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Abstract. Let Y be a closed 2-dimensional disk or a 2-sphere. We consider a simple,
d-sheeted branched covering π : X → Y . We fix a base point A0 in Y (A0 ∈ ∂Y if Y
is a disk). We consider the homeomorphisms h of Y which fix ∂Y pointwise and lift to
homeomorphisms φ of X—the automorphisms of π. We prove that if Y is a sphere then
every such φ is isotopic by a fiber-preserving isotopy to an automorphism which fixes the
fiber π−1(A0) pointwise. If Y is a disk, we describe explicitly a small set of automorphisms
of π which induce all allowable permutations of π−1(A0). This complements our result in
Fund. Math. 217 (2012), no. 2, where we found a set of generators for the group of isotopy
classes of automorphisms of π which fix the fiber π−1(A0) pointwise.

1. Introduction. Let π : X → D be a simple, connected, d-sheeted
branched covering of a closed 2-dimensional disk D. Simple means that over
each point ofD there are either d simple points ofX or d−2 simple points and
one “double” point, a branch point. The image A = π(B) of a branch point B
is called a branch value. Isotopy classes of homeomorphisms of D, which are
fixed on the boundary of D and permute the branch values, form the braid
group Bn, where n is the number of the branch values. Some of these homeo-
morphisms lift to homeomorphisms ofX, which we call the automorphisms of
the covering. We fix a base point A0 on the boundary ∂D. An automorphism
φ of the covering is standard if it leaves the fiber π−1(A0) = {B1, . . . , Bd}
pointwise fixed. In [WW2] we have described a set of generators for the
group L(π) of classes of homeomorphisms of D which lift to standard auto-
morphisms of X.

The non-standard automorphisms permute the points B1, . . . , Bd. There
are some obvious topological restrictions on such permutations. The map π
restricted to a boundary component of X defines a covering of ∂D of some
degree. We call it the degree of the component of ∂X. The automorphism φ
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must take each boundary component of X to a boundary component of the
same degree. It must also preserve the orientation of the boundary compo-
nent. Thus φ takes all points of π−1(A0) belonging to one boundary compo-
nent to points of π−1(A0) belonging to the other boundary component and
must preserve the cyclic order of the points along the component. It is an
easy consequence of known results (Proposition 1 and Remark 2) that every
permutation which satisfies the above restrictions can be realized by an auto-
morphism of the covering (Proposition 9). On the other hand a construction
of a suitable homeomorphism depends on a long inductive procedure and
a homeomorphism obtained in this way is very hard to understand and to
use. In Proposition 13 we describe explicitly a set of automorphisms which
induce a generating set of all possible permutations.

We also consider simple coverings of degree d of a 2-dimensional sphere.
We may choose a base pointA0 on the sphere, not a branch value. Every hom-
eomorphism of the sphere is isotopic relative to the branch values to a hom-
eomorphism which fixes A0. Let B1, . . . , Bd be the points in the fiber over A0.
Some homeomorphisms of the sphere lift to automorphisms of the covering.
The lifting may permute the points B1, . . . , Bd. We prove in Theorem 14 that
every automorphism of a simple connected covering of the sphere is isotopic
by a fiber-preserving isotopy to an automorphism which fixes the fiber over
A0 pointwise. Let D be the closure of the complement of a small disk which
contains A0 in its boundary. We may restrict the covering of the sphere to a
covering π of D. It follows that any set of generators for L(π) extended by
the identity to all of S2 indeed generates the group of all isotopy classes of
liftable homeomorphisms of the sphere.

Branched coverings of a disk and their equivalence classes were studied
by Hurwitz in [H] and by Berstein and Edmonds in [BE]. Equivalence classes
of branched coverings of surfaces of any genus were studied by Gabai and
Kazez in [GK]. Lifting of homeomorphisms was considered in [BW] for 3-
sheeted coverings and in [CW] for d-sheeted coverings of a disk by a disk.
More recently Mulazzani and Piergallini considered d-sheeted coverings in
[MP] and proved that L(π) is always generated by powers of half-twists.
Apostolakis considered 4-sheeted coverings in [A] and found generators for a
certain quotient of the group L(π). In [WW1] a small finite set of generators
of L(π) was found for every simple 4-sheeted covering of a disk and in [WW2]
for simple coverings of any degree.

