infinite exponent such that (G, τbS) is reflexive? Does there exist a TB-
sequence u in G such that (G, τbu) is reflexive?

Note that the positive answer to this question will give the positive
answer to the following general problem posed to the author by Professor
M. G. Tkachenko at the 2009 conference in Eilat:

Problem 7.7 ([BT, Problem 5.3]). Is there a reflexive precompact group
topology on a countable Abelian group of infinite exponent (for example,
on Z)?

In the next remark we comment on Problems 7.6 and 7.7.
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Remark 7.8. (i) Let G be a countable Abelian group of finite expo-
nent. Then a reflexive group topology on G must be discrete [AG]. Thus,
in Problems 7.6 and 7.7 the assumption that G has infinite exponent is
essential.

(ii) If there exists a reflexive precompact group topology τ on a countable
Abelian group G of infinite exponent, then (G, τ) contains a non-trivial con-
vergent sequence. (Indeed, otherwise, (G, τ), being countable, does not con-
tain infinite compact subsets. Hence (G, τ)∧ is precompact with countable
dual group. So (G, τ)∧ is metrizable and precompact. Thus (G, τ)∧∧ = (G, τ)
is discrete by [Auß, Cha]. But since G has infinite exponent, it is countably
infinite. Hence the precompact group topology τ cannot be discrete. This
contradiction shows that (G, τ) contains a non-trivial convergent sequence.)
Therefore the case of a single TB -sequence in Problem 7.6 is of independent
interest.

(iii) If there exists a TB -sequence u in a countable Abelian group G

of infinite exponent such that (G, τbu) is reflexive, then ̂(G, τbu) = su(G∧d )
has size continuum. (It is well-known that a Polish space is either countable
or has size continuum. Now the assertion follows from Proposition 1.3 and
Corollary 3.8.)

By Proposition 4.2(a), for every MAP Abelian s-group (G, τ) the group
(G, τ+) is a bs-group. If, in addition, (G, τ) is locally compact non-compact,
then (G, τ+) is not an s-group by Theorem 1.24.

Problem 7.9. Characterize those MAP Abelian s-groups (G, τ) for
which (G, τ+) is an s-group as well.

Taking into account Theorems 1.25 and 1.27, one can ask:

Problem 7.10. Which MAP Abelian groups are g-closed in their Bohr
compactification?

Taking into consideration Theorem 1.28, one can ask whether the con-
verse is true:

Problem 7.11. Let a Polish group H and its compact subgroup K be
such that H/K embeds into TH0 . When is H characterizable? Is there a closed
subgroup of TH0 that is not characterizable?

It would be of interest to know an answer to the following question:

Problem 7.12.Which infinite-dimensional Banach spaces embed into TH0?
In particular, does c0 or `p, p ≥ 1, embed into TH0 ?

Under the assumption that one of the spaces in Problem 7.12 does not
embed into TH0 , by Corollary 1.29, we find that this space is not characteri-
zable and hence the answer to Problem 2.10 of [G3] is negative.

Since TH0 ∼= c0/ZN
0 (see [G1]), the next problem is:
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Problem 7.13. Describe all closed subgroups of TH0 and c0.

It is of interest to study hereditary properties of bs-groups.

Problem 7.14. Let (G, τ) be a bs-group. Which subgroups of (G, τ) are
bs-group as well?
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