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Quasi-homomorphisms
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Abstract. We study the stability of homomorphisms between topological (abelian)
groups. Inspired by the “singular” case in the stability of Cauchy’s equation and the
technique of quasi-linear maps we introduce quasi-homomorphisms between topological
groups, that is, maps ω : G → H such that ω(0) = 0 and

ω(x+ y)− ω(x)− ω(y)→ 0

(in H) as x, y → 0 in G. The basic question here is whether ω is approximable by a true
homomorphism a in the sense that ω(x)− a(x)→ 0 in H as x→ 0 in G. Our main result
is that quasi-homomorphisms ω : G → H are approximable in the following two cases:

• G is a product of locally compact abelian groups and H is either R or the circle
group T.

• G is either R or T and H is a Banach space.

This is proved by adapting a classical procedure in the theory of twisted sums of Banach
spaces. As an application, we show that every abelian extension of a quasi-Banach space by
a Banach space is a topological vector space. This implies that most classical quasi-Banach
spaces have only approximable (real-valued) quasi-additive functions.

Introduction and statement of the main result. This paper deals
with the stability of homomorphisms on topological abelian groups. Our
methods (and results) lie on the frontiers of stability theory, extension of
topological groups, and homology of topological linear spaces.

As a motivation, consider an additive function on the line, that is, a map
a : R→ R satisfying

(1) a(s+ t) = a(s) + a(t) (s, t ∈ R).

Suppose ω is a small perturbation of a, say ω = a + ε, where ε is a small
function, in some sense to be made precise. Then ω will satisfy (1) approx-
imately, in the sense that the Cauchy difference

∆(ω)(s, t) = ω(s+ t)− ω(s)− ω(t) (s, t ∈ R)
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will be small. This is the obvious way of constructing a nearly additive map.
A very natural question is whether that is the only way. Needless to say,
there are several possibilities of understanding a small perturbation or a
nearly additive map. For instance, answering a question of Ulam [25], Hyers
proved in [11] that if |∆(ω)(s, t)| ≤ ε for some fixed ε and all s, t ∈ R,
then there is an additive map a : R → R such that |ω(s) − a(s)| ≤ ε
for all s ∈ R. This result is commonly considered as the origin of sta-
bility theory, although Pólya and Szegő [18] proved a similar result for
real sequences already in 1925. The book [12] reflects the current state of
that theory. The present paper is, however, closest in spirit to the disserta-
tion [4].

There is another source that influenced our work: the theory of twisted
sums and the so-called quasi-linear techniques introduced by Kalton [13].
Here, we adopt the approach of Domański as presented in [8]. There, a map
ω : Z → Y acting between topological vector spaces is calledquasi-linear if
ω(0) = 0 and

• it is quasi-additive: ∆(ω)(x, y)→ 0 in Y as (x, y)→ (0, 0) in Z× Z;
• it is quasi-homogeneous: ω(λx)−λω(x)→ 0 in Y as (λ, x)→ (0, 0) in
K× Z.

Each quasi-linear map ω : Z→ Y gives rise to an extension of Z by Y, that is,
another topological vector space X (usually denoted by Y⊕ω Z) containing
Y as a subspace and such that X/Y is (isomorphic to) Z. Moreover, this
extension is trivial (that is, Y is complemented in X, and therefore X =
Y⊕ Z) if and only if the associated map ω is approximable by a true linear
map L : Z→ Y in the sense that ω(x)−L(x)→ 0 as x→ 0 in Z. Moreover,
if Z and Y are F -spaces, then every extension comes from some quasi-
linear ω : Z → Y. If in addition Z and Y are locally bounded (that is,
quasi-Banach spaces) then ω can be chosen to be homogeneous. In this case
quasi-additivity becomes

(2) ‖∆(ω)(x, y)‖Y ≤ K(‖x‖Z + ‖y‖Z)

for some constant independent of x ∈ Z, and the linear map L approximates
ω if and only if one has an estimate of the form ‖ω(x) − L(x)‖Y ≤ C‖x‖Z
for some C and all x ∈ Z. All this can be found in [8, 13, 14, 15, 5, 7].