2. Preliminaries and notation. In this section π : X → D is a fixed,
connected, simple d-sheeted branched covering of a disk with n branch values
A1, . . . , An. We choose a base point A0 on the boundary of D. Let B1, . . . , Bd
be the points of X in π−1(A0). Let σ be a closed loop in D which starts at
A0 and misses the branch values. When we lift σ to X from any point Bi, we
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end up at some point Bj . This defines a permutation µ(σ) in the symmetric
group Σd, which depends only on the homotopy class of σ in the complement
of the branch values. We thus get the monodromy homomorphism µ from
the fundamental group of D−{A1, . . . , An} based at A0 to the group Σd. We
compose loops from left to right, and similarly for permutations, but homeo-
morphisms are composed from right to left. The monodromy of the boundary
∂D of D, oriented clockwise, is called the total monodromy of the covering π.
We say that coverings π1 : X1 → D1 and π2 : X2 → D2 are equivalent if there
exist orientation preserving homeomorphisms h : D1 → D2 and φ : X1 → X2

such that hp1 = p2φ.
The following was proven in [BE] and again in [MP]:

Proposition 1. Connected simple coverings π1 and π2 are equivalent if
and only if they have the same degree d (number of sheets), the same number
n of branch points and the total monodromy of π1 is conjugate to the total
monodromy of π2 in the symmetric group Σd.

Remark 2. Consider Proposition 1. A permutation σ which conjugates
the total monodromy of π2 to the total monodromy of π1 plays an important
role in the construction of an equivalence. Let σ be such a permutation, let
{B1, . . . , Bd} be the fiber over the base point A0 of π1 and let {C1, . . . , Cd}
be the fiber over the base point A′0 of π2. Then there exists a homeomorphism
h : D1 → D2 which takes A0 to A′0 and there exists a lifting of h which takes
Bi to Cσ(i).

Definition 3. A curve in D is a simple path which begins at A0 and
ends at some branch value and does not meet other branch values. Curves
are defined up to isotopy relative to the branch values and A0. We say that
two curves are disjoint if they meet only at A0.

By the monodromy µ(α) of a curve α we mean the monodromy of a closed
path α̂ which goes along α to a point very near to its end point, a branch
value Ai, then goes clockwise around Ai along a small circle and then comes
back along α. There is one non-trivial component of π−1(α) which connects
some pair of points (Bi, Bj) and then µ(α) is the transposition (i, j) in Σd.

Definition 4. Following [MP] we say that curves γ1, . . . , γk form a sys-
tem of curves if γi ∩ γj = {A0} for any i 6= j and the curves meet at A0 in
this clockwise order. If γ1, . . . , γk form a system of curves then the sequence
of transpositions (µ(α1), . . . , µ(αk)) is called the monodromy sequence of
the system. A maximal system of curves, consisting of n curves, is called a
(geometric) basis.

Definition 5. An arc in D is a simple path which connects two branch
values and is disjoint from the other branch values and from the bound-
ary of D. Arcs are defined up to isotopy relative to the branch values. A
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closed regular neighborhood of an arc x can be identified with the closed
unit disk U in the complex plane C with the arc x corresponding to the
subarc y = [−1/2, 1/2] of the real axis. A half-twist around x is the isotopy
class of a homeomorphism of D obtained by extending with the identity the
following homeomorphism T of U . The homeomorphism T rotates the disk
{z : |z| ≤ 1/2} counterclockwise around 0 by 180 degrees and the rotation is
damped out to the identity at the boundary of U . We denote the half-twist
around x again by the letter x.

Definition 6. A sequence of arcs consists of arcs x1, . . . , xk−1 such that
xi meets xi+1 at one of its end points and there are no other intersections
between xi and xj for 1 ≤ i < j ≤ k − 1. We associate a sequence of arcs
x1, . . . , xk−1 with any system of curves α1, . . . , αk. The arc xi connects the
end point of αi to the end point of αi+1 and is homotopic, relative to the
branch values, to the path α−1i αi+1.

2.1. Hurwitz action and Hurwitz moves. We consider n-tuples
(τ1, . . . , τn) of transpositions belonging to Σd. The Hurwitz action of the
braid group Bn on such n-tuples is defined as follows:

σi(τ1, . . . , τn) = (τ1, . . . , τi−1, τi+1, τi+1τiτi+1, τi+2, . . . , τn),

where σi is the standard generator of the braid group Bn. This action is also
called jumping with the transposition τi to the right, over the transposition τi+1.
Two n-tuples are Hurwitz equivalent if they belong to the same orbit of the
Hurwitz action. We say that an n-tuple (τ1, . . . , τn) is connected if the trans-
positions τi generate the whole group Σd. This happens if the graph whose
vertices are the numbers 1, . . . , d and edges are the transpositions τi is con-
nected. The Hurwitz action takes a connected n-tuple to a connected n-tuple.

Hurwitz moves act on bases. If γ1, . . . , γn is a basis and if x1, . . . , xn−1
is the sequence of arcs associated to the basis then the Hurwitz move σi
takes the basis to its image under the action of the half-twist xi. We have
xi(γi) = γi+1, xi(γi+1) = γ′i+1 and the other curves of the basis are fixed (see
Figure 1). This move is also called jumping with γi to the right over γi+1.

r. . . r r rr r. . . r r . . .. . .
� �Ai−1 Ai+2Ai Ai+1 Ai−1 Ai+2

γi−1 γi γi+1 γi+2 γi−1 γ′i γ′i+1 γi+2

Fig. 1. Hurwitz move. Jump with γi to the right over γi+1.

After the jump the curve γi+1 appears at position i and the new curve γ′i+1

appears at position i+1. The inverse of this move, the image of the half-twist
x−1i , is called jumping with γi+1 to the left over γi.
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The monodromy of the new curve γ′i+1 is equal to µ(γi+1)µ(γi)µ(γi+1),
therefore the Hurwitz move σi on the basis induces the Hurwitz action σi
on the monodromy sequence of the basis. The covering π is connected if and
only if the monodromy sequence of the basis is connected.

If an n-tuple t = (τ1, . . . , τn) coincides with the monodromy sequence of
a basis then the product τ1 . . . τn is equal to the total monodromy of the
covering. Therefore for any k-tuple t = (τ1, . . . , τk) we shall call the product
τ1 . . . τk the total monodromy of t. The total monodromy of a k-tuple is
preserved by the Hurwitz action.

Lemma 7. All connected sequences of transpositions with the given length
and the given product are Hurwitz equivalent.

This is Lemma 1.2 in [MP] used in the proof of Proposition 1 above.

3. Automorphisms of a covering of a disk. We consider a simple
connected branched covering π : X → D of a closed disk D. The covering
has degree d and has n branch values A1, . . . , An. We choose the base point
A0 on the boundary of D. We consider the isotopy classes, relative to the
boundary ∂D and the branch values Ai, of the homeomorphisms of D which
fix ∂D pointwise and permute the branch values. We say that h lifts if there
is a homeomorphism φ of X such that πφ = hπ. Let F0 = {B1, . . . , Bd} be
the fiber of π over A0. If h lifts to φ then φ induces a permutation σ of F0,
φ(Bi) = Bσ(i).

Lemma 8. If d > 2 then a homeomorphism h of D has at most one
lifting. In particular there are no deck transformations, the identity lifts only
to the identity.

Proof. If φ1 and φ2 are liftings of h then φ−12 φ1 is a lifting of the identity.
If we restrict the covering to the complement of the branch values we get
an unbranched covering. If the deck transformation φ−12 φ1 is non-trivial it
cannot fix any point. In particular it induces a non-trivial permutation σ of
F0. As X is connected there is a curve α such that µ(α) does not commute
with σ, for otherwise σ belongs to the center of the group Σd, which is trivial.
If µ(α) = (i, j) then the set {σ(i), σ(j)} is different from {i, j}. But the non-
trivial component of π−1(α) connects the particular pair of points {Bi, Bj},
which must be left invariant by φ−12 φ1, and is taken to {Bσ(i), Bσ(j)}. This
is impossible.