Returning to nearly additive functions, it is quite natural to consider
(nonhomogeneous) mappings ω : R→ R satisfying

(3) |∆(ω)(s, t)| ≤ ε(|s|+ |t|) (s, t ∈ R)

for some ε ≥ 0. One may ask if such a function can be approximated by
some additive function a in the sense that

(4) |ω(s)− a(s)| ≤ K|s| (s ∈ R).
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Simple examples show that this is not the case. Actually, if θ : R → R is a
Lipschitz function vanishing at zero, the Kalton–Peck map

ωθ(t) = tθ(log2 |t|) (ωθ(0) = 0)

satisfies (3) with ε being the Lipschitz constant of θ. However, ωθ is close to
an additive map in the sense of (4) if and only if θ is bounded. Moreover,
Kalton and Peck proved in [14] that if ω is continuous at zero and satisfies
(3) then there is a Lipschitz function θ (with Lipschitz constant at most ε)
such that

|ω(t)− ωθ(t)| ≤ Kε|t| (t ∈ R),

where K is an absolute constant. So, the relevant question becomes whether
an arbitrary map satisfying (3) can be approximated by an additive one in
the sense that ω − a is continuous at zero. This was our starting point, in
spite of the abstract approach of the paper.

As often happens in mathematics, some abstraction leads to a better un-
derstanding of the problems. By mimicking quasi-additivity, we will consider
mappings which approximately behave as homomorphisms in the following
sense.

Definition 1. A mapping ω : G → H acting between topological
abelian groups is a quasi-homomorphism if ω(0) = 0 and the map ∆(ω) :
G × G → H given by ∆(ω)(x, y) = ω(x+ y)− ω(x)− ω(y) is continuous at
the origin of G × G.

In this setting, the basic question is whether ω is approximable by a
(generally discontinuous) homomorphism a : G → H in the sense that the
difference ω−a is continuous at the origin of G. Of course, every perturbation
of a homomorphism by a mapping (vanishing and) continuous at the origin
of G is a quasi-homomorphism.

Our main result in this line is the following.

Theorem 1. Every quasi-homomorphism ω : G → H is approximable in
each of the following cases:

(a) G is an arbitrary product of locally compact abelian groups and H is
either R or the circle group T.

(b) G is either R or T and H is a Banach space.

The plan of the paper is as follows. §1 contains the proof of (a). First,
we prove it for a single locally compact abelian group. As in [4], the main
idea borrows from the theory of twisted sums. We show that each quasi-
homomorphism ω : G → H gives rise to a topological extension of G by
H, that is, a further group E containing H as a normal subgroup in such a
way that E/H = G. The key point is that the induced extension is trivial
(which means that one has a natural decomposition E = H ⊕ G) if and
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only if ω is approximable. The approximation of quasi-characters on locally
compact abelian groups then follows from classical results by Dixmier [6]
and van Kampen [17]. We complete the proof of (a) by using some standard
procedures from the stability of functional equations.

The proof of (b) occupies §2. Here, we adapt some ideas from [13, 14]
to show that the behavior of a quasi-homomorphism depends only on its
restriction to any dense subgroup of G when the target group H is complete.
In this way we show that every quasi-additive map from Q into any Banach
space is not only approximable, but continuous at zero—which implies (b),
thus completing the proof of Theorem 1.

Finally, in §3 we study quasi-additive maps between the groups under-
lying some infinite-dimensional (quasi-) Banach spaces. It is shown that if Z

and Y are Banach spaces, then every abelian extension of Z by Y is in fact
a topological vector space. We then conclude that most classical Banach
spaces have only approximable (real-valued) quasi-additive functions.

1. Quasi-characters

1.1. Extensions. In this short subsection we present some standard facts
about extensions of topological groups. All topological groups are assumed
to be Hausdorff. The group operation is written additively in general (despite
the fact that we do not assume commutativity), with the only exception of
the circle group T. The set of all neighborhoods of the origin in a topological
group G will be denoted by OG.

Definition 2. Let G and H be topological groups. A topological exten-
sion of G by H is a short exact sequence

(5) 0→ H ı→ E π→ G → 0

in which E is a topological group and the arrows represent relatively open
continuous homomorphisms.

Note that there is no open mapping theorem for topological groups, and
so the requirement of having relatively open homomorphisms is not super-
fluous. Less technically, we can regard E as a topological group containing
H as a closed normal subgroup in such a way that E/H is (topologically
isomorphic to) G. First of all, one needs to know when two extensions are
essentially the same. A topological extension 0 → H → F → G → 0 is
equivalent to (5) if there is a continuous homomorphism T : E → F making
the following diagram commutative:

0 −−−−→ H −−−−→ E −−−−→ G −−−−→ 0
∥∥∥

yT
∥∥∥

0 −−−−→ H −−−−→ F −−−−→ G −−−−→ 0
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It follows from the five-lemma [24, Lemma 9.1.5] that such a T must be
bijective. The following nice result, due to Roelcke [20], implies that T is
in fact a topological isomorphism and shows that equivalence of topological
extensions is an equivalence relation. For a proof, see [20] or [8, Lemma A].