Proposition 9. Let σ be a permutation in Σd. There exists a liftable
homeomorphism of D which induces the permutation σ of the fiber F0 if and
only if σ commutes with the total monodromy τ of the covering π. A homeo-
morphism h is liftable and induces σ if and only if µ(h(α)) = σ−1µ(α)σ for
every curve α in D.
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Proof. Suppose σ commutes with τ . Consider two copies of the cover-
ing π. Since σ−1τσ = τ , by Remark 2 there is a homeomorphism h of
D which is pointwise fixed on ∂D, takes branch values to branch values
and lifts to a homeomorphism φ of X satisfying φ(Bi) = Bσ(i). Conversely
if h lifts to φ and φ(Bi) = Bσ(i) and if α is a curve with µ(α) = (i, j)

then µ(h(α)) = (σ(i), σ(j)) = σ−1µ(α)σ. Therefore the same is true for
every loop α. In particular also for ∂D, which is invariant under h. Since
µ(∂D) = τ , the permutation σ commutes with τ . Finally suppose that h is a
homeomorphism of D and there exists σ such that µ(h(α)) = σ−1µ(α)σ for
every curve α. Then µ(h(α)) = σ−1µ(α)σ for every loop α. In particular σ
commutes with τ . We now recall the standard construction of the lifting φ,
which is very easy in this case. We let φ(B1) = Bσ(1). For any x ∈ X we
connect B1 to x by a path γ̄. We project γ̄ to D to the curve γ = π(γ̄)
and then we lift h(γ) to a path in X from the point Bσ(1). We let φ(x) be
the end point of this lifting. Then φ is well defined and a bijection because
µ(h(α)) = σ−1µ(α)σ for every loop α. It is also a local homeomorphism.

We want to construct explicitly homeomorphisms which induce all pos-
sible permutations commuting with τ . In order to do this we choose a special
basis and construct the homeomorphisms with respect to this basis.

Standard setup. A permutation τ has a certain number of disjoint
cycles of various lengths. We order them by increasing length: all cycles of
length 1 come first, if there are any, then come the cycles of length 2 and
so on. The centralizer of τ is generated by cycles of τ and by permutations
(a1, b1)(a2, b2) . . . (ak, bk) where (a1, . . . , ak) and (b1, . . . , bk) are cycles of τ .

We now construct a special basis. For a cycle (a1, . . . , ak) we choose
a sequence of transpositions (ak, ak−1), (ak−1, ak−2), . . . , (a2, a1). If k = 1
there are no transpositions. If (b1, . . . , bs) is the next cycle of τ we insert
two connecting transpositions (a1, bs) between the sequence of the first and
the second cycle. Finally we add the last transposition an even number of
times at the end of the sequence in order to complete the sequence to n
transpositions. This sequence of transpositions is connected and has total
monodromy τ . By Lemma 7 any basis in D is Hurwitz equivalent to a ba-
sis with the above monodromy sequence. We fix a basis with the above
monodromy sequence and call it α1, . . . , αn. We denote by x1, . . . , xn−1 the
sequence of arcs associated with the basis α1, . . . , αn.

In order to find a homeomorphism which induces a permutation σ we
construct a basis γ1, . . . , γn such that µ(γi) = σ−1µ(αi)σ and we construct a
homeomorphism which takes the standard basis αi onto the new basis. The
basis γi is constructed by Hurwitz moves. We recall the relation between
Hurwitz moves and homeomorphisms.
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Lemma 10. Let h be a homeomorphism of D and let σi be a Hurwitz
move applied to the basis h(α1), . . . , h(αn). Let γ1, . . . , γn be the new basis,
after the Hurwitz move. Then γj = hxi(αj).

Proof. The arc yi=h(xi) is associated to the pair of curves h(αi), h(αi+1).
The Hurwitz move σi is the result of the application of the half-twist yi to
the basis h(α1), . . . , h(αn). The half-twist yi is equal to hxih−1. Indeed h−1
takes a neighborhood of yi to a neighborhood of xi, then the half-twist xi
twists the neighborhood of xi and then h transports the twisted neighbor-
hood of xi back to the neighborhood of yi. Therefore σi takes the curve h(αj)
to yi(h(αj)) = hxi(αj).