Lemma 1 (Roelcke). Let 0 → H → E → G → 0 be a topological exten-
sion. Suppose τ is a group topology on E weaker than the original topology.
If 0 → H → (E , τ) → G → 0 is topologically exact , then τ is the original
topology of E.

The extension (5) is said to be trivial (or to split) if it is equivalent
to the direct sum extension 0 → H → H ⊕ G → G → 0. This happens if
and only if there exists a continuous homomorphism P : E → H such that
P ◦ ı = IdH. For abelian extensions (that is, those in which E is abelian) this
is still equivalent to the existence of a continuous homomorphism S : G → E
such that π ◦S = IdG . In general, the latter condition is strictly weaker than
triviality and leads to the notion of a semi-direct product. See [24, §9.2] for
basic information in the algebraic setting.

Let us say that a property P is a three-group property if whenever (5)
is a topological extension in which H and G have P then E also has P.
For instance, local compactness [10, Theorem 5.25], metrizability [21] and
completeness [22, Theorem 12.1] are three-group properties, while commu-
tativity is not [24, Exercise 9.6.11].

1.2. Quasi-homomorphisms versus extensions. The basic connection be-
tween quasi-homomorphisms and extensions is: every quasi-homomorphism
ω : G → H induces a topological extension of G by H which splits if and
only if ω is approximable.

The proof of the following result is contained in that given for topological
vector spaces in [8, Proposition 3.1].

Lemma 2. Let ω : G → H be a quasi-homomorphism acting between
abelian groups. Then the sets

W (V,U) = {(y, z) : y − ω(z) ∈ V, z ∈ U} (U ∈ OG , V ∈ OH)

form a neighborhood base at the origin for a group topology on H× G.

Let H⊕ω G denote the group H× G equipped with the above topology.
Clearly, the homomorphism H → H ⊕ω G given by y 7→ (y, 0) is injective,
continuous, and relatively open, so that H can be regarded as a closed
subgroup of H ⊕ω G. Moreover, the map H ⊕ω G → G given by (y, z) 7→ z
is a continuous open homomorphism onto G whose kernel is the image of
the preceding one. Thus, the sequence 0 → H → H ⊕ω G → G → 0 is a
topological extension of G by H.
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Note that a homomorphism H⊕ω G → H is a projection onto H (in the
purely algebraic sense) if and only if it has the form P (x, y) = x − a(y),
where a : G → H is an algebraic homomorphism. As in the linear case [8,
Corollary 3.1], it turns out that P is continuous (equivalently, continuous at
the origin) if and only if ω − a is continuous at the origin of G. Thus one
has:

Lemma 3. A quasi-homomorphism is approximable if and only if the
induced extension splits.

1.3. Proof of (a). We are ready to prove the first part of the main
theorem for a single locally compact abelian group.

Suppose ω : G → L is a quasi-homomorphism, where L is either R or T
and G is a locally compact abelian group. Consider the induced extension

0→ L→ L⊕ω G → G → 0.

Clearly, L⊕ωG is also locally compact and abelian. By [10, Theorem 24.36] (if
L = R) and [10, Theorem 24.11] (for L = T), there is a continuous character
χ : L ⊕ω G → L extending the identity on L. Clearly, χ is a continuous
homomorphism projecting L ⊕ω G onto L. An appeal to Lemma 3 shows
that ω is approximable.

The case where G is a product of locally compact abelian groups requires
some preparations. First, we need a classical result by Hyers (see [11] or [12,
Theorem 1.1 and Corollary 1.2]. Although only the case Y = R is necessary
here, the general case will be used later.

Lemma 4 (Hyers). Let G be an abelian group (no topology is assumed)
and Y a Banach space. Suppose ω : G → Y is a mapping such that

‖ω(x+ y)− ω(x)− ω(y)‖Y ≤ ε
for all x, y ∈ G. Then there exists an additive mapping a : G → Y such that
‖ω(x)− a(x)‖Y ≤ ε for all x ∈ G. If G is torsion-free, then a is unique.

Lemma 5. Let ω : G → Y be a quasi-additive mapping , where G is an
abelian topological group and Y a Banach space. If ω maps a neighborhood
of the origin in G into a bounded set in Y, then ω is continuous at the origin
of G.