We recall the notion of the Dehn twist.

Definition 11. Let D1 be a subdisk of D. Consider a collar neighbor-
hood of the boundary ∂D1 of D1 which does not contain branch values. Let
∂1 be its inner boundary. The Dehn twist T with respect to ∂D1 is the isotopy
class of a homeomorphism of D1 which rotates the boundary ∂D1 clockwise
by 360 degrees and is damped to the identity at the inner boundary ∂1 and
is extended by the identity to all of D. If y1, . . . , yk is a sequence of arcs and
if D1 is a regular neighborhood of y1 ∪ · · · ∪ yk (a disk neighborhood of the
union y1 ∪ · · · ∪ yk which does not contain branch values different from the
end points of the arcs yi), then T (y1, . . . , yk) denotes the Dehn twist with
respect to ∂D1.

Recall that if α is a curve then α̂ denotes a closed path which goes along α
to a point very near to its end point, a branch value Ai, then goes clockwise
around Ai along a small circle and then comes back along α.

Lemma 12. Let γ1, . . . , γk be a system of curves in D and let y1, . . . , yk−1
be the sequence of arcs associated to γ1, . . . , γk. Let D1 be a regular neigh-
borhood of y1 ∪ · · · ∪ yk−1 and let δ1 be equal to the product γ̂1 . . . γ̂k. Let
t = T (y1, . . . , yk−1). Then µ(δ1) = µ(γ1) . . . µ(γk), t(γ̂i) is isotopic to δ−11 γ̂iδ1
and µ(t(γi)) = µ(δ1)

−1µ(γi)µ(δ1) for i = 1, . . . , k. Also t = (y1 . . . yk−1)
k.

Proof. The path δ1 is isotopic to a simple loop which surrounds the loops
γ̂1, . . . , γ̂k and is isotopic to the boundary of D1 oriented clockwise, therefore
t is isotopic to the Dehn twist with respect to δ1. By the definition of Dehn
twist t(γ̂i) is isotopic to δ−11 γ̂iδ1. The remaining two statements follow from
the fact that µ is a homomorphism and the last statement is a standard
formula in the braid group.

Proposition 13. Consider the basis αi of the standard setup.

(1) Let ν = (a1, . . . , ak), k > 1, be a cycle of τ . Let µ(αm+1) = (ak, ak−1).
If ν is the first cycle of τ then m = 0. If ν is not the last cycle of τ , we let
t = T (xm−1, xm, . . . , xm+k) if m 6= 0 and t = T (x1, . . . , xk) if m = 0. If
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ν is the last cycle of τ , we let t = T (xm−1, xm, . . . , xn−1) if m 6= 0 and
t = T (x1, . . . , xn−1) if m = 0. Then t induces the cycle ν on the fiber F0.

(2) Let ν1 = (a1, . . . , ak) and ν2 = (b1, . . . , bk) be consecutive cycles
of τ of equal length. Let µ(αm+1) = (ak, ak−1) if k > 1 and µ(αm+1) =
µ(αm+2) = (a1, b1) if k = 1. If m 6= 0, we let t1 = T (xm−1, . . . , xm+k−1),
and if m = 0, we let t1 = T (xm+1, . . . , xm+k−1). We further let

h1 = xm+kxm+k+1 . . . xm+2k−2xm+k−1 . . . xm+2k−3 . . . xm+1 . . . xm+k−1.

(The homeomorphism h1 is the product of (k − 1)k half-twists.)
If ν2 is not the last cycle of τ , we let t2 = T (xm+k+1, . . . , xm+2k+1). Then

h = t1t
−1
2 h1x

−1
m+2k−1 . . . x

−1
m+k+1 induces the permutation

ν = (a1, b1)(a2, b2) . . . (ak, bk) on F0.

If ν2 is the last cycle of τ , we let t2 = T (xm+k+1, . . . , xn−1). Suppose
that there are l + 1 curves in the basis αi with monodromy (b1, b2). Then
n = m+ 2k + l. Let t3 = T (xn− l−1, xn− l, . . . , xn−2). We let

h = t1t
−1
2 h1x

−1
n− l−1xn− lxn− l+1 . . . xn−1t3x

−1
m+2k−2x

−1
m+2k−3 . . . x

−1
m+k.

Then h induces the permutation ν = (a1, b1)(a2, b2) . . . (ak, bk) on F0.

Proof. Consider (1). The Dehn twist t corresponds to a sequence of arcs
as in Lemma 12. The corresponding system of curves has monodromy se-
quence (c1, ak), (c1, ak), (ak, ak−1), (ak−1, ak−2), . . . , (a2, a1), (a1, es), (a1, es)
(without the first two transpositions if m = 0 and with the last two trans-
positions replaced by an even number l of transpositions (a2, a1) if ν is the
last cycle of τ). The total monodromy of this sequence is µ(δ1) = ν. Then,
by Lemma 12, µ(t(αi)) = ν−1µ(αi)ν as required. The remaining curves of
the basis αi are not changed by h and their monodromies commute with ν.

Consider (2). The twists t1, t2 correspond to disjoint disks and to two
consecutive systems of consecutive curves of the basis αi (see Lemma 12).
The systems of curves have monodromy sequences

(c1, ak), (c1, ak), (ak, ak−1), . . . , (a2, a1), (a1, bk)

(possibly without the first two transpositions) and

(a1, bk), (bk, bk−1), . . . , (b2, b1), (b1, es), (b1, es)

(possibly with the last two transpositions replaced by an even number l of
transpositions (b2, b1)). The other curves of the basis have monodromy which
commutes with ν and the curves are not changed by h. As in Lemma 12 let δ1
be the loop surrounding the curves corresponding to t1 and let δ2 be the loop
surrounding the curves corresponding to t2. Then µ(δ1) = (a1, . . . , ak, bk)
and µ(δ2) = (a1, b1, . . . , bk). After application of t1t−12 the first part of the
monodromy sequence gets conjugated by µ(δ1) and the second part gets
conjugated by µ(δ2)

−1 and we get a system of curves with the monodromy
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sequence

(c1, bk), (c1, bk), (bk, ak), (ak, ak−1), . . . , (a2, a1),

(bk, bk−1), . . . , (b2, b1), (b1, a1), (a1, es), (a1, es).

We now perform Hurwitz moves on curves (and Hurwitz action on sequences).
The transposition (a2, a1) has number m+ k. We jump with it to the right
over the next k − 1 transpositions performing σm+k, σm+k+1, . . . , σm+2k−2.
We next jump with (a3, a2) to the right over the same transpositions and so
on, ending with the transposition (bk, ak) which also jumps to the right. We
get the sequence

(c1, bk), (c1, bk), (bk, bk−1), . . . , (b2, b1), (b1, ak),

(ak, ak−1), . . . , (a2, a1), (b1, a1), (a1, es), (a1, es)

(with the suitable changes if ν1 is the first cycle or ν2 is the last cycle of τ).
If ν2 is not the last cycle of τ then we next jump with (b1, a1) to the left.

The transposition (b1, a1) has number m+2k and we jump k−1 times to the
left. The transposition becomes (b1, ak) and we get the required sequence

(c1, bk), (c1, bk), (bk, bk−1), . . . , (b2, b1), (b1, ak), (b1, ak),

(ak, ak−1), . . . , (a2, a1), (a1, es), (a1, es).

By Lemma 10 the jumps correspond to the product of half-twists

xm+kxm+k+1 . . . xm+2k−2xm+k−1 . . . xm+2k−3

. . . xm+1 . . . xm+k−1x
−1
m+2k−1 . . . x

−1
m+k+1.

Together with the initial twists t1t−12 we get the homeomorphism h. There-
fore h induces the permutation ν = (a1, b1)(a2, b2) . . . (ak, bk).

If ν2 is the last cycle of τ then after the initial Dehn twists and jumps
we obtain the sequence of transpositions

(c1, bk), (c1, bk), (bk, bk−1), . . . , (b2, b1), (b1, ak), (ak, ak−1),

. . . , (a2, a1), (b1, a1), . . . , (b1, a1).