Proof. The hypothesis implies that there is V ∈ OG such that ‖ω(x)‖ ≤
K for some K and all x ∈ V . Fix ε > 0. Choose n such that K/2n < ε/2.
Now, take W ∈ OG, with W ⊂ V , such that

‖ω(x+ y)− ω(x)− ω(y)‖ ≤ ε

2
(x, y ∈W )

and let U ∈ OG be such that U+ 2n times. . . . . . +U ⊂ W . A straightforward
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induction on k = 1, . . . , n yields

‖ω(2kx)− 2kω(x)‖ ≤ (2k − 1)
ε

2
(x ∈ U).

Taking k = n and dividing by 2n, we obtain∥∥∥∥
ω(2nx)

2n
− ω(x)

∥∥∥∥ ≤
ε

2
(x ∈ U),

and so

‖ω(x)‖ ≤ ε

2
+
K

2n
≤ ε

2
+
ε

2
= ε (x ∈ U).

When the target group is the circle, it will be convenient to introduce
the following invariant metric on T:

d(z, w) = |Arg(z/w)| (−π < Arg(ζ) ≤ π).

Note that d(z, w) represents the arc length between z and w. The following
lemma is a stability result of “Hyers–Ulam” type proved in [2] for discrete
amenable groups. Note that every abelian group is amenable.

Lemma 6. Let G be an abelian group (no topology is assumed) and let
ω : G → T be any mapping such that for some ε < π/3 the estimate

d(ω(x+ y), ω(x)ω(y)) ≤ ε
holds for all x, y ∈ G. Then there is a unique character a : G → T such that
d(ω(x), a(x)) ≤ ε for all x ∈ G.

Lemma 7. Suppose that ω : G → T is a quasi-character such that
d(ω(x), 1) < π/3 for all x ∈ G. Then ω is continuous at the origin.

Proof. Define f : G → R by f(x) = Arg(ω(x)). We see that f is quasi-
additive. Since −π/3 < Arg(ω(x)) < π/3 for all x ∈ G, one has

f(x+ y)− f(x)− f(y) = Arg(ω(x+ y))−Arg(ω(x))− Arg(ω(y))

= Arg

(
ω(x+ y)

ω(x)ω(y)

)
→ 0

as x, y → 0 in G. On the other hand, f has bounded range. According to
Lemma 5, f (and so ω) is continuous at the origin of G.

End of the proof of (a). Write G =
∏
i∈I Gi, with Gi locally compact

abelian groups, and let L denote either R or T. We use additive notation
for L. Let ω : G → L be a quasi-homomorphism. By the very definition there
is U ∈ OG such that

(6) d(ω(x+ y), ω(x) + ω(y)) ≤ 1 (x, y ∈ U).

Clearly, U = (
∏
j∈J Uj) × (

∏
i∈I\J Gi), where J is a finite subset of I and

Uj ∈ OGj for all j ∈ J .
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Write G = G0 × G1, where G0 =
∏
j∈J Gj and G1 =

∏
i∈I\J Gi. Since (6)

holds for all x, y ∈ G1, we can apply Lemma 6 (for L = T; note that 1 < π/3)
or Lemma 4 (for L = R) to get a unique homomorphism a1 : G1 → L with

d(ω(x), a1(x)) ≤ 1 (x ∈ G1).

It follows from Lemma 7 (for L = T) and Lemma 5 (for L = R) that ω1−a1

is continuous at the origin of G1.
On the other hand, G0 is locally compact, and so there is a homomor-

phism a0 : G0 → L such that ω0−a0 is continuous at the origin of G0. Clearly,
the homomorphism a : G = G0 × G1 → L given by a(x, y) = a0(x) + a1(y)
approximates ω near the origin of G.

2. Vector-valued maps

2.1. Restriction to dense subgroups. In this subsection we quickly adapt
the corresponding results from the linear theory to show that if the target
group H is complete, the behavior of a quasi-homomorphism ω : G → H
depends only on its restriction to any dense subgroup of G. This is the
crucial step in the proof of the second part of Theorem 1. Since topological
groups tend to exhibit some pathologies with regard to completeness, let us
remark that:

• If E is a metrizable, complete abelian group and H a closed subgroup
of E , then E/H is complete under the quotient topology [22, Theorem
11.18].
• The completion of a topological abelian group always exists, as a com-

plete abelian group, and has the usual uniqueness property. Arbitrary
topological groups need not admit completions. This is due to the fact
that a noncommutative topological group has two uniform structures
rather than one. See [1, chapitre III, §3].

Let G and H be metrizable complete topological abelian groups. Sup-
pose ω : G0 → H is a quasi-homomorphism, where G0 is a dense subgroup
of G. Consider the induced extension 0 → H → H ⊕ω G0 → G0 → 0. Let
E(ω) denote the completion of H⊕ω G0. One has a commutative diagram of
continuous homomorphisms

(7)

0 −−−−→ H −−−−→ H⊕ω G0 −−−−→ G0 −−−−→ 0
∥∥∥

y
y

0 −−−−→ H −−−−→ E(ω) −−−−→ E(ω)/H −−−−→ 0

It is clear that the vertical arrows are injective and also that G0 → E(ω)/H
is relatively open, with dense range. Therefore, E(ω)/H (which is complete)
turns out to be topologically isomorphic to the completion of G0, that is,
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to G. Thus, the lower row in (7) can be regarded as a topological extension
of G by H, the homomorphism E(ω) → E(ω)/H being the extension of
H⊕ωG0 → G0 to the completions. Moreover, the upper row in (7) splits if and
only if so does the lower one. Indeed, let P be a continuous homomorphism
projecting H⊕ω G0 onto H. Then the extension of P to E(ω) is a projection
onto H. Conversely, if P : E(ω) → H is a splitting homomorphism for the
lower row, then the restriction of P to H⊕ω G0 is a projection onto H. We
have proved the following.

Lemma 8. Let G and H be metrizable complete topological abelian groups
and G0 a dense subgroup of G. Every quasi-homomorphism ω : G0 → H gives
rise to a topological extension 0 → H → E(ω) → G → 0. That extension
splits if and only if ω is approximable by a homomorphism a : G0 →H.

Corollary 1. Let G be a subgroup of Q. Then every quasi-additive map
ω : G → R is continuous at zero.

Proof. If G is discrete this is obvious. Otherwise G is dense in R and so
there is an additive map a : G → R such that ω − a is continuous at zero.
Since G ⊂ Q we see that a(x) = tx, for some fixed t ∈ R and all x ∈ G, and
so a is continuous at zero. Hence ω is itself continuous at zero.

A direct proof of this result for some dense subgroup of Q would be inter-
esting in view of the following result. (For mappings satisfying the estimate
(3) this was done in [3].)

Proposition 1 (cf. [3, Lemma 1] and [4, Theorem 5.14]). Let ω : G→H
be a quasi-homomorphism between abelian groups, where H is complete. If
ω is approximable on some dense subgroup of G, then it is approximable on
the whole of G.

Proof. One has a commutative diagram

0 −−−−→ H −−−−→ H⊕ω G −−−−→ G −−−−→ 0
∥∥∥

x
x

0 −−−−→ H −−−−→ H⊕ω G0 −−−−→ G0 −−−−→ 0

It is clear that the middle vertical arrow embedsH⊕ωG0 as a dense subgroup
of H ⊕ω G. Since H is complete, we conclude that the upper row splits if
and only if so does the lower one.

2.2. Proof of (b). We are now ready to complete the proof of our main
result. In view of Proposition 1, if the domain group is R, this is a straight-
forward consequence of

Proposition 2. Let Y be a Banach space. Every quasi-additive map
ω : Q→ Y is continuous at zero.
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Proof. According to Lemma 5 all that remains is to show that there is a
neighborhood of zero in Q where ω is bounded. Otherwise there is a sequence
(qn)n converging to zero in Q such that ω(qn) is unbounded in Y. The
uniform boundedness principle of Banach and Steinhaus yields a continuous
linear functional y∗ ∈ Y∗ such that y∗(ω(qn)) is an unbounded sequence of
real numbers. This implies that the quasi-additive map y∗ ◦ ω : Q → R is
discontinuous at zero, which contradicts Corollary 1.

The following result allows one to “transfer” approximability from R
to T and completes the proof of Theorem 1. Note that there are plenty
of (necessarily discontinuous) homomorphisms from T into any topological
vector space.

Lemma 9 (see [9, Theorem III.4.1] and [15, Chapter 5, §§1–2]). Let S be
a closed subgroup of G and let H be another abelian group. Suppose that all
quasi-homomorphisms G → H are approximable and that every continuous
homomorphism S → H can be extended to a continuous homomorphism
G → H. Then every quasi-homomorphism ω : G/S → H is approximable. In
particular , so is every quasi-homomorphism from T = R/Z into a Banach
space.