We jump with the first transposition (b1, a1) (it has number n− l = m+ 2k)
to the left over (a2, a1) and it becomes (a2, b1). This corresponds to the
move σ−1n− l−1. Next we jump with (a2, a1) to the right to the end over an
even number of equal transpositions. The transposition is still (a2, a1). The
jumps correspond to the sequence σn− l, σn− l+1, . . . , σn−1. Next we perform
the Dehn twist T (yn− l−1, . . . , yn−2) where yi are associated to curves number
n−l−1, n−l, . . . , n−1 in the last basis. The curves have monodromy sequence
(a2, b1), (b1, a1), . . . , (b1, a1) and total monodromy (a2, b1). The monodromy
of each of these curves gets conjugated by (a2, b1) and we obtain the sequence
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of transpositions

(c1, bk), (c1, bk), (bk, bk−1), . . . , (b2, b1), (b1, ak),

(ak, ak−1), . . . , (a3, a2), (a2, b1), (a2, a1), . . . , (a2, a1).

By Lemma 10 the last action corresponds to multiplication by t3 on the
right.

In the final step, we jump with the transposition (a2, b1), which has
number n− l− 1 = m+ 2k− 1, to the left k− 1 times. We get the required
monodromy sequence

(c1, bk), (c1, bk), (bk, bk−1), . . . , (b2, b1), (b1, ak), (b1, ak),

(ak, ak−1), . . . , (a2, a1), . . . , (a2, a1).

and the action corresponds to h from the Proposition.

4. Automorphisms of a covering of a sphere. We now consider a
d-sheeted, connected, simple branched covering of a sphere π : X → S2

with n branch values A1, . . . , An. We consider the isotopy classes of hom-
eomorphisms of S2 which permute the branch values. We are interested in
the subgroup of those classes of homeomorphisms of S2 which lift to hom-
eomorphisms of X. We may choose a base point A0. Every homeomorphism
is isotopic to a homeomorphism h which fixes A0 so we may consider hom-
eomorphisms fixing A0, but we shall not require the isotopies to fix A0. If a
homeomorpism h is liftable then it induces (its lifting induces) a permutation
of the fiber F0 = π−1(A0). It follows from Proposition 9 that every permu-
tation of the fiber F0 is induced by some liftable homeomorphism of S2.

Theorem 14. Every liftable homeomorphism of S2 is isotopic, relative
to the branch values, to a homeomorphism which fixes the base point A0 and
induces the trivial permutation of the fiber F0.

Proof. The easy proof is based on the notion of a spin-map introduced
in [B]. Let α be a simple closed path in S2 issuing from A0. We consider a
regular neighborhood N of α, an annulus. We think of α as the circular core
of the round annulus. We rotate α by 360 degrees and damp the rotation
down to the identity at the boundary of the annulus. We extend the map
by the identity to all of S2. We get the spin-map s(α). It is equivalent to a
product of a Dehn twist on one side of α and the inverse of the Dehn twist
on the other side of α. This map is isotopic to the identity on S2 and even
within the annulus, therefore it is liftable. If α has a non-trivial monodromy
then s(α) induces a non-trivial permutation of the fiber—the monodromy
of α. Indeed if the lifting of α from a point Bi ends at Bj then the lifting
of s(α) takes Bi to Bj . It suffices to consider the loops γ̂i for any basis γi
in D. The corresponding transpositions µ(γi) generate the whole group Σd.
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Multiplying a liftable homeomorphism h by a suitable product of spin-maps,
which are isotopic to the identity, we get a homeomorphism which induces
the trivial permutation of F0.

Corollary 15. Let π : X → S2 be a simple, connected branched cov-
ering of a sphere. Let D be a disk in S2 which contains all branch values
of π inside and let A0 be a base point on the boundary of D. Let h1, . . . , hk
generate the group L(D) of all classes of homeomorphisms of D, pointwise
fixed on ∂D, which lift to π−1(D) and induce the trivial permutation of the
fiber F0. Then h1, . . . , hk, extended to S2 by the identity, generate all classes
of liftable homeomorphisms of S2.
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