Proof. Let ω : G/S → H be a quasi-homomorphism. If π : G → G/S
denotes the natural quotient homomorphism, it is clear that ω ◦ π : G → H
is a quasi-homomorphism. Let a : G → H be any homomorphism approxi-
mating ω ◦π. Since ω ◦π vanishes on S, it is clear that the restriction of a to
S is a continuous homomorphism S → H. Let a∗ : G → H be a continuous
homomorphism extending it. Then a − a∗ : G → H is a (generally discon-
tinuous) homomorphism vanishing on S. It follows that there is a unique
homomorphism b : G/S → H such that a− a∗ = b ◦ π. It is easily seen that
b approximates ω.

2.3. A uniform approximation principle for quasi-additive functions on
the line. We conclude this section by showing that a family of functions
R→ R which are “uniformly quasi-additive” can be “uniformly approxi-
mated” by additive functions. Precisely:

Corollary 2. Let Ω be a family of quasi-additive mappings ω : R→Yω,
where Yω are possibly different Banach spaces. Suppose Ω is uniformly
quasi-additive in the sense that for every ε > 0 there is δ > 0 such that

(8) ‖ω(s+ t)− ω(s)− ω(t)‖ω ≤ ε (|s|, |t| ≤ δ)
for all ω ∈ Ω, where ‖ · ‖ω denotes the norm of Yω. Then Ω is uniformly
approximable in the sense that to each ω ∈ Ω there corresponds an additive
map aω : R → Yω in such a way that the family {ω − aω : ω ∈ Ω} is
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equicontinuous at zero: that is, for every ε > 0 there is δ > 0 such that

‖ω(s)− aω(s)‖ω ≤ ε (|s| ≤ δ)
for all ω ∈ Ω.

This can be deduced from Theorem 1(b), as in the proof of the implica-
tion (d)⇒(e) of Theorem 2.1 in [7], but we give the details for the sake of
completeness.

Proof. We can regard the whole family Ω as a map R → ∏
ω∈Ω Yω,

taking Ω(s) = (ω(s))ω∈Ω. Let `∞(Ω,Yω) denote the Banach space of all
families (yω)ω∈Ω ∈

∏
ω∈Ω Yω for which the norm

‖(yω)ω‖∞ = sup
ω∈Ω
‖yω‖ω

is finite. Choose δ0 such that (8) holds for ε = 1. It is clear that Ω(s+ t)
− Ω(s) − Ω(t) ∈ `∞(Ω,Yω) whenever |s|, |t| ≤ δ0. Let Π be any linear

projection of
∏
ω∈Ω Yω onto `∞(Ω,Yω) and define Ω̃ : R → `∞(Ω,Yω) as

Ω̃ = Π ◦Ω. Since

Ω̃(s+ t)− Ω̃(s)− Ω̃(t) = Ω(s+ t)−Ω(s)−Ω(t) (|s|, |t| ≤ δ0)

it follows from (8) that Ω̃ : R→ `∞(Ω,Yω) is quasi-additive, and also that

Ω− Ω̃ is additive on [−δ0/2, δ0/2], as a map R→∏
ω∈Ω Yω. It is clear that

there is a unique additive map A′ : R→∏
ω∈Ω Yω extending Ω−Ω̃. Finally,

by Theorem 1, there is an additive mapping A′′ : R→ `∞(Ω,Yω) such that

‖Ω̃(s)− A′′(s)‖∞ → 0 as s→ 0.

Since Ω = A′ + A′′ + Ω̃ − A′′ on [−δ0/2, δ0/2], we see that Ω − A′ − A′′ :
[−δ0/2, δ0/2] → `∞(Ω,Yω) is well defined and continuous at zero. Putting
aω(s) = (A′(s) + A′′(s))ω, one concludes that {ω − aω : ω ∈ Ω} is equicon-
tinuous at zero.

3. Quasi-additive functions on locally bounded spaces. The pur-
pose of this section is to show that quasi-additive functions on most classical
(quasi-) Banach spaces are approximable. This will be done by connecting
extensions of topological groups to F -space extensions. By an F -space ex-
tension we mean a short exact sequence of (real) F -spaces and (continuous
linear) operators

(9) 0→ Y
ı→ X

π→ Z→ 0.

The open mapping theorem [15] guarantees that π is open and also that
ı is an isomorphic embedding, so that F -space extensions are topological
extensions with respect to the underlying additive structures. On the other
hand, any continuous additive map between topological linear spaces is lin-
ear (over R). Hence (9) splits in the category of topological linear spaces
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(that is, there is a continuous operator projecting X onto Y) if and only if
it does as an extension of topological groups.

Theorem 2. Let Y be a Banach space and Z a locally bounded F -space.
Then every topological abelian extension of Z by Y is equivalent to an F -
space extension.

That is, if 0 → Y → E → Z → 0 is an abelian extension of topological
groups, then there is an F -space extension (9) and a topological isomorphism
of groups E → X such that the diagram

0 −−−−→ Y −−−−→ E −−−−→ Z −−−−→ 0
∥∥∥

y
∥∥∥

0 −−−−→ Y −−−−→ X −−−−→ Z −−−−→ 0

is commutative. The following example shows that the hypothesis on E can-
not be removed:

Example 1. There is an extension 0→ R→ E → R → 0 in which E is
not abelian.

Proof. Let E = A+(R) be the group of all orientation preserving affine
automorphisms of the real line endowed with the topology of convergence
on compact subsets. A typical member of A+(R) can be regarded as (a, b),
with a, b ∈ R, a > 0, where (a, b)(t) = at + b. The composition law in
A+(R) is then given by (a, b) ◦ (c, d) = (ac, ad + b), and the unit is (1, 0).
A neighborhood base at (1, 0) is given by

{(a, b) : |a− 1|+ |b| < ε} (ε > 0).

Let H be the subgroup of translations: H = {(1, b) : b ∈ R}. Clearly, H is a
normal subgroup of A+(R) isomorphic to (R,+). It is not hard to see that
A+(R)/H is topologically isomorphic to the multiplicative group (R+, ·),
so that we have an extension 0 → (R,+) → (E , ◦) → (R+, ·) → 0. The
observation that the logarithm defines a topological isomorphism between
(R+, ·) and (R,+) completes the proof.

The proof of Theorem 2 requires the knowledge of when an extension is
induced by a quasi-homomorphism. The next two lemmas are basically due
to Domański.

Lemma 10. A topological abelian extension (5) is (equivalent to one)
induced by a quasi-homomorphism if and only if it splits algebraically (there
is an algebraic homomorphism P : E → H such that P ◦ ı = IdH) and π
admits a section continuous at the origin (a section for π is a map % : G → E
such that π ◦ % = IdG , with %(0) = 0).
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Sketch of the proof. Both conditions are obviously necessary: the re-
quired maps P : H⊕ω G → H and % : G → H⊕ω G are given by P (y, z) = y
and %(z) = (ω(z), z).

The sufficiency is proved as in the linear case (in which the first condition
is automatic): the composition ω = P ◦ % defines a quasi-homomorphism
between G andH and the starting extension (5) is equivalent to the extension
induced by ω: the map T : E → H ⊕ω G given by T (x) = (P (x), π(x)) is a
continuous homomorphism making the following diagram commutative:

0 −−−−→ H −−−−→ E −−−−→ G −−−−→ 0

‖
y

∥∥∥
0 −−−−→ H −−−−→ H⊕ω G −−−−→ G −−−−→ 0

The details are as in [8, proof of Lemma 3.2] (see also [7, Lemma 1.1]).

Actually, the second condition is always satisfied for metrizable groups:

Lemma 11. Let π : E → G be a quotient homomorphism of topological
groups, that is, a continuous homomorphism which is surjective and open.
If E is metrizable, then π admits a (not generally additive) section which is
continuous at the origin of G.

The proof is contained in that given for the linear case in [8, proof of
Lemma 2.2(a)].

Our immediate aim is to show that every abelian extension of two linear
spaces splits algebraically. To this end let us call an abelian group G divisible
if for every x ∈ G and n ∈ N there is a unique x′ ∈ G such that nx′ = x.

It is clear that divisible groups are torsion-free (since nx = 0 implies
x = 0) and also that every divisible group can be regarded in the obvious
way as a linear space over Q. We now prove that divisibility is a three-group
property for abelian groups.

Lemma 12. Let 0 → H → E → G → 0 be an abelian (algebraic) exten-
sion. If both G and H are divisible, then so is E. Consequently , the extension
is linear over Q and so it splits algebraically.

Proof. Let x ∈ E and n ≥ 2 be fixed. We prove there is a unique x′ ∈ E
such that nx′ = x.

Let q : E → H denote the natural quotient homomorphism. Put z = q(x).
Then there is z′ ∈ G such that nz′ = z. Let x′′ be any element of E such
that q(x′′) = z′. Clearly, x− nx′′ ∈ H. Hence x− nx′′ = ny for some y ∈ H.
So, n(y + x′′) = x is the required decomposition.

For the uniqueness, suppose nx′ = nx′′ = x. Then n(x′ − x′′) = 0. Since
G is torsion-free, we see that x′ − x′′ ∈ H. But H is torsion-free too, and so
x′ = x′′.



268 F. Cabello Sánchez

Proof of Theorem 2. We may assume that E = Y⊕ω Z, where ω : Z→ Y

is a suitable quasi-additive map. Clearly, Y ⊕ω Z is a vector space over Q.
We claim it is a topological vector space over Q, that is, the multiplication

(10) Q× (Y⊕ω Z)→ Y⊕ω Z, (q, (y, z)) 7→ (qy, qz),

is (jointly) continuous. By the argument in [8, proof of Proposition 3.1 and
Lemma 3.1] this amounts to verifying that

‖qω(z)− ω(qz)‖Y → 0 as (q, z)→ (0, 0) ∈ Q× Z.

Let U be the unit ball of Z. For z ∈ U , define ωz : R → Y by ωz(t) =
ω(tz). Since U is bounded, it is straightforward to check that the family
{ωz : z ∈ U} is uniformly quasi-additive. By Corollary 2, there are additive
maps az : R→ Y such that {ωz − az : z ∈ U} is equicontinuous at zero. Fix
ε > 0. Choose δ > 0 such that

‖ωz(t)− az(t)‖Y ≤ ε (t ∈ R, |t| ≤ δ, z ∈ U).

Then, for q ∈ Q, we have

‖qω(tz)− ω(qtz)‖Y = ‖qωz(t)− ωz(qt)‖Y
= ‖qωz(t)− az(qt) + az(qt)− ωz(qt)‖Y
≤ ‖q(ωz(t)− az(t))‖Y + ‖az(qt)− ωz(qt)‖Y
≤ |q|ε+ ε (t ∈ R, |t| ≤ δ, z ∈ U).

Hence ‖qω(z)− ω(qz)‖Y ≤ (1 + |q|)ε whenever ‖z‖Z ≤ δ, which proves our
claim.

Since Y ⊕ω Z is complete (a three-group property) it is clear (see, e.g.,
[1, chapitre III, §6.6 et le théorème 1 du §6.5]) that the outer multiplication
in (10) extends to a (jointly continuous) multiplication

? : R× (Y⊕ω Z)→ Y⊕ω Z

which makes Y⊕ω Z into an F -space—we remark that this product by real
numbers in Y ⊕ω Z need not be the “obvious one” t(y, z) = (ty, tz), which
is generally discontinuous. Finally, it is easily seen that

0→ Y→ (Y⊕ω Z, ?)→ Z→ 0

is an extension of F -spaces. This completes the proof.

Since every extension of locally bounded spaces comes from a homoge-
neous quasi-linear map (which forces the estimate (2) for some constant
K) the real meaning of Theorem 2 is that every quasi-additive mapping
ω : Z→ Y is “equivalent” to a homogeneous quasi-linear map η in the sense
that ω − η is approximable. So, one has a representation ω = η + a + ε,
where η is homogeneous, a additive, and ε continuous at the origin.



Quasi-homomorphisms 269

Corollary 3. Let Z be a locally bounded F -space and Y a Banach
space. The following statements are equivalent :

• Every quasi-additive map ω : Z→ Y is approximable.
• Every F -space extension 0→ Y→ X→ Z→ 0 splits.

An F -space satisfying the latter condition for Y = R is said to be a
K-space (see [13, 15]). The main examples of K-spaces have been supplied
by Kalton and co-workers: for instance, infinite-dimensional Lp spaces (0 ≤ p
≤ ∞) are K-spaces if and only if p 6= 1 [13, 16, 15, 19]. Also, B-convex spaces
(that is, Banach spaces having nontrivial type p > 1) are K-spaces and so
are quotients of Banach K-spaces. This provides us with many examples
of Banach spaces on which every quasi-additive (real-valued) function is
approximable. Also, Theorem 2 can be used to read many classical results
about extensions in terms of quasi-additive mappings. A sample: if Z is a
separable Banach K-space, then every quasi-additive map ω : Z → c0 is
approximable, and so on. We refrain from going into details here. We take
our leave of the reader with the following:

Problem. Is “being topologically isomorphic to an F -space” a three-
group property for abelian groups? And “being a locally bounded space”? Is
(at least) every quasi-additive function from the line into a locally bounded
F -space approximable? What if the target space is `p or Lp, for 0 < p < 1?
